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Books
Here is a list of books that are of interest for this class. Unfortunately only two of them are
available online. None of them are necessary, however.

• Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
John Guckenheimer, Philip Holmes. Applied mathematical sciences (Springer-Verlag,
New York Inc.) ; v. 42 . 519.05 A652 v.42

• Introduction to applied nonlinear dynamical systems and chaos
Stephen Wiggins. Texts in applied mathematics New York : Springer-Verlag Creation
Date ©1990. 519.05 A652 v.73

• Pattern formation : an introduction to methods
Rebecca B. Hoyle, Cambridge University Press Creation Date 2006. Q172.5.C45
H69 2006

• Spatio-Temporal Pattern Formation : With Examples from Physics, Chemistry, and
Materials Science
Daniel Walgraef. Edition 1st ed. 1997.
https://link-springer-com.turing.library.northwestern.edu/book/10.1007%2F978-1-4612-1850-0

• New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena The Geometry
of Nonequilibrium
Editors Pierre Coullet, Patrick Huerre
https://link-springer-com.turing.library.northwestern.edu/book/10.1007%2F978-1-4684-7479-4

• Practical Bifurcation and Stabiliity Analysis,
R. Seydel, Springer (2009). [available on Canvas]

This class overlaps to some extent with our undergraduate 322 Applied Nonlinear Dynam-
ics. Parts of the lecture notes for that class are included in the notes here as Appendix.
The current full version of those notes are available on Canvas under Files/Lecture Notes.

A good book for the material of 322 is

• Nonlinear dynamics and chaos (with applications to physics, biology chemistry, and
engineering).
Stephen Strogatz.

Strogatz’ Lectures for a class he taught at Cornell are on Video:
https://www.youtube.com/watch?v=ycJEoqmQvwg&list=PLbN57C5Zdl6j_qJA-pARJnKsmROzPnO9V&index=1
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1 Introduction

Nonlinear equations arise in all kinds of systems:

• Mechanics: even simple pendulum

• Chemical systems:

– Examples of oscillatory reactions: Belousov-Zhabotinsky, Briggs-Rauscher

– Flames in combustion→
https://people.esam.northwestern.edu/~riecke/Vorlesungen/412/1999/flames.html

• Fluid dynamics:

– Taylor vortex flow→
https://people.esam.northwestern.edu/~riecke/research/TVF/tvf.overview.html

a) b) c)

d) e)

Figure 1: Taylor vortex flow exhibits a bewildering multitude of qualitatively different be-
haviors when the rotation rates are changed. a) Twisted Taylor vortices, b) wave inflow
vortices, c) wavelets, d) Taylor vortices in cylinders with ramped radius (vortices appear
where the gap is wider), e) phase diagram of states obtained depending on inner and
outer cylinder rotation rates (Ri vertical axis, Ro horizontal axis). (Andereck et al., 1986).

– Rayleigh-Bénard convection→
https://people.esam.northwestern.edu/~riecke/Vorlesungen/412/1999/rb.html

• Crystal growth:

– directional solidification→
https://people.esam.northwestern.edu/~riecke/Vorlesungen/412/1999/dirsol.html
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Characteristics of Nonlinear Systems:

• Qualitative changes in behavior and non-smooth dependence on parameters:

– Rayleigh-Benard convection: heat transport

– Taylor vortex flow: torque, transitions between different types of states

• Multiplicity of solutions: hysteresis

– rolls vs. spiral-defect chaos convection

• Chaotic dynamics

– many frequencies, coexisting (unstable) periodic solutions

Simple illustration: linear vs. nonlinear

Consider
f(v, µ) = 0

µ increases 

                        

non linearlinear

µ increases 

                        

Linear:

• for all values of the control parameter µ (essentially) always 1 unique solution

• quantitative but no qualitative change

Nonlinear:

• # of solutions can change with changing µ: solutions appear and disappear

• quantitative and qualitative changes

Nonlinear equations are difficult to solve

Example:

9
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i) Linear reaction-diffusion equation

∂tv = D∆v + av

Fourier expansion

v(x, t) =
∞∑

n=−∞

vn(t) ei
2π
L
nx

Eigenmodes: each vn satisfies:
dvn
dt

= −D(
2πn

L
)2vn + avn → vn(t) = vn(0) e−D( 2πn

L
)2t+at

Different modes do not interact

ii) Nonlinear reaction-diffusion equation: no superposition, different modes do interact!

∂tv = D∆v + v2︸︷︷︸∑
vnvme

i 2π
L

(n+m)x

v2 generates new wave numbers: couples n & m to n+m and to n−m
Any interaction between different objects (A and B) implies nonlinearity:
evolution of A depends on state of A and that of B
→ Cannot build general solution from a set of basic solutions by simply adding them
→ in general: cannot find exact solutions: HARD.
→ typically numerical solution is required

Numerical Solution:

• confirms the model/basic equations:
of great interest if model has not been established, e.g., chemical oscillations, heart
muscle

• gives quantitative details for specific values of system parameters:
these details may not be accessible in experiments: 3d fluid flow, turbulent, chemical
concentrations of each species, temporal evolution of the state of ion channels in
neurons . . .

To get insight into the system the most interesting points are the transition points:

• qualitatively new features of the solutions arise

Qualitative Analysis

• Change in behavior as system parameters are changed
transitions between qualitatively different states

• Analytical techniques for transitions
approximations near transition points:
reduction in the dimension of the dynamical system

• Visualization: geometry of dynamics, phase space

• Overview of all possible behaviors

10
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1.1 Central Tool: Separation of Time Scales

A key feature that allows the reduction in the dimension of a dynamical system is a sepa-
ration in time scales.

Consider first again scalar case
d

dt
v = f(v)

Two fixed points appear when the function f(v) touches the v-axis: f(v1,2) = 0 and v1 is
close to v2.

The new solutions arise in a bifurcation.

Two simplifications:

• Near the minimum f can be expanded in low-order polynomial

• For smooth f this implies f is small: v evolves slowly .

Consider now the general case: many interacting modes

At the bifurcation

• only one or few modes evolve slowly

• the remaing modes are in principle fast, but they follow the evolution of the slow
modes

Thus:

Near the bifurcation

• the fast modes can be eliminated ‘adiabatically’.

• the system evolves on the ‘center manifold’, which has much lower dimension than
the full system

Time-scale separation can arise from a number of different causes:

1. Bifurcations

2. Conservation laws:
long-wave dynamics is slow
e.g., mass conservation leads to slow diffusive relaxation of long-wave density fluc-
tuations, Navier-Stokes equations.

3. Broken continuous symmetries.
e.g., solitons in nonlinear optics can have arbitrary amplitude:
they break a continuous symmetry, non-conserving perturbations lead to slow evo-
lution of the amplitude.

11
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4. Weak interaction between objects
separation of time scales as distance between objects goes to infinity.

Note:

Separation of time scales is at the core of many analytical approaches for the analysis of
nonlinear systems.

2 Linear Systems

Before plunging into nonlinear system, consider under what conditions linear systems are
sufficient/insufficient to obtain a qualitative picture of the dynamics of a nonlinear system.

The most simple situation to consider is a fixed point and the dynamics in its vicinity:
what does the flow in the vicinity of a fixed point look like? Under what conditions will the
linearization of the system around that fixed point give a qualitatively good approximation
of the full system?

Consider the general linear system

ẋ = L x x(0) = x0

Formal solution
x(t) = eL tx0

where the matrix exponential is defined via the Taylor series

eLt = 1 + L t+
1

2
L2t2 + . . .

In general one can find a similarity transform S such that the transformed L is comprised
of blocks

S−1 L S =


. . . . . . 0 0 0
. . . . . . 0 0 0
0 0 . . . 0 0
0 0 0 . . . . . .
0 0 0 . . . . . .


that each are associated with a different eigenvalue λi and are either diagonal,(

. . . . . .

. . . . . .

)
=

(
λi 0
0 λi

)
,

or have Jordan normal form, (
. . . . . .
. . . . . .

)
=

(
λj 1
0 λj

)
.

Notes:

12
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• If no eigenvalues are repeated, then S−1LS is diagonal.

– The columns of S are the eigenvectors of L :
Consider

S−1LS



0
. . .
0
1
0
. . .
0


= λi



0
. . .
0
1
0
. . .
0


then

⇒ L S



0
. . .
0
1
0
. . .
0


︸ ︷︷ ︸

v(i)

= λi S



0
. . .
0
1
0
. . .
0


︸ ︷︷ ︸

v(i)

and we have
L v(i) = λi v

(i)

– The dynamics in the eigendirections v(i) is given by simple exponentials

eL t v(i) = {1 + L t+
1

2
(Lt)2 + · · ·}v(i) =

= {1 + λit+
1

2
λ2
i t

2 + · · ·}v(i) =

= eλit v(i) .

Thus, a solution that starts with an initial condition that is along an eigenvector
continues in that direction. The vector space spanned by that eigenvector is
invariant under the flow.

– The general solution is given by

x(t) = eλ1tv(1)A1 + eλ2tv(2)A2 + . . .

with x0 = A1v
(1) + A2v

(2) + . . .

– for complex eigenvalues

λ = σ ± iω
x(t) = eσt

(
Aeiωtv + A∗e−iωtv∗

)
since x(t) is real.

• For degenerate (repeated) eigenvalues the dynamics can be somewhat more com-
plicated, see later.

13
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The eigenvectors associated with each eigenvalue λi define linear subspaces Eλi:

For a real eigenvalue λ that is m-times repeated

Eλ = {v ∈ Rn | (L− λ)m v = 0} .

For a complex eigenvalue λ complex that is m-times repeated2

Eλ = {v ∈ Rn | (L− λ)m(L− λ∗)m v = 0} .

Phase space is spanned by these eigenspaces Eλ

Rn = Es︸︷︷︸
Re(λ)<0 stable

⊕ Ec︸︷︷︸
Re(λ)=0 center

⊕ Eu︸︷︷︸
Re(λ)>0 unstable

The eigenspaces Es,c,u are invariant under the dynamics of the linear system: the linear
flow cannot enter or leave these spaces:

v(0) ∈ Eα → v(t) ∈ Eα for all t α = s, c, u .

With nonlinearities these linear eigenspaces would not be invariant, but they help define
curved invariant manifolds:

Definition: Stable/unstable manifolds W (s,u) of a fixed point x0:

W (s) = {y ∈ Rn |x(t = 0) = y⇒ x(t)→ x0 for t→ +∞}
W (u) = {y ∈ Rn |x(t = 0) = y⇒ x(t)→ x0 for t→ −∞}

Note:

• In the linear case the stable and unstable manifolds are given by Es and Eu.

To obtain an overview of the dynamics in phase space, we are interested in the trajectories
(orbits) in phase space, which are parametrized by the time t. Consider as a simple two-
dimensional example a diagonal L with two distinct real eigenvalues λ1,2,(

ẋ
ẏ

)
=

(
λ1 0
0 λ2

)(
x
y

)
⇒ x = eλ1tx0

y = eλ2ty0

Solving for the exponential one gets

et = (
x

x0

)1/λ1 ,

2Consider v = w ±w∗ with Aw = λw and Aw∗ = λ∗w∗. Then

(A− λ) (A− λ∗) (w ±w∗) = (λ− λ) (λ− λ∗)w ± (λ∗ − λ) (λ∗ − λ∗)w∗ = 0

and 1
2 (w +w∗) and 1

2i (w −w∗) are both real.

14
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which yields

y(t) =

((
x

x0

)1/λ1
)λ2

y0 = y0

(
x

x0

)λ2
λ1

.

Thus,
y(t) = C x(t)

λ2
λ1 .

Possible Phase Portraits:

i) generic cases:

( stable or unstable )             Re(  ) < 0λ                

spiral ( stable )
                 saddle                                node                                 complex eigenvalue                                                                                                                     

Note:

• For symmetric matrices L eigenvectors for different eigenvalues are orthogonal to
each other. For non-symmetirc matrices this need not be the case.

ii) special cases:

Re( )   = 0λ Im( ) 0λ ≠λ2 = 0

At a degenerate node there is a repeated eigenvalue but only a single proper eigenvector,

L =

(
λ 1
0 λ

)
.

The system is almost oscillating:

L =

(
λ 1
ε λ

)
(λ− σ)2 = ε σ = λ±

√
ε

15
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In 2 dimensions the dependence of the phase diagram on the parameters can be given
easily:

Eigenvalues in 2d:

det L = det
(
S−1LS

)
= λ1λ2 tr L = tr

(
S−1LS

)
= λ1 + λ2

λ1,2 =
+trL±

√
trL− 4 det L

2

Change in stability: Re (λi) = 0

i) trL = 0 and det L > 0 ⇒ λ = ±iω complex pair crossing imaginary axis

ii) trL < 0 and det L = 0 ⇒ λ1 = 0 λ2 < 0 single zero eigenvalue

Change in the character of the phase diagram:

real↔ complex (trL)2 = 4 det L

+ +

- -

 + -

+ -

thick: change
of stability

stable node

unstable node

saddle 

stable
spiral

det L

tr   L  = 2 tr L √ det L
____

λ λ1 2= > 0

λ λ1          2= < 0
degenerate node

λ = ± ωi

non-isolated
fixed point 
i.e. bifurcation (steady)

Notes:

• degenerate node⇒ border between nodes and spirals, does not quite oscillate

• non-isolated fixed points: steady bifurcation, one or more fixed points are created/annihilated
(details depend on nonlinearities)
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2.1 Hartman-Grobman theorem

Linear systems can be completely understood without too much difficulty. How much of
that can be transferred to nonlinear systems?

Definition: A fixed point x0 of ẋ = f(x) is called hyperbolic if all eigenvalues of the
Jacobian ∂fi

∂xj
have non-zero real parts.

Thus: in all directions a hyperbolic fixed point is either linearly attractive or repulsive. It
has no marginal direction.

h

(x',y') = h (x,y)

-1

_

y'

x'

y

x

Hartman-Grobman Theorem:

Let x = 0 be a hyperbolic fixed point of

ẋ = f(x, µ)

for some fixed µ and let φt be the corresponding nonlinear flow,

x(t) = φt(x),

and φ̃t the flow of the linearized problem

ẋ = L x Lij =
∂fi
∂xj

.

Then there exists a homeomorphism h : R→ R and a neighborhood U of x = 0 such that

φt(x) = h−1
(
φ̃t(h (x)

)
for x ∈ U . The homeomorphism h preserves the sense of orbits.

Note:

• A homeomorphism is a continuous mapping with a continuous inverse. It preserves
the topology of the region.
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Thus:

• For a hyperbolic fixed point x0 the linearization of the flow gives the topology of
the nonlinear flow in a neighborhood of x0. The nonlinear and the linear flow are
qualitatively the same.

