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1 Introduction

Dynamical systems: predict temporal evolution

Characterize the state of the system by a set of quantities: x(t)

Evolution will in general depend on the history of the system at earlier times

{x(t)|t ≤ t0} ⇒ x(tp)

It is sufficient to know the rate of change of the system at any given time:

• dx
dt

could depend on the states over a whole earlier interval

e.g.
dx(t)

dt
=

∫ t

−∞
f(x(t′))dt′

with f a possibly nonlinear vector function of x(t). In that case one would get an

integro-differential equation.

• most often it is sufficient to know the state at the current time

e.g. x(t) is described by differential equation

dx(t)

dt
= f(x(t))

We focus on differential equations: What is the challenge?

The differential equation
d2x

dt2
+ x = 0

has the two independent solutions

x1(t) = cos t x2(t) = sin t

Linear superposition

xg(t) = Ax1(t) +Bx2(t)

provides the solution for any initial condition

x(0) = x0
dx

dt

∣
∣
∣
∣
t=0

= v0

Superposition possible only for linear equations.

Here we focus on nonlinear dynamics

• differential equations much more difficult to solve

• systems exhibit vast richness of phenomena
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Simple illustration: linear vs. nonlinear

Consider zeros x0 of a function f that depends on a parameter µ

f(x, µ) = 0

µ increases 

                        

non linearlinear

µ increases 

                        

Linear Systems:

• change in parameter leads to quantitative change of solution

• unique solution for a given value of the parameter

Nonlinear Systems:

• not only quantitative changes but also qualitative changes in the behavior at tran-

sition points:

solutions can depend on parameters in a non-smooth fashion (e.g. Taylor vortex flow)

• multiplicity of solutions for the same parameter values: hysteresis

(e.g. rolls vs. spiral-defect chaos convection)

• chaotic dynamics

many frequencies, coexisting (unstable) periodic solutions (e.g. Belousov-Zhabotinsky

reaction)

Examples:

• Fluid flow between rotating cylinders

• Flow of a fluid in a layer heated that is heated from below

• Oscillations in chemical reactions

6
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Figure 1: Fluid flow between two rotating cylinders. The torque needed to rotate the inner

cylinder increases suddenly (non-smoothly) when the flow changes qualitatively to form

Taylor vortics (Donnelly and Simon, J. Fluid Mech. 7 (1960) 401). (Note, in the base flow

the torque G increases linearly with the rotation rate Ω1 and G/Ω
2
1 ∝ 1/Ω1 )

Figure 2: Taylor vortex flow exhibits a bewildering multitude of qualitatively different

behaviors when the rotation rates are changed (Andereck, Liu and Swinney, J. Fluid Mech.

164 (1986) 155).
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Figure 3: Convection of a fluid heated from below. Steady roll patterns and spiral defect

chaos are stable for the same parameter values (Melnikov, Egolf, Jeanjean, Plapp, Boden-

schatz AIP Conf. Prof. 501 (2000) 36)
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Figure 4: Chaotic oscillations in the Belousov-Zhabotinsky reaction (Schmitz, Graziani,

and Hudson, J. Chem. Phys. 67 (1977) 3040).

Possible approaches

• exact analytical solutions for nonlinear systems are available only in rare cases

even if analytical solution is available it is often so complicated that it is diffcult to

extract from it insight about the mechanisms underlying the behavior of the system

• numerical solution

– confirms the model/basic equations:

of great interest if mathematical model has not been established, e.g., chemical

oscillations, heart muscle

– gives quantitative details for specific values of system parameters:

these details may not be accessible in experiments: 3d fluid flow, turbulent, chem-

ical concentrations of each species

– insight into the mechanisms?

• qualitative aspects: transitions between different states

– approximate solutions near transition points using perturbative methods

• visualization: geometry of dynamics, phase portraits

– overview of all possible behaviors

Simple Example: Mass-spring-system

d2x

dt2
= −βdx

dt
− k

m
x

with friction β.

We will write all differential equations as first-order systems:

ẋ = v

v̇ = −βv − k

m
x

m x

k

Note:

9
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• notation: we often write ẋ for dx
dt

a)

v

x

b)

x

v

Figure 5: Phase portraits for a harmonic oscillator. a) without friction (β = 0) any initial

condition leads to harmonic oscillations. b) with damping (β > 0) any initial condition leads

to oscillatory convergence to a fixed point.

The phase portrait provides a complete overview of all possible solutions

(here linear → not much going on.)

Conservative Systems (no friction/dissipation)

• almost all different initial condition lead to different states

Dissipative Systems

• a range of initial conditions leads to the same state: attractors

• transitions: qualitative change in the number and type of attractors

We will mostly focus on dissipative systems.

2 1-d Flow

2.1 Flow on the Line1

Any first-order differential equation with constant coefficients,

ẋ = f(x),

can be solved exactly for any f(x) (by separation of variables).

∫ x

x0

dx

f(x)
= t− t0

1cf. Strogatz Ch.2
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Example: ẋ = sin x

t =

∫
dx

sin x
=

∫

csc xdx

t = − ln | csc x+ cotx| + C

Now what? What have we learned?

Even if we could solve for x, would we have an overview of the behavior of system for

arbitrary initial conditions?

Geometrical picture: phase space (or phase line in 1 dimension)

x

ẋ = f(x) defines a flow in phase space or a vector field

For 1d: plot in addition f(x)

f(x)

The phase portrait gives us a complete picture of the qualitative behavior of the system.

Conclude: any i.c. ends up in one of the fixed points at xn = (2n+ 1)π.
Fixed points are stagnation points of the flow

Stability:

• flow into xn = (2n + 1)π: stable

• flow out of xn = 2nπ: unstable

Of course: for quantitative results (‘numbers’) we need the detailed solution

Example: Population Growth with Limited Resources

Write N for the number of animals (size of population)

Ṅ = g(N)N

11
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with g(N) = net birth/death rate

Limited food/space:

births decrease, deaths increase with increasing N

Minimal model

g(N) = α− βN

⇒ Logistic growth model

Ṅ = αN − βN2

Make dimensionless:

[α] = 1
s

[β] =
1

s

1

#
1
α
characteristic growth time

α

β
characteristic population size

Introduce

τ = αt n =
β

α
N

Question: If population goes to some equilibrium, what size would you expect?

α
β
is the only characteristic size after initial condition is forgotten ⇒ expect N → α

β

dn

dτ
= n− n2

Could solve the differential equation by partial fraction

Instead, consider phase space:

n

saturation

exp growth

t

1 n

dn
dt

fixed points: n = 0, n = 1

flow indicates: n = 0 unstable, n = 1 stable

12
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indeed: all i.c. go to N = α
β
.

In the one-dimensional plot the stability of the fixed points can be read off easily. In general

(higher dimensions) much more difficult⇒ determine the linear stability of the fixed points,

i.e. consider small perturbations around them.

Linear Stability:

Study effect of small perturbation away from fixed point

Linearize around fixed points:

Insert the expansion

n = n0 + ǫn1(τ) ǫ≪ 1

into the equation for n

d(n0 + ǫn1(τ))

dτ
= n0 + ǫn1(τ)− (n0 + ǫn1(τ))

2

Expanding the square we get

ǫ
dn1(τ)

dτ
= n0 − n2

0 + ǫ (n1(τ)− 2n0n1(τ))− ǫ2n1(τ)
2

Equating like powers in ǫ on both sides we get

O(ǫ0) : 0 = n0 − n2
0

⇒ n0 = 1 or n0 = 0

O(ǫ1) :
dn1

dτ
= n1 − 2n0n1 = (1− 2n0)n1

⇒ n1 ∝ e(1−2n0)τ

Thus,

n0 = 1 ⇒ 1− 2n0 < 0 that fixed point is stable

n0 = 0 ⇒ 1− 2n0 > 0 that fixed point is unstable

More generally

ẋ = f(x)

To determine the linear stability of the fixed point x0 we make the ansatz:

x = x0 + ǫx1(t)

and expand

ẋ1 = f (x0 + ǫx1) = f(x0) + f ′(x0) ǫx1 +
1

2
f ′′(x0) (ǫx1)

2 + . . .

Again equation like powers

O(ǫ0) : 0 = f(x0)

O(ǫ1) : ẋ1 = f ′(x0)x1

Thus,

x1(t) ∝ ef
′(x0)t

and

13
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the fixed point is stable: f ′(x0) < 0
the fixed point is unstable: f ′(x0) > 0

Note: for coupled systems f ′(x) is replaced by Jacobian matrix:

eigenvalues determine stability (see below).

2.1.1 Impossibility of Oscillations:

Can the solution approach fixed point via oscillations?

t

No! To get oscillations x(t) would have to come back to an earlier value at a later time, i.e.

x(t2) = x(t1) with t2 > t1. But the sign of ẋ(t) would have to be opposite at the two times, in

particular f(x(t1)) 6= f(x(t2)), which is not possible since x(t2) = x(t1).

→ system evolves monotonically between fixed points

More general concept: potential

For one-dimensional systems with time-independent coefficients one can always write

ẋ = f(x) = −dV
dx

with V = −
∫

f(x)dx

Consider:
dV

dt
=
dV

dx
ẋ = −ẋ2 ≤ 0

any change in x reduces V ⇒ V cannot return to previous, higher value ⇒ no periodic

motion possible
dV

dt
= 0 ⇒ ẋ = 0 fixed point

x either goes to a fixed point or it diverges to −∞ (if V is not bounded from below).

Notes:

• V is called a Lyapunov function for the differential equation

14
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Compare: mechanical system in overdamped limit

mẍ = −βẋ+ F (x)

for very small mass (no inertia)

ẋ =
1

β
F (x)

Overshoot requires inertia, i.e. 2nd derivative.

Note: The concept of the potential is not limited to one-dimensional systems. However,

only few higher-dimensional systems can be derived from a potential.

2.2 Existence and Uniqueness

So far we assumed that starting from a given initial condition we always get a unique

solution for all times:

• at any time ‘we know where to go’

• we can continue this forever

Solutions to

ẋ = f(x)

1. do not have to exist for all times:

for a given initial condition the solution may cease to exist beyond some time

2. do not have to be unique:

the same initial condition can lead to different states later.

1. Existence

solution can disappear by becoming infinite

if this happens in finite time then there is no solution beyond that time

Example:

ẋ = +xα with x(0) = x0 > 0

∫

x−α dx =

∫
dx

xα
= t+ C

1

1− α
x1−α = t+ C

initial conditions:

C =
1

1− α
x1−α
0

x(t) =
(
(1− α)t+ x1−α

0

) 1
1−α

15
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Solution diverges at

t∗ =
x1−α
0

α− 1
> 0 if α > 1

i.e. for α > 1 the divergence occurs in finite time.

Note:

• a divergence in infinite time represents no problem: x(t) = et

2. Uniqueness

Consider the previous example for 0 < α < 1

⇒ x = 0 for t∗ =
x1−α
0

α− 1
< 0

Solution can start at t∗ with x(t∗) = 0 and grow from there.

But: x̃(t) ≡ 0 is also a solution for all times.

Thus:

• two different solutions x̃(t) and x(t) satisfy the same initial condition, x(t∗) = 0.

Moreover, we can construct another solution by starting with x̃(t) ≡ 0 for t < t∗ and ’switch’

to x(t) > 0 beyond t∗,

x̂(t) =

{

0 t ≤ t∗
(
(1− α)t+ x1−α

0

) 1
1−α t > t∗

The combined solution x̂(t) is continuous and satisfies the differential equation.

-4 -2 0 2

0

5
solution ’splits’

Figure 6: Non-uniqueness of an initial value problem: both, the blue and the red function

satisfy the differential equation ẋ = x
1
2 with the initial condition x(t0) = 0 for any t0 ≤ t∗ =

−2.

Worse: t∗ varies with x0

⇒ can pick any t∗ and patch the solutions at that t∗

⇒ infinitely many solutions with identical i.c. x = 0.

Note:
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• in the linear case, α = 1, one would have x(t) ∝ et and x = 0 would be reached only in

the infinite past (t→ −∞), which would not allow a connection to the solution x ≡ 0.

Theorem2:

If for ẋ = f(x, t)

• f(x, t) is continuous in the vicinity of the initial condition x(t0) = x0, i.e. for |t−t0| < ∆t
and |x− x0| ≤ ∆x, and

• f(x, t) satisfies Lipschitz condition within that vicinity,

|f(x1, t)− f(x2, t)| ≤ K |x1 − x2| for all |x1,2 − x0| ≤ ∆x and for all |t− t0 ≤ ∆t|

with some constant K (K can be thought of as a maximal slope in that vicinity)

then the solution exists for a finite time interval around t0, |t − t0| ≤ ∆T , and is unique

there. The interval is given by

∆T = min

(

∆t,
∆x

M

)

whereM is the maximum of |f(x, t)| within |t− t0| < ∆t and |x− x0| ≤ ∆x.

Notes:

• f(x) = |x|α does not satisfy Lipschitz condition at x = 0 for 0 < α < 1:
we would need

|x|α ≤ Kx for all x near x = 0

i.e. K ≥ |x|α−1. But for |x|α−1 → ∞ for x→ 0 and α < 1.
⇒ the theorem does not guarantee the uniqueness of solution; and, in fact, it is not

unique.

• If f ′(x) is continuous near x0 then the slope of f(x) has a maximum and f(x) satisfies
the Lipschitz condition ,

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
→ f(x0 + h)− f(x0) = O(h),

and the solution is unique near x0

2.3 Bifurcations in 1 Dimension3

We had: in 1d final state always fixed point (if dynamics are bounded)

How many fixed points? How can the number of fixed points change?

2see, e.g., Lin & Segel, Mathematics applied to deterministic problems in the natural sciences, p.57
3cf. Strogatz Ch.3
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⇒ Introduce parameter µ
f(x, µ) = 0

To study the creation or elimination of fixed point we need to study only small changes in µ

⇒ analysis in the vicinity of some specific value of µ

Question: Does the solution persist when the parameter is changed? Is it unique?

µ  

                        

x

2.3.1 Implicit Function Theorem

Local analysis in the vicinity of a fixed point for small changes in µ:

Taylor expansion

f(x, µ) = f(x0, µ0)
︸ ︷︷ ︸

=0

+
∂f

∂x
(x− x0) +

∂f

∂µ
(µ− µ0) +

1

2

∂2f

∂x2
(x− x0)

2 + · · ·

(All derivatives evaluated at x0, µ0)

fixed point: f(x0, µ0) = 0

If ∂f
∂x
|x0,µ0 6= 0 ⇒ solve uniquely for x

x− x0 = −(µ− µ0)
∂f
∂u
∂f
∂x

+O
(
(µ− µ0)

2)+O
(
(x− x0)

2)

︸ ︷︷ ︸

O((µ−µ0)
2)

With x− x0 = O(µ− µ0) the higher-order terms can be consistently neglected and the fixed

point exists for all values of µ in the vicinity of µ0:

Thus, in this case there is a branch of solutions.

More generally for higher dimensions:

Implicit function theorem:

Consider the solutions of

f(x, µ) = 0 x ∈ Rn f smooth in x and µ

If

f(x = x0, µ = µ0) = 0

18
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and

det

(
∂fi
∂xj

)

6= 0 at µ = µ0 and x = x0,

then there is a unique differentiable X(µ) that satisfies in the vicinity of µ = µ0

f(X(µ), µ) = 0 and X(µ = µ0) = x0.

Thus: if det
(

∂fi
∂xj

)

6= 0 there is a branch of solutions going through x = x0 as µ is varied.

µ  

                        

x

branch of solutions
x

µ  

                        

0

0

Notes:

• In 1d: det ∂fi
∂xj

→ df
dx

= f ′(x)

⇒ as seen in explicit calculation: if f ′(x) 6= 0 branch persists uniquely

• change in x is smooth in µ if ∂f
∂x

6= 0

∆x ∼ ∆µ (1)

• generic properties are those properties that do not require any tuning of the pa-

rameters

When picking parameters at random one expects ∂f
∂x
|x0,µ0 6= 0,

i.e. we would need to tune µ to get ∂f
∂x
|x0,µ0 = 0

⇒ generically there is a smooth branch

x

+0

0

0

x x

x

µ µ µ µ
0 +

∆

∆

Since the stability changes if f ′(x) = 0

A change in the number of fixed points requires a change in the (linear) stability

of the fixed point.

19
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2.3.2 Saddle-Node Bifurcation

What happens when ∂f
∂x

= 0?

Need to go to higher order in Taylor expansion (for simplicity choose x0 = 0, µ0 = 0)

0 = f(x, µ) = f(0, 0)
︸ ︷︷ ︸

=0

+
∂f

∂x
︸︷︷︸

=0

x+
∂f

∂µ
µ+

1

2

∂2f

∂x2
x2 +

∂2f

∂x∂µ
xµ+

1

2

∂2f

∂µ2
µ2 + . . .