• If a fixed point is not hyperbolic, the linearization does not give sufficient information
to determine the topology of the flow in its vicinity:

ẋ = αx3

? ?

linearly marginally

stable different topology of flow

α α < 0> 0

• Topological changes in the nonlinear flow that are local to the fixed point x0 must be
reflected in the linearization around that fixed point.

• When the parameter µ is changed the dimensions of the stable and unstable mani-
foldsW (s,u) can only change if the dimensions of the corresponding linear eigenspaces
E(s,u) change, i.e. the real part of some eigenvalue must pass through 0.

• Only local changes in phase space are indicated by changes in the linearization;
global changes are not indicated by changes in the linearization.

In this scenario the periodic orbit disappears in a global bifurcation involving a ho-
moclinic orbit.

3 Bifurcations in 1 Dimension

3.1 Implicit Function Theorem

What can happen when a fixed point is not hyperbolic?

For simplicity consider first a one-dimensional system,

ẋ = f(x, µ),

that has a fixed point x0 for µ = µ0,

f(x0, µ0) = 0 .

18
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Under what conditions does that fixed point persist when the parameter µ is varied away
from µ0, i.e. under what conditions is there a branch of fixed points?

Can a small change in µ create or remove a fixed point?

µ  

                        

x

Consider a local analysis near x0 for small changes in µ away from µ0:

Taylor expansion

f(x, µ) = f(x0, µ0)︸ ︷︷ ︸
=0

+
∂f

∂x
(x− x0) +

∂f

∂µ
(µ− µ0) +

1

2

∂2f

∂x2
(x− x0)2 + · · · (1)

(All derivatives evaluated at x0, µ0)

The fixed point condition implies f(x0, µ0) = 0.

If ∂f
∂x
|x0,µ0 6= 0 we can solve uniquely for x

x− x0 = −(µ− µ0)
∂f
∂u
∂f
∂x

+O
(
(µ− µ0)2) .

Thus, in this case there is a differentiable branch of solutions. This is the statement of the
Implicit Function Theorem.

It applies also more generally to systems in higher dimensions:

Consider solutions of

ẋ = f(x, µ) x ∈ Rn f smooth in x and µ .

Expand again around a fixed point x0 at µ0

f(x, µ) = f(x0, µ0) + L (x− x0) +
∂f

∂µ

∣∣∣∣
x0,µ0

(µ− µ0) + . . .

with the Jacobian L given by

Lij =
∂fi
∂xj

∣∣∣∣
x0,µ0

.

If L is invertible, we can solve for x

x− x0 = −L−1 ∂f

∂µ

∣∣∣∣
x0,µ0

(µ− µ0) .

19



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

Thus, if

f(x = x0, µ = µ0) = 0 and det

(
∂fi
∂xj

)
6= 0 at µ = µ0 and x = x0,

then there is a unique differentiable X(µ) that satisfies

f(X(µ), µ) = 0 and X(µ = µ0) = x0.

µ  

                        

x

branch of solutions
x

µ  

                        

0

0

Notes:

• For det L 6= 0 the branch of fixed points persists uniquely ⇒ the number of fixed
points does not change

– persistence: the fixed point does not disappear

– uniqueness: no new fixed point appears

• The change of x is smooth in µ if ∂f
∂x
6= 0

∆x ∼ ∆µ

x

+0

0

0

x x

x

µ µ µ µ
0 +

∆

∆

• Generic properties are those properties that do not require any tuning of the pa-
rameters
When picking parameters randomly one expects det L 6= 0,
i.e. in general one needs to tune µ to get detL = 0.
⇒ generically there is a smooth branch.

The existence or non-existence of a smooth unique branch is directly connected with the
linear stability of the fixed point:
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For small perturbations around x = x0 + ∆x(t) the evolution can be approximated by the
linearization

d

dt
∆x = L∆x .

Thus

• For the number of fixed points to change at µ0 it is necessary that det L = 0, i.e. the
fixed point needs to be non-hyperbolic, its stability has to change as µ is changed
across µ0.

3.2 Saddle-Node Bifurcation

Focus now on one-dimensional systems. What happens when ∂f
∂x

= 0?

We need to go to higher order in the Taylor expansion (choose x0 = 0, µ0 = 0)

f(x, µ) = f(0, 0)︸ ︷︷ ︸
=0

+
∂f

∂x︸︷︷︸
=0

x+
∂f

∂µ
µ+

1

2

∂2f

∂x2
x2 +

∂2f

∂x∂µ
xµ+

1

2

∂2f

∂µ2
µ2 + . . .

Solve again for x,

x2 = − 2
∂2f
∂x2


∂f

∂µ
µ︸︷︷︸

x=O(µ1/2)

+
∂2f

∂x∂µ
xµ︸︷︷︸
O(µ3/2)

+
1

2

∂2f

∂µ2
µ2 + · · ·

 .

Which terms are to be kept? By assumption we have |x| � 1 and |µ| � 1. Even though
we do not yet have a relationship between x and µ, we have |xµ| � |µ| and µ2 � |µ|.
Therefore, to leading order only the first term on the right-hand side needs to be kept and
we get

x1,2 = ±

√√√√−2

∂f
∂µ

∂2f
∂x2

µ +O(µ) .

Notes:

When the implicit function theorem fails

• one gets a nonlinear equation for x with multiple solutions

• the number of solutions changes with the parameter µ

• the change in x is not smooth in µ.
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Dynamics:

To assess the stability of these multiple solutions we need to reintroduce the dynamics,

ẋ = f(x, µ) = aµ+
1

2
bx2 + h.o.t. , (2)

where the relevant parameters are given by

a =
∂f

∂µ
≡ ∂µf b =

∂2f

∂x2
≡ ∂2

xf

Bifurcation diagrams:

To get an overview plot all solution branches as a function of µ,

x1,2 = ±
√
−2

a

b
µ+O(µ) .

a > 0 a
b
< 0:

µ  

                        

x

a > 0 a
b
> 0 :

In total there are four qualitatively different cases: switching the sign of a with a/b fixed
reverses the flow and flips the arrows in the bifurcation diagram.

x

f f

x

marginally
stable

f

x

Figure 2: Phase line for increasing values of µ for a < 0, b > 0. The arrows indicate the
flow on the phase line (x-axis).

Notes:

• Generically the minimum of f in x is quadratic ⇒ b 6= 0. Equation (2) is therefore
the normal form for a saddle-node bifurcation. The same equation will be obtained
in general systems - including higher-dimensional systems - in the vicinity of the
bifurcation (cf. later).
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• 2 fixed points are created/destroyed simultaneously: single solutions do not simply
pop up or disappear.

– The roots of a real polynomial can only become complex as complex pairs ⇒
solutions disappear in pairs.

– Single solutions can only disappear by diverging at infinity

• When the two fixed points coincide at µ = 0 they are marginally stable (detL = 0):
going along the solution branch, ∂xf changes sign and the solution changes stabil-
ity, consistent with the earlier statement that a change in the number of fixed points
is associated witha a change in stability.

• The flow changes direction only locally:
only when µ goes through 0 and only near the fixed point x = 0 does the flow change
direction.
Away from bifurcation point the flow is qualitatively unchanged when µ changes (the
arrows far away remain the same).

• Why are these bifurcations called saddle-node bifurcations? In higher dimensions a
saddle-node bifurcation occurs when a node collides with a saddle, eliminating both
fixed points.

• The only condition for a saddle-node bifurcation to occur is ∂xf = 0. This is the
condition for any (steady) bifurcation to occur.
Thus: If there is a bifurcation because a real eigenvalue goes through 0, one should
‘expect’ a saddle-node bifurcation.

• Saddle-node bifurcations are sometimes also called “blue-sky bifurcations”, because
solutions appear out of the ‘blue sky’.

Examples:
A compressed, upward-curved beam under a transverse load can ‘snap through’. At that
point the stable solution collides with an unstable solution that is less buckled.

Figure 3: A buckled beam undergoes a saddle-node bifurcation when the load becomes
too large.
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a) b)

Figure 4: Three saddle-node bifurcations in Taylor vortex flow in a short cylinder. a) left:
symmetric vortices below the bifurcation, right: asymmetric vortices (note the small vortex
in the bottom left corner) above the transition (Lücke et al., 1984). b) Bifurcation diagram
in terms of the degree of asymmetry as a function of the rotation rate ω of the cylinder
(Aitta et al., 1985).

a)

has one attractor in each of the two valleys. Therefore, as the
locomotion speed increases, a walk jumps to a trot (run) at a
critical speed (indicated by the red (black) balls). However,
when the locomotion speed is reduced, a trot (run) jumps
to a walk at a lower critical speed (indicated by the blue
(grey) balls); thus, hysteresis occurs. Diedrich & Warren
examined the energy expenditure and estimated
the potential function for human walk and run from meta-
bolic energy expenditure data. They demonstrated that the
walk–run transition is consistent with the properties of
the potential function.

In addition to energy expenditure, stability is a crucial
factor in determining the gait [13] since, for each gait, there
is a limited range of locomotion speeds in which stable loco-
motion occurs. It has been suggested that gaits correspond to
attractors of their dynamics and that gait transitions are non-
equilibrium phase transitions that are accompanied by a loss
of stability [2]. The present study focuses on the dynamic
stability of gaits to explain the hysteresis mechanism from a
dynamic viewpoint. Specifically, if a potential function such
as the one shown in figure 1 exists for locomotion speeds
and gaits that explains the dynamic stability in a similar
way to the Lyapunov function, it will explain the hysteresis.

So far, biomechanical and physiological studies have been
independently conducted to elucidate the motions of humans
and animals. Biomechanical studies mainly examine the
functional roles of the musculoskeletal system, whereas phys-
iological studies generally investigate the configurations and
activities of the neural system. However, locomotion is a well-
organized motion generated by dynamic interactions among
the body, the nervous system and the environment. It is thus
difficult to fully analyse locomotion mechanisms solely from
a single perspective. Integrated studies of the musculoskeletal
and nervous systems are required.

Owing to their ability to overcome the limitations of
studies based on a single approach, constructive approaches
that employ simulations and robots have recently been
attracting attention [14–22]. Physiological findings have
enabled reasonably adequate models of the nervous system
to be constructed, while robots have become effective tools
for testing hypotheses of locomotor mechanisms by demon-
strating real-world dynamic characteristics. We have
demonstrated hysteresis in a walk–trot transition using a
simple body mechanical model of a quadruped and an oscil-
lator network model based on the physiological concept of
the central pattern generator (CPG) [23]. In the present

study, we design a quadruped robot to examine its gaits by
varying the locomotion speed. We evaluate these gait
changes by measuring locomotion in dogs. Furthermore,
we investigated the stability structure by constructing a
potential function using the return map obtained from
robot experiments and by comparing it with that proposed
by Diedrich & Warren to clarify the physical characteristics
inherent in the gait transition of quadruped locomotion.

2. Material and methods
2.1. Mechanical set-up of quadruped robot
Figure 2 shows a quadruped robot that consists of a body and
four legs (legs 1–4). Each leg consists of two links connected
by pitch joints ( joints 1 and 2) and each joint is manipulated
by a motor. A touch sensor is attached to the tip of each leg.
Table 1 lists the physical parameters of the robot.

The robot walks on a flat floor. Electric power is externally
supplied and the robot is controlled by an external host computer
(Intel Pentium 4, 2.8 GHz, RT-Linux), which calculates the
desired joint motions and solves the oscillator phase dynamics
in the oscillator network model (see §2.2). It receives command
signals at intervals of 1 ms. The robot is connected to the electric
power unit and the host computer by cables that are slack and
suspended during the experiment so that they do not affect the
locomotor behaviour.

2.2. Oscillator network model
Physiological studies have shown that the CPG in the spinal
cord strongly contributes to rhythmic limb movement, such
as locomotion [24]. To investigate animal locomotion using
legged robots, locomotion control systems have been construc-
ted based on the concept of the CPG [16,17,19,21,22]. The CPG
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speed-up

walk

trot (run)

speed-down

Figure 1. Hypothetical potential function that explains the hysteresis in the
walk – trot (run) transition (adapted from [3]). (Online version in colour.)

(b)(a)

leg 1
leg 2

leg 3

leg 4

joint 1
(pitch)

joint 2
(pitch)

Figure 2. (a) Quadruped robot and (b) schematic model. (The robot body
consists of two sections that are mechanically attached to each other.)
(Online version in colour.)

Table 1. Physical parameters of quadruped robot.

link parameter value

body mass (kg) 1.50

length (cm) 28

width (cm) 20

upper leg mass (kg) 0.27

length (cm) 11.5

lower leg mass (kg) 0.06

length (cm) 11.5
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with the diagonal line and the walk is the only attractor.
However, for v ¼ 4.5 cm s21, three intersections appear
and there are two stable gaits (trot and walk) and one
unstable gait between the stable gaits (indicated by the open
dot). When v ¼ 5.3 cm s21, the walk disappears due to the
loss of the two intersections and the trot becomes the only
attractor. The gait stability passes through the saddle-node
bifurcation twice. There is a saddle-node ghost around
D31n ¼ 2.5 rad for v ¼ 3.6 cm s21 and D31n ¼ 1.8 rad for
v ¼ 5.3 cm s21.

3.4. Potential function for various speeds
Finally, we constructed the potential function V from the
approximated return maps, where we used D0 ¼ 1.0 and
D1 ¼ 2.9 rad. Figure 12a,b shows dD and V, respectively.
When v ¼ 3.6 and 5.5 cm s21, V is unimodal and the valley
corresponds to dD ¼ 0, which is the only attractor. By con-
trast, when v ¼ 4.6 cm s21, V is double-well shaped and the
hill and valleys correspond to dD ¼ 0. The hill is a repeller

and only the valleys are attractors. These potential functions
obtained are consistent with the hypothetical potential func-
tion (figure 1) proposed to explain the hysteresis.

4. Discussion
4.1. Switching rhythmic motions accompanied by loss

of stability
To emulate the dynamic locomotion of a quadruped, we
developed a quadruped robot for the body mechanical
model and used an oscillator network for the nervous
system model, which was inspired from the biological sys-
tems. The robot produced the walk and trot depending on
the locomotion speed and exhibited a walk–trot transition
with hysteresis (figure 8). This is not because we intentionally
designed the robot movements to produce the gait transition
and hysteresis; rather, it is because the stability structure
changes through the interaction between the robot dynamics,
the oscillator dynamics and the environment.

Spontaneous switches in the coordination pattern of
rhythmic human motions have been investigated from
the viewpoint of a non-equilibrium phase transition in
synergetics [44–46]. In this viewpoint, emerging patterns
are characterized only by order parameters that have low-
dimensional dynamics. In these investigations, an oscillator
phase is used as an order parameter to examine the relative
phase between the rhythmic motions and a potential function
is used to construct the phase dynamics. Observable patterns
correspond to attractors of the dynamics and the switch is
accompanied by a loss of stability. The loss of stability has
been measured in various experiments using theoretically
based measures of stability (such as the relaxation time) to
clarify the nature of the switching process. Schöner et al. [2]
used a synergetic approach to investigate quadrupedal gaits
and suggested that the gaits correspond to attractors of their
dynamics and that gait transitions are non-equilibrium phase
transitions accompanied by a loss of stability. Gait transitions
could be interpreted as bifurcations in a dynamic system.

We clarified the changes in the stability structure of gaits by
generating return maps (figure 11) and potential functions
(figure 12). The present results show that the walk and trot pro-
duced are attractors of the integrated dynamics of the robot
mechanical and oscillator network systems and that the gait
stability changes twice through the saddle-node bifurcation
(figure 11). These results provide dynamic confirmation of
the suggestion of Schöner et al.

4.2. Clarifying stability structure using a
potential function

Locomotion in humans and animals is a complex nonlinear
dynamic phenomenon that involves the nervous system, the
musculoskeletal system and the environment. Consequently,
it is difficult to clarify stability structures inherent in the
dynamics. In the switches of coordination pattern in rhyth-
mic human motions [44–46], the relaxation time of the
order parameter was measured to investigate the loss of stab-
ility from a viewpoint of the non-equilibrium phase
transition, which is the time until the order parameter returns
to its previous steady-state value after being disturbed close
to the attractor. In our experiments, we perturbed D31 from
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Figure 10. Gait transition in a dog induced by changing the belt speed. (a)
Relative phase D31

dog between the right fore and hindlimbs, (b) relative phase
D21

dog between the right and left forelimbs, (c) relative phase D43
dog between

the right and left hindlimbs, (d ) duty factor of right forelimb, and (e) duty
factor of left hindlimb. Six trials are shown for increasing and decreasing
speed. (Online version in colour.)
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Figure 5: Hysteresis via saddle-node bifurcations in the transition between walk and trot
gait as a function of locomotion speed. The gait is characterized by the phase difference
between front and rear legs. a) 4-legged robot. b) hysteresis in the robot gait, c) hysteresis
in dog gait (Aoi et al., 2013).

3.3 Transcritical Bifurcation

Consider a system that satisfies an additional condition beyond that of the occurrence of
a bifurcation: assume a fixed-point solution exists for all µ. For simplicity assume that
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solution is x = 0:

ẋ = f(x, µ) with f(0, µ) = 0 for all µ .

Performing again a Taylor expansion around the bifurcationpoint µ = 0,

f(x, µ) = f(0, 0)︸ ︷︷ ︸
=0

+ ∂xf |0,0︸ ︷︷ ︸
=0

x+ ∂µf |0,0︸ ︷︷ ︸
=0

µ+
1

2
∂2
xf
∣∣
0,0

x2 + ∂2
xµf
∣∣
0,0

xµ+
1

2
∂2
µf
∣∣
0,0︸ ︷︷ ︸

=0

µ2 + . . . (3)

Based on our assumption the following terms vanish:

• x = 0 fixed point: f(0, 0) = 0 .

• a bifurcation occurs: ∂xf |0,0 = 0 .

• x = 0 is a fixed point for all µ: ∂nµf
∣∣
0,0

= 0 for all n.

To leading order we obtain then

ẋ = x (a µ+ b x) + · · · (4)

with
a = ∂2

xµf b =
1

2
∂2
xf

It has two fixed points:

x1 = 0 x2 = −a
b
µ ≡ −

∂2
xµf

1
2
∂2
xf

µ

Depending on the signs of a and b there are four cases (cf. Fig.6).

a)

µ  

x

b)

Figure 6: a) a
b
< 0, a > 0. b) a

b
> 0, a > 0. Switching the sign of a with a/b fixed reverses

the flow, i.e. flips the arrows in bifurcation diagram, and switches the stability.
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Notes:

• Both fixed points exist below and above the bifurcation (for µ < 0 and µ > 0). Consis-
tent with the statement of the implicit function theorem, there is, however, no unique
branch of solutions going through µ.

• Equation (4) is the normal form for a transcritical bifurcation.

• The transcritical bifurcation is characterized by an exchange of stability between the
two branches.

• There is a subcritical branch:
Sufficiently large perturbations can lead away from the (linearly) stable fixed point.

Examples:

a) Logistic equation for population growth

Ṅ = µN −N2

N

µ

• The branch existing for all µ corresponds to a vanishing population size N .

• For µ < 0 the lower branch is unphysical since the population N cannot be negative.

b) Rayleigh-Benard convection in a fluid layer heated from below

• The state without fluid flow (corresponding to x = 0) exists for all temperature differ-
ences.

• Hexagonal flow patterns arise in a transcritical bifurcation at ε = 0 (corresponding to
µ = 0).

• The branch emerging from the transcritical bifurcation undergoes a saddle-node bi-
furcation.

• Large perturbations can kick the solution without fluid flow above the unstable branch
of the transcritical bifurcation and trigger the formation of hexagonal convection pat-
terns.

• There is bistability between the hexagonal pattern and the homogeneous state x = 0.
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• For µ > 0 the lower branch associated with the transcritical bifurcation is unstable in
a different way; this instability is not contained in the single equation (4).

Figure 7: Convection in very thin fluid layers sets in via a transcritical bifurcation to hexago-
nal convection patterns. The root of the heat flux,

√
j(conv), plays the role of the magnitude

|x| of the amplitude x. The hexagons and the convection-less state are simultaneously
linearly stable in a (very small) range of parameters. If the heating is increased the pattern
expands into the whole system (Bodenschatz et al., 1991).

The transcritical bifurcation is part of a larger bifurcation scenario (see inset in Fig.7:

• A large perturbation can kick the solution above the unstable branch of the transcrit-
ical bifurcation leading to a stable branch of hexagonal convection

– For µ > 0 the lower branch is unstable in a different way (that instability not
contained in the single equation).

3.4 Pitchfork Bifurcation

Consider systems that have a reflection symmetry x → −x, which is defined by the re-
quirement that if x(t) is a solution, then −x(t) is also a solution.

Thus, we have
ẋ = f(x, µ) and − ẋ = f(−x, µ) .

Multiplying one of the two equations by −1 implies that f(x, µ) is odd in x,

f(−x, µ) = −f(x, µ) .

As a consequence, x = 0 is a solution for all µ and all even terms in x of the Taylor
expansion of f(x, µ) vanish.
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Taylor expansion:

f(x, µ) = f(0, 0)︸ ︷︷ ︸
=0

+ ∂xf︸︷︷︸
=0

x+ ∂µf︸︷︷︸
=0

µ+ ∂2
xµ︸︷︷︸
a

xµ+
1

6
∂3
x︸︷︷︸

b

x3 + . . .

ẋ = aµx+ bx3 + h.o.t.

Fixed points:

x0 = 0

x2,3 = ±
√
−a
b
µ

a > 0 b < 0 supercritial a > 0 b > 0 subcritical

Notes:

• At µ = 0 the fixed point changes stability and two solutions appear/disappear.

• The bifurcation is called supercritical if the nonlinear branch arises for those values
of µ for which the base state x = 0 is linearly unstable. In this case the instability
saturates and leads to a stable new solution.

• In the subcritical case the nonlinear branch arises for µ-values for which x = 0 is
stable. There is no saturation of the linear instability of the base state to cubic order.
Higher-order terms determine whether a new stable solution arises when the base
state becomes unstable.

• The system has reflection symmetry x→ −x

– the solution x0 = 0 has that symmetry as well.
– the solutions x2,3 = ±√. . . themselves are not reflection-symmetric. Instead

they form a pair of symmetrically related solutions.

⇒ the pitchform bifurcation is a symmetry-breaking bifurcation.

Subcritical Pitchfork Bifurcation:

For b > 0 we can include a quintic term with the aim to provide saturation of the instability,

ẋ = µx+ bx3︸︷︷︸
destabilizing

− cx5︸︷︷︸
stabilizing

(5)

Assume c > 0. In general, the term at quintic order need not be saturating.

To get the bifurcation diagram, plot µ = µ(x) and flip the plot about the diagonal
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µ

x

x

μ

Notes:

• In this equation the subcritical pitchfork bifurcation is associated with 2 saddle-node
bifurcations, which occur for µ < 0.

• There is a range of bistability which is associated with hysteresis. I.e. the transition
between the two states occurs at different values of µ depending on whether µ is
increased or decreased.

Question: are the conclusions about the saddle-node bifurcations based on the analysis
of (5) guaranteed to be valid? Since we used a Taylor expansion in µ and in x the results
are only guaranteed to be valid in the limit µ→ 0 and x→ 0. Concretely, in the expansion
we ignored terms of O(x7) and higher.

On the lower branch we have x → 0 as µ → 0, as is the case for the other bifurcations
discussed above.Therefore the results are correct in the vicinity of the bifurcation point,
|µ| � 1.

On the upper branch, however, we have

x2
upper =

b+
√
b2 − 4µc

2c
. (6)

Therefore, even for µ = 0 we have

x2
upper =

b

c
= O(1) .

Validity therefore requires that b be small in addition to µ. Thus, we need to expand
around the tricritical point b = 0, which is the point at which the bifurcation changes from
supercritical (b < 0) to subcritical (b > 0), i.e. the bifurcation has to be weakly subcritical.

This can also be seen by noting that the solution (6) involves all three terms of (5). These
three terms should therefore be of the same order

µx ∼ bx3 ∼ cx5 .
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For c = O(1), this implies the scaling

µ = O(x4) b = O(x2) .

Then all three terms are O(x5), compared to which the neglected terms O(x7) are indeed
small. Equation (5) is therefore valid in the distinguished limit

µ→ 0 and b→ 0 with b = b̂ µ
1
2 .

Conversely, if b = O(1), then xupper = O(1) and there is no reason that any of the omitted
terms (O(x7) and higher) can be neglected and stopping the expansion at quintic order is
not justfied. As a result, it could be that there is no saddle-node bifurcation at all, even if
c > 0.

Examples:

a) buckling of a straight beam

or

reflection symmetric symmetry related

b) Rayleigh-Bénard roll convection:

up-flow down-flow

Note:

• up⇒ down corresponds to translations by half a wavelength
intermediate positions also possible⇒ larger symmetry
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Figure 8: a) An AC electric field applied transversally to a thin layer of nematic liquid crystal
can drive fluid flow in the form of rolls. b) Top view of a roll pattern with a dislocation defect.
c) Disordered convection pattern slightly above the bifurcation point. d) The square of the
pattern amplitude grows linearly at the bifurcation point reflecting the square-root law for
the amplitude. As the electrical conductivity of the liquid crystal is changed (different sym-
bols) a tricritical point is approached (the line becomes vertical): the pitch-fork bifurcation
eventually becomes subcritical. (Scherer et al., 2000).

3.5 Structural Stability of Bifurcations

Since we are mostly interested in the qualitative behavior of a system, a relevant question
is whether the bifurcations that we have identified are robust with respect to small changes
in the parameters of the equations or small changes in the equations themselves.

Define:
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• A bifurcation is called structurally stable if small perturbations δ of the equations
do not change the bifurcations qualitatively.

Note:

• Even in a structurally stable bifurcation an individual solution can change qualitatively
when a parameter is changed infinitesimally; it is the overall set of solutions that
should remain qualitatively the same.

• This stability is to be contrasted with the dynamical stability of a solution to a given
equation, which refers to the stability under perturbations of the solution with the
equation and its parameters fixed.

3.5.1 Saddle-Node Bifurcation

Consider small perturbations of O(δ) of the equation for the saddle-node bifurcation by
allowing f to depend also on δ � 1,

ẋ = f(x, µ, δ) = µ+ x2 + δ

(
∂δf + ∂δµf µ+ ∂xδf x+

1

2
∂δxxf x

2

)
+O(δ2, δµ2, δx3)

= x2

(
1 +

1

2
δ∂δxxf

)
+ x (δ∂δxf) + (1 + δ∂δµf)µ+ δ∂δf

=

(
1 +

1

2
δ∂δxxf

)
(x−∆x0)2 + (1 + δ∂δµf) (µ−∆µ0) +O(δ2, δµ2, δx3) ,

with the shifts ∆x0 and ∆µ0 given by

−
(

1 +
1

2
δ∂δxxf

)
2 ∆x0 = δ∂δxf ⇒ ∆x0 = −1

2
δ∂δxf +O(δ2)

− (1 + δ∂δµf) ∆µ0 = δ∂δf ⇒ ∆µ0 = −δ∂δf +O(δ2) .

Thus

• Small perturbations only shift the position of the ‘nose’ of the saddle-node bifurcation
in µ and x. But the nose as such, i.e. the structure of the solution set, persists.

• The saddle-node bifurcation is structurally stable.

3.5.2 Transcritical Bifurcation

Consider again small perturbations

ẋ = x (a µ+ b x) + δ (∂δf + ∂δxf x+ ...) = bx2 + (aµ+ δ∂δxf)x+ δ∂δf + . . .

We focus on the term δ∂δf , since it introduces a term that is not present in the unperturbed
equation: it destroys the solution x = 0.
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The fixed points are given now by

x1,2 =
1

2b

(
−aµ− δ∂δxf ±

√
(aµ+ δ∂δxf)2 − 4bδ ∂δf

)
(7)

For bδ∂δf > 0 there is no fixed point for (aµ+ δ∂δxf)2 < 4bδ∂δf : the transcritical bifurcation
is transformed into two saddle-node bifurcations.

For bδ∂δf < 0 there is no value of µ for which the square root vanishes, i.e. the two
solution branches do not touch each other: the transcritical bifurcation is transformed into
two smoothly changing solution branches without any bifurcation.

Thus: the transcritical bifurcation is not structurally stable.

Figure 9: Generic perturbations of the transcritical bifurcation. a) bδ∂δf > 0. b) bδ∂δf < 0.

Notes:

• The transcritical bifurcation is structurally stable if the class of systems is restricted
to those for which x = 0 is a fixed point for all values of µ = 0. The perturbation that
breaks the transcritical bifurcation is then not allowed.

• A bifurcation is called degenerate if additional conditions “happen” to be satisfied.
In a general system a transcritical bifurcation would be considered to be degenerate
since ∂µf would vanish at the bifurcation point only ‘by chance’.