Solve again:

x2 = − 2
∂2f
∂x2

{
∂f

∂µ
µ+

∂2f

∂x∂µ
xµ+

1

2

∂2f

∂µ2
µ2 + · · ·

}

In the smooth case we had (cf. (1))

x ∼ µ, e.g. x = αµ,

With this scaling we would get

x2
︸︷︷︸

α2µ2=O(µ2)

= − 2
∂2f
∂x2







∂f

∂µ
µ
︸︷︷︸

O(µ)

+
∂2f

∂x∂µ
xµ
︸︷︷︸

α+µ2=O(µ2)

+
1

2

∂2f

∂µ2
µ2

︸︷︷︸

O(µ2)

+ · · ·







To solve this equation we collect all terms of a given order in µ, i.e. µ0, µ1, µ2, . . .and solve

the equations order by order in µ:
There is no term of O(µ) on the left-hand side, the first term on the right-hand side is the

only term of O(µ). At O(µ) we therefore obtain the equation

∂f(0, 0)

∂µ
= 0

This is in general not the case ⇒ assuming the scaling x ∼ µ leads therefore to a contradic-

tion.

Try a different balance of x and µ

x ∼ µ1/2 e.g. x = αµ1/2

Then

x2
︸︷︷︸

α2µ=O(µ)

= − 2
∂2f
∂x2







∂f

∂µ
µ+

∂2f

∂x∂µ
xµ
︸︷︷︸

αµ=O(µ3/2)

+
1

2

∂2f

∂µ2
µ2 + · · ·







and we can balance the first term on the right-hand side with the left-hand side and obtain

x1,2 = ±

√
√
√
√−2

∂f
∂µ

∂2f
∂x2

µ

Notes:
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• If the implicit function theorem fails one gets a nonlinear, higher-order equation with

multiple solutions (depending on the parameters)

• the change in x is not smooth in µ

Dynamics:

ẋ = f(x, µ) = aµ+ bx2 + h.o.t. (2)

with

a =
∂f

∂µ

∣
∣
∣
∣
x=x0,µ=µ0

≡ ∂µf b =
∂2f

∂x2

∣
∣
∣
∣
x=x0,µ=µ0

≡ ∂2xf

and h.o.t. denotes higher-order terms.

Bifurcation diagrams: plot all solution branches as a function of µ

Relevant parameters:

a

b
=
∂µf

∂2xf
≡

∂f
∂µ

∂2f
∂x2

a
b
< 0 and a > 0

solutions exist for µ > 0

µ  

                        

x

a
b
> 0 and a > 0

solutions exist for µ < 0

The y-direction corresponds to the phase line for a given value of µ. The arrows indicate

the flow on the phase line for that value of µ.

x

f f

x

marginally

stable

f

x

Notes:

• 2 fixed points are created/destroyed. Single solutions cannot simply pop up or disap-

pear: merging and annihilation of 2 solutions
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• The coinciding fixed points at µ = 0 are linearly marginally stable:

∂xf changes sign going along the solution branch: change in stability

• The only condition for a saddle-node bifurcation to occur is ∂xf = 0, which is the

condition for any bifurcation to occur. No additional tuning of parameters is required.

– Therefore, if a bifurcation occurs, one should expect a saddle-node bifurcation,

unless the system has some special properties.

– (2) is the universal form of the equation describing the dynamics near a saddle-

node bifurcation

• The flow changes direction only locally:

only when µ goes through 0 and only near the bifurcation point x = 0 does the flow

change direction.

Away from the bifurcation point the flow is qualitatively unchanged when µ changes

(arrows far away remain the same).

• The saddle-node bifurcation is sometimes also called “blue-sky bifurcation”, because

two solutions seem to appear from nowhere as the parameter µ is changed.

• in higher dimensions: saddle-node bifurcation

stable ∼ node unstable ∼ saddle

Example:

• In Taylor vortex flow in a short cylinder the transition to vortices arises through a

saddle-node bifurcation and exhibits hysteresis.

Here the saddle-node bifurcation is part of a larger bifurcation scenario
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Figure 7: Two saddle-node bifurcations in Taylor vortex flow in a short cylinder. a) sym-

metric vortices below the bifurcation and jump to asymmetric vortices above the transition

[?]. b) bifurcation diagram [?].

2.3.3 Transcritical Bifurcation

Consider a system that satisfies an additional condition beyond that of the occurrence of a

bifurcation:

Assume one fixed-point solution exists for all µ. For simplicity assume that solution is

x = 0:
f(0, µ) = 0 for all µ

Taylor expansion around x = 0 at the bifurcation point µ = 0

f(x, µ) = f(0, 0)
︸ ︷︷ ︸

=0

+ ∂xf(0, 0)
︸ ︷︷ ︸

=0

x+ ∂µf(0, 0)
︸ ︷︷ ︸

=0

µ+
1

2
∂2xf(0, 0) x

2 + ∂2xµf(0, 0) xµ+
1

2
∂2µf(0, 0)
︸ ︷︷ ︸

=0

µ2 + . . .

Vanishing terms

• x = 0 is a fixed point for µ = 0: f(0, 0) = 0

• a bifurcation occurs: ∂xf(0, 0) = 0

• x = 0 is a solution for all values of µ: ∂µf(0, 0) = 0, ∂2µf(0, 0) = 0

Universal evolution equation

ẋ = x (a µ+ b x) + · · ·
with

a = ∂2xµf
∣
∣
x=0,µ=0

b =
1

2
∂2xf
∣
∣
x=0,µ=0

Two fixed points:

x1 = 0 x2 = −a
b
µ ≡ − ∂2xµf

1
2
∂2xf

µ

There are four cases:
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a

b
< 0 a > 0

µ  

                        

x

a

b
> 0 a > 0

Two more cases for a < 0: the fixed point x1 = 0 is then stable for µ > 0 and unstable for

µ <0 with the corresponding other branch depending on the sign of a/b.

Notes:

• Both fixed points exist below and above the bifurcation (µ < 0 and µ > 0)

• ’Exchange of stability’ between the two branches of solutions

• Sufficiently large perturbation can lead away from the (linearly) stable fixed points.

Examples:

1. Logistic equation for population dynamics

Ṅ = µN −N2

for µ < 0 the lower branch is unphysical since N > 0 is required

N

µ

2. Rayleigh-Benard convection in a fluid layer heated from below:

• The state without fluid flow (modeled with x = 0) exists for all temperature dif-

ferences

• Hexagonal flow patterns arise in a transcritical bifurcation connected with a

saddle-node bifurcation

• Large perturbations can kick the solution without fluid flow above the unstable

branch of the transcritical bifurcation and trigger the formation of hexagonal

convection patterns.
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• For µ > 0 the lower branch is unstable in a different way (instability not con-

tained in the single equation)

Figure 8: Convection in very thin fluid layers sets in via a transcritical bifurcation to hexag-

onal convection patterns. The hexagons and the convection-less state are simultaneously

linearly stable in a (very small) range of parameters. If the heating is increased the pattern

expands into the whole system [?].

3. Simple Model for Laser

pump

laser output

Optical cavity with excitable atoms

Dynamics of atoms:

• atoms are excited by pump P 4

• atoms emit photons and go to ground state

– spontaneously: spontaneous emission

– due to other photon: stimulated emission

a photon triggers the emission of a photon from excited atom

4Atoms are also excited by photons already present; effect much smaller than pump (n is small near onset

of lasing)
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Ṅ = P − fN − gnN

N : number of excited atoms, P : pump, f : decay through spontaneous emission,

g: ‘collision’ with photon takes atom to ground state (stimulated emission), n:
number of photons in the cavity

Dynamics of photons:

• photons generated by stimulated emission

• photons leave through end mirrors

ṅ = gNn− κn

g: gain, κ: output/loss

Note: n counts only photons with correct phase (only those generated by stimulated

emission)

Now: we have 2 equations: too difficult for now

model the N-equation ad hoc: steady state # of excited atoms will be reduced by pho-

tons

N = N0 − αn

then

ṅ = g(N0 − αn)n− κn = (gN0 − κ)n− αgn2

again same equation as for logistic growth

g

n            

Note:

• we will learn under what conditions the model for N is justified:

reduction from many ode’s to few/single ode by center-manifold reduction.

2.3.4 Pitchfork Bifurcation

Consider systems with reflection symmetry x → −x, i.e. systems for which, if x(t) is a

solution, −x(t) is also a solution.

Thus, assume x(t) a solution,

ẋ = f(x(t), µ),

and require that the reflected function −x(t) is also a solution,

−ẋ = f(−x(t), µ).
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Thus we have

ẋ = −f(−x(t), µ).
Since also ẋ = f(x(t), µ), we have that f(x, µ) must be odd in x

f(−x, µ) = −f(x, µ) for all µ.

Therefore, in a Taylor expansion around x = 0 no even powers in x can appear

f(x, µ) = ∂xf(0, 0)
︸ ︷︷ ︸

=0

x+ ∂2xµf(0, 0)
︸ ︷︷ ︸

a

xµ+
1

2
∂2xf(0, 0)
︸ ︷︷ ︸

=0

x2 +
1

6
∂3xf(0, 0)
︸ ︷︷ ︸

b

x3 + . . .

This yields

ẋ = aµx+ bx3

Depending on the value of µ there are one or three fixed points:

x0 = 0

x2,3 = ±
√

−a
b
µ

Consider the two cases:

a

b
< 0 a > 0

a

b
> 0 a > 0

supercritial subcritical

Notes:

• Supercritical: new branches arise on the side where the state x = 0 is linearly unsta-

ble ⇒ nonlinear saturation of the instability

• Subcritical ⇒ no saturation to cubic order ⇒ need higher-order terms

• The system has the reflection symmetry x→ −x
The solution x0 = 0 has that symmetry as well.

The solutions x2,3 = ±√−a
b
µ break the reflection symmetry:

The symmetry of the system is manifested in the fact that the two solutions are sym-

metrically related.

⇒ The pitchform bifurcation is a symmetry-breaking bifurcation.
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Examples:

a) buckling of a beam

or

reflection symmetric symmetry related

b) Electro-convection in nematic liquid crystals:

AC-voltage can induce a pitch-fork bifurcation to stripe-like convection patterns in nematic

liquid crystals.

The reflection symmetry arises effectively from a translation symmetry: shifting by half a

wavelength corresponds to a flipping of the velocity vector5:

up-flow down-flow

Figure 9: a) Disordered convection pattern very close to the bifurcation point in electrocon-

vection of a nematic liquid crystal. b) The square of the pattern amplitude grows linearly

at the bifurcation point reflecting the square-root law for the amplitude. As the electri-

cal conductivity of the liquid crystal is changed (different symbols) a tricritical point is

approached: the pitch-fork bifurcation eventually becomes subcritical. [?].

5intermediate positions are also possible ⇒ system has larger symmetry
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c) Ferromagnets

Bifurcations are closely related to phase transitions, they both describe qualitative changes

in the behavior of the system, like from a liquid to a gas:

• phase transitions can often described in terms of a single scalar quantity that de-

scribes the state of the system:

as such an order parameter serves the density of a gas/liquid or the magnetization of

a ferromagnet

• the order parameter typically satisfies a nonlinear equation, which exhibits bifurca-

tions as the temperature, say, is changed.

Consider ferromagnets:

• as temperature T increased beyond the critical temperature Tc: ferromagnetic ⇒
paramagnetic (‘non-magnetic’)

Ising model: each atom carries a magnetic moment (spin): si = ±1

Overall magnetization arises if the spins align on average in one direction or the other:

spontaneous symmetry breaking

Interactions:

• energy of spins in external magnetic field:

EH = −Hsi want to be parallel to field

• energy of spin - spin interaction:

ES = −
∑

i,j

Jijsisj Jij > 0, want to be parallel to each other

∑

i,j is a sum over neighbors
Note:

• Macroscopic magnets want to align anti-parallel: north is attracted by south.

The parallel alignment in ferromagnets is a quantum-mechanical effect.

29



322 Nonlinear Dynamics H. Riecke, Northwestern University

• Total energy:

E(s1 . . . , sN) = −
∑

i

Hsi −
∑

i,j

Jij sisj

= −
∑

i

(

H +
∑

j

Jijsj

)

︸ ︷︷ ︸

Heff
i (sj)

si

each spin si feels a field that depends on its neighbors

Heff
i (sj) = H +

∑

j

Jijsj

For finite temperature T the probability of spin i to have value si depends on its energy Ei

P (si) ∝ e−Ei/kT = eH
eff
i (sj) si/kT Boltzmann factor

k Boltzmann constant

The average value of si is then given by

s̄i =
∑

si=±1

siP (si) = P (1)− P (−1)

However:

Heff
i (sj) still contains the unknown orientation of all the other interacting spins, which at

any given moment will depend on si ⇒ P (si) very difficult to calculate.

Note:

• In one spatial dimension the model was solved by Ising in his thesis in 1925. In

two dimensions it was solved by Onsager in 1944. In three dimensions no analytical

solution is known.

Mean field approximation: replace the local spin value si by the average s̄i, which is the

same for all spins since the system is spatially homogeneous, s̄i = s̄.

Heff
i (sj) → H̄ = H +

∑

j

Jij s̄

= H + s̄
∑

j

Jij

︸ ︷︷ ︸

J̄

Then

P (si) =
1

N eH̄ si/kT with H̄ = H + s̄J̄
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Normalization of probability:

1 = P (+1) + P (−1) ⇒ N = eH̄/kT + e−H̄/kT

Thus the average magnetization satisfies:

s̄ =
(+1) eH̄/kT + (−1) e−H̄/kT

eH̄/kT + e−H̄/kT
= tanh

{
(H + s̄J̄)

kT

}

Consider H =0:

s̄ = tanh(
s̄J̄

kT
)

Graphically

s
_

s
_

y =
y

y = tanh( j s / K T )
__

B

Using

tanh θ = θ − 1

3
θ3 +O(θ5)

we get

s̄ =
s̄J̄

kT
− 1

3

(
s̄J̄

kT

)3

+O
(
s̄5
)

0 =

(
J̄

kT
− 1

)

s̄− 1

3

(
J̄

kT

)3

s̄3 +O
(
s̄5
)

i.e. to leading order

0 = µs̄+ bs̄3

with

µ =
J̄

kT
− 1 b = −1

3

(
J̄

kT

)3

Since the bifurcation (phase transition) occurs at µ = 0 the critical temperature Tc is given
by

Tc =
J̄

k

Note:
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• since |µ| ≪ 1we can set T = Tc in b

b = −1

3

Notes:

• pitchfork bifurcation since symmetry s̄→ −s̄
buckling, thermal convection, ferromagnets very different physical systems: transi-

tion described by the same equation because they have the same symmetries

• supercritical pitchfork bifurcation ⇔ phase transition of 2nd order.

• H 6= 0 breaks reflection symmetry ⇒ the pitchfork bifurcation is perturbed ⇒ see

Section 2.3.6.

2.3.5 Subcritical Pitchfork Bifurcation:

If the cubic term does not lead to a saturation of the amplitude we need to include a quintic

term:

ẋ = µx+ bx3
︸︷︷︸

destabilizing for b>0

− cx5
︸︷︷︸

stabilizing for c>0

Assume c > 0. In general need not saturate at quintic order

To get the bifurcation diagram: plot µ = µ(x)

µ  

                        

x µ  

                        

x

⇒

Note:

• 2 saddle-node bifurcations

• hysteresis loop & bistability

• Taylor expansion in x:
analysis strictly valid only if x is sufficiently small on the upper branch.

Since

x21,2 =
b±

√

b2 − 4µc

c
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validity requires that b is small, i.e. we need to expand around the ‘tricritical’ point

b = 0
the bifurcation has to be weakly subcritical

2.3.6 Imperfect Bifurcations

The saddle-node bifurcation requires only the tuning of a single parameter.

For the transcritical and for the pitch-fork bifurcation to occur we needed 2 conditions

• bifurcation occurs: ∂xf |x0,µ0 = 0

• additional coefficients ‘happen to vanish’, e.g., because of some symmetry

Question:

What happens when the additional conditions are only satisfied approximately, e.g. the

symmetries are weakly broken?

Example: In the ferromagnet the external field H breaks the up-down symmetry s̄→ −s̄ .
We had:

s̄ = tanh(β(H + J̄ s̄)}
Using again

tanh θ = θ − 1

3
θ3 +O(θ5)

the equation for the magnetization s̄ becomes

s̄ = β(H + J̄ s̄)− 1

3

(
β(H + J̄ s̄)

)3
+O

((
β(H + J̄ s̄)

)5
)

.

For small s̄ and H the quintic term can be neglected.

With µ ≡ βJ̄ − 1 one has near the bifurcation

|µ| ≪ 1

and one obtains to leading order in µ, s̄, and H

0 = µs̄− 1

3
β3J̄3s̄3 + βH

Thus, consider the perturbed pitchfork bifurcation

ẋ = µx− x3 + h

Solving this cubic equation directly for fixed points is cumbersome (although possible).
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Graphical solution:

µ < 0 µ > 0

x

y = - h

µ x - x 

                        

y =
3

y 

y = - h

y = - h

y = - h

1

2

3

x

y 

Vary h for fixed µ:

x

h

µ < 0

h

x                     

SN

SN

µ > 0

Note:

• varying h up and down beyond the saddle-node bifurcations induces a hysteresis loop:

in the magnetic system the magnetization jumps and switches sign.