• To obtain a transcritical bifurcation the condition that x = 0 is a solution for all µ is
not necessary. The condition ∂µf = 0 is sufficient as long as ∂2

µf is not too large or
has the correct sign. Solving (3) with ∂2

µfµ
2 retained, one obtains

x1,2 =
1

2b

(
−aµ±

√(
a2 − 2b∂2

µf
)
µ2

)
,

which yields two branches of fixed points as long as 2b∂2
µf < a2. Otherwise, there is

only a single, isolated fixed point (0, 0).
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4 1d-Bifurcations in Higher Dimensions: Reduction of
Dynamics

Higher-dimensional systems can undergo the same bifurcations as 1-dimensional sys-
tems.

⇒ can we reduce dynamics to 1 dimension near the bifurcation?

Local bifurcations change the behavior of phase space only locally, e.g. in the vicinity of a
fixed point. We want to capture the long-term dynamics near the fixed point xFP .

We want:

• a manifold of lower dimension that captures the complete dynamics of the system
as long as they remain local to that fixed point.

• that manifold should be invariant under the flow

x(0) ∈M ⇒ x(t) ∈M for all t i.e. for −∞ < t <∞

i.e. forward and backward evolution must remain inM.

How could this work? Consider first simple linear example: stable node

ẋ = µx

ẏ = −y

 y = y0

(
x

x0

)+ 1
|µ|

µ < 0

y

x

(x  , y )00

__
(x  , y )00

For small |µ| the approach y → 0 is extremely rapid as x→ 0

⇒ after a short time any initial condition approaches the x-axis and stays in its vicinity

Nonlinear Example

How relevant are these linear eigenspaces for nonlinear systems? Explore this using the
system

ẋ = µx+ αxy − γx3 (8)
ẏ = −y + x2 (9)
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If it was not for the term involving y, the equation for x would describe a supercritical pitch-
fork bifurcation. What effect does the additioanl variable y have? Fig.10 shows the phase
plane just below and just the bifurcation point. There appears to be a pitch-fork bifurcation,
but the new fixed points are not on the x-axis but seem to lie on a smooth curve (manifold)
that is tangent to the x-axis, which is the center eigenspace for µ = 0.

Figure 10: Phase plane for µ = −0.001 (single fixed point) and µ = 0.04 (3 fixed points)
showing the slow manifold and the dynamics on it.

Thus:

• The dynamics become effectively one-dimensional

Goal:

• We want to obtain a description of the higher-dimensional system in terms of these
one-dimensional dynamics.

Note:

• The description will be valid at most after the decay of transients: the approach will
forget certain details of the initial conditions.

• From the perspective of perturbation theory there is an initial layer with fast dynamics
that connects the slow one-dimensional dynamics to the initial conditions.

4.1 Center Manifold Theorem

To get a mathematically justified description we need the separation of time scales, i.e.
the ratio of the time scales has to become infinite:

µ→ 0 we need to be at the bifurcation point
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For µ = 0, i.e. at the bifurcation, there are 3 types of eigenvectors/eigenspaces:

• stable eigenspace E(s) = {x |x =
∑
αiv

(s)
i }

where the v(s)
i are the eigenvectors of the linear system with Re(λ(si )) < 0.

• unstable eigenspace E(u) = {x |x =
∑
αiv

(u)
i } with Re(λ(u)

i ) > 0.

• center eigenspace E(c) = {x |x =
∑
αiv

(c)
i } with Re(λ(c)

i ) = 0.

Center Manifold Theorem:

For a fixed point x0 with eigenspaces E(s,u,c) there exist stable, unstable, and center mani-
folds W (s,u,c) such that W (s) and W (u) are tangent to E(s) and E(u) at x0 and W (c) is tangent
to E(c) at x0.

W (s,u,c) are invariant under the flow. W (s) and W (u) are unique. W (c) need not be unique.

EE
(s)

(s)

(c)

EE
(c)

0_xx

For the example from above

ẋ = µx+ xy − γx3

ẏ = −y + x2 − y2

µ < 0 : E(s) = R2 E(c) empty E(u) empty
µ = 0 : E(s) = y-axis E(c) = x-axis E(u) empty
µ > 0 : E(s) = y-axis E(c) empty E(u) = x-axis

(s)

(c)

xx

yy

µµ = 0 = 0
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The center manifold W (c) captures the dynamics local to the fixed point, i.e. in a neighbor-
hood of the fixed point.

• W (c) is locally attracting:
if x(0) has a forward trajectory in a neighborhood U of x0, i.e. if x(t) remains in U for
t→ +∞, then x(t) converges to W (c) for t→∞.

– all the points that do not leave U are captured by W (c) (after transients).

– W (c) need not be truly attractive: if W (u) is not empty, the points that are outside
W (s) ∪W (c) leave U as t→ +∞.

• W (c) contains all local trajectories:
if x(t) in U for all −∞ < t < +∞ then x(t) in W (c).
(if x(t) had a component in W (s,u) then it would diverge away from the fixed point and
leave U for t→ ±∞.)

– this does not imply that all points on W (c) stay in U : the flow on the center
manifold could diverge away from the fixed point

• W (c) contains all locally recurrent points:
if the forward trajectory x(t) of a recurrent point x(0) is contained in a neighborhood
U of x0 then x(0) is already on W (c).

– x(t) ∈ U for t→∞ therefore x(t) converges to W (c), but x(0) recurrs⇒ x(0) ∈
W (c)

– all the points on a periodic orbit are recurrent. A periodic orbit that is confined
to a neighborhood of x0 is therefore contained in W (c).

Note:

• These statements suggest that the dynamics that are local to x0 can be described
completely within the center manifold W (c).

Expect:

• For 0 6= |µ| � 1 one still has a fast contraction onto a manifold close to W (c)(µ = 0).

• The dynamics on that manifold may depend strongly on µ since the linear growth
rate within that manifold changes sign at µ = 0.

4.2 Center-Manifold Reduction

We want a description of the dynamics on W (c),

x = (x(c),x(s))

with x(s) = h(x(c)) and x(c) ∈ E(c).

For simplicity we assume here that there is no unstable manifold W (u).
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(c)

xx

xx(s)

(c) EE
(c)

Note:

• Since W (c) is tangent to E(c) at the fixed point, this description is possible locally
(near the fixed point).

• Further away the correspondence between x(s) and x(c) may become multivalued.

At the Bifurcation Point

Consider the example from before

ẋ = µx+ xy − γx3 (10)
ẏ = −y + x2 − y2 (11)

For W (c) to exist we need to be at a bifurcation point: µ = 0

E(c) = {(x, 0)}, E(s) = {(0, y)}

Since E(c) is the x-axis and therefore tangential to W (c), x is a good coordinate to param-
eterize W (c), i.e. we write (x, y) = (x, h(x)) with h(x) yet to be determined.

The condition y(t) = h(x(t)) leads to two differential equations for y(t),

ẏ = −y + x2 − y2 and ẏ =
dh

dx
ẋ =

dh

dx

(
xy − γx3

)
.

This yields an equation for h(x)

dh

dx

(
xh(x)− γx3

)
= −h(x) + x2 − (h(x))2 (12)

Thus:

• We obtain a differential equation for h(x), which in general is nonlinear and may not
be exactly solvable.

• We are interested in a local analysis in the vicinity of the fixed point, i.e. for small x
⇒ expand h(x) for small x.
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Expand h(x),
h(x) = h0 + h1x+ h2x

2 + h3x
3 + h4x

4 + · · · (13)

By the center-manifold theorem we have

• The fixed point (0, 0) is on W (c) ⇒ h0 = 0.

• W (c) is tangent to E(c), i.e. dh
dx

= 0 at x = 0⇒ h1 = 0, i.e. h(x) is strictly nonlinear (cf.
Fig.11).

Center Manifold

Center Eigenspace

Other Coordinate x~
h(x)~ ~

h(x)

Figure 11: If the center manifold is parametrized by the coordinates on the center
eigenspace, the function h(x) is strictly nonlinear. For other coordinates x̃ there would
also be a linear contribution to h̃(x̃). The linear contribution h̃1 is then determined by a
nonlinear equation with multiple solutions, corresponding to the additional invariant mani-
folds of the system (e.g. the stable manifolds).

Inserting the expansion into (12) yields then(
2h2x+ 3h3x

2 + · · ·
) {
x
(
h2x

2 + h3x
3
)
− γx3

}
=

!︷︸︸︷
= −h2x

2 − h3x
3 − h4x

4 + x2 −
(
h2x

2 + h3x
3 + . . .

)2
.

Collecting powers of x,

O(x2) : 0 = −h2 + 1 ⇒ h2 = 1

O(x3) : 0 = h3 ⇒ h3 = 0

O(x4) : 2h2(h2 − γ) = −h4 − h2
2

⇒ h4 = 2(γ − 1)− 1 ,

we obtain
y = h(x) = x2 + (2γ − 3)x4 +O(x5) .

Inserting h(x) into the equation for ẋ results in

ẋ = x
(
x2 + (2γ − 3)x4 + · · ·

)
− γx3 .
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Thus:

The evolution equation on the center manifold is given by

ẋ = (1− γ)x3 + (2γ − 3)x5 + · · · .

Note:

• In the absence of y the origin would be attractive for all values of γ. However, the
coupling between x and y modifies these dynamics.

– For γ > 1 the fixed point is locally attracting at the bifurcation point.

– For γ < 1 the cubic term in (10) is not sufficient to compensate for the growth
induced by the quadratic term in the equation for y.

• Thus, although y is linearly damped, we cannot simply set y = 0 and read off the
equation for x. We need to include that y is driven by x and then feeds back onto x.

In the Vicinity of the Bifurcation Point

We want also a description that is valid for 0 6= |µ| � 1. However, to use the center-
manifold theorem, there must be a center manifold.

Consider the suspended system in which the control parameter is taken to be another
dynamical variable

µ̇ = 0 (14)
ẋ = µx+ xy − γx3 (15)
ẏ = −y + x2 − y2 (16)

Thus:

• The dynamics in the µ-direction are trivial: the value of µ is simply given by the initial
condition. There is a 0 eigenvalue associated with the µ-direction.

• µx plays now the role of a nonlinear term and the linearization of the suspended
system has 0 eigenvalue associated with the x-direction as it is the case at the
bifurcation point.

• The center eigenspace is now two-dimensional,

E(c) = {(µ, x, 0)} E(s) = {(0, 0, y)} ,

resulting in a two-dimensional center manifold, which can be parameterized by the
coordinates of the center eigenspace,

y = h(µ, x) for (µ, x, y) ∈ W (c) .
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Local analysis: expand h(µ, x) in µ and x:

h(µ, x) =
∑
k,l=0

hklµ
kxl .

Since W (c) includes (0, 0, 0) and is tangential to E(c) at that point we have

h00 = 0 h10 = 0 h01 = 0 ,

yielding
h(µ, x) =

∑
k+l≥2

hklµ
kxl .

To go to 4th- order as before would still require a large number of terms. It is therefore
useful if we can guess a relationship among the variables in the expected equation on
W (c).

Symmetries:

Eqs.(14,15,16) have a reflection symmetry. They are equivariant under the operation

(µ, x, y)→ (µ,−x, y) ,

i.e. (14) and (16) do not change under the reflection, whereas both sides of (15) do switch
signs.

Expect that the equation determining the center manifold respects the same symmetry,

y = h(µ, x) even inx .

The expansion of h(µ, x) is then

h(µ, x) = x0
(
h20µ

2 + h30µ
3 + . . .

)
+ x2 (h02 + h12µ+ . . .) + x4 (h04 + h14µ+ . . .) + . . . .

Insert into (15,16),

ẏ =
dh

dx
ẋ+

dh

dµ
µ̇︸︷︷︸
0

=
[
2x (h02 + h12µ+ . . .) + 4x3 (h04 + . . .) + . . .

]
×

×
[
µx+ x

((
h20µ

2 + . . .
)

+ x2 (h02 + . . .) + . . .
)
− γx3

]
!︷︸︸︷

= −
(
h20µ

2 + x2 (h02 + h12µ) + x4 (h04 + . . .) + · · ·
)

+ x2 −
−
(
h20µ

2 + x2 (h02 + h12µ) + · · ·
)2

O(µ2x0) :
0 = −h20 ⇒ h20 = 0

O(µ1x1) :
0 = 0
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O(µ0x2) :
0 = −h02 + 1 ⇒ h02 = 1

O(µ1x2) :
2h02 = −h12 ⇒ h12 = −2

O(µ0x4) :
−2γh02 + 2h2

02 = −h04 − h2
02 ⇒ h04 = 2γ − 3

Thus, we have for the center manifold

y = x2 − 2µx2 + (2γ − 3)x4 + . . .

and for the evolution on the center manifold we get from (15)

ẋ = µx− (γ − 1 + 2µ)x3 +
[
(2γ − 3)x5 + . . .

]
(17)

Thus:

• For γ > 1 we have a supercritical pitchfork bifurcation.

• For γ < 1 we have a subcritical pitchfork bifurcation.

• For γ ≈ 1 the µ-dependence of the cubic coefficient has to be taken into account.
This makes the bifurcation scenario more subtle. It is worth investigating.

4.3 Non-Uniqueness of the Center Manifold

The center-manifold theorem states that the center manifold W (c) may be non-unique.
This is, because the center manifold W (c) is defined via the tangency condition W (c) ‖ E(c)

at the fixed point.

Consider as illustration a simplification of (10,11),

ẋ = −x3

ẏ = −y + x2

The center manifold y = h(x) is determined by the condition

dh

dx

(
−x3

)
= −h+ x2 .

This equation is linear in h and can be solved exactly

dh

dx
− 1

x3
h = −1

x

d

dx

(
e

1
2x2 h

)
= −e

1
2x2

1

x
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h(x,C) = −e−
1

2x2

ˆ x

e
1

2x′2
1

x′
dx′ + Ce−

1
2x2

=
1

2
e−

1
2x2 Ei

(
1

2x2

)
+ Ce−

1
2x2 (18)

= x2 + 2x4 + 8x6 +O(x8) + Ce−
1

2x2 . (19)

with C an arbitrary integration constant. Here the exponential integral is given by Ei(x) =´∞
−x

e−t

t
dt.

a) C=-1

C=0

C=1

C=2

C=3

0.2 0.4 0.6 0.8 1.0
x

-0.5

0.5

1.0

1.5

2.0

h

b)
C=-1

C=1

C=2

C=3

0.1 0.2 0.3 0.4 0.5
x

-0.15

-0.10

-0.05

0.05

0.10

0.15

Difference in h

Figure 12: a) Different center manifolds (18). b) Difference between different center man-
ifolds h(x,C)− h(x, 0).

Note:

• C allows to satisfy arbitrary initial conditions h(x0) = y0.

• For any C the manifold {(x, y)|y = h(x,C)} is tangent to E(c),

d

dx
e−

1
2x2 =

1

x3
e−

1
2x2 → 0 for x→ 0

i.e. all these manifolds are center manifolds.

• For small x the difference between the different W (c) becomes extremely small (cf.
Fig.12). In fact, near the fixed point they differ only by exponentially small terms. In
terms of their Taylor expansions they are identical to all orders, since all derivatives
of e−

1
2x2 vanish at x = 0 (cf. (19)).

• In Roberts (1985) the emergence of the non-uniqueness as the bifurcation point is
approached is illustrated in a simple, solvable example.

4.4 Comparison with a Multiple-Scale Analysis

Reconsider example (10,11) from Sec.4.2,

ẋ = µx+ xy − γx3

ẏ = −y + x2 − y2 .

The result from the center-manifold reduction shows
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• in the neighborhood of the fixed point (x, y) = (0, 0), i.e. for x small, x and with it
y evolves very slowly on W (c). The time scale is set by 1/µ → ∞ at the bifurcation
point

• y = h(x, µ) is strictly nonlinear in x, i.e. much smaller than x.

Since the evolution becomes slow at the bifurcation point, we introduce a slow time

T = Φ(ε) t .

How should we choose Φ(ε)?

In this case: considering the center-manifold result (17) to cubic order,

ẋ = µx− (γ − 1)x3 ,

suggests

µ = ε2µ2 T = ε2t ⇒ d

dt
x = ε2

d

dT
x

and the expansion of (x, y) as

x = εx1 + ε2x2 + ε3x3 + . . .

y = εy1 + ε2y2 + ε3y3 + . . .

Then the three terms in the evolution equation are all of the same order.

Insert the expansions into the basic equations (10,11) and solve order by order in ε:

O(ε1):

0 = 0

0 = −y1

Thus,
y1 = 0 x1 is still undetermined

O(ε2):

0 = x1y1

0 = −y2 + x2
1

Thus:
y2 = x2

1 x2 is still undetermined

O(ε3):

d

dT
x1 = µ2x1 + x1y2 − γx3

1

d

dT
y1 = −y3 + 2x1x2 − 2y1y2
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Using the results from lower orders we get
d

dT
x1 = µ2x1 − (γ − 1)x3

1

and
y3 = 2x1x2 .

Notes:

• This result agrees to leading order with that of the center-manifold reduction (17).

• To obtain the equation (17) all the way to fifth order in x we need to O(ε5) in this
expansion and determine also x2,3. Combining x1,2,3 into x yields then the center-
manifold result.

For more complicated problems it is important to understand the mathematical structure
of the problem.

Consider more generally

u̇ = L u + N2(u,u) + N3(u,u,u) , (20)

where L is the Jacobian of the linearization around the fixed point u = 0. In our example,
writing u = (x, y),

L(µ) =

(
µ 0
0 −1

)
and

N2(u,u) =

(
xy

x2 − y2

)
N3(u,u,u) =

(
−γx3

0

)
.

The essential feature of the linear operator L is that at the bifurcation point it has at least
one zero eigenvalue and is therefore singular:

L(µ = 0)v1 = 0 .

The eigenvector v1 spans the center eigenspace E(c), which is tangent to the center man-
ifold W (c). The dominant component of u is therefore proportional to v1. In the expansion
of u it is therefore useful to introduce an amplitude A for the component along the center
eigenspace

u = εβA(T ) v1 + ε2βu2(T ) + . . .

Here we have also introduced a slow time T ,

T = εαt ⇒ d

dt
= εα

d

dT
.

How to choose the scalings, i.e. α and β and that of the control parameter µ = εδµδ?

The evolution equation on the center manifold depends on the type of bifurcation at hand
⇒ symmetries of the original system are important.

The choice of the scaling is dictated by the fact that we need to balance simultaneously 3
types of terms in the equation for the evolution on the center manifold
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• The slow time derivative dA
dT

.

• The linear term, which reflects the linearization of the original equations and captures
eigenvalue that goes through 0 at the bifurcation point, i.e. at µ = 0,

saddle-node bifurcation: ∼ µ

transcritical or pitch-fork bifurcation: ∼ µA .

• Nonlinear terms

saddle-node or transcritical bifurcation: ∼ A2

pitch-fork bifurcation: ∼ A3 .

Note:

• The nonlinearities in the original equations do not give directly the information about
the scaling. The scaling is also affected by the eigenvectors spanning the center
eigenspace. Together with the nonlinearities they determine the type of bifurcation
and the associated scaling. For example, for γ = 0 there is no cubic nonlinearity
in the original equation of our example, but we still get a cubic nonlinearity in the
equation for the amplitude A.

It is best to discuss the approach in terms of a concrete bifurcation type, e.g. the pitchfork
bifurcation of example (10,11),

d

dT
A︸ ︷︷ ︸

εαεβ

∼ µδA︸︷︷︸
εδεβ

∼ A3︸︷︷︸
ε3β

Thus, we need
α = δ = 2β .

For simplicity choose β = 1, α = δ = 2.

The linear operator L is then also expanded in ε,

L = L0 + εL1 + ε2L2 + . . .

with

L0 =

(
0 0
0 −1

)
L1 =

(
0 0
0 0

)
L2 =

(
µ2 0
0 0

)
.

The expansion then yields:

O(ε1) :
L0Av1 = 0 . (21)

This reproduces the linear stability analysis. It does not give any condition for the ampli-
tude A.

O(ε2) :
L0 u2 = −N2(Av1, Av1) (22)

To solve for u2 we would need to invert L0: u2 = −L−1
0 N2.

But:
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• L0 is singular due to (21). Therefore L−1
0 does not exist ⇒ (22) does not always

have a solution.

This situation is captured by the Fredholm Alternative Theorem, which states the condi-
tion under which such an equation does have a solution:

If the matrix M is singular with left 0-eigenvector v+,

v+M = 0 ,

then the inhomogeneous equation
Mx = b

has either

• infinitely many solutions (if v+b = 0)

or

• no solution at all (if v+b 6= 0).

This statement is easily understood, if one multiplies the equation with the left 0-eigenvector

v+M︸ ︷︷ ︸
=0

x = v+b .

Thus, the Fredholm Alternative Theorem states a solvability condition, that needs to be
satisfied in order for the equation at order O(ε2) to be solved.

Thus, we need the left 0-eigenvector v+
1 , which satisfies

v+
1 L0 = 0 . (23)

Multiplying (22) by v+
1 from the left,

v+
1 L0 u2 = −v+

1 N2(Av1, Av1) ,

one obtains the solvability condition

v+
1 N2(Av1, Av1) = 0 . (24)

In our example

v1 =

(
1
0

)
v+

1 = (1, 0) N2(Av1, Av1) =

(
0
A2

)
Thus,

v+
1 N2(Av1, Av1) = 0 for any A

and (22) can be solved for u2,

u2 =

(
0
A2

)
.
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O(ε3):

L0 u3 =
d

dT
Av1 − L2 u1 −N2(u2, Av1)−N2(Av1,u2)−N3(Av1, Av1, Av1) .

Again, to solve for u3 we would have to invert L0. We therefore get again a solvability
condition,

v+
1

(
d

dT
Av1 − L2Av1 −N2(u2, Av1)−N2(Av1,u2)−N3(Av1, Av1, Av1)

)
= 0

In our example

d

dT
A− A (1, 0)

(
µ2 0
0 0

)(
1
0

)
− (1, 0)

((
0
0

)
−
(
A · A2

0

)
−
(
−γA3

0

))
= 0

Thus
d

dT
A = µ2A− (γ − 1)A3 .

Notes:

• The amplitude A at O(ε) is not determined until we take the expansion to O(ε3).
There the solvability condition leads to an evolution equation for A.

• The quadratic nonlinearity contributes to the solvability condition at O(ε3) by being
‘cycled through twice’.

• If the solvability at O(ε2) had not been satisfied, a faster slow time T1 = εt would
have to be introduced and one would have obtained at O(ε2) an equation of the form

d

dT1

A = v+
1 N2(Av1, Av1) .

• Since v+
1 v1 6= 0, the term with the time-derivative guarantees that the solvability

condition can be satisfied.

Note:

• the center-manifold reduction can also be described as the adiabatic elimination
of the damped modes since the damped modes follow the active critical mode Av1

adiabatically (compare ‘adiabatic’ changes in thermodynamics: they are so slow that
no entropy is generated, the system is in equilibrium at all times).

5 Numerical Approaches to Bifurcations I

A good introduction can be found in (Spence and Graham, 1999). A more comprehensive,
approachable source is (Seydel, 2009), useful is also (Doedel, 2007). These papers are
on Canvas under Files/Resources.
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5.1 Introduction

So far

• we always assumed a (base) solution is available

• we focused on the bifurcations off that solution

• we performed a weakly nonlinear local analysis around that solution

• connections between multiple bifurcations can be captured only via higher singu-
larities, i.e. bifurcations with higher codimension (e.g. subcritical pitchfork and
saddle-node bifurcations in the quintic subcritical pitchfork scenario; hexagons/rolls
for weakly subcritical bifurcation)

In general:

• We need to obtain the base solution.

• We are interested also in connections between bifurcations that are not close to each
other, i.e. separated by a finite distance, and that cannot be connected via a higher
singularity.

• We want to follow branches away from and between bifurcations.

We want to employ also numerical methods . They should allows us to follow solution
branches and to navigate bifurcations.

• Time-stepping

– Follow branch by slightly changing bifurcation parameter and using previous
solution as initial condition.

– The temporal evolution becomes very slow near local bifurcation points (‘critical
slowing down’), since the real part of at least one eigenvalue vanishes at the
bifurcation point. .

– Captures fixed points, oscillations, and complex dynamics, but only for attrac-
tors, i.e. only for stable solutions. Bifurcation structures typically involve also
unstable solutions that are necessary to understand the structure, e.g. saddle-
node bifurcation.

• Root Finding for Fixed Points

– As in time-stepping, follow the branch by slightly changing the bifurcation pa-
rameter and using the previous solution as initial condition.

– No slow-down near bifurcations and no restriction to dynamically stable solu-
tions.
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– Newton iteration to solve F(x, λ) = 0
Starting from an approximation x(k) for the root, determine an approximation of
the change ∆x = x(k+1)−x(k) by extrapolation

F(x(k+1), λ) = F(x(k), λ) + Fx(x(k), λ)
(
x(k+1) − x(k)

) !︷︸︸︷
= 0

and iterate
x(k+1) = x(k) −

(
Fx

(
x(k), λ

))−1
F(x(k), λ) .

Numerically, it is better to solve

Fx

(
x(k), λ

)
x(k+1) = Fx

(
x(k), λ

)
x(k) − F(x(k), λ) ,

to avoid computing the inverse.

The Newton iteration converges very fast if the initial guess is sufficiently close to the
solution u∞, i.e. if the initial guess is in the basin of attraction of the fixed point.

To see this, consider the scalar case

u(l+1) = u(l) − F (u(l))

F ′(u(l))

and expand around the fixed point u∞,

u(l) = u∞ + ε(l)
∣∣ε(l)∣∣� 1 .

Inserting this into the Newton iteration yields

u∞ + ε(l+1) = u∞ + ε(l) − F (u∞ + ε(l))

F ′(u∞ + ε(l))

ε(l+1) = ε(l) −

=0︷ ︸︸ ︷
F (u∞) +F ′(u∞) ε(l) + 1

2
F ′′(u∞)

(
ε(l)
)2

F ′(u∞) + ε(l)F ′′(u∞)

= ε(l) − ε(l) 1

1 + ε(l) F
′′(u∞)
F ′(u∞)

−
(
ε(l)
)2 1

2

F ′′(u∞)

F ′(u∞)

1

1 + ε(l) F
′′(u∞)
F ′(u∞)

ε(l+1) = +
1

2

F ′′(u∞)

F ′(u∞)

(
ε(l)
)2

+O
((
ε(l)
)3
)
.

Definition

The order of the convergence of an iteration method is p if the limit

lim
l→∞

∣∣ε(l+1)
∣∣∣∣(ε(l))p∣∣ = r

exists and is non-zero.

Notes:
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– For linear convergence, p = 1, the approach to the fixed point is exponential

ε(n) ∝ ε(0) rn

– For quadratic convergence, p = 2, the approach to the fixed point is much faster
than exponential

ε(l+1) = r
(
ε(l)
)2

= r
(
r
(
ε(l−1)

)2
r
(
ε(l−1)

)2
)

Thus, in each iteration the number of factors ε(0) is doubled and the number n(l)

of factors r satisfies
n(l+1) = 2n(l) + 1 ,

i.e.

n(1) = 1

n(2) = 2n(1) + 1 = 3

n(3) = 2 (2 · 1 + 1) + 1 = 7

n(4) = 2 (2 (2 · 1 + 1) + 1) + 1 = 15

Unrolling n(4) from the last term backwards we get

n(4) = 1 + 1 · 2 + 1 · 22 + 1 · 23

or in general

n(n) =
n−1∑
l=0

2l = 2n − 1 .

Combined we have then
ε(n) = r−1

(
rε(0)

)2n

.

– For example for rε(0) = 0.1:
while for linear convergence the number of correct digits increases by one in
each step, it doubles in each step for quadratic convergence

exponential 10−1 10−2 10−3 10−4 10−5 10−6

super-exponential 10−1 10−2 10−4 10−8 10−16 10−32

– Issue: Newton converges only if a good initial guess is available.

• Issues:

– These methods do not allow to follow a branch around a saddle-node bifurcation
(fold).

* One would have to happen upon an initial guess for the other branch that
emerges from the saddle-node bifurcation.

* We need a method that can follow a branch smoothly around a fold.

– How to choose the desired branch at a bifurcation involving more than 1 branch?

* We need a method that can switch from one branch to another branch at a
bifurcation point.
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5.2 Pseudo-Arclength Continuation

At a saddle-node bifurcation (fold point) the number of solutions goes from 0 to 2 as the
bifurcation parameter λ is changed ⇒ λ is not suitable for a smooth parametrization of
the solution branch. But when walking along the branch the path is unique; for a saddle-
node bifurcation there is no intersection with other branches as there is for transcritical,
pitch-fork, or Hopf bifurcations.

Consider again the Taylor expansion of the fixed-point equation for x ∈Rn,

0 = F(x, λ) = F(x(0), λ0)︸ ︷︷ ︸
=0

+ Fx(x
(0), λ0)︸ ︷︷ ︸

F
(0)
x

(
x− x(0)

)
+ Fλ(x

(0), λ0)︸ ︷︷ ︸
F

(0)
λ

(λ− λ0) + h.o.t.

where
(Fx)ij =

∂Fi
∂xj

and (Fλ)i =
∂Fi
∂λ

.