The saddle-node bifurcations occur at the extrema of µx− x3 , thus for given µ

xSN = ±
√

1

3
µ hSN = ∓

√

1

3
µ
2

3
µ

µ

h

3

1

1

hSN(µ) for µ > 0 gives lines of saddle-node bifurcations in the

(µ, h)-parameter plane: for |h| < hSN(µ) there are 3 solutions,

otherwise only 1 solution.

The parameter plane can be traversed in different directions.
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Vary µ for h > 0 fixed:

SN

µ  

                        

Notes:

• A bifurcation is called degenerate if additional conditions “happen” to be satisfied, i.e.

if additional coefficients in the Taylor vanish due to the tuning of some parameter

– in a system that does not have a reflection symmetry a pitch-fork bifurcation

would be degenerate.

• Unfolding of a degenerate bifurcation:

introduce sufficiently many parameters so that no degeneracy is left.

shift

break

Unfolding the pitchfork bifurcation:

• break the symmetry x → −x, but keep

the solution x = 0 for all µ⇒ transcriti-

cal bifurcation

• break the transcritical bifurcation by

dropping the condition that x = 0 is al-

ways a solution⇒ only saddle-node bi-

furcation remains

Note:

• the number of parameters that have to be tuned to get a certain bifurcation is called

the codimension of that bifurcation: if the system has N parameters and the bifur-

cation has codimension d then the bifurcation occurs on a N − d-dimensional surface

(‘manifold’) in the N-dimensional parameter space.

• to get an unperturbed pitch-fork bifurcation in a system without reflection symmetry

we have to tune 2 parameters

µ = 0 & h = 0

codimension-2 bifurcation

• in systems with reflection symmetry the pitch-fork bifurcation has codimension 1
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µ  

                        

x

µ  

                        

h

h

1 3 1 solution

cusp

µ  

                        

h

3

1

1

Figure 10: Solution surface. The pitch-fork bifurcation occurs at the codimension-2 point

(µ = 0, h = 0). Saddle-node bifurcations occur along lines, which have codimension 1.

This is the surface of a cusp catastrophe:

• catastrophes occur as saddle-node

bifurcations are crossed:

solution jumps to other branch

minute changes lead to drastic re-

sults.
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2.4 Flow on a Circle6

For oscillations to be possible the system needs to allow a return: two dimensions needed

v

x t

θ

v

Consider the dynamics on the periodic orbit:

Flow on a circle

θ̇ = f(θ) θ ∈ [0, 2π]

Notes:

• f(θ) cannot be arbitrary: has to be single-valued, i.e. 2π-periodic

• f(θ) gives the instantaneous frequency

Example: Overdamped Pendulum with Torque

θ

Γ

mℓ2θ̈ + βθ̇ = −mgℓ sin θ + Γ̃

consider large damping

θ̇ = Γ− a sin θ

with a = mgℓ/β and Γ = Γ̃/β

6cf. Strogatz Ch.4
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i) a = 0 (no gravity)

θ = θ0 + Γt whirling motion

oscillation in horizontal coordinate:

x = ℓ sin θ = ℓ sin(θ0 + Γt)

t

x

ii) α > 0 (with gravity)

a < a = a >

0 slow 2π 2πθ

Γ Γ Γ

fast

bottle neck

slow
fast

θ

t t t

a < a = a >Γ Γ Γ
θ θ θ

‘Ghost’ of the saddle-node bifurcation:

for a just below the saddle-node bifurcation, a . Γ, the evolution becomes extremely slow

near the location on the orbit where the two saddle and the node are ‘borne’ at a = Γ.

Note:

• quite generally: near a steady bifurcation the dynamics become slow:

growth/decay rates go to 0 (‘critical slowing down’).
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Estimate the period near the bifurcation point:

T =

∫

dt =

∫ 2π

0

dθ

θ̇
=

∫ 2π

0

dθ

Γ− a sin θ

θε ε+-

f(  )θ

Consider the general case near a saddle-node bifurcation

θ̇ = f(θ)

assume that minimum of f(θ) is at θ = 0

f(0) = µ, f ′(0) = 0

⇒ f(θ) = µ+
1

2
f ′′(0)
︸ ︷︷ ︸

a

θ2 +O(θ3)

T =

∫ 2π

0

dθ

f(θ)
=
︸︷︷︸

f(θ) periodic

∫ 2π−ǫ

−ǫ
dθ
f(θ)

+

∫ +ǫ

−ǫ

dθ

µ+ aθ2 +O(θ3)
︸ ︷︷ ︸

diverges as µ→ 0

+

∫ 2π−ǫ

ǫ

dθ

f(θ)
︸ ︷︷ ︸

finite as µ → 0

=

∫ +ǫ

−ǫ

dθ

µ+ aθ2
+ T0

extract the divergence for µ→ 0 (at fixed ǫ) using ψ = θ√
µ

T =
1

µ

∫ ∈

µ1/2

− ∈

µ1/2

µ1/2 dψ

1 + aψ2
+ T0 → 1

µ1/2

∫ ∞

−∞

dψ

1 + aψ2
+ T0 ∝ µ−1/2

Notes:

• A saddle-node bifurcation on an invariant circle is one way to generate oscillations.

This bifurcation is often called a SNIC bifurcation. Generically one has for this bifur-

cation

T ∝ µ−1/2
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• other types of bifurcations to oscillatory behavior lead to different T (µ),
e.g. at a Hopf bifurcation one has

T (µ = 0) = T0 finite.

• the fact that the saddle-node bifurcation leads to oscillations is a global feature of

the system:

one needs a global connection between from saddle to the node (in addition to the

direct connection)

Examples for SNIC Bifurcations:

i) Synchronization of Oscillators and Fireflies

Videos:

• synchronized fireflies https://www.youtube.com/watch?v=a-Vy7NZTGos

• metronomes falling into lock-step https://www.youtube.com/watch?v=kqFc4wriBvE

Such synchronization is not just curious but technologically and scientifically relevant:

• couple lasers to achieve high power

• coherent brain activity (EEG)

– synchronized firing by multiple neurons has more impact on neurons reading this

output.

– synchronization has been associated with attention to stimuli

– too much synchrony bad: epileptic seizure

• synchronous activity of heart muscle cells is essential for functioning of the heart:

asynchrony (fibrillation) can be deadly.

Minimal model of synchronization of oscillators, e.g. fireflies

• light up periodically

• respond to neighboring fireflies
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Consider single firefly with periodic light source representing another firefly

Light source:

ψ̇ = Ω

Firefly:

φ̇ = ω + a sin(ψ − φ)

The coupling must be 2π-periodic.

For a > 0 firefly speeds up if it lags behind ψ > θ ⇒ φ̇ is increased.

rewrite: θ = φ− ψ
θ̇ = ω − Ω

︸ ︷︷ ︸

Γ

−a sin(θ)

Γ: frequency mismatch = detuning

• Fixed point: firefly flashes are entrained by the light source if their detuning is not

too large

|ω − Ω|
︸ ︷︷ ︸

range of entrainment

< a and θ0 = arcsin
ω − Ω

a
6= 0

Firefly flashes lag behind/pull ahead, but phase difference fixed: phase-locked state

• “Whirling” motion: |ω − Ω| > a

flashes are not synchronized with the light source.

Notes:

• Entrainment is a common feature of coupled oscillators

• In general the coupling is bidirectional.

ii) Excitability in Neurons

Main features of the neurons that are to be modeled

• The voltage across the membrane of the nerve cell plays a central role: the communi-

cation between neurons is mostly achieved via voltage pulses (‘action potentials’)

Vm

Na
+ +

K

fast slow

voltage dependent channels              
outside positive potential 

pumps for Na
+ +

K, ...

inside negative potential  
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• Neurons are excitable:

– Brief small stimulations evoke only small responses.

– Brief super-threshold stimulations evoke large voltage excursions: action poten-

tial

V

V = 0

t

no spikerest potential

spike

• Steady stimulation can lead to periodic firing of action potentials

Biophysical model:

Voltage-dependent membrane currents ‘charge’ the ‘capacitance’. In addition, there are in

general currents representing synaptic inputs from other neurons.

The voltage-dependent membrane currents follow Ohm’s law with a bias due to different

ion concentrations inside and outside of the cell

C
dV

dt
= − gNam

3h (V − VNa)
︸ ︷︷ ︸

sodium current

− gKn
4 (V − VK)

︸ ︷︷ ︸

potassium current

− gL (V − VL)
︸ ︷︷ ︸

leak current

+Iinput

τn(V )
dn

dt
= n∞(V )− n

τh(V )
dh

dt
= h∞(V )− h

τm(V )
dm

dt
= m∞(V )−m

Figure 11: Steady-state values of the gating variables m, n, h (left) and the corresponding

time constants (right) for the potassium and the sodium channels, respectively.
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Generation of the action potential

• Sufficiently large depolarization (V less negative) ⇒ Na+ channels open fast (m in-

creases) ⇒ the cell becomes rapidly yet more depolarized

• Depolarization of the neuron⇒ the slowerK+ channels open (n increases), V becomes

negative: cell becomes hyperpolarized again

Periodic spiking can arise through a SNIC bifurcation. In that case the normal form for

the description of the system dynamics for parameter values near the bifurcation is the

θ-model [?] (see also article in Scholarpedia http://www.scholarpedia.org/article/
Ermentrout-Kopell_canonical_model)

θ̇ = 1− cos θ + (1 + cos θ) (−r + Iinj)

= 1− r + Iinj − (1 + r − Iinj) cos θ

where θ characterizes the phase on the cycle.

SNIC bifurcation occurs at f(θ) = 0 = f ′(θ), i.e.

θ = 0 Iinj = r

large perturbation      spike

small perturbations      no spike

⇒ 

⇒ 

Notes:

• Near the SNIC the conductance model shows the same power-law scaling of the pe-

riod with the distance to the bifurcation point as the θ-model and the generic SNIC

bifurcation.
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3 Two-dimensional Systems

New aspects:

• ‘true’ oscillations without periodic “boundary” conditions

• reduction of dynamics to lower dimension

3.1 Classification of Linear Systems7

We would like to obtain a complete overview of the dynamics of a two-dimensional sys-

tem. For linear systems this is possible and we will see that this will provide essential

information about the local neighborhood of fixed points.

Therefore consider first a general linear system

ẋ = Lx with x(0) = x0

One can give the formal solution in terms of a matrix exponential

x(t) = eL tx0

which is defined via the expansion

eL t = 1 + L t+
1

2
L 2t2 + . . .

We can simplify L by similarity transformation:

If the eigenvalues of S are different from each other L can be diagonalized

S −1LS =

(
λ1 0
0 λ2

)

The eigenvectors of L are given by the columns of S

L v1,2 = λ1,2 v1,2

S −1LS

(
1
0

)

= λ1

(
1
0

)

⇒ L S

(
1
0

)

︸ ︷︷ ︸

v1

= λ1 S

(
1
0

)

︸ ︷︷ ︸

v1

Note:

• In general the eigenvectors need not be orthogonal to each other

7cf. Strogatz Ch.6
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The dynamics in the eigendirections are simple

eL t vi = {1 + L t +
1

2
(L t)2 + · · · } vi =

= {1 + λit +
1

2
λ2i t

2 + · · · } vi =
= eλit vi

i.e., along the eigendirections we have simple exponential time dependence.

The general solution can be written in terms of the eigenvectors

x(t) = eλ1tv1A1 + eλ2tv2A2

with the amplitudes Ai determined by the initial conditions

x0 = A1v1 + A2v2

Notes:

• The eigenvalues can be complex

λ1,2 = σ1,2 + iω1,2

x(t) = A1e
σ1teiω1tv1 + A2e

σ2teiω2tv2

If L is a real matrix the eigenvalues and eigenvectors are complex conjugates of each

other, σ1 = σ2, ω1 = −ω2, and the solution is real

x(t) = eσt(A1e
iωtv1 + A∗

1e
−iωtv∗1)

• If L has repeated eigenvalues it cannot always be diagonalized. But it always can be

reduced to the Jordan normal form

S −1LS =

(
λ 1
0 λ

)

We are interested in the trajectories (orbits) y(x) in the phase plane, which are parametrized

by the time t. Consider for simplicity a diagonal L,

(
ẋ
ẏ

)

=

(
λ1 0
0 λ2

)(
x
y

)

⇒ x = eλ1tx0
y = eλ2ty0

⇒ et = (
x

x0
)1/λ1

y(t) =

((
x

x0

)1/λ1
)λ2

y0 = y0

(
x

x0

)λ2
λ1

Thus

y(t) = C x(t)
λ2
λ1
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stable node

x

slow

fast

y

λ1 < 0,2

2 | |1|λ λ|>

hyperbola

unstable manifold

saddle

stable manifold

λ1 < 0λ2

Definitions:

• Stable manifold of a fixed point x0:

{x | x(0) = x⇒ x(t) → x0 for t→ +∞}

• Unstable manifold of a fixed point x0:

{x | x(0) = x⇒ x(t) → x0 for t→ −∞}

Note:

• The stable and unstable manifolds of a fixed point are quite informative for the flow

in the vicinity of the fixed point.

Possible Phase Portraits:

i) Generic cases, i.e. the phase portraits do not change qualitatively when a parameter is

changed slightly:

( stable or unstable )             Re(  ) < 0λ                

spiral ( stable )
                 saddle                                node                                 complex eigenvalue                                                                                                                     
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ii) Special cases, i.e. a parameter has to be tuned to a special value to obtain these dia-

grams. Small changes in a parameter can change the diagrams qualitatively:

Re( )= 0λ Im( ) 0λ ≠λ2 = 0

center degenerate node

At a degenerate node the linearization has a double eigenvalue with only a single eigenvec-

tor

L =

(
λ 1
0 λ

)

λ < 0

the system is almost oscillating.

In two dimensions the eigenvalues can be written simply in terms of detL and trL

detL = det(S −1LS ) = λ1λ2 trS −1LS = λ1 + λ2

λ1,2 =
+trL ±

√

(trL )2 − 4 detL

2

Change in stability: Re (λi) = 0

i) trL = 0 and detL > 0 ⇒ λ = ±iω complex pair crossing imaginary axis

ii) trL < 0 and detL = 0 ⇒ λ1=0 , λ2 < 0 single zero eigenvalue

Change in character:

Transition between real ↔ complex

(
trL
)2

= 4detL
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++

- -

+-

+-

thick: change
of stability

stable node

unstable node

saddle

stable
spiral

det L

trL = 2tr L √det L
____

λ λ1 2= > 0

λ λ1          2= < 0
degenerate node

λ = ± ωi

non-isolated

fixed point

i.e. bifurcation (steady)

Notes:

• Degenerate node ⇒ border between nodes and spirals, does not quite oscillate

• Non-isolated fixed points: steady bifurcation, one or more fixed points are created/annihilated

(details depend on the nonlinearities).

3.2 Stability

So far we have considered only linear stability. There are also other notions of stability.

Linear stability in a nonlinear system

• all infinitesimal perturbations decay eventually

• the dynamics of infinitesimal perturbations can be determined by a linearization of

the equations around the points in question

Example:

Damped-driven pendulum

mℓ2 θ̈ + β θ̇ = −mgℓ sin θ + Γ
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rewrite as first-order system using x = θ and y = θ̇:

ẋ = y ≡ Fx(x, y)

ẏ = − β

mℓ2
y − mgℓ

mℓ2
sin x+ Γ ≡ Fy(x, y)

Fixed points:

y0 = 0 & mgℓ sin x0 = Γ

Expand around the fixed points

x = x0 + ǫx1(t) ǫ≪ 1

y = y0 + ǫy1(t)

Insert the expansion

ǫẋ1 = Fx (x0 + ǫx1(t), y0 + ǫy1(t)) =

= Fx(x0, y0)
︸ ︷︷ ︸

0

+ǫx1 ∂xFx|(x0,y0) + ǫy1∂yFx|(x0,y0) +O(ǫ2)

Analogously for ẏ1.

In matrix form: (
ẋ1
ẏ1

)

=

(
∂xFx ∂yFx

∂xFy ∂yFy

)

︸ ︷︷ ︸

Jacobian L

(
x1
y1

)

⇒ the linear stability is determined by the eigenvalues of the Jacobian

For the pendulum we have

L =

(
0 1

−g
ℓ
cosx0 − β

mℓ2

)

Thus, the eigenvalues are given by

det
(
L− λI

)
= 0

yielding in this case

(−λ)(−λ− β

mℓ2
) +

g

ℓ
cos x0 = 0

λ2 + λ
β

mℓ2
+
g

ℓ
cosx0 = 0

λ1,2 = − β

2mℓ2
± 1

2

√
(

β

mℓ2

)2

− 4
g

ℓ
cosx0

In general, for n first-order equations the Jacobian of the linearization is an n × n matrix

and has n eigenvalues in the complex plane:
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linearly stable marginally stable unstable

λ ∈C

Other stability notions:

Attractor:

A set of points (e.g. a fixed point) is attracting if all trajectories that start close to it converge

to it, i.e.

for all x(0) near xFP : x(t) → xFP for t→ ∞

or 

Note:

• The trajectory need not approach the attractor right away.

• The set of points that eventually reach the attractor form the basin of attraction of

the attractor.

Lyapunov Stability:

A set is (Lyapunov) stable if all orbits that start close to it remain close to it for all times.