Definitions

• The point (x(0), λ0) is a singular point if detFx = 0.

• The point (x(0), λ0) is a fold point if rank(Fx) = n− 1 and F
(0)
λ /∈ range(Fx).

• The point (x(0), λ0) is a simple stationary bifurcation point if rank(Fx) = n − 1 and
F

(0)
λ ∈ range(Fx).

Notes:

• If F
(0)
λ ∈ range(Fx) one can still solve the Taylor-expanded equation for x for arbitrary

λ near λ0, i.e. the branch continues across λ0.

• If F
(0)
λ /∈ range(Fx) one cannot compute any solution at this lowest order: the solu-

tions are determined at higher order and a bifurcation occurs.

Illustration of the different singular points in the scalar case

0 = F (0, 0)︸ ︷︷ ︸
=0

+ ∂xF |0,0︸ ︷︷ ︸
=0

x+ ∂λF |0,0 λ+
1

2
∂2
xF
∣∣
0,0

x2 + ∂2
xλF

∣∣
0,0

xλ+
1

2
∂2
λF
∣∣
0,0

λ2 + . . .

• Saddle-node bifurcation (fold):

0 = λ+x2 ⇒ ∂xF
(0) = 0, i.e. range(∂xF (0)) = 0 ∂λF

(0) 6= 0⇒ ∂λF
(0) /∈ range(∂xF ).

• Transcritical bifurcation (F (0, λ) = 0 for all λ):

0 = λx+x2 ⇒ ∂xF
(0) = 0 i.e. range(∂xF (0)) = 0 ∂λF

(0) = 0 ∈ range(∂xF (0)).
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Two-dimensional example:

F(x;λ) =

(
x2

1 + x2
2 − λ

x2
2 − 2x1 + 1

)
For given parameter λ, the fixed point(s) correspond to the intersections of the circle x2

1 +
x2

2 = λ and the parabola x1 = 1
2

(x2
2 + 1).

At λ = λ0 = 1
4

and x = (1
2
, 0) the system is singular

F(0)
x =

(
2x1 2x2

−2 2x2

)∣∣∣∣
(x(0),λ0)

=

(
1 0
−2 0

)
detF(0)

x = 0 rankF(0)
x = 1 ,

reflecting that the circle touches the parabola, annihilating the pair of intersection points
as λ is decreased.

Thus, the parametrization of x in terms of λ ceases to exist as λ is decreased.

Rewrite the fixed-point equations, considering x1 and λ as the solution and x2 the param-
eter,

G(y;x2) =

(
x2

1 − λ+ x2
2

−2x1 + 1 + x2
2

)
with y = (x1, λ) .

The solution set of G(y;x2) = 0 is identical to that of F(x;λ) = 0. The Jacobian Gy is
non-singular at x1 = 1

2
and λ = 1

4
,

G(0)
y =

(
2x1 −1
−2 0

)∣∣∣∣
(y0),x

(0)
2 )

detG(0)
y = −2 6= 0 ,

implying that there is a smooth branch of solutions passing through (1
2
, 0, 1

4
) as x2 is varied

across x2 = 0.

Note:

• By changing the parametrization one can follow smoothly along the solution branch
passing through the fold point.

Our goal is to characterize the fixed-point branch that is traced out in the (x, λ)-space when
λ is scanned. This curve does not have to be parametrized by any of the coordinates xi
or λ. Instead, we can introduce an additional parameter s that parametrizes the solution
along the branch, x = x(s), λ = λ(s), somewhat similar to an arclength, and determine
y(s) ≡ (x(s), λ(s)).

The main idea is to extrapolate a distance s − s0 from the known fixed point (x(s0), λ(s0))
along the tangent τ in the (x, λ)-space ,

τ =
(
ẋ(s), λ̇(s)

)
≡
(
dx(s)

ds
,
dλ(s)

ds

)
,

as a prediction and then perform Newton iterations to correct that prediction in order to get
back onto the branch, but staying on the plane perpendicular to τ at a distance s− s0.
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(x0, λ0)
(x1, λ1)

∆ s

Tangent

S

Figure 13: Pseudo-arclength continuation extrapolates along the tangent and then cor-
rects within the plane perpendicular to the tangent (from Spence and Graham (1999),
they use t rather than s as the parameter).

Since (x(s), λ(s)) satisfies F(x(s), λ(s)) = 0 for all s, the tangent vector τ satisfies

0 =
d

ds
F (x(s), λ(s)) = Fxẋ

t + Fλλ̇ = (Fx|Fλ)

(
ẋt

λ̇

)
. (25)

Here the extended Jacobian (Fx|Fλ) was introduced, which has dimensions n × (n + 1),
i.e. the column Fλ is attached to the Jacobian Fx.

We introduce the normalized tangent vector3

τ (0) = (τ (0)
x , τ

(0)
λ ) =

(ẋ, λ̇)∥∥∥(ẋ, λ̇)
∥∥∥ , τ (0)τ (0)t = 1 ,

at y(0) = (x(s0), λ(s0)) ≡ (x(0), λ0). Points (x, λ) on the plane perpendicular to the tangent
τ (0) have the same projection onto τ (0) and satisfy (cf. Fig.13)

τ (0)
(
x− x(0), λ− λ0

)t
= (s− s0) . (26)

Among those points we are looking for those that also satisfy F(x, λ) = 0. For given s, we
therefore look for solutions of

H(y; s) = 0 , (27)

where

H(y; s) =

(
F(x, λ)

τ (0)
(
x− x(0), λ− λ0

)t − (s− s0)

)
=

(
F(x, λ)

τ
(0)
x

(
x− x(0)

)t
+ τ

(0)
λ (λ− λ0)− (s− s0)

)
.

(28)
3Here x, τ (0), and ẋ are written as row vectors.
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Thus H(y; s) = 0 defines the point on the solution branch that lies at the intersection of
the solution branch and that plane.

Note:

• The approach to add a tangent condition (bottom line in (28)) to the equations defin-
ing the point of interest (here the equations F(x, λ) = 0) is suitable more generally,
e.g. when one wants to follow the locus of the folds themselves rather than the
solution branch.

For the implicit function theorem to guarantee a unique, smooth branch H = 0 through
y(0) at s0, the Jacobian of H must be non-singular at (y(0); s0). We have

Hy(y(0); s) =

(
F

(0)
x F

(0)
λ

τ
(0)
x τ

(0)
λ

)
. (29)

We are assuming that the only singularity on this part of the branch is a fold, i.e. rank(F
(0)
x ) =

n− 1 and F
(0)
λ /∈ range(F(0)

x ). The n× (n+ 1)-dimensional matrix (F
(0)
x |F(0)

λ ) has therefore
n linearly independent columns and therefore also n linearly independent rows.

In addition, (25) implies that (τ
(0)
x , τ

(0)
λ ) is linearly independent of all rows of (F

(0)
x |F(0)

λ ),
which constitute all other rows in Hy. Thus, the rank of the matrix Hy(y(0); s) is n + 1 and
it is not singular.

For illustration, perform the first step of the Newton iteration. We start with the previously
determined fixed point y(0) ≡ (x(0), λ0) at s = s0, which satisfies F(x(0), λ0) = 0, and look
for a solution of H(y; s) = 0 with s > s0,

Hy(y(0); s)
(
y(1) − y(0)

)
= −H(y(0); s) .

This results in

F(0)
x

(
x(1) − x(0)

)t
+ F

(0)
λ (λ1 − λ0) = 0 (30)

τ (0)
x

(
x(1) − x(0)

)t
+ τ

(0)
λ (λ1 − λ0) = s− s0 . (31)

Since (F
(0)
x |F(0)

λ ) has rank n its kernel has dimension 1 and is spanned by τ . Therefore (30)
implies

(
x(1) − x(0), λ1 − λ0

)
= ατ (0) for some α ∈ R. (31) then yields τ (0)ατ (0)t = s − s0.

Due to the normalization of τ this yields α = s− s0. Thus,(
x(1) − x(0), λ1 − λ0

)
= (s− s0) τ (0)

and the first Newton step extrapolates along the tangent τ (0) a distance s−s0. Subsequent
iterations converge to the solution branch while staying on the plane perpendicular to τ (0).

The continuation algorithm can therefore be implemented as

1. At the current value s0 of s determine τ via (25) by solving

F(0)
x z = −F

(0)
λ (32)
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for z and setting4

τ ≡ (τx
(0), τ

(0)
λ ) = ± 1√

ztz + 1

(
zt, 1

)
. (33)

The sign in (33) is chosen such that the orientation of τ is close to that of the tangent
vector τprevious at the previous value of s, i.e. require ττ tprevious > 0. This allows λ to
pass through an extremum as the branch is followed around a fold point.
Solving (32) assumes F

(0)
x is non-singular, which is the case except right at the fold

point.

2. Increment the arclength parameter

s = s0 + ∆s

and determine x(s) and λ(s) by Newton iteration. For k ≥ 1 iterate(
x(k+1), λk+1

)
=
(
x(k), λk

)
+ (∆x,∆λ)

until convergence, where(
Fx(x(k), λk) Fλ(x

(k), λk)

τ
(0)
x τ

(0)
λ

)(
∆x
∆λ

)
= −

(
F(x(k), λk)

τx
(0)
(
x(k) − x(0)

)t
+ τ

(0)
λ (λk − λ0)−∆s

)
and the values x(0) = x(s0) and λ0 = λ(s0) serve as starting points for the iteration.

Notes:

• At the fold itself Fx is singular and cannot be inverted. Since F
(0)
x ẋ + F

(0)
λ λ̇ = 0, at

the fold we have λ̇ = 0 and the tangent vector is given by (z, 0) with F
(0)
x z = 0. The

required 0-eigenvector z can be determined by the inverse power method. Define

A =
(
F

(0)
x − ρI

)−1

with |ρ| sufficiently small and iterate

z(n+1) = Az(n) .

Then z(n) converges to the eigenvector corresponding to the eigenvalue of A with
largest magnitude, i.e. max( 1

|ρ| ,
1

|µj−ρ|), where µj are the eigenvalues of F
(0)
x . This

procedure is usually not needed, since the algorithm rarely ends up close enough to
the fold point itself.

• By including further conditions in the equation (28) for H one can use the same
technique to follow the locus of bifurcations, e.g. by including the bottom row of (28)
in (35) below.

4Here z is a column vector.
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5.3 Branch Switching

Along the branch the solution can undergo other bifurcations than saddle-node bifurca-
tions. They need to be identified and then the appropriate branch needs to be followed.

Identifying Bifurcations

• The continuation method itself will not be affected by it, since it always follows the
tangent along the branch ‘before’ the bifurcation.

• Monitor the occurrence of bifurcations using suitable test functions T (x, λ)

– Steady bifurcations (pitchfork, transcritical): an eigenvalue µj goes through 0,
i.e. det Fx = 0⇒ one could choose T (x, λ) = det Fx.
This test does not distinguish between fold points (saddle-node bifurcations)
and other steady bifurcations. It is therefore not really suitable to determine
whether a new branch arises or not. A new branch arises when the branch can-
not be followed smoothly and uniquely, i.e. when the implicit function theorem
fails for the branch-following algorithm based on H(y) = 0 (cf. (27)). This is
the case when detHy = 0, which therefore identifies bifurcations involving more
than 1 branch.

– At Hopf bifurcations a complex pair of eigenvalues crosses the imaginary axis,
i.e. the sum of one pair of eigenvalues goes through 0 ⇒ one could choose
T (x, λ) =

∏
1≤j<≤k≤n (µj + µk).

– There are other test functions that are computationally more efficient (by not
requiring to compute all eigenvalues) (cf. Seydel (2009, p.220)

• The parameter value λc of the bifurcation can be estimated by linear interpolation
between the values λn ≡ λ(sn) and λn+1 ≡ λ(sn+1) between which T (x, λ) changes
sign,

λc ≈ λn + ξ (λn+1 − λn) (34)

where

ξ =
T (x(n), λn)

T (x(n), λn)− T (x(n+1), λn+1)
and x(n) ≡ x(λn) .

Higher-order interpolations can improve that estimate further.

• Extrapolation of T (x, λ) to an expected bifurcation point can be used to adjust the
step size ∆s of the continuation method to localize the bifurcation more precisely.

• Instead of solving F(x, λ) = 0 at the estimated λc to obtain x(λc) one can also use ξ
to interpolate between x(sn) and x(sn+1). This is much faster and may be accurate
enough if sn+1 − sn is small enough.

To locate a steady bifurcation precisely one can use Newton’s method to solve the system
of equations

T(y) ≡

 F(x, λ)
Fx(x, λ)φ
φtφ− 1

 = 0 for y =

 xt

φ
λ

 ∈ R2n+1 . (35)
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The Newton iteration converges only if a good guess of (xc, φ
t
c, λc) is available. Good initial

guesses (x̄, λ̄) for (xc, λc) are available from the interpolation. We still need a good guess
φ̄ for φc, i.e. the solution of

Fx(x̄, λ̄)φ̄ = 0 .

Away from the bifurcation point Fx is not singular and therefore no such φ̄ exists. Removing
one of the equations (e.g. the lth equation) makes the equation solvable. Replace the
equation by a normalization condition for one of the components of φ̄, e.g. φ̄k = 1. This
yields the system ([

I− e(l)e(l)t
]
Fx(x̄, λ̄) + e(l)e(k)t

)
φ̄ = e(l) , (36)

where e
(l)
i = δil is the unit vector in the l-direction (Seydel, 2009, p.214).

The top part of T(y) corresponds to the top part of H(y) (cf. (28)). The convergence of
the Newton iteration depends on the Jacobian Ty; like Hy it contains the block (Fx|Fλ).
In the fold case Fλ /∈ rangeFx and Hy is not singular. In the transcritical and the pitchfork
case, however, Fλ ∈ rangeFx, rendering Ty singular. Apparently, this slows down the
convergence only very close to the bifurcation point (i.e. when high accuracy is required)
and is practically not a real issue (Seydel, 2009, p.216).

Note:

• The direct method (35) of computing the bifurcation point is precise, but expensive
since it requires the solution of a system that is twice as large as the original system
(2n+ 1 instead of n). This is particularly relevant when applying these techniques to
PDEs for which the spatial discretization determines n.

Branch Switching
How to switch to the other branch emanating from the bifurcation? One needs to obtain
a sufficiently good guess for the solution on the other branch for the Newton iteration to
converge to that branch rather than converging back to the already known branch.

[x]

δ d

d̄

x(λ )

z(λ )

λ̄ λ0
λ

Figure 14: Tangents along the two branches intersecting at the bifurcation point. Also
shown is a distance vector d used for switching (modified from (Seydel, 2009, p.233)).
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One could compute both tangents that emanate at the bifurcation point. But that involves
computing second derivatives of F with respect to x at the bifurcation point

• the bifurcation point needs to be computed accurately

• computational costs of the second derivatives is typically high.