Technically, for any neighborhood V of xFP one can find a U ⊆ V such that if x(0) ∈ U then

x(t) ∈ V for all times.

     
VU
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Notes:

• Lyapunov stability of a set does not imply that the set is an attractor:

• An attractor does not have to be Lyapunov stable

This fixed point is not Lyapunov stable (one cannot find neighborhood to which excursion

are confined), but due to the global connection it is attracting.

Asymptotic Stability:

A set is asymptotically stable if it is attracting and Lyapunov stable, i.e. if all orbits that

start sufficiently close to a fixed point converge to it as t→ ∞ without leaving its neighbor-

hood.

x(0)

Lyapunov stable asymptotically stable

FP
xFP

Notes:

• A fixed point is asymptotically stable ⇒ the fixed point is attracting, it is an attractor.

• Linear stability ⇒ asymptotic stability ⇒ Lyapunov stability

• Linear instability ⇒ instability

• But: asymptotic or Lyapunov stability do not imply linear stability

Examples: see homework
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3.3 General Properties of the Phase Plane

3.3.1 Hartman-Grobman theorem

Linear systems: can be completely understood

How much of that can be transferred to nonlinear systems?

Definition: A fixed point x0 of ẋ = f(x) is called hyperbolic if all eigenvalues of ∂fi
∂xj

have

non-zero real parts.

Thus: in all directions a hyperbolic fixed point is either linearly attractive or repulsive. No

marginal direction.

Hartman-Grobman Theorem:

If x0 is a hyperbolic fixed point of ẋ = f(x) then there exists a continuous invertible function

h(x) that is defined on some neighborhood of x0 and maps all orbits of the nonlinear flow

into those of the linear flow. The map can be chosen so that the parameterization of orbits

by time is preserved.

h

(x',y') = h (x,y)

-1

_

y'

x'

y

x

Thus:

• For a hyperbolic fixed point x0 the linearization of the flow gives the topology of the

nonlinear flow in a neighborhood of x0.

• If the fixed point is not hyperbolic, the linearization does not give sufficient informa-

tion:

ẋ = αx3

? ?

linearly marginally

stable different topology of flow

α α < 0> 0
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• At any bifurcation the fixed point is not hyperbolic.

ẋ = µx+ αx3

at µ = 0 the linear systems are equal for all α.

subcritical pitchfork      supercritical pitchfork 

µ

α α < 0> 0

• Away from the bifurcation point the nonlinear terms are negligible compared to the

linear terms if one focuses on a sufficiently small neighborhood of the fixed point.

Note:

• the flow in the vicinity of a hyperbolic fixed point is structurally stable. This is not the

case without hyperbolicity, e.g. for centers or fixed points undergoing bifurcations.

3.3.2 Phase Portraits

A phase portrait captures all relevant features of the phase plane.

Example:

ẋ = f(x, y) = y

ẏ = g(x, y) = x(1 + y)− 1

1. Nullclines are lines along which the time derivative of one of the variables vanishes.

They can only crossed parallel to the coordinate axis corresponding to the other vari-

able.

f(x, y) = 0 ⇒ y = 0

g(x, y) = 0 = x(1 + y)− 1 ⇒ y =
1

x
− 1

2. Fixed Points are at the intersections of the nullclines.

y = 0 x = 1
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3. Linear stability of fixed point:

x(t) = 1 + ǫ x1(t) y = ǫy1(t)

(
ẋ1
ẏ1

)

=

(
0 1
1 1

) (
x1
y1

)

Eigenvalues:

λ1,2 =
1±

√
5

2
saddle point

Eigenvectors: (

x
(1,2)
0

y
(1,2)
0

)

=

(
2

1±
√
5

)

Note:

• This fixed point is hyperbolic ⇒ the eigenvectors of the linear stability analysis

give the directions of the stable and unstable manifolds of the nonlinear flow.

stable manifold

unstable manifold
nullclines 

x

y

Notes:

• For ẋ = f(x) the solutions are unique if all partial derivatives ∂fi
∂xj

are continuous

⇒ orbits do not intersect. An intersection would imply a non-

unique solution: starting with an initial condition at the intersec-

tion the system could go into two different directions. Thus, the

lines denoting orbits can cross only at fixed points.
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Phase portraits can be more complicated:

separatrix =

homoclinic orbit

periodic

orbit

Phase portraits can contain

• nullclines

• fixed points with their stable/unstable manifolds

• periodic orbits

• separatrices: a separatrix separates basins of attraction of different attractors

• heteroclinic orbits: trajectories that connect two different fixed points. If two fixed

points are connected by a heteroclinic orbit the unstable manifold of one fixed point is

the stable manifold of the other.

• homoclinic orbits: a trajectory that returns to the same fixed point. In this case the

unstable manifold conincides with the stable manifold of the fixed point.

3.3.3 Ruling out Persistent Dynamics

For what kind of systems can one rule out persistent dynamics like periodic orbits?

In the one-dimensional case we discussed already Gradient Systems (Potential Sys-

tems)

Thus, if

ẋ = −∇V (x) i.e. ẋi = −∂V
∂xi

with V ≥ V0 for all x (bounded from below)

then
dV

dt
=
∑

i

∂V

∂xi
ẋi = −

∑

i

(
dxi
dt

)2

≤ 0.

Thus, V eventually reaches a (local) minimum and

dV

dt
= 0 ⇔ ẋi = 0 for all i
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Thus, the system always goes to a fixed point.

Example: Mechanical overdamped particle in potential

ii) Lyapunov Functional

To rule out persistent dynamics one does not need ẋ = −∇V .

More generally:

Assume there is a function V (x) with V (x) > V0 for all x 6= x0 where x0 is a fixed point

• if dV
dt

≤ 0 for all x 6= x0 in neighborhood U then x0 Lyapunov stable

if V (x(t)) is non-increasing in time, x(t) cannot escape.

• if dV
dt
< 0 for all x 6= x0 in U then x0 asymptotically stable

if V (x(t)) is strictly decreasing in time,x(t) must approach the fixed point.

Note:

• Such a V (x) is called a Lyapunov function.

Example:

a) damped particle in a bounded potential U(x)

ẍ+ βẋ = −dU
dx

i.e.

ẋ = v

v̇ = −βv − dU
dx

Try the total energy

V =
1

2
ẋ2 + U =

1

2
v2 + U

dV

dt
= vv̇ +

dU
dx
ẋ = v(−βv − dU

dx
) +

dU
dx
v = −βv2 < 0 for v 6= 0

⇒ there are no periodic orbits and the system always ends up in a stable fixed point.
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b)

ẋ = −x+ 4y

ẏ = −x− y3

Simplest attempt: try a quadratic function that is bounded from below:

V = x2 + ay2 with a > 0.

The parameter a can be chosen as needed.

dV

dt
= 2x(−x+ 4y) + 2αy(−x− y3)

= −2x2
︸ ︷︷ ︸

≤0

+ xy(8− 2a)
︸ ︷︷ ︸

undetermined

− 2ay4
︸︷︷︸

≤0

⇒ choose a = 4 ⇒ dV
dt
< 0 for x 6= 0 6= y

⇒ (0, 0) asymptotically stable and no periodic orbits

Note:

• Potentials rule out persistent dynamics in arbitrary dimensions.

3.3.4 Poincaré-Bendixson Theorem: No Chaos in 2 Dimensions 8

• How complex can the dynamics be in 2 dimensions?

• Can we guarantee a periodic orbit without explicitly calculating it?

Poincaré-Bendixson Theorem:

If

• R is a closed bounded subset of the plane

• ẋ = f(x) with f(x) continuously differentiable on an open set containing R

then

any orbit that remains in R for all t either converges to a fixed point or to a

periodic orbit.

Simple Illustration:

8cf. Strogatz Ch.7
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• in one dimension we had: no periodic orbits

fixed point divides phase line into left and right

⇒ cannot go back and forth

⇒ no oscillatory approach to fixed point

⇒ no persistent oscillations

to get oscillations the trajectory would need to spiral into the fixed point: need 2

dimensions

• in two dimensions:

what is more “complicated" than periodic orbit?

periodic orbit has single fundamental frequency ω

x(t) = A cosωt+B cos 2ωt+ C cos 3ωt+ . . .

Can we have 2 incommensurate frequencies? I.e.

x(t) = A cosω1t +B cosω2t+ . . . with
ω1

ω2

6= m

n
irrational

Consider the approach to a periodic orbit in two dimensions:

not possible

The periodic orbit divides the phase plane into inside and outside.

An oscillatory approach to the periodic orbit would require going from inside to outside

and back. This is not possible without crossing the periodic orbit, which is not possible

due to the uniqueness of the solution ⇒ No second frequency.

The system has to go to a fixed point or a periodic orbit.

to get oscillatory approach the trajectory would have to spiral around the periodic

orbit: need 3 dimensions.

Consequence of Poincaré-Bendixson:

• The only attractors of 2d-flows are fixed points or periodic orbits

• No chaos in 2 dimensions.
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Example 2: Glycolysis Oscillations

Yeast cells break down sugar by glycolysis, which can proceed in an oscillatory fashion.

Figure 12: Glycolytic oscillations in an unstirred yeast extract leads to spiral waves [?, ?].

Simple model[?, ?]:

Phosphorylation of fructose-6-phosphate F6P to fructose-6-diphosphate FDP

F6P
PFK→
︸︷︷︸

ATP→ADP

FDP

This reaction is catalyzed by the enzyme phosphofructokinase PFK and accompanied by

the conversion of adenosine triphosphate ATP into adenosine diphosphate ADP .

PFK is stimulated by binding with several ADP molecules, i.e. the phosphorylation of F6P
is enhanced by the presence of multiple ADP molecules.

ADP adenosine diphosphate ẋ = −x+
non-enhanced phosphorylation

︷︸︸︷
ay +x2y = f(x, y)

F6P fructose-6-phosphate ẏ = b− ay − x2y
︸︷︷︸

enhanced phosphorylation

= g(x, y)

Are there parameter ranges for which can one guarantee the existence of a stable periodic

orbit?

Phase portrait:

study nullclines: ẋ = 0 or ẏ = 0

f = 0 ⇒ y =
x

a+ x2

g = 0 ⇒ y =
b

a+ x2
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⇒ fixed point at

y =
x

a + x2
=

b

a+ x2

⇒ x = b and y =
b

a + b2

exists for all b > 0, a > 0

f = 0                                              

g = 0+
-

- +

y

x

Nullclines show: spiraling motion

• to fixed point?

• to periodic orbit? which?

• to infinity?

To use the Poincaré-Bendixson theorem:

1. we need a trapping region R

2. we need to exclude all fixed points from the trapping region

1) Trapping Region:

x

y

need to exclude 

escape

Can we find line that 

does not get crossed?
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Consider large x and y to check the possibility of an escape

ẋ ∼ x2y
ẏ ∼ −x2y

}

along the orbit one has:
dy

dx
=

dy
dt
dx
dt

= −−g
f

= − x2y + ay − b

x2y + ay − x

Thus:

• for x > b and (x, y) above the nullcline f = 0 we have −g > f > 0 and therefore
dy
dx
< −1:

the trajectories enter the trapping region along y = −x+ C

• below the nullcline f = 0 we have ẋ < 0:
the trajectories enter the trapping region along x = xr with xr being the x-coordinate
of the intersection of the straignt line and f = 0

Alternatively one can compare |ẋ| with |ẏ| like this

ẋ− (−ẏ) = −x+ ay + x2 y + b− ay − x2 y

= b− x

⇒ for x > b |ẋ| < |ẏ|
⇒ flow inward along y = −x+ C for x > b and C large enough

for y > b
a
we have g < 0 for any value of x

⇒ flow inward for y > b/a

f  

+
-

-+g

b

for y > b/a   g<0

2) Fixed Points:

There is only a single fixed point
(
b, b

a+b2

)
. We need to establish that the trajectories do not

converge to that fixed point

The linear stability analysis shows that the fixed point is unstable for

1− 2a−
√
1− 8a < 2b2 < 1− 2a +

√
1− 8a

⇒ limit cycle guaranteed for this range of b, which exists as long as a ≤ 1
8

The instability at 2(b
(1,2)
H )2 = 1 − 2a ±

√
1− 8a is a Hopf bifurcation. Oscillations occur for b

(1)
H < b < b

(2)
H . No steady bifurcation is

possible.

More generally: the trapping region needs to exclude a (possibly small or infinitesimal)

neighborhood of the fixed point
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• If the fixed point is linearly unstable, trajectories will not leave the trapping region

and converge towards that fixed point.

• If the fixed point is marginally stable, nonlinear terms become relevant: need to es-

tablish crossing of the border like we did for the line y = −x+ C in the example.

3.4 Relaxation Oscillations

Class of systems for which one can see the periodic orbit relatively easily:

Fast-slow systems with N-shaped nullcline

Example:

Consider for µ ≫ 1:

ẋ = µ (y − F (x))

ẏ = b− x

with

F (x) = −x+ 1

3
x3

.

nullclines x= b

y = F (x) ⇒

⇒

x= 0

y = 0
.

.

Nullcline x = 0 Is Missing

For µ ≫ 1 the variable x evolves much faster than y except near the nullcline y = F (x):

• except near the nullcline y = F (x) the vector field is essentially horizontal

dy

dx
=
ẏ

ẋ
=

b− x

µ (y − F (x))
→ 0 for µ→ ∞

the horizontal trajectories constitute two fast branches

• near the nullcline y = F (x) the trajectory is pushed towards the nullcline: the null-

cline y = F (x) represents two slow branches

Fixed point:

x0 = b y0 = b− 1

3
b3
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Linear stability of the fixed point: expand around (b, b− 1
3
b3)

x = x0 + ǫx1(t) y = y0 + ǫy1(t)

ǫẋ1 = µ

(

y0 + ǫy1 + x0 + ǫx1 −
1

3
(x0 + ǫx1)

3

)

ǫẏ1 = b− x0 − ǫx1.

Collecting all terms at C(ǫ) yields
(
ẋ1
ẏ1

)

= L

(
x1
y1

)

with

L =

(
µ (1− b2) µ

−1 0

)

In terms of the trace and the determinant of L the eigenvalues are given by

λ1,2 =
1

2

(

traceL±
√

(traceL)2 − 4detL

)

=
1

2

(

µ
(
1− b2

)
±
√

µ2 (1− b)2 − 4µ

)

.

Thus, since µ > 0, the fixed point is unstable with a complex pair of eigenvalues for |b| < 1
and stable otherwise. For these two values of b the fixed point is at either of the two extrema

of F (x).

x

t

rapid switching 

between slow 

branches

The period of the periodic orbit is essentially determined by the time spent on the slow

branches.

On the right slow branch (nullcline) (i.e. for x > 0) x changes essentially only because y
changes. therefore express ẋ in terms of ẏ,

y ∼ F (x) ⇒ ẏ ∼ dF

dx
ẋ

And y changes according to

ẏ = g(x, y)

thus

ẋ =
g(x, y)

dF
dx

=
g(x, F (x))

dF
dx
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Consider the simpler, symmetric case b = 0, for which the fixed point is at (0, 0),

T =

∫

dt ∼ 2

∫

C

dt

dx
dx = 2

∫

C

1

ẋ
dx = 2

∫

C

dF
dx

−x dx = 2

∫ xmin

xr

−1 + x2

−x dx

where C is the portion of the trajectory along the nullcline y = F (x) from x = xr > 0 to

x = xmin with xmin > 0 given by the minimum of F (x):

dF

dx
= 0 = −1 + x2 xmin = 1 ymin = −2

3
xmax = −1 ymax =

2

3

The upper limit xr is given by the condition

ymax ≡ 2

3
= F (xr) = −xr +

1

3
x3r

We know that F (xr) = ymax has a double zero at xmin = −1. The cubic can therefore be

factorized easily to obtain xr = 2.

Thus

T ∼ 2

[

ln x− 1

2
x2
]∣
∣
∣
∣

1

2

= 2

{

− ln 2 +
3

2

}

3.5 Weakly Nonlinear Oscillators

We would like to determine solutions for non-linear oscillators like

ẍ+ βẋ+ x+ αx2ẋ+ γx3 = 0.

Exact nonlinear solutions usually impossible to get.

To make analytical progress try to obtain systematic approximate solutions for

- the periodic orbits and

- the transients approaching periodic orbits.

3.5.1 Failure of Regular Perturbation Theory

Consider first a simple linear example to demonstrate the problem

ẍ+ 2ǫβẋ+ (1 + ǫΩ)2x = 0 with ǫ≪ 1

with some initial condition like x(0) = 0, ẋ(0) = 1.

Exact solution:

xe = Aeλt ⇒ λ2 + 2ǫβλ+ (1 + ǫΩ)2 = 0

λ1,2 =
−2ǫβ ±

√

4ǫ2β2 − 4(1 + ǫΩ)2

2

= −ǫβ ± i
√

(1 + ǫΩ)2 − ǫ2β2

⇒
xexact = e−ǫβt

(
Aeiωt + A∗e−iωt

)

with

ω =
√

(1 + ǫΩ)2 − ǫ2β2
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Attempt perturbation solution using

xa = x0 + ǫx1 + h.o.t

Insert

d2

dt2
(x0 + ǫx1 + . . .) + 2ǫβ

d

dt
(x0 + ǫx1 + . . .)