Instead, exploit the fact that the eigenvector φ associated with the instability generating
the bifurcation is a linear approximation to the direction d of the difference vector between
the two branches (cf. Fig.14) in the vicinity of the bifurcation (λ 6= λc). φ lies in the plane
spanned by the two tangent vectors. We need

1. a good approximation φ̄ of φ,

2. the distance δ between the branches at some value λ 6= λc.

Predictor:

A good initial predictor for a point on the other branch z(λ) is then

z̄ = x(λ) + δ(λ)φ̄ , (37)

where λ is a point sufficiently close to the bifurcation point at which x has been calculated.

The approximation φ̄ is obtained via (36). It is normalized via its kth-component, φ̄k = 1.

To determine an approximation for the distance δ as a function of λ is challenging. Con-
sider the simple one-dimensional case of a bifurcation off the state x = 0,

0 = F (0, λc)︸ ︷︷ ︸
=0

+ ∂xF |0,λc︸ ︷︷ ︸
=0

x+ ∂λF |0,λc (λ− λc) +
1

2
∂2
xF
∣∣
0,λc

x2 +

+ ∂2
xλF

∣∣
0,λc

x (λ− λc) +
1

2
∂2
λF
∣∣
0,λc

(λ− λc)2 + . . .

To get an estimate for x, which amounts to the distance between the two branches,
one needs to determine again an accurate bifurcation point λc and second derivatives
∂2
xF |(0,λc).

Instead: fix δ and determine - via a corrector step - the value of λ for which this δ is
attained.
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bifurcation point itself.

(b)

(c)
(a)

unknown branch

"known" branch

[x]

( z̄ , λ̄ 0)

(x0, λ 0)

λ

Figure 15: Comparison of the two corrector methods, fixing either zk−xk or zk−z̄k (modified
from (Seydel, 2009, p.235))

Corrector:

It is important that the correction step does not lead back to the known branch. This can
be achieved by setting the distance |δ| between z̄ and x(λ) and fixing it to that value in
the iterations on z. Since in the predictor the kth-component is normalized, φ̄k = 1, fix the
difference in that component zk = xk ± |δ| . Allow both signs since the orientation of the
difference is not known. This yields the equations

K(y) ≡

 F(x, λ)
F(z, λ)

zk − xk ∓ |δ|

 = 0 , (38)

to be solved again via Newton. The initial guess is from the predictor (x̄ = x(λ), λ̄ = λ, z̄)t.

In this approach the solutions on both branches are computed in parallel. It guarantees
that the iteration does not simply fall back to the known branch. But it requires recomputing
solutions on the known branch x. Instead, one could seek the value of λ for which the
solution z has the same value in the kth component as the predictor,(

F(z, λ)
zk − z̄k

)
= 0

with initial guess (z̄, λ̄) with z̄k = xk ± |δ|. This does not guarantee that the solution is on
the new branch, but it is significantly faster.

Notes:

• For each transcritical or pitchfork bifurcation point 4 branch-following computations
are triggered corresponding to the two values of zk and to the two directions in which
the branch is followed starting from each z. Two of the four computations will recover
the previously identified bifurcation and need not be continued further

60



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

• Since multiple solutions on the known branch are available, a better approximation
for the predictor can be obtained by interpolating between them to get predictor
values that are closer to the values at the bifurcation point λc, analogously to (34),

x̄ = x(n) + ξ
(
x(n+1) − x(n)

)
φ̄ = φ̄(n) + ξ

(
φ̄(n+1) − φ̄(n)

)
z̄ = x̄± |δ| φ̄ .

6 Higher-Dimensional Center Manifolds: Hopf Bifurca-
tion

So far the center manifold W (c) was always one-dimensional, because only a single eigen-
value passed through 0.

Higher-dimensional center manifolds arise for

• bifurcations involving interaction of multiple modes (multiple vanishing eigenvalues)

• bifurcations to oscillatory solutions (complex pair of eigenvalues).

So far the linearization only had real eigenvalues going through 0.

Consider a pair of complex eigenvalues crossing the imaginary axis.

Investigate using an example:

ẋ = −x− y + 2y2

ẏ = 2x+ (1 + µ) y − 4xy − 4y2

The linearization about the fixed point (0, 0),

L =

(
−1 −1
2 1 + µ

)
,

has eigenvalues

λ1,2 =
µ±

√
µ2 − 4(1− µ)

2
=

1

2
µ± i

√
1− µ− 1

4
µ2 ≡ σ ± iω . (39)

At µ = 0 we have λ1,2 = ±i and the eigenvectors

ṽ1,2 =

(
−1

2
± i1

2

1

)
and ṽ2 = ṽ∗1 .
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6.1 Center Manifold Approach

The center eigenspace is two-dimensional: E(c) = R2.

The vectors in the center eigenspace must be real: consider therefore suitable combina-
tions of ṽ1,2

v1 =
1

2
(ṽ1 + ṽ∗1) =

(
−1

2

1

)
v2 =

1

2i
(ṽ1 − ṽ∗1) =

(
1
2

0

)
,

which represent the real and the imaginar part of ṽ1. We then have

Lv1 =
1

2
(iṽ1 + (−i)ṽ2) =

i

2
(ṽ1 − ṽ∗1) =

i

2
2iv2 = −v2

Lv2 = v1 .

Thus, the space spanned by v1,.2 is invariant under the linear dynamics, as has to be the
case for the center eigenspace.
Rewrite (x, y) in terms of the components of these vectors(
x
y

)
= uv1 + vv2 =

(
−1

2
u+ 1

2
v

u

)
= S

(
u
v

)
S =

(
−1

2
1
2

1 0

)
S−1 =

(
0 1
2 1

)
,

which yields after a little algebra

u̇ = µu+ v − 2u2 − 2uv

v̇ = −u+ µu+ 2u2 − 2uv .

We expect oscillations: it is therefore useful to rewrite the equations in terms of a complex
amplitude A = u+ iv, i.e. u = 1

2
(A+ A∗) and v = 1

2i
(A− A∗),

Ȧ = −iA+
1

2
µ(1 + i)A+

1

2
µ(1 + i)A∗ − (1− i)A2 − (1− i)A∗A . (40)

Notes:

• Since this system is only two-dimensional, this process has only led to a rewriting of
the equations in terms of a new variable A,
no approximation has been made: µ and A have not been assumed to be small so
far.
No real simplification has been achieved yet.

• We will see that near the bifurcation this equation can be substantially simplified by
a near-identity transformation.

In higher-dimensional systems a true reduction in terms of the dimension is achieved just
as it was for steady bifurcations. For concreteness, assume a three-dimensional system
with the center eigenspace spanned by v1,2 and the stable eigenspace by v3, x

y
z

 = uv1 + vv2 + wv3 .

 u̇
v̇
ẇ

 =

 fu(u, v, w)
fv(u, v, w)
fw(u, v, w)

 .
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Parametrize the points (x, y, z) on the two-dimensional center manifold in terms of the
coordinates on the center eigenspace

w = h(u, v) .

The function h defining the center manifold is then determined by the condition

ẇ =
∂h

∂u
u̇+

∂h

∂v
v̇ =

∂h

∂u
fu (u, v, h(u, v)) +

∂h

∂v
fv (u, v, h(u, v))

!︷︸︸︷
= fw (u, v, h(u, v)) ,

which is solved in terms of an expansion in u and v, making again use of the fact that W (c)

is tangential to E(c).

Notes:

• The dynamics and the center manifold equation can also be given in terms of a
complex amplitude A.

6.2 Multiple-Scale Analysis5

Consider the same example as above,

ẋ = −x− y + 2y2

ẏ = 2x+ (1 + µ) y − 4xy − 4y2 .

Near the bifurcation point there are now two time scales in the problem (cf. (39))

• oscillations occur on the fast time scale t: ω = i

• growth and decay occurs on the slow time scale T : σ = O(µ)� 1

How to choose the scaling of the oscillation amplitude?
We will see that because of time translation symmetry the oscillation amplitude is O(µ1/2).

Choose therefore
u = O(ε), T = ε2t µ = ε2µ2 .

Note:

• u depends on the fast and the slow time independently:

d

dt
u→

(
∂

∂t
+ ε2

∂

∂T

)
u

The equations can now be written as
5For a simpler start-up example see Notes for 322.
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(
1 + ∂

∂t
1

−2 −1 + ∂
∂t

)
︸ ︷︷ ︸

L
0

(
x(t, T )
y(t, T )

)
= −

(
∂
∂T
x(t, T )

∂
∂T
y(t, T )

)
+

(
0 0
0 µ2

)
︸ ︷︷ ︸

L
2

(
x(t, T )
y(t, T )

)
+

+

(
2y(t, T )2

−4x(t, T ) y(t, T )− 4y(t, T )2

)
︸ ︷︷ ︸

N2(u,u)

Expand (
x(t, T )
y(t, T )

)
= εu1(t, T ) + εu2(t, T ) + εu3(t, T ) + . . . (41)

= εA(T )

(
−1

2
+ i

2

1

)
︸ ︷︷ ︸

ṽ1

e+it + εA∗(T )

(
−1

2
− i

2

1

)
︸ ︷︷ ︸

ṽ∗1≡ṽ2

e−it +

+ε2
(
u20(T ) + u22(T )e2it + u∗22(T )e−2it

)
+

+ε3
(
u31(T )eit + u33(T )e3it + c.c.

)
+ h.o.t.

Note:

• quadratic nonlinearity

– introduces frequencies ±2ω at quadratic order

– at cubic order the term from O(ε2) combines with O(ε) to give frequencies ±3ω
and ±ω

At each order in ε we will get an inhomogeneous linear equation involving the linear oper-
ator L0. Because the Fourier modes for different frequencies are linearly independent it is
useful to consider different frequencies separately (somewhat similar to Fourier analysis),(

1 + ∂
∂t

1
−2 −1 + ∂

∂t

)
ueint =

(
1 + in 1
−2 −1 + in

)
︸ ︷︷ ︸

L
0
(n)

ueint .

For different frequencies we therefore get different matrices L0(n). Which of them are
singular? We have

detL0(n) = −(1 + n2) + 2 .

Thus, L0(n) is only singular for n = ±1, and from the linear stability analysis we have the
corresponding 0-eigenvectors ṽ1,2,

L0(±1)

(
−1

2
± i

2

1

)
=

(
1 + (±i) 1
−2 −1 + (±i)

)(
−1

2
± i

2

1

)
=

(
0
0

)
,

Therefore, only L0(±1) will lead to a solvability condition.

Expansion
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O(ε) :

L
0
(+1)v1Ae

+it + L
0
(−1)v∗1A

∗e−it =

(
0
0

)
confirming the results of the linear stability analysis.

O(ε2) :
L

0
(0)u20(T ) + L

0
(+2)u22(T )e2it + L

0
(−2)u∗22(T )e−2it = N 2 (u1,u1)

Note:

• None of these linear operators are singular: no solvability condition arises at quadratic
order.
that is the reason for the scaling of T , µ, and A.

Solve separately for different Fourier modes:

e0it :

(
0
0

)
=

(
−1 −1
2 1

)(
x20

y20

)
︸ ︷︷ ︸

u20

+

(
2 (1 · 1 + 1 · 1)

−4
((
−1

2
+ i

2

)
· 1 +

(
−1

2
− i

2

)
· 1
)
− 4 · 2

)
AA∗

(
−1 −1
2 1

)(
x20

y20

)
=

(
−4
4

)
AA∗(

x20

y20

)
=

(
0
4

)
AA∗

e2it : (
0
0

)
=

(
−1− 2i −1

2 1− 2i

)(
x22

y22

)
+

(
2 · 1

−4
(
−1

2
+ i

2

)
· 1− 4 · 1

)
A2

(
x22

y22

)
=

(
−2i

2(−1 + i)

)
A2

O(ε3) :

L
0
(1)u31(T )eit + L

0
(3)u33(T )e3it = −v1

d

dT
Aeit − v∗1

d

dT
A∗e−it +

+L
2

(
v1e

itA+ v∗1e
−itA∗

)
+N 2(u1, u2) +N 2(u2, u1)

L
0
(±1) is singular: solvability conditions arise only for the equations involving eit and

e−it. We therefore need to consider only the eit-component of the O(ε3)-equation (we
could obtain that term by multiplying equation by e−it and integrating over one period
0 ≤ t ≤ 2π/ω = 2π).

We still need the left-eigenvector v+
1 for the zero eigenvalue:

(0, 0) = v+
1 L0

(±1) = (x+
±, y

+
±)

(
1 + (±i) 1
−2 −1 + (±i)

)
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x+
± (1± i)− 2y+

± = 0 ⇒ y+
± =

1

2
(1 + i)x+

± .

The first nonlinear term N2(u1,u2)contributes

N 2(u1, u2) =

(
2y1y2

−4x1y2 − 4y1y2

)
= eit

(
2
(
Av1yy20 + A∗v∗1yy22

)
−4 (Av1xy20 + A∗v∗1xy22)− 4

(
Av1yy20 + A∗v∗1yy22

) )︸ ︷︷ ︸
N 21(u1,u2)

+

+e−it (. . .) + e3it (. . .) + e−3it (. . .)

Insert y20 = −2AA∗, y22 = (−1 + 1
3
i)A2 etc. ⇒ all nonlinear terms have the form AAA∗.

Analogously for N 2(u2, u1).

The solvability condition is then given by

d

dT
Av+

1 · v1 = v+
1

(
L

2
v1A+N 21(u1, u2) +N 21(u2, u1)

)
,

which after some more algebra yields

d

dT
A =

1

2
µ2 (1− i)A− 8 (1 + i) |A|2A . (42)

Note:

• The result of the multiple-scale analysis looks very different than the equation for the
dynamics on the center manifold (40)

• In the center-manifold approach (40) no second time scale was introduced, i.e. there
was no slow time that evolves independent of the fast time. The time-scale separa-
tion is an approximation; therefore, certain phenomena that arise from the coupling
of the two time scales are lost in the multiple-scales analysis. These tend to be more
subtle, e.g. associated with homoclinic or heteroclinic orbits.

6.3 Normal Form Transformations

The center-manifold reduction and the multiple-scale analysis gave very different looking
results for the Hopf bifurcation. Is there a disagreement?

Compare the two equations:

Multiple scales:

d

dT
A =

1

2
µ2 (1− i)A− 8 (1 + i) |A|2A

• There is only a single, cubic nonlinearity, which has a special form that allows very
simple exact solutions:

A = AeiΩT with A =
1

4

√
µ2 Ω = −5

2
µ2 .