+ (1 + ǫΩ)2(x0 + ǫx1 + . . .) = 0

Collect orders in ǫ:
O(ǫ0):

d2

dt2
x0 + x0 = 0

x0 = Aeit + A∗e−it = 2Ar cos t− 2Ai sin t

O(ǫ1):
d2

dt2
x1 + 2β

d

dt
x0 + 2Ωx0 + x1 = 0

d2

dt2
x1 + x1 = −2iβAeit − 2ΩAeit

︸ ︷︷ ︸

∼ resonant forcing

+c.c. ≡ αeit + c.c.

This is a second-order constant-coefficient inhomogeneous differential equation:

General solution:

x1(t) = xh(t) + xp(t)

with
d2

dt2
xh + xh = 0 ⇒ xh = A1e

it + c.c.

Try undetermined coefficients for the particular solution (since inhomogeneity is simple

exponential function):

xp = Beit + c.c.

However:

d2

dt2
Beit +Beit = 0 ⇒ cannot balance inhomogeneity on r.h.s.

Note:

• at O(ǫ) the inhomogeneous term is forcing the oscillator x1 at its resonance frequency:

resonant forcing
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We could now use the method of variation of parameters xp = B(t)eit and reduce the order

of the equation and solve the resulting first-order equation by integration

xp = B(t)eit

ẍp = B̈eit + 2iḂeit − Beit + c.c.

Thus,

B̈eit + 2iḂeit − Beit +Beit = αeit

with V = Ḃ we get

V̇ + 2iV = α

and using an integrating factor
d

dt

(
e2itV

)
= e2itα

V = e−2it

∫

eitαdt =
1

2i
α

and

B =
1

2i
tα + C

xp(t) =
1

2i
(−2iβ − 2Ω) teitA + c.c.

Alternatively, having some experience we can try directly the ansatz:

xp = B t eit + c.c.

Insert:

d2

dt2
xp + xp =

B
(
2ieit − t eit + t eit

)
+ c.c. = −2iβAeit − 2ΩAeit + c.c.

⇒ B =
1

2i
(−2iβ − 2Ω)A

Put together

xa(t) = x0(t) + ǫx1(t) = Aeit + ǫ (−β + iΩ) teitA+ c.c. = (1− ǫβt + iǫΩt)Aeit + c.c.

Notes:

• Initially, the oscillation amplitude of xa(t) is decaying like that of the exact solution.

• For larger times the oscillation amplitude of xa grows linearly, while the exact solution

xe(t) decays to 0.
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Resonant forcing leads to (linear) growth without bounds: secular terms 9

• for t = O(ǫ−1) the perturbation ǫx1 becomes as large as x0: this contradicts the as-

sumptions of the approach ⇒ the perturbation approach breaks down for t = O (ǫ−1).

However: the approximation is indeed an expansion of the exact solution in ǫ:

xe = e−ǫβt
︸︷︷︸

1−ǫβt+O(ǫ2)

(
Aeiωt + c.c.

)

with

ω =
√

(1 + ǫΩ)2 − ǫ2β2

︸ ︷︷ ︸

1+ǫΩ+O(ǫ2)

xe = Aeit + ǫ (−βt + iΩt)Aeit +O(ǫ2) + c.c.

Thus:

• The straightforward perturbation expansion captures

– the slow growth/decay

– the small change in frequency

only initially. At later times it blows up

It does not even capture the periodic solution for large times (for β = 0)

• Secular terms suggest what the true solution is doing.

• We need to expand in a more intelligent way that captures the change in frequency

and the exponential decay for larger times.

9The term comes from perturbation calculations of planetary motion: their error accumulates over the

ocurse of centuries (seculum).
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3.5.2 Multiple Scales

Exact solution suggests that there are multiple time scales

xexact = Ae−ǫβt+iωt + c.c. = Ae−ǫβt+i(1+Ωǫ)t + c.c. = Ae−β ǫt+iΩ ǫt
︸ ︷︷ ︸

A(ǫt)

eit + c.c.

The fast oscillation with frequency ω0 = 1 has an amplitude that varies slowly with time

since its argument changes only little as time progresses, A = A(ǫt).

Introduce this slower time scale explicitly as a ‘separate time’,

T = ǫt

and let the function x depend on two time variables: t̂ = t and T

xe = xe(t̂, T )

Note:

• in this approach the two (or more times) are treated as essentially independent vari-

ables:
d

dt
x(t̂, T ) = ∂t̂x

dt̂

dt
+ ∂Tx

dT

dt
= ∂t̂x+ ǫ∂Tx

d2

dt2
x(t̂, T ) =

d

dt
(∂t̂x+ ǫ∂Tx) =

∂2

∂t̂2
x+ 2ǫ

∂2

∂t̂∂T
x+ ǫ2

∂2

∂T 2
x

the ordinary differential equation becomes a partial differential equation.

Try again the same linear problem:

Expand again

xa = x0(t̂, T ) + ǫx1(t̂, T ) + . . .

(
∂2

∂t̂2
+ 2ǫ

∂2

∂t̂∂T
+ ǫ2

∂2

∂T 2

)

(x0 + ǫx1 + · · · ) + 2ǫβ

(
∂

∂t̂
+ ǫ

∂

∂T

)

(x0 + ǫx1 + · · · )

+ (1 + ǫΩ)2 (x0 + ǫx1 + · · · ) = 0

O(ǫ0):
d2

dt̂2
x0 + x0 = 0

x0 = Aeit̂ + A∗e−it̂ = 2Ar cos t̂− 2Ai sin t̂

Note:

• Previously, A was a constant. Now we have two variables; the differential equation

only involved t̂ . Therefore A cannot depend on t̂ but it is allowed to depend on the

slow time T : A = A(T )
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O(ǫ1):
2∂t̂∂Tx0 + ∂2

t̂
x1 + 2β∂t̂x0 + 2Ωx0 + x1 = 0.

∂2
t̂
x1 + x1 = −2

(

i
d

dT
A+ iβA+ ΩA

)

eit̂ + c.c.

Need to avoid secular terms ⇒ require

d

dT
A = −βA+ iΩA (3)

then no secular terms arise that would grow linearly in time.

Solution of the amplitude equation (3)

A = Ae−βT+iΩT

x0 = Ae−βTeit̂+iΩT + c.c. = Ae−ǫβtei(1+ǫΩ)t + c.c.

Thus:

• Two-timing (multiple scales) avoids secular terms and gets frequency shift and slow

damping correct to the order considered : no blow-up

• calculation easier in complex exponentials than using trig functions

Example: Duffing oscillator

ẍ+ x+ ǫx3 = 0

Ansatz:

x = x0(t̂, T ) + ǫx1(t̂, T ) + · · ·
(
d

dt

)2

→ ∂2t̂ + 2ǫ∂t̂∂T +O(ǫ2)

O(ǫ0) :

∂2t̂ x0 + x0 = 0 x0 = Aeit̂ + A∗e−it̂

O(ǫ1) :
∂2t̂ x1 + x1 + 2∂t̂∂Tx0

︸ ︷︷ ︸

2i dA
dT

eit̂+c.c.

+ x30
︸︷︷︸

A3e3it̂+3|A|2Aeit̂+3|A|2A∗e−it̂+A∗3e−3it̂

= 0

thus
∂2

∂t̂2
x1 + x1 = − eit̂

︸︷︷︸

secular resonance term

{

2i
dA

dT
+ 3|A|2A

}

− e3it̂A3 + c.c.

require:
dA

dT
= +

3

2
i|A|2A (4)
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There is no issue with the term A3ei3t̂: use undetermined coefficient

x1 = Be3it̂ +B∗e−3it̂

and insert

−9Be3it̂ +Be3it̂ + c.c. = A3e3it̂ + c.c.

to obtain

B = −1

8
A3

and

x1 = −1

8
A3e3it̂ + c.c.

Note:

• the equation for A(T ) is also nonlinear. But it has a special form that make the

solution easier

Separate into amplitude and phase

A(T ) = R(T )eiφ(T )

d

dT
R + iR

d

dT
φ =

3

2
iR3

Separating into real and imaginary part yields

dR

dT
= 0

dφ

dT
=

3

2
R2.

Thus, the amplitude decouples from the phase

φ =
3

2
R2T

and

A = Rei
3
2
iR2T

Putting everything together we get

x = Rei(1+
3
2
ǫR2)t − ǫ

1

8

(

Rei(1+
3
2
ǫR2)t

)3

+ c.c.+O(ǫ2)

Notes:

• The nonlinearity induces a frequency shift: ω = 1 + 3
2
ǫR2

→ soft and hard spring (ǫ
<
>

0)

ẍ+ (1 + ǫx2)x = 0
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• At order O(ǫ2) additional frequency shifts from secular terms in x20x1

⇒ approximate and exact solution get out of sync for t ∼ O(ǫ−2):

cos ((ω + ǫω1+ ǫ2ω2)t
︸ ︷︷ ︸

ǫ2ω2t∼2π ⇒ t=O( 1
ǫ2

)

)

⇒ introduce additional slow time ǫ2t

• To get a good solution at leading order (O(ǫ0)) we needed to make sure that the O(ǫ)-
term does not blow up. Beyond that one is often not very interested in the specific

form of the O(ǫ)-term.

• Two-timing also very useful near bifurcation, where one time scale becomes very slow.

3.5.3 Hopf Bifurcation10

For complex eigenvalues we get stable or unstable spiral points: what kind of bifurcation

does the transition represent?

Consider example

ẋ = µx− y − x3 (5)

ẏ = x+ µy (6)

Linear stability of the fixed point (0, 0)

(
µ −1
1 µ

)

⇒ λ = µ± i

Eigenvectors at the bifurcation point

(
0 −1
1 0

)(
x0
y0

)

= ±i
(
x0
y0

)

y0 = ∓ix0 v =

(
1
∓i

)

At µ = 0 the stable spiral turns into an unstable spiral and we may expect the orbit to

saturate to a periodic orbit. We want to determine an approximation for this periodic orbita

near the bifurcation point where the stability of the fixed changes, i.e. for |µ| ≪ 1, i.e. for
small growth or decay rate.

Write

µ = ǫ2µ2.

A small growth rate means growth on a slow time scale: introduce a slow time via

T = ǫ2t

10Strogatz Ch. 8.2
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Expand now

(
x
y

)

= ǫ

(
x1(t̂, T )
y1(t̂, T )

)

+ ǫ2
(
x2(t̂, T )
y2(t̂, T )

)

+ ǫ3
(
x3(t̂, T )
y3(t̂, T )

)

+ c.c.

Again we have
d

dt
x(t̂, T ) =

∂

∂t̂
x(t̂, T ) + ǫ

∂x(t̂, T )

∂T

Notes:

• At this point the scaling of x = O(ǫ) and y = O(ǫ) is a guess. Since the periodic orbit

just came into existence we may assume that it is small; but this does not have to be

the case.

Insert:

O(ǫ):
d
dt
x1 = −y1

d
dt
y1 = x1

} (
x1
y1

)

= A(T ) eit̂
(

1
−i

)

︸ ︷︷ ︸

eigenvector

+A∗e−it̂

(
1
+i

)

︸ ︷︷ ︸

c.c.

with A(T ) yet undetermined. Our main goal is to determine an equation for A(T ).

O(ǫ2):

d

dt
x2 +y2 = 0

d

dt
y2 −x2 = 0

A solution at this order is (
x2
y2

)

=

(
0
0

)

Note:

• one could keep a homogeneous solution

(
x2(t̂, T )
y2(t̂, T )

)

= A1(T ) e
it̂

(
1
−i

)

+ c.c.

but this is not needed if we only want to determine the amplitude A(T )

O(ǫ3):

∂t̂x3 + y3 = −∂Tx1 + µ2x1 − x31
∂t̂y3 − x3 = −∂T y1 + µ2y1

With

x31 = A3e3it̂ + 3 |A|2Aeit̂ + 3 |A|2A∗e−it̂ + A∗3e−3it̂
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we can write this as

∂t̂x3 + y3 = I11e
it̂ + I13e

3it̂ + c.c.

∂t̂y3 − x3 = I21e
it̂ + I23e

3it̂ + c.c.

with

I11 = −dA
dT

+ µ2A− 3 |A|2A I21 = −(−i)dA
dT

+ µ2(−i)A.

Ansatz with undetermined coefficients
(
x3
y3

)

=

(
B1

B2

)

eit̂ +

(
C1

C2

)

e3it̂ + c.c.

Focus on terms ∝ eit̂ (
i 1
−1 i

)(
B1

B2

)

=

(
I11
I21

)

Try to solve for B1,2

iB1 +B2 = I11 → B2 = I11 − iB1

inserted

−B1 + i (I11 − iB1) = I21

This equation has only a solution if the solvability condition is satisfied,

iI11 = I21 (7)

In that case there are infinitely many solutions since B1 is arbitrary and B2 = I11 − iB1.

Note:

• Mathematically, this solvability condition is a consequence of the Fredholm Alterna-

tive Theorem of linear algebra.

In our case the solvability condition (7) amounts to

i

(

−dA
dT

+ µ2A− 3 |A|2A
)

= −dA
dT

(−i) + µ2A (−i)

Thus
dA

dT
= µ2A− 3

2
|A|2A (8)

Look for simple solutions: rewrite again using magnitude and phase

A(T ) = R(T )eiφ(T )

dR

dT
= µ2R− 3

2
R3 dφ

dT
= 0

Steady state, dR
dT

= 0,

R0 =

√

2µ2

3
A = R0e

iφ0 with φ0 arbitrary
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Bifurcation diagrams:

A

Ai

r
Ar

Ai

µ µ

γγ < 0 > 0

"circlesworthofsolutions"

r

r

r

Notes:

• Solutions exist for any phase φ0: continuous family of solutions

• In this case the coefficients in (8) turned out to be real. In general they are complex:

The normal form for the Hopf bifurcation and also for weakly nonlinear oscillators

is given by
dA

dT
= (µ+ iΩ)A+ (γr + iγi) |A|2A

(cf. (4) for the Duffing oscillator)

• The determinant of the linearization around the fixed point (0, 0) does not vanish
⇒ in agreement with the implicit function theorem the number of fixed points does

not change in a Hopf bifurcation.

3.6 1d-Bifurcations in 2d: Reduction of Dynamics

Higher-dimensional systems can undergo the same bifurcations as 1-dimensional systems.

⇒ can reduce dynamics to 1 dimension near the bifurcation.

3.6.1 Center-Manifold Theorem

Consider first a linear example: stable node
(
ẋ
ẏ

)

=

(
µ 0
0 −1

)(
x
y

)

thus

λ1 = µ v1 =

(
1
0

)

λ2 = −1 v2 =

(
0
1

)
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Trajectories

(
x(t)
y(t)

)

= x0

(
1
0

)

eµt + y0

(
0
1

)

e−t ⇒ y = y0

(
x

x0

)− 1
µ

y

x

(x  , y )00

__
(x  , y )00

For small |µ|

• for µ < 0: y → 0 extremely rapidly as x→ 0

• for µ > 0: y → 0 extremely rapidly as x→ ∞

Thus:

• after a short time any initial condition approaches the x-axis, which is in the direction

of the eigenvector v1 with λ1 < 0.

• after the decay of initial transients the dynamics become effectively one-dimensional

and is along the direction of eigenvector v2 with |λ2| ≪ 1

Can this also work for nonlinear systems? Add nonlinearities to our example11.

ẋ = µx+ xy − γx3 (9)

ẏ = −y + x2 (10)

If it was not for the term involving y the equation for x would describe a pitch-fork bifurca-

tion. What effect does the y have?

11Demo: γ = 2, window [−.4 .4 -.4 .4] µ = −0.1,−0.01,−0.01,+0.01. find also unstable fixed point (0,0) and

determine its stable/unstable manifold.
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Notes:

• For small |µ|:

– rapid compression in the direction of the eigenvector corresponding to the stable

eigenvalue: stable eigenspace.

– all trajectories converge to a line (‘manifold’) that is not given by the eigenvector

v1 corresponding to the small (vanishing) eigenvalue (center eigenspace). But the

manifold is tangent to the center eigenspace.

– a pitch-fork bifurcation occurs on the center manifold as µ goes through 0.

To discuss the dynamics 3 types of eigenvectors and eigenspaces need to be distinguished:

• the stable eigenspace is spanned by the eigenvectors with Re(λ
(s)
i ) < 0

E(s) = {x | x =
∑
αiv

(s)
i , Re

(

λ
(s)
i

)

< 0}
rapid contraction

• center eigenspace: E(c) = {x | x =
∑
αiv

(c)
i }, Re(λ(c)i ) = 0}

slow dynamics

• unstable eigenspace: E(u) = {x | x =
∑
αiv

(u)
i , Re(λ

(u)
i ) > 0}

rapid expansion

Eigenspaces of the linearization of (0, 0) in (9,10):

µ < 0 : E(s) = R2 E(c) empty E(u) empty

µ = 0 : E(s) = y-axis E(c) = x-axis E(u) empty

µ > 0 : E(s) = y-axis E(c) empty E(u) = x-axis
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Goal:

• obtain a description of higher-dimensional system in terms of these slow low-dimensional

dynamics

Extension to nonlinear systems:

Center Manifold Theorem:

• For a fixed point x0 with eigenspaces E(s,u,c) there exist stable, unstable, and center

manifolds W (s,u,c) such thatW (s,u,c) are tangent to E(s,u,c) at x0, respectively.

• The manifolds W (s,u,c) are invariant under the flow. W (s) and W (u) are unique. W (c)

need not be unique.

EE
(s)

(s)

(c)

EE
(c)

0_xx

Notes:

• To get a mathematically justified separation of the fast decay of the initial transient

and the slow evolution thereafter we need an infinite ratio between the respective

time scales: we need a center manifold. On it the dynamics are infinitely slower than

on the stable manifold.

• To have a center eigenspace and a center manifold we need to be at a bifurcation point.

3.6.2 Reduction to Dynamics on the Center Manifold

We exploit the separation of time scales between the stable manifold and the center mani-

fold and use again multiple time scales.

We introduce a slow time T , which is associated with the slow evolution on the center man-

ifold and reflects the small growth rate stemming from the eigenvalue that has a vanishing

real part at the bifurcation point.
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Example from before:

ẋ = µx+ xy − γx3 (11)

ẏ = −y + x2 (12)

Eigenvalues of the linearization around (0, 0)

λ1 = µ λ2 = −1

Bifurcation occurs at µ = 0.

(s)

(c)

xx

yy

µµ = 0 = 0

Near the bifurcation point expand µ

µ = ǫ2µ2 T = ǫ2t

Since the bifurcation is a steady bifurcation there is no fast time scale (which was associ-

ated with oscillations for the Hopf bifurcation):

x = x(T ) y = y(T )
d

dt
= ǫ2

∂

∂T

Near the fixed point we can also expand x and y

x = ǫx1 + ǫ2x2 + ǫ3x3 + . . .

y = ǫy1 + ǫ2y2 + ǫ3y3 + . . .

Note:

• At this point the scaling of x and y is a guess based on previous experience.

• Eqs.(11,12) are odd in x and even in y. Since the eigenvector associated with λ = µ is in

the x-direction one may expect a pitch-fork bifurcation due to the reflection symmetry.

This provides guidance for the choice of the scaling of x, y.
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Insert the expansion:

O(ǫ) :

0 = 0

0 = −y1

thus:

y1 = 0

O(ǫ2) :

0 = x1y1

0 = −y2 + x21

thus:

y2 = x21

O(ǫ3) :

∂x1
∂T

= µ2x1 + x1y2 − γx31

∂y1
∂T

= −y3 + 2x1x2

thus:

y3 = 2x1x2

∂x1
∂T

= µ2x1 + (1− γ)x31 (13)

Notes:

• The system undergoes a pitch-fork bifurcation at µ = 0

– bifurcation is supercritical for γ > 1

– bifurcation is subcritical for γ < 1

• The coefficient of the linear term µ2x1 of the amplitude equation (13) is given by the

growth rate λ1 of the relevant mode (to leading order)

• The center manifold W (c) is given to leading order in x by

y = ǫy1 + ǫ2y2 + ǫ3y3 + . . .

= ǫ2x21 + 2ǫ3x1x2 + . . .

= x2 +O(x3).

As expected, the center manifold is tangent to the center eigenspace spanned by v1 =
(1, 0)
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In terms of the eigenvectors the solution can be written as

(
x
y

)

= ǫx1(T )

(
1
0

)

︸ ︷︷ ︸

v1

+ǫ2







x21(T )

(
0
1

)

︸ ︷︷ ︸

v2

+x2(T )

(
1
0

)

︸ ︷︷ ︸

v1







+O
(
ǫ3
)

Note:

• For a general problem

u̇ = Lu+N(u),

in which L is a linear operator, i.e. a matrix, and N contains all the nonlinear terms,

one expands the solution efficiently as

u = ǫA(T )v1 + ǫ2u2(T ) + . . .

where v1 is the eigenvector for eigenvalue λ1 = 0 of L

Lv1 = 0.

Example:

(
ẋ
ẏ

)

=

(
1 + µ −1
2 −2

)

︸ ︷︷ ︸

L

(
x
y

)

+

(
x2

0

)

(14)

Linearization around the fixed point (0, 0):

eigenvalues and eigenvectors of L

trace (L) = −1 + µ det (L) = −2µ

2λ1,2 = trace(L)±
√

trace(L)2 − 4 det(L)

Possible bifurcations:

• No Hopf bifurcation: it would require µ = 1 to make trace(L) = 0, which makes det(L)
negative

• Steady bifurcation for det(L) = 0, i.e. µ = 0

λ1,2 =
1

2

(

−1 + µ±
√

(−1 + µ)2 + 8µ

)

=
1

2

(

−1 + µ±
√

1 + 6µ+ µ2
)

=

{
2µ+O(µ2)
−1 +O(µ)

Growth rate positive for µ > 0.
Eigenvector v1 at the bifurcation point µ = 0

(
1 −1
2 −2

)

v1 = 0 ⇒ v1 =

(
1
1

)
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What kind of bifurcation should we expect?

• (0, 0) is a fixed point for all values of µ

• no reflection symmetry due to the term x2

Therefore we expect a transcritical bifurcation, which is described by an equation of the

form
dA

dT
= a(µ)A+ bA2

with a(µ) corresponding to the growth rate of the relevant mode: a(µ) ∼ λ1 ∼ µ

For our expansion this suggests

A ∼ a(µ) ∼ µ

Expansion (
x
y

)

= ǫA(T )

(
1
1

)

︸ ︷︷ ︸

v1

+ǫ2
(
x2
y2

)

+ . . .

with scaling

µ = ǫµ1 T = ǫt

Insert into (14)

O(ǫ) :
(

0
0

)

=

(
1 −1
2 −2

)

A(T )v1

O(ǫ2) :

−
(

1 −1
2 −2

)(
x2
y2

)

= −dA
dT

v1 +

(
µ1x1
0

)

+

(
x21
0

)

We could now again start solving for x2 and y2. We expect that a solvability condition will

arise.

The solvability condition can be obtained more directly without solving for x2 and y2. The
matrix L has also a left zero-eigenvector v+ (row eigenvector rather than column eigenvec-

tor)
(
x+0 , y+0

)
(

1 −1
2 −2

)

= 0 ⇒ v+
1 =

(
x+0 , y+0

)
=
(
2, −1

)

Note:

• the left eigenvector v+
1 is not the transpose of the right eigenvector vt

1

• if the matrix is symmetric then v+ = vt
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Multiply the equation at O(ǫ2) by v+
1 =

(
x+0 , y+0

)

LHS:

−
(
x+0 , y+0

)
(

1 −1
2 −2

)(
x2
y2

)

= 0

for any x2 and y2.

Thus, RHS yields

(
x+0 , y+0

)
{

−dA
dT

v1 +

(
µ1x1
0

)

+

(
x21
0

)}

= 0 (15)

−dA
dT

(
2, −1

)
(

1
1

)

+ 2
[
µ1x1 + x21

]
= 0

with x1 = A
dA

dT
= 2µ1A+ 2A2

Note:

• This reduction to the center manifold works for systems of arbitrary dimension.

• If the linearization has multiple 0 eigenvalues the center manifold has as many di-

mensions as there are vanishing eigenvalues and one obtains as many solvability

conditions.

Note:

• The solvability condition (15) expresses the Fredholm Alternative theorem from linear

algebra:

If the homogeneous linear system of equations

Ax = 0

has a non-trivial solution x 6= 0, then the inhomogeneous system of equations

Ax = b

has a solution if and only if the inhomogeneity satisfies

v · b = 0

where v is a zero-eigenvector of At, i.e.

Atv = 0.

Proof: consider the transposed equation

xtAt = bt

and multiply it by v

xt Atv
︸︷︷︸

=0

= btv = 0 i.e. b · v = 0
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Formally:

Consider the system

u̇ = Lu+N(u)

where L is a linear operator, i.e. a matrix, and N contains all the nonlinear terms.

Analogous to Hopf: expand for small amplitudes A in the ‘direction’ of the critical eigenvec-

tor v1of the linearized operator L0

L0v1 = 0

Expand the u

u = ǫβA(T )v1 + ǫ2βu2(T ) + . . .

Introduce a slow time

T = ǫαt

and expand the control parameter

µ = µ0 + ǫγµγ

Since the control parameter variation should appear at the same order as the solvability

condition, which in turn should include the slow time derivative one typically has γ = α.

Since L is singular, i.e. the homogeneous linear equation has a non-trivial solution, the

higher-order equations can only be solved if a solvability condition is satisfied. This solv-

ability condition can be seen to arise since L also has a left-eigenvector with vanishing

eigenvalue

v+L = 0

Thus at higher orders one has

O(ǫ2β) :
−L0u2 = L1u1 +N2(u1)

where L1u1 contains terms from expanding the control parameter in ǫ and also from the

slow time derivative. Multiply this equation from the left with v+ to obtain the condition

0 = −v+L0u2 = v+ {L1u1 +N2(u1)}

3.6.3 Reduction to Center Manifold without Multiple Scales

For W (c) to exist need to be at bifurcation point: µ = 0

E(c) = {(x, 0)}, E(s) = {(0, y)}

⇒ write x = (x, y) with y = h(x)

insert into o.d.e.:

ẏ =
dh

dx
ẋ =

dh

dx
(xy − γx3)

!
︷︸︸︷
= −y + x2 = −h(x) + x2

Thus:
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• obtain nonlinear differential equation for h(x)

• W (c) tangent to E(c) ⇒ h(x) is strictly nonlinear

• local analysis ⇒ expand h(x) for small x

Expansion

h = h2x
2 + h3x

3 + h4x
4 + · · ·

inserted

(2h2x+ 3h3x
2 + · · · ){x(h2x2 + h3x

3)− γx3} =
!

︷︸︸︷
= −h2x2 − h3x

3 − h4x
4 + x2

collect:

O(x2) : 0 = −h2 + 1 ⇒ h2 = 1

O(x3) : 0 = h3 ⇒ h3 = 0

O(x4) : 2h2(h2 − γ) = −h4
h4 = 2(γ − 1)

Thus:

y = h(x) = x2 + 2(γ − 1)x4 +O(x5)

ẋ = x(x2 + 2(γ − 1)x4 + · · · )− γx3

Evolution equation on center manifold:

ẋ = (1− γ)x3 + 2(γ − 1)x5 + · · ·

More generally: we want also description for 0 6= |µ| ≪ 1

To use center manifold theorem consider suspended system

µ̇ = 0

ẋ = µx+ xy − γx3

ẏ = −y + x2

Thus:

• µx is now a nonlinear term

• dynamics in µ-direction is trivial:

value of µ is simply given by initial condiiton
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Now:

E(c) = {(µ, x, 0)} ∗ .3inE(s) = {(0, 0, y)}

⇒ y = h(µ, x) for (µ, x, y) ∈ W (c)

Expand h(µ, x) in µ and x:
to keep relevant terms in expansion guess relationship x ⇔ µ from expected equation on

W (c)

Symmetries:

Reflections: (µ, x, y) → (µ,−x, y)
⇒ expect

mẋ = f(µ, x) with f odd in x

= aµx+ bx3 + · · ·
⇒ expect µ ∼ O(x2), h even in x

Expand h(µ, x) = h20µ
2

︸ ︷︷ ︸

higher order

+ h11µx
︸ ︷︷ ︸

wrong symmetry

+h02x
2 + [h12µx

2 + h04x
4] + . . .

Inserted:

ẏ =
dh

dx
ẋ+

dh

dµ
µ̇
︸︷︷︸

0

= (h11µ+ 2h02x+ 2h12µx+ 4h04x
3 + . . .)(µx+ x(h02x

2 + . . .)− γx3)

= −(h20µ
2 + h11µx+ h02x

2 + h12µx
2 + · · · ) + x2

O(µ2x0) : −h20 = 0

O(µ1x1) : −h11 = 0

O(µ0x2) : 0 = −h02 + 1 ⇒ h02 = 1

O(µ1x2) : 2h02(1 + h10) = −h12
⇒ h12 = −2

O(x4) : −2h02γ + 2h202 = −h04
h04 = 2(1− γ)

my = x2 − 2µx2 + 2(1− γ)x4

ẋ = µx+ x(x2 − 2µx2 + 2(1− γ)x4)− γx3

Evolution on center manifold

ẋ = µx− (γ − 1 + 2µ)x3 +
[
2(1− γ)x5 + . . .

]

Thus:

• For γ > 1 supercritical pitchfork bifurcation

For γ < 1 subcritical pitchfork bifurcation
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3.7 Global Bifurcations

4 Chaos

4.1 Lorenz Model

Lorenz considered a minimal model for thermal convection

T

T+   T∆

In two dimensions the fluid velocity v of an incompressible fluid can be expressed in terms

of a stream function (vx, vz) = (−∂zψ, ∂xψ).
The stream function ψ and the temperature T satisfy the coupled Navier-Stokes equation

and the heat equation.

The stream function was approximated as

ψ = 2
√
6X(t) cosπz sin

(
π√
2
x

)

The temperature profile of the layer was approximated as

T (x, z, t) = −rz
︸︷︷︸

basic profile

+9π3
√
3Y (t) cosπz cos

(
π√
2
x

)

︸ ︷︷ ︸

critical mode

+
27π3

4
Z(t) sin 2πz

︸ ︷︷ ︸

harmonic mode

The Rayleigh number r characterizes the temperature difference across the layer.

To obtain differential equations for the three amplitude X(t), Y (T ), Z(t) this ansatz was

inserted into the Navier-Stokes equations. Keeping only terms of the form used in the

ansatz yields then

Ẋ = −σ(X − Y )

Ẏ = rX − Y −XZ

Ż = XY − bZ

Notes:

• The model constitutes a severe truncation of a Galerkin expansion for free-slip bound-

ary conditions. It may be expected to give reasonable results for weak convection. But,

in contrast to the center-manifold reduction, this procedure does not represent a sys-

tematic expansion.
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• The Prandtl number σ is given by the ratio of viscosity to thermal diffusivity.

• The parameter b is related to the wavenumber of the convection pattern.

Demos: Very nice Java programs by M. Cross (Caltech) at

http://www.cmp.caltech.edu/%7emcc/Chaos_Course/Lesson1/Demos.html

Demo: Lorenz Attractor

12 increase r (= a in Cross program; σ = c ):

• 0.5 origin is stable fixed point (use initial condition X0 = 4.85, Y0 = 5, Z0 = 23.5 and

set trans = 0 (i.e. plot all transients, plot X and Z )

• 1.2 origin is unstable, new fixed point (symmetry-related fixed points, in fact)

• 4 this initial condition goes to the other fixed point

• 10 fixed point is clearly a stable spiral point.

• 24 the fixed point is still linearly stable spiral point

• 24.4 still attracting for this initial condition

• 24.8 fixed point unstable spiraling outward, but growth still slow. Hopf bifurcation

• 25 transition to strange attractor.

transitions occur at: r = 1 , rH = 24.739

• 3d plot of attractor

• X(t) (choose variable =0 in x− ax)

For r > rH one gets an attractor that looks very different than the attractors we had before

(fixed points and periodic orbits): it is a strange attractor.

12go to list of topics first; (if program does not plot right away: make sure speed is below 500. may have to

reload java program or click at Lorenz
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Demo: Sensitive dependence on initial conditions

first simulation of Hopf oscillator from the homework: tb_multi.

For stable periodic orbit:

• different initial conditions evolve to periodic orbits that are shifted with respect to

each other in time

• the phase shift reaches a constant after a transient: the distance between the two

oscillations does not grow or shrink

⇒ small perturbations in the initial conditions lead only to small chanages in the

solution at any later time.

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

 

 
 u

For Lorenz attractor simulation with x0 = 2 y0 = 5 z0 = 20 and z0 = 20 + ∆z
r(= a) = 28 σ(= c) = 10 b = 8/3 ∆z = 10−3 10−5 10−7

x− z plot: the two trajectories separate ever further as time progresses.

count the number of periods over which the two trajectories are sort of in sync

• ∆z = 10−3 ca 15

• ∆z = 10−5ca 22
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• ∆z = 10−7 ca. 26

• ∆z = 10−9 ca 35

• ∆z = 10−11 ca 44

looks logarithmic in the initial difference: ca 4 periods per decadee

Note:

• even extremely small perturbations in the initial conditions can lead to large changes

in the solution after some time, which is not even very long

4.1.1 Simple Properties of the Lorenz Model

i) Reflection symmetry:

The equations are equivariant under

(X, Y, Z) → (−X,−Y, Z)

i.e. the left- and right-hand sides of the equations are transformed in the same way under

this operation: the equations for Ẋ and Ẏ change sign, while that for Ż stays the same.

This symmetry is reflected in the appearance of two symmetrically related fixed points near

r = 1.

ii) Volume contraction

The Lorenz system is dissipative, i.e. volumes in phase space shrink under the evolution of

the system.

Consider general dynamical system in 3 dimensions

ẋ = f(x)

Consider a volume V (t) in phase space with the closed surface S(t)

f*dt

During a time interval dt
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• each point x on the surface moves from x(t) to x(t + dt) = x(t) + f(x(t))dt

• any patch dS of the surface sweeps out a volume dS n · f dt

The volume V (t) changes therefore by

dV = dt

∫

S

n · f dS

Using the divergence theorem

dV

dt
=

∫

S

n · f dS =

∫

V

∇ · f dV

Note:

• This expression holds in arbitrary dimensions.

For the Lorenz equations we have

∇ · f =
∂

∂X
{−σ (X − Y )}+ ∂

∂Y
{rX − Y − ZX}+ ∂

∂Z
{b (XY − Z)}

= −σ − 1− b < 0

Thus:

• all volumes in phase space shrink under the evolution of the Lorenz equations

• since ∇· f is constant for the Lorenz equations all volumes decrease exponentially and

with the same rate

Note:

• since dV
dt

< 0 everywhere there can be no fixed points with only unstable directions:

all unstable fixed points have to have at least one stable direction (saddles)

iii) Fixed Points and Bifurcations

The origin (0, 0, 0) is a fixed point.

Linear stability





Ẋ

Ẏ

Ż



 =





−σ (X − Y )
rX − Y
−bZ



 =





−σ +σ 0
r −1 0
0 0 −b









X
Y
Z





Eigenvalues

λ3 = −b
For λ1,2

trace = − (σ + 1) det = σ (1− r)
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• Since trace < 0 this fixed point cannot undergo a Hopf bifurcation

• Real eigenvalue goes through 0 for r = 1: steady bifurcation

A r = 1

λ1 = 0 v1 =





1
1
0





The center eigenspace is spanned by v1. The combined reflection x → −x and y → −y flips

also the sign of v1. This symmetry suggests that the bifurcation is a pitch-fork bifurcation.

It creates the fixed points (±X0,±Y0, Z0) with

Y0 = X0 Z0 =
1

b
X2

0 = r − 1

One can show that this fixed point is stable for

1 < r < rH =
σ (σ + b+ 3)

σ − b− 1
for σ − b− 1 > 0

and undergoes a Hopf bifurcation at r = rH .

Notes:

• For the Lyapunov function V (X, Y, Z) = 1
σ
X2 + Y 2 + Z2 one can show that dV

dt
< 0 if

(X, Y, Z) 6= (0, 0, 0) → (0, 0, 0) is globally attractive for r < 1.

• for the standard parameter set rH = 24.737

• the numerical simulations indicate that the Hopf bifurcation is subcritical

• the three fixed points (0, 0, 0) and (±X0,±Y0, Z0) are the only fixed points of the Lorenz

equations

For r > rH we have so far

• no stable fixed points

• no stable small-amplitude periodic orbit

• trajectories remain confined to some region

• phase space volume decreases monotonically

• instability of the origin pushes trajectories apart along the x-axis

• trajectories pushed down along z-axis.
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4.1.2 Lyapunov Exponents

Characterize the sensitive dependence on initial conditions

Consider the dynamical system

ẋ = f(x)

and two trajectories that start very close to each other at t = 0

x(t;x0) x(t;x0 + δx0)

At later times the two trajectories are separated by ∆x(t),

∆x(t) = x(t;x0 + δx0)− x(t;x0)

Measure the distance between these trajectories

‖∆x(t)‖ = ‖x(t;x0 + δx0)− x(t;x0)‖

If ∆x(t) is very small one can linearize the differential equation around x(t;x0, t0) at the

time t

d

dt
∆x(t) = f (x(t;x0 + δx0))− f (x(t;x0))

= f (x(t;x0) + ∆x(t))− f (x(t;x0))

≈ J (x(t;x0)) ∆x(t)

where J (x(t;x0)) is the Jacobian of f(x) at time t and position x(t).

Notes:

• If the Jaocbian was constant in time one would expect ∆x to grow or decay exponen-

tially

• In general the Jacobian depends on time through the position x(t) on the attractor

• Over long times x(t) the explores the whole attractor and one could imagine that the

growth of ∆x is determined by something like an ‘average Jacobian’.

Numerically one finds in the limit of long times and small initial distance

‖∆x(t)‖ ∼ ‖∆x(0)‖ eλt

Motivated by this observation one defines

λ ≡ lim
t→∞

lim
‖∆x(0)‖→0

1

t
ln

( ‖∆x(t)‖
‖∆x(0)‖

)

Notes:

• to determine λ one considers first the limit of an infinitesimal perturbation, ∆x(0) →
0, in order to stay in the regime in which the linearization is o.k., and then one studies

how the perturbation evolves for long times
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• λ is a Lyapunov exponent of the system

– more precisely, this λ is the largest Lyapunov exponent, which dominates ‖∆x(t)‖
for large t

– in an N-dimensional sytem there are N Lyapunov exponents, corresponding to

the N dimensions of ∆x(0)

• in principle, λ depends on the specific trajectory x(t;x0) and one needs to average over

multiple trajectories on the attractor

• for systems with time-independent coefficients: time translation symmetry

– if x(t) is a solution if x(t +∆t) is a solution for any ∆t.

– perturbations along the attractor do not grow or shrink: λ = 0 (cf. evolution of

perturbations for stable periodic orbits)

• the Lorenz system has 3 Lyapunov exponents. For the strange attractor one has

λ1 > 0 λ2 = 0 λ3 < 0

The volume contraction is determined by the sum of the three Lyapunov exponents

Time Horizon:

The exponential growth of the difference between nearby trajectories limits predictions

severely

Assume we can measure the initial condition with a precision δ0 = ‖∆x(0)‖ . If we need

to make a prediction with an accuracy δmax, i.e. we require ‖∆x(t)‖ < δmax, then we can

predict the system up to a time th

δmax = ‖∆x(th)‖ = ‖∆x(0)‖ eλth

i.e.

th(δ0) =
1

λ
ln

(
δmax

δ0

)

Note:

• the time horizon th grows only logarithmically with the precision δ0 of our knowl-

edge of the initial condition. This matches our simulations where we found that each

increase in the precision by a factor of 10 increased the time over which the two tra-

jectories stayed close to each other only by roughly 4 periods.

to increase the prediction time from 22 periods to 44 periods we had to increase the

precision by a factor of 106.

Characterization of Chaos:

Chaos is aperiodic, long-term behavior in a deterministic system that exhibits sensitive

dependence on initial conditions.
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• aperiodic: trajectories do not settle down to a fixed point, periodic orbit, or quasi-

periodic orbit

• sensitive dependence: distances between trajectories grow exponentially fast: positive

Lyapunov exponent

Quasi-periodic motion:

Consider two uncoupled harmonic oscillators, e.g. mass-spring system in the x-direction to

which a pendulum is attached that swings only in the y − z-plane.

• if both have the same frequency the pendulum tip traces out a circle

• if the frequencies are different the trace is a Lissajous figure

– for rational ratios of the two frequencies the traces close on themselves: periodic

motion

– for irrational frequency ratios the figures never close: quasi-periodic motion

Question: Can one understand the complex dynamics of the Lorenz equations and similar

systems in simpler models yet?

Lorenz reduced the three-dimensional flow to a one-dimensional iterated map by asking:

can we predict the next maximum of the variable z, zn+1, if we only know the previous

maximum zn. He therefore plotted zn+1 vs. zn and obtained a map.

z

t

z zn n+1
Zn+1

Zn

Demo:

• Z(t) (x-ax =0 y-ax = 3)

• keep only maxima of Z and plot Zn+1vs Zn. (demo max map)

Notes:

• The line in that map is actually not a line, but has finite thickness

For the Lorenz model the line thickness is, however, small ⇒ knowledge of Zn is suf-

ficient to predict Zn+1 quite reliably.

• the reduction to a map is only approximate:

the original ode’s can also be solved backward

the map can, however, not be iterated backward since f−1(z) is multiple valued
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4.2 One-Dimensional Maps

Consider maps as dynamical systems

xn+1 = f(xn)

Example: logistic map

xn+1 = axn(1− xn) 0 ≤ xn ≤ 1

Notes:

• this map could be thought of as a (very poor) numerical solution of the logistic differ-

ential equation (using forward Euler with large time step).

• the logistic map has a maximum at x = 1
2
. It maps [0, 1] onto [0, 1

4
a]. For 0 ≤ a ≤ 4 the

xn remain in the interval [0, 1].

Graphical iteration via the cobweb diagram:

0 x1 x2 1
Cobweb diagram

⇒
shortcut

x2

x(0) ≡ 0 is a fixed point for all values of a

Vary a:

stable fixed point

a < 1 a > 1

unstable

stable

For a = 1 an additional fixed point appears

x = ax− ax2 ⇒ 0 = x (a− 1− ax)

x(1) =
a− 1

a

Linear stability analysis:

95



322 Nonlinear Dynamics H. Riecke, Northwestern University

linearize around a fixed point xf

xn = xf + ǫ∆xn

xf + ǫ∆xn+1 = f(xf + ǫ∆xn) = f(xf ) + ǫ∆xnf
′(xf )

⇒ ∆xn+1 = ∆xnf
′(xf )

⇒ |∆xn| grows for |f ′(xf )| > 1 |∆xn| decays for |f ′(xf )| < 1

Thus:

• The stability limits for maps are given by |f ′(xf )| = 1

• For comparison: for one-dimensional flows the stability limit is given by f ′(xf ) = 0.

• In the maxima map of the Lorenz model |f ′(z)| > 1 for all z: the fixed point (=periodic

orbit) is unstable

As expected from the graph: at a = 1 the fixed point x(0) becomes linearly unstable.

Stability of the fixed point x(1) = a−1
a
:

f ′(x(1)) = a− 2ax(1) = a− 2(a− 1) = 2− a

Thus

|f ′(x1)| < 1 for 1 < a < 3

Note:

• At a = 1 one has a transcritical bifurcation with f ′(x(1)) = +1.

a > 1

stable 

a < 1

unstable 

• At a = 3 one has f ′(x(1)) = −1
∆xn+1 = −∆xn

suggests that the solution jumps back and forth

Demo: what happens at the bifurcation at a = 3?
13

⇒ converges to period-2 solution

13Cross Demo 1: take a = 3.1, initial condition x = 0.68
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n

odd n

even n

 1   2   3   4  

xn

14

Determine period-2 solution:

Period 2: fixed point under second iterate of f(x)

xn+2 = f(xn+1) = f (f(xn)) ≡ f (2)(xn)

= axn+1(1− xn+1) = a (a xn(1− xn)) (1− a xn(1− xn))

Fixed point of f (2) : xn+2 = xn
x(2) = f (2)(x(2))

Fixed points of the first iterate f(x) itself are also fixed points of the second iterate. There-

fore the fixed point condition can be factored as

−x(xa + 1− a)
︸ ︷︷ ︸

known fixed points

(a2x2 − a(1 + a)x+ 1 + a) = 0

Thus one gets two new fixed points of the second iterate f (2)

x
(2)
1,2 =

1

2a

{

1 + a±
√
a2 − 2a− 3

}

They arise in a pitch-fork bifurcation and exist for a > 3. 15

The fixed points of f (2) correspond to a period-2 orbit alternating x
(2)
1 ↔ x

(2)
2

0 0.2 0.4 0.6 0.8 1
x

n

0

0.2

0.4

0.6

0.8

1

x n+
1

14Demo: logmap.m for plotting xn as a function of n
15Cross Demo: use second iterate to see pitch-fork bifurcation
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Stability of the period-2 orbit x
(2)
1,2: consider the stability of the fixed points of the second

iterate

x
(2)
1,2 +∆xn+2 = f

(

f(x
(2)
1,2 +∆xn)

)

∆xn+2 =
d

dx
(f (f(x)))

∣
∣
∣
∣
x
(2)
1,2

︸ ︷︷ ︸

λ

∆xn

λ = f ′
(

f(x
(2)
1,2)
)

f ′(x(2)1,2)

With

f(x
(2)
1,2) = x

(2)
2,1

we get

λ = f ′
(

x
(2)
1

)

f ′
(

x
(2)
2

)

= a2
(

1− 2x
(2)
1

)(

1− 2x
(2)
2

)

= a2
(

1− 2
(

x
(2)
1 + x

(2)
2

)

+ 4x
(2)
1 x

(2)
2

)

= a2 − 2a (1 + a) + (1 + a)2 −
(
a2 − 2a− 3

)

= −a2 + 2a+ 4

The stability limits are given by

λ1 = +1 ⇒ a = 3

λ2 = −1 ⇒ a = 1 +
√
6 ≈ 3.4495

Notes:

• At a = 3 the fixed point of f (1)(x) undergoes a period-doubling bifurcation and the

eigenvalue of its linearization is λ(1) = −1. The eigenvalue of the linearization of

f (2)(x) at a = 3 is

λ(2) = 1 = f ′



f(x(1))
︸ ︷︷ ︸

x(1)



 f ′ (x(1)
)
= λ(1)λ(1)

• For a = 1+
√
6 the fixed point of f (2) becomes unstable in a period-doubling bifurcation:

birth of a period-4 orbit.

16

16Demo: succcessive bifurcations, a = 0..4, a = 3.3..4
zoom in with left mouse zoom out in stopped plot with mouse outside figure. Cross Demo 3
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d1

d2

d3x = 1
2X

a1 a2 a3 a4
a

Period-Doubling Cascade:

• There is an infinite number of period-doubling bifurcations, which accumulate at

a∞ = 3.569945672 . . .

• With each bifurcation the period doubles: at a∞ the period is infinite and dynamics

are not periodic any more.
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• The distance between successive bifurcations becomes smaller with each bifurcation.

Their ratio approaches a fixed value

lim
n→∞

an − an−1

an+1 − an
= δ = 4.6692016091029909...

The constant δ is called the Feigenbaum constant, after M. Feigenbaum who discov-

ered the scaling and showed that it is universal for all maps with a single maximum.

In terms of a∞ this scaling can be written as

an = a∞ + Ae−δ′n

with

δ =
1− eδ

′

e−δ′ − 1
= eδ

′

δ′ = 1.54098809542

• The width of the bifurcation also gets smaller in each bifurcation. The ratio of the

widths, measured when one branch intersects xm = 1
2
, also approaches a fixed value

lim
n→∞

dn
dn+1

= α = −2.5029...

The minus sign indicates that successive bifurcations are on opposite sides of the mid

point xm = 1
2
.

• The approach to fixed fixed ratios suggests self-similarity as a∞ is approached: zoom-

ing in yields a picture that looks essentially the same again, the same structures

repeat on smaller scales

• The self-similarity can be described with a renormalization theory. It shows that

period-doubling cascades in all maps with a quadratic maximum have the same uni-

versal behavior. i.e. they all have the same values of the Feigenbaum constant δ and
of α.

Among the early experimental observations of the period-doubling cascade to chaos and

the measurement of the Feigenbaum constant were experiments on Rayleigh-Benard con-

vection of mercury [?]:

δ = 4.4± 0.1
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a)

b)

Figure 13: Period doubling cascade observed in convection of mercury with a horizontal

magnetic field. The arrow in b) marks the fundamental frequency in the power spectrum.

Period 32 is just about visible in b). [?, ?]

17

17Demo: logmap_scan.m amin=3.5, amax = ainf − .1e − 10, 106 points , a∞ = 3.569945672 . Self-similarity

zoom in a− ainf = O(10−6)
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Chaotic Dynamics:

For a > a∞ the dynamics are chaotic and exhibit sensitive dependence on initial conditions.
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0.5

0.6

0.7

0.8

0.9

1
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Figure 14: Sensitive dependence on initial conditions. Left panel: orbit for two slightly

different initial conditions, x0 = 0.5 (red) and x0 = 0.5 + 10−8 (blue). Middle panel: zoomed

in showing the orbits for every 8th iteration. Right panel: growth of the difference between

orbits. a) a = 3.569994: chaotic period-32 band with the period 32 still clearly visible. b)

a = 3.5753: close to the merging of the period-8 and period-4 band. c) a = 3.6: chaotic

period-2 band.

In analogy to the Lyapunov exponents for flows introduce Lyapunov exponents for maps

λ = lim
n→∞

lim
∆x0→0

1

n
ln

∣
∣
∣
∣

∆xn
∆x0

∣
∣
∣
∣
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Use

∆xn = f (n) (x0 +∆x0)− f (n) (x0)

=
df (n)

dx

∣
∣
∣
∣
x0

∆x0 =
n∏

j=1

f ′ (xj)∆x0

with

xj = f (j) (x0)

Thus

λ = lim
n→∞

1

n
ln

∣
∣
∣
∣
∣

n∏

j=1

f ′ (xj)

∣
∣
∣
∣
∣
= lim

n→∞
1

n

n∑

j=1

ln |f ′(xj)|

For a periodic orbit with period p we get

λ =
1

p
ln

∣
∣
∣
∣
∣

p
∏

j=1

f ′ (xj)

∣
∣
∣
∣
∣
=

1

p
ln

∣
∣
∣
∣
∣

df (n)

dx

∣
∣
∣
∣
x0

∣
∣
∣
∣
∣

Superstable orbits:

If
df(n)(x)

dx
= 0 then λ→ −∞: small perturbations of such orbits decay extremely fast.

Consider for simplicity a superstable fixed point xss

∆xn = f ′(xss)
︸ ︷︷ ︸

0

∆xn−1 +
1

2
f ′′(xss)∆x

2
n−1 +O

(
∆x3n

)

=
1

2
f ′′(xss)

(
1

2
f ′′(xss)∆x

2
n−2

)2

=
1

2
f ′(xss)

[

1

2
f ′′(xss)

(
1

2
f ′′(xss)∆x

2
n−3

)2
]2

=

(
1

2
f ′′(xss)

)∑n−1
j=0 2j

(∆x0)
(2n) =

(
1

2
f ′′(xss)

)2n−1

(∆x0)
(2n)

=

(
1

2
f ′′(xss)

)−1 (
1

2
f ′′(xss)∆x0

)(2n)

This decay is much faster than exponential. For comparison

∆xn+1

∆xn
=

{
c for exponential decay to stable fixed point

∝ ∆xn for convergence to superstable fixed point

e.g.
10−1 10−2 10−3 10−4 10−5 10−6 for exponential decay

10−1 10−2 10−4 10−8 10−16 10−32 decay at superstable fixed point

Note:

• when a periodic orbit first arises its Lyapunov exponent is f ′(x) = +1

• when a periodic orbit undergoes a period-doubling bifurcation f ′(x) = −1
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• between these two bifurcations f ′(x) has to go through 0, λ→ −∞:

the periodic orbit is superstable

• At the period-doubling bifurcations perturbations grow or decay very slowly→ it takes

a long time for the orbit to approach the attractor. Measuring the bifurcation points

precisely is therefore computationaly quite expensive. To characterize the period-

doubling cascade it is computationally more efficient to mark the superstable points

rather than the bifurcation points (cf. homework)

18

Origin of the sensitive dependence on initial conditions:

Consider a = 4:

Notes:

• The interval [0, 1
2
] is stretched all the way to [0, 1]

• The interval [1
2
, 1] is also stretched in length to [0, 1], but it is at the same time folded

back

• Separation of trajectories requires stretching and folding because the trajectories are

stretched and at the same time confined to a finite interval.

The stretching suggests a positive Lyapunov exponent. A very rough hand-waving guess

gives

∆xn+1 ∼ 2∆xn ∼ 2n+1∆x0

leading to

λ ∼ lim
n→∞

1

2
ln 2n+1 → ln 2.

18Demo 4 by Cross: plot Lyapunov exponent
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For a = 4 one can actually give an explicit exact solution of the iteration for any initial

condition. Rewrite the iteration

xn+1 = 4xn(1− xn)

in terms of a new variable θn defined via

xn = sin2 θn xn+1 = sin2 θn+1.

Then

sin2 θn+1 = 4 sin2 θn (1− sin2 θn
︸ ︷︷ ︸

cos2 θn

) =

= (2 sin θn cos θn)
2 = sin2(2θn)

Thus, in terms of the variable θ the dynamics are simple

θn+1 = 2θn

⇒ θn = 2nθ0

xn = sin2 (2nθ0) = sin2 (2n arcsin
√
x0)

The analytical solution allows to compute the Lyapunov exponent exactly as well

λ = lim
n→∞

1

n
ln

∣
∣
∣
∣
∣

df (n)(x)

dx

∣
∣
∣
∣
x0

∣
∣
∣
∣
∣

= lim
n→∞

1

n
ln

∣
∣
∣
∣
∣
2 sin (2nθ0) cos (2

nθ0) 2
n d

dx
arcsin

√
x

∣
∣
∣
∣
x0

∣
∣
∣
∣
∣

= ln 2 + lim
n→∞

(
1

n
O(1)

)

= ln 2

‘Chaotic’ regime, periodic windows:

a = 3.825 → 3.85 → 3.86
a = 3.83 → 3.82
19

19transient points: 1024 points:256 (to capture periods up to 256) ; intermittency before window 3:

a=3.82841 and a=3.828415
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Periodic windows in the chaotic regime20

• Tangent bifurcation (saddle-node bifurcation) of f (3)(x) at 1 +
√
8 = 3.8284

A stable and an unstable fixed point of f (3)(x) are created, corresponding to a stable

and an unstable period-3 orbit.

• Just before the saddle-node bifurcation the ‘ghost’ of the period-3 orbit traps the orbit

for a long time ⇒ intermittent behvaior: long durations of near period-3 behavior,

which are interrrupted by chaotic excursions.

• The period-3 orbit also undergoes a period-doubling cascade.

• There are also windows with period 5, 7, 9, 11, etc. and each window has its own

period-doubling cascade.

20use logmap.m demo to show time series a = 3.828415 has long laminar regions a = 3.82837
plot the function f (3) in the plot: use Cross Demo 1: set compose=3. plot cobweb diagram.

106



322 Nonlinear Dynamics H. Riecke, Northwestern University
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Figure 15: Intermittency for a = 3.82841 reflecting the ‘ghost’ of the period-3 orbit that is

created via a saddle-node biufrcation (tangent bifurcation) at slightly larger a.

4.3 Strange Attractors and Fractal Dimensions

In the Lorenz system and the logistic map we saw that in the chaotic regime the trajectories

converged onto a complicated set, a strange attractor.

We still need to define an attractor more precisely:

A set A is called an attractor if

1. A is an invariant set: any trajectory that starts in A remains in A for all times.

2. A attracts an open set of initial conditions: there exists an open set U containing A
such that any trajectory starting in U converges to A for t→ ∞.

3. A is minimal, i.e. there is no proper subset of A that satisfies conditions 1 and 2.

Note:

• The largest open set U satisfying condition 2 is the basin of attraction of the attractor

A.

The attractors of the Lorenz system and the logistic map give the impression of a complex

geometry: they are strange attractors. How can we characterize their geometry?21

Consider yet another system since both the Lorenz system and the logistic map have draw-

backs

21Despite their striking geometric properties strange attractors are often defined via the property of sensi-

tive dependence on initial conditions.
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• Lorenz system is complicated since it is three-dimensional:

for chaotic flows this is the minimal dimension, however.

• The logistic map is not invertible, i.e. the dynamics cannot be run backwards in time.

Chaotic one-dimensional maps have to be non-invertible, since they need to include

stretching and folding. The folding introduces the non-invertibility.

Two-dimensional, invertible map: Henon map

xn+1 = yn + 1− ax2n
yn+1 = bxn

The map can be thought of as composed of the following steps

1. stretch and fold a rectangle into a parabolic shape

x→ x y → y + 1− ax2

2. compress in the x-direction
x→ bx y → y

3. reflection about the diagonal to orient the object again along the original rectangle

x→ y y → x

Figure 16: Henon map decomposed

4.

Notes:

• The Henon map is indeed invertible

xn =
1

b
yn+1

yn = xn+1 − 1 + ax2n = xn+1 − 1 +
a

b
y2n+1
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• The Henon map is dissipative

Consider infinitesimal area dx dy and its mapping under a variable transformation

(x, y) → (u(x, y), v(x, y))

from multi-variable integration we know that the rectangle with area dx dy is trans-

formed into a parallelogram with area |detJ| dx dy where J(x, y) is the Jacobian of the

variable transformation.

r
2

1
r

r'
2

r'
1

The area of the parallelogram generated by r′1 and r′2 is given by

|r′1 × r′2| = |r1xr2y − r1yr2x| =
∣
∣
∣
∣

∂u

∂x
∆x

∂v

∂y
∆y − ∂u

∂y
∆y

∂v

∂x
∆x

∣
∣
∣
∣
= |detJ|∆x∆y

An iteration of the Henon map can be thought of as a variable transformation ⇒ the

change in area in the phase plane is determined by |detJ|

detJ =

∣
∣
∣
∣

−2axn 1
b 0

∣
∣
∣
∣
= −b

Thus: for |b| < 1 the Henon map is dissipative everywhere in the phase plane.
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Figure 17: Self-similarity in the Henon map for a = 1.4 and b = 0.3. Axes

[xmin, xmax, ymin, ymax] are [0,1,0,1], [0.69,0.91,0.13,0.2], [0.77,0.80,0.16,0.17], and

[0.7829,0.7875,0.1629,0.1643].

The Henon attractor exhibits self-similarity: zooming into the upper three-layered sheet of

the three sheets reveals again three sheets comprised of 1, 2, and 3 sheets each. How do

we characterize such structures?

Consider the following construction of a set S that is somewhat similar to the cross section

of the Henon attractor

1. Take the interval [0,1]

2. cut out the middle third

3. from each remaining subinterval cut out the middle third

4. repeat step 3 ad infinitum

Note:

• the resulting set S is called the Cantor set after Georg Cantor, the developer of set

theory
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Question:

• how many pieces make up the set S?

• can one count them?

• what is its cardinality?

Countable and uncountable sets:

• a set is countable if there is a 1-to-1 correspondence between each of its elements and

the natural numbers

Examples

1. The rational numbers are countable

each rational number p
q
can be represented as an element in a matrix Q











q\p 1 2 3 4 5 6
1 1

1
2
1

. . .
2 1

2
2
2

3
2

. . .
3 1

3
. . .

4 1
4

. . .
5 1

5
2
5











then count Q11 → Q21 → Q12 → Q31 → Q22 → Q13 → Q41 → . . .

2. The real numbers in [0, 1] are not countable

Cantor showed this by contradiction using his ‘diagonal argument’:

Assume the real numbers were countable. Then they could be listed in sequence

0.x11 x12 x13 . . .

0.x21 x22 x23 . . .

0.x31 x32 x33 . . .

0.x41 x42 x43 . . .

. . .

. . .

with xij ∈ R.

Consider now the number

0.x̄11 x̄22 x̄33 . . .

where x̄jj 6= xjj for all j. This number is clearly a realy number but it is not in the list

because it differs from each number in the list by at least one digit. The enumerated

list of numbers is therefore not complete.
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3. What is the cardinality of the Cantor set?

Use again Cantor’s diagonal argument as in the case of the real numbers: each piece

can be labeled by a number q ∈ {0, 1, 2} whose digit at the lth position states whether

at the lth level of the Cantor construction this piece ends up in the left, middle or right

third subdivision of the interval

All points in S are then given by a number whose digits are taken from {0, 2}, since
the middle piece is always taken out22.

If the Cantor set is countable then the elements can be listed,

x1 = x11 x12 x13 . . .

x2 = x21 x22 x23 . . .

x3 = x31 x32 x33 . . .

Again, the number x̄11 x̄22 x̄33 . . . is not contained in the list, but it is in S.
Therefore S is not countable.

What is the total length (‘measure’) of the Cantor set S?
In each step a third of the remaining length is removed:

Lj =
2

3
Lj−1 =

(
2

3

)j

⇒ lim
j→∞

Lj = lim
j→∞

(
2

3

)j

= 0

Thus, the Cantor set

• is uncountable (like the real numbers, but unlike the rationals)

• has zero measure (like the rational numbers, but unlike the real numbers)

Dimensions

As one goes down the levels the number of pieces in the Cantor set increases and diverges:

the number of pieces diverges as one increases the spatial resolution

Compare with the usual shapes:

Square:

• the square can be covered by 4 squares of half the linear dimension

• as the linear dimension of the pieces is reduced by a factor r the number m required

to construct the square increase by a factor m

m = rd with d =
lnm

ln r

Apply this approach to the Cantor set:

• in each step the linear dimension of the pieces decreases by a factor of 3

22It is like a binary representation.
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• in each step the number of elements goes up by a factor of 2

d
(sim)
Cantor =

ln 2

ln 3
≈ 0.63

Notes:

• this definition of the dimension relies on the self-similarity of the structure: similarity

dimension.

Example:

von Koch23 curve:

Recursive construction:

• replace each straight line segment of length l by 4 segments of length l/3

Similarity dimension:

• in each step linear dimension of the pieces decreases by a factor of 3

• in each step the number of pieces increases by a factor of 4

d
(sim)
Koch =

ln 4

ln 3
≈ 1.26

For sets that are not self-similar generalize the procedure: cover the set with elements of

size ǫ where ǫ→ 0, i.e. reduce the linear dimension by a factor of r = 1
ǫ
,

d(box) = lim
ǫ→0

lnN(ǫ)

ln
(
1
ǫ

)

Note:

• This defines the box counting dimension.

Apply to the Cantor set:

At each level choose ǫ =
(
1
3

)n
, then one needs 2n ‘boxes’ to cover the Cantor set

d(box) = lim
n→∞

ln 2n

ln 1

( 1
3)

n

= lim
n→∞

n ln 2

n ln 3
=

ln 2

ln 3

Example: Attractor of the Henon map

23von Koch (1870–1924)
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Figure 18: Box dimension of Henon attractor for 500, 1,000, and 100,000 points. Left

panels; attractor with boxes, right panels: scaling of the number of boxes with the box size.

The box dimension does not depend on how many points of the trajectory are inside a given

box as long as there is at least one point.

Correlation Dimension:

For a given point r on the attractor determine the number of other points on the attractor

that fall within a ball of size ǫ of r
Nr(ǫ) ∝ ǫdr
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dr is the pointwise dimension of r.

The correlation dimension is obtained by averaging Nr(ǫ) over all (sufficiently many) r of

the attractor

C(ǫ) =
1

N
N∑

i=1

Nri
(ǫ)

with N the number of attractor points r included in the average.

Expecting

C(ǫ) ∝ ǫdc

define

dc =
d lnC(ǫ)

d ln (ǫ)

Figure 19: Correlation dimension for Henon map and Lorenz equations [?].

Note:

• Dynamics do enter correlation dimension: where are the points dense, where not, i.e.

where in phase space is the system more often?

• one can show dc ≤ db
but usually dc ∼ db

Note:

• there are further dimensions along these lines:

whole spectrum of dimensions generated by weighing the probability of finding points

in a small ball with different powers
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Lyapunov Dimension:

Include dynamics explicitly in the definition of the dimension

Consider dimension of a box that neither grows nor shrinks under the dynamics.

Point attractor

any box with d ≥ 1 shrinks to a point: dL = 0

Periodic orbit

line segments along the attractor are transported along the orbit without volume change

(on average), but area covering the width of the attractor shrinks to a line: dL = 1

Growth of a ν-dimensional volume in phase space is given by the expansions in the ν direc-

tions

V (t) = L1e
λ1t L2e

λ2t L3e
λ3t . . . Lνe

λν t

for V = const. we need
ν∑

i=1

λi = 0

1 2

λ i

1 2

λ i

dimension

Σ

ν

ν

i=1
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Arrange eigenvalues in decreasing order: λi ≥ λi+1

Consider

f(n) =

n∑

i=1

λi

Interpolate linearly the zero of f(n):

f(dL) = 0 ≈ f(ν) +
f(ν + 1)− f(ν)

ν + 1− ν
(dL − ν) ⇒ dL = ν − f(ν)

f(ν + 1)− f(ν)

Thus, choose ν to satisfy
∑ν

i=1 λi > 0 but
∑ν+1

i=1 λi < 0. Then the Lyapunov dimension is

defined by

dL = ν +
1

|λν+1|
ν∑

i=1

λi

Note:

• dL gives a measure of how many degrees of freedom are ”active"

4.4 Experimental Data: Attractor Reconstruction and Poincare Sec-

tion

Experimentally, one typically cannot monitor all or even a large fraction of the relevant

dynamical variables. How can one obtain relevant information about the attractor?

Given only the time series for a single dynamical variable x(t) one can reconstruct a repre-

sentation of the attractor using time-delayed coordinates:

• plot x(t) vs x(t− τ),x(t− 2τ), ..., x(−Nτ) etc.

• estimate the dimension (e.g. correlation dimension) of the resulting attractor as a

function of the number N of delays

• if the dimension saturates above some value of N one has found a sufficient embed-

ding dimension for the attractor

Example: Lorenz system
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Figure 20: Reconstruction of the Lorenz attractor using delayed coordinates. a) τ = 1, b)
τ = 10, c) τ = 20, d) τ = 100.
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Figure 21: Attractor reconstruction for the Belousov-Zhabotinsky reaction. The delay used

is indicated in each panel [?].

Note:

• The geometric shape of the attractor reconstruction depends on the delay τ . its di-

mension dimension does not.

• For very small τ the delayed variable x(t − τ) is strongly correlated with x(t) ⇒they

do not provide independent information about the attractor.

• For very large τ the two variables are completely uncorrelated: they do not provide

insight into the attractor

• Optimal delay at intermediate values: first minimum of the mutual information be-

tween the two variables [?]
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From the attractor one may be able to obtain a description in terms of a map on the Poincare

section, which generates a cross-section of the attractor:

For an attractor embedded in 3 dimensions mark all locations where the trajectory crosses

a two-dimensional manifold in one direction. If that cross-section can be parameterized

sufficiently well by a single variable one may obtain an iterated map for the dynamics.

a) b)

Figure 22: Belousov-Zhabotinsky rection. a) Poincare section (dashed line in upper panel)

yields a thin line (middle panel). The dynamics on that Poincare section is well captured

by an (almost) one-dimensional iterated map on that Poincare section. The unimodal map

suggests the appearance of a period-doubling cascade. The spectrum (b) shows a periodic

oscillation and a chaotic oscillation that still reflectes an approximate period 4 [?].
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