This periodic orbit traces out a perfect circle in the complex A-plane.
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Center manifold:
d

dt
Ã = −iÃ+

1

2
µ(1 + i) Ã+

1

2
µ(1 + i) Ã∗ + (i− 1)︸ ︷︷ ︸

a20

Ã2 + (i− 1)︸ ︷︷ ︸
a11

Ã∗Ã+ a02A
∗2 (43)

• This equation has only quadratic nonlinearities.

• The equation has no solution of the form eiΩt: the orbit is not simply a circle in the
Ã-plane, which is identical to the (u, v)-plane and the (x, y)-plane.

• In the example we found a02 = 0. We keep it here for generality.

In the two approaches the amplitudes A and Ã represent different quantities.

Center Manifold: (
x
y

)
= S

(
u
v

)
= S

(
Ãr
Ãi

)
Multiple Scales:(

x
y

)
= ε

(
Ave+it + εA∗v∗e−it

)
+ ε2

(
u20(T ) + u22(T )e2it + u∗22(T )e−2it

)
+ h.o.t. (44)

Thus:

• Even if the multiple-scale solution is given by the single Fourier mode ∝ eiΩT+it, the
overall solution (x, y) has more Fourier components. These higher harmonics arise
from the terms that are higher order in ε.

• The center-manifold solution may include those Fourier modes already in Ã.

One may expect that the two solutions agree in the basic Fourier mode - up to the factor
eit that has been pulled out explicitly in (44) - and differ only in the higher-order Fourier
modes. The amplitudes A and Ã may therefore be related to each other via a near-identity
transformation

Ã = A+ αA2 + β|A|2 + γA∗2 + δA3 + σA2A∗ + ρAA∗2 + τA∗3 +O(A4) (45)

Note:

• For general A this transformation does not have a unique inverse.

• However, for small Ã there is always a unique small inverse A,

A = Ã− αA2 − β|A|2 − γA∗2 + . . .

= Ã− α
(
Ã− αA2 − β|A|2 − γA∗A2 + . . .

)2

− β
∣∣∣Ã− αA2 − . . .

∣∣∣2
−γ
(
Ã∗ − αA∗2 − . . .

)2

. . .

= Ã− αÃ2 − β
∣∣∣Ã∣∣∣2 − γÃ∗2 +O(ÃA2)

= . . . .

Determine the inverse iteratively by inserting the expression for A again into the h.o.t.
.
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The goal of the near-identity transformation is to choose the coefficients α, β, γ etc. to
eliminate as many terms as possible for the evolution equation for A. Since the aim is to
describe the behavior in the vicinity of the bifurcation, the transformation must be valid, in
particular, for µ = 0. We set therefore µ = 0 at this point.

Insert (45) into (43)

d

dt
A+ 2αA

d

dt
A+ β

(
A
d

dt
A∗ +

d

dt
AA∗

)
+ 2γA∗

d

dt
A∗ +O

(
A2 d

dt
A
)

=

−i
(
A+ αA2 + β|A|2 + γA∗2 +O

(
A3
))

+ (46)

+a20

(
A+ αA2 + . . .

)2
+ a11

(
A+ αA2 + . . .

) (
A∗ + α∗A∗2 + . . .

)
+

+a02

(
A∗ + αA∗2 + . . .

)2 (47)

Note:

• It turns out that the requirement for the transformation to be valid at µ = 0 poses
significant restrictions on the terms that actually can be eliminated (see below).

Since the transformation is done in an expansion in the small amplitude A we solve this
equation order by order in A

O(A) :
d

dt
A = −iA .

O(A2) :

• the time derivative d
dt
A in the nonlinear terms can be replaced by −iA

−2iαA2 + β
(
i|A|2 − i|A|2

)
+ 2γiA∗2 = −i

(
αA2 + β|A|2 + γA∗2

)
+

+a20A
2 + a11 |A|2 + a02A

∗2 .

Choose

−2iα = −iα + a20 α = ia20

0 = −iβ + a11 β = −ia11

2iγ = −iγ + a02 γ = − i
3
a02

Thus: the transformation

Ã = A+ ia20A
2 − ia11 |A|2 −

i

3
a02A

∗2

removes all quadratic terms in the equation for A and leads to the evolution equation

d

dt
A = −iA+O(A3) (48)

O(A3) : The calculation becomes somewhat unwieldy, but proceeds in the same way.
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Question:

Can all nonlinear terms be removed with such a normal-form transformation? No.

Allowing µ 6= 0 and keeping only the leading-order term in an expansion in µ one obtains
using Mathematica

δ =
1

12
(1− i)

(
2 |a02|2 − (1 + i)a∗02a11 + 3 |a11|2 − 3a11a20 − 6(1 + i)a2

20

)
+O(µ)

ρ =
1

12

(
−6a2

11 + a02 (12a∗11 − 4a20 − 6(1 + i)a∗02)
)

+
1

4
(1 + i) (a11 (−3a∗11 + 2a20 − (1− i)a∗20) + a∗11a

∗
20) +O(µ)

σ =
i

3

2 |a02|2 + 3a11(a∗11 − a20)

µ
+O(µ0)

τ = − 1

12
a02 (a11 + 6a∗20) +O(µ)

Away from the bifurcation point one can eliminate all cubic terms with this transformation.
However, as the bifurcation point µ = 0 is approached σ diverges ⇒ the transformation
is therefore not uniformly valid near the bifurcation since the expansion coefficients of the
near-identity transformation need to remain of O(1).

Thus, the corresponding equation cannot be solved as the bifurcation is approached and
the corresponding cubic term |A|2A cannot be removed by this near-identity transforma-
tion

Setting µ = 0 one obtains for the transformation

δ = −1

6

(
a∗02a11 + 6a2

20

)
ρ =

1

6

(
−3a2

11 + 6a02a
∗
11 − 2a02a20 − 3a11a

∗
20

)
τ = − 1

12
(a02 (a11 + 6a∗20))

which yields the evolution equation

d

dt
A = −iA+

i

3

(
2 |a02|2 + 3 |a11|2 − 3a11a20

)
|A|2A+O(A4) (49)

which for our example becomes

d

dt
A = −iA− 2(1 + i) |A|2A+O(A4) (50)

Note:

• The term |A|2A cannot be removed: the term σA2A∗ in the transformation drops out
of the computation and does not achieve any reduction of the equation.

• (49) is the normal form for the Hopf bifurcation; for all systems the center-manifold
equations for the Hopf bifurcation can be transformed to this form.
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• The normal form agrees with the equation obtained my multiple scales:

– the term −iA corresponds to the factor eit that has been factored out in the
multiple-scale ansatz (41).

– the difference in the prefactor of the cubic term is related to a different scaling
of the amplitudes in the two cases (norm of v1).

– the ratio of real to imaginary part of the cubic coefficient cannot be changed by
scaling: that ratio agrees.

• This transformation can be done order-by-order to all orders in the expansion in A.
At each order, terms from lower orders are pushed to higher orders. Terms that are
‘beyond all orders in A’, e.g. e−

1
A , cannot be removed.

• In general, the series defining the normal-form transformation does not converge.

• For an accessible discussion of the general structure of the normal-form transforma-
tion see Chapter VIII in Crawford (1991).

• The result obtained for non-zero µ and that for µ = 0 do not agree with each other
in the limit µ → 0, since for µ = 0 only 6 of the 8 equations that arise at O(A3) are
solved (the equation corresponding to eliminating |A|2A and its complex conjugate
are omitted).

7 Numerical Approaches to Bifurcations II

7.1 Hopf Bifurcations and Continuing Periodic Orbits

To study the branches of solutions emerging from a Hopf bifurcation we need to compute
periodic solutions, i.e. we compute the temporal evolution of the system with the condi-
tion that the solution is actually periodic. This turns the usual initial-value problem into a
boundary value problem.

Consider
∂t̂u(t̂) = F(u(t̂), λ) with u(0) = u(T ) .

The period T is actually an unknown in this case. It is therefore useful to rescale the time
to set the period to a fixed value, i.e. use t = t̂/T which yields

∂tu(t) = T F(u(t), λ) with u(0) = u(1) .

This does not define a unique solution, since the solution can be shifted arbitrarily in time,
with u(t) the shifted function u(t + θ) is also a solution. When continuing the solution
along the branch, it is advantageous to obtain solutions that are close to each other, e.g.,
by minimizing the difference

D(θ) =

ˆ 1

0

∥∥u(n+1)(t+ θ)− u(n)(t)
∥∥2
dt =

ˆ 1

0

(
u(n+1)(t+ θ)− u(n)(t)

)t (
u(n+1)(t+ θ)− u(n)(t)

)
dt
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between steps n and n+ 1 in the continuation. Differentiation gives

dD(θ)

dθ
= 2

ˆ 1

0

d

dθ
u(n+1)(t+ θ)t

{
u(n+1)(t+ θ)− u(n)(t)

}
dt

= 2

ˆ 1

0

1

2

d

dθ

{
u(n+1)(t+ θ)tu(n+1)(t+ θ)

}
− d

dθ

{
u(n+1)(t+ θ)t

}
u(n)(t) dt

Using periodicity in the first term and integrating by parts with respect to t, using d
dθ

{
u(n+1)(t+ θ)t

}
=

d
dt

{
u(n+1)(t+ θ)t

}
, in the second term gives then the condition

ˆ 1

0

u(n+1)(t+ θ)t
d

dt
u(n)(t)dt = 0 .

Since this is a condition on the solution u(n+1) that is still to be determined, we require that
that solution satisfy this condition for θ = 0, i.e. we get the integral phase condition

ˆ 1

0

u(n+1)(t)t
d

dθ
u(n)(t)dt = 0 .

That is the condition used in Doedel’s AUTO package (cf. (Doedel, 2007)).

To follow the branch of periodic orbits, use again pseudo-arclength continuation. Again the
continuation amounts to a fixed distance ∆s (cf. Fig.13) along the tangent vector combined
with a correction in the plane perpendicular to the tangent vector. While in (28) the solution
vector has only a finite number of components, the vector (u(t), T, λ) has infinitely many,
i.e. u at all times t ∈ [0, 1]. The scalar product in (28), which requires the projection of the
difference between the iterations onto the tangent to be given by ∆s, turns therefore into
an integral6,

ˆ 1

0

(
u(n+1)(t)− u(n)

)t
u̇(n)(t) dt+

(
T (n+1) − T (n)

)
Ṫ (n) + (λn+1 − λn) λ̇n = ∆s ,

where the dot denotes a derivative with respect to the continuation parameter s, i.e.
(u̇(n), Ṫ (n), λ̇n) corresponds to the tangent vector τ to the branch for s = sn.

In each continuation step (u(n+1)(t), T (n+1), λn+1) is determined by solving the equations

∂tu
(n+1)(t) = T (n+1) F(u(n+1)(t), λn+1) with u(n+1)(0) = u(n+1)(1) , (51)

ˆ 1

0

u(n+1)(t)t
d

dt
u(n)(t)dt = 0 , (52)

ˆ 1

0

(
u(n+1)(t)− u(n)

)t
u̇(n)(t) dt+

(
T (n+1) − T (n)

)
Ṫ (n) + (λn+1 − λn) λ̇n = ∆s . (53)

6Note, u(n)(t) is the currently known solution at the continuation parameter s and corresponds to x(0) in
(28).
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Discretizing the time turns the integrals into sums and equations (52,53) become algebraic
equations. One can also use finite differences to turn (51) into algebraic equations and
then use a standard Newton method.

In analogy to (25), the tangent vector (u̇(n), Ṫ (n), λ̇n) is obtained from the derivative of (51)
with respect to the continuation parameter s,

∂tu̇
(n)(t) = Ṫ (n) F(u(n)(t), λn) + T (n) Fu(u(n)(t), λn)u̇(n) + T (n) Fλ(u

(n)(t), λn)λ̇n . (54)

with
u̇(n+1)(0) = u̇(n+1)(1) .

To get the continuation started an initial guess needs to be computed. Use again the
linear eigenvector associated with the bifurcation. Linearization of (51) around the fixed
point uFP near the Hopf bifurcation point λH amounts to

∂tφ = TH Fu(uFP , λH)φ with φ(0) = φ(1) , (55)

where TH is the period determined from the eigenvalues crossing the imaginary axis at
the bifurcation point λH . The eigenvector φ(t) is not unique: its amplitude and its phase
are arbitrary. To identify conditions to select a unique solution among them write

φ(t) =
1

2
ei2πt (wc − iws) + c.c. = cos(2πt)wc + sin(2πt)ws ,

which yields the algebraic condition

2πi (wc − iws) = TH Fu(uFP , λ0) (wc − iws) ,

i.e. separated in real and imaginary parts one gets(
−2π TH Fu(uFP , λ0)

THFu(uFP , λ0) 2π

)(
ws

wc

)
= 0 . (56)

The vectors wc,s are not unique since their magnitude is arbitrary and any phase-shifted
φ− → eiθφ is also an eigenvector. To make the vectors unique impose therefore a normal-
ization condition,

ctwc = 1 ,

with some, essentially arbitrary, vector c. To fix the phase require

ctws = 0 .

To see that this condition can be satisfied by a suitable phase shift θ start with φ =
1
2
ei2πt (wc − iws) + c.c satisfying (56). Then φ̂ = reiθ 1

2
ei2πt (wc − iws) + c.c also satisfies

(56) because of linearity. We can write φ̂ as

φ̂ =
1

2
rei2πt (wc(θ)− iws(θ)) + c.c
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with
wc(θ) = cos(θ)wc + sin(θ)ws , ws(θ) = − sin(θ)wc + cos(θ)ws .

The normalization and phase conditions require

rct (cos(θ)wc + sin(θ)ws) = 1 rct (− sin(θ)wc + cos(θ)ws) = 0

r

(
ctwc ctws

ctws −ctwc

)(
cos(θ)
sin(θ)

)
=

(
1
0

)
which always has a solution if (

ctwc

)2
+
(
ctws

)2 6= 0 ,

which is the case for any generic choice of c.

Thus, the Hopf bifurcation is obtained by solving the equations

H(y) =


F(u, λ)

−2πws + TFu(u, λ)wc

TFu(u, λ)ws + 2πwc

ctwc − 1
ctws

 = 0 with y =


u
wc

ws

T
λ

 ,

using Newton iteration, yielding λH , TH , and φ(t).

This solution (λH , TH , φ(t)) then serves as the initial guess for Newton’s method to get the
initial solution on the Hopf branch,

u(0) = uFP + ∆s φ(t), T (0) = TH λ(0) = λH .

The phase condition on the first iteration is
ˆ 1

0

u(1)(t)
d

dt
φ(t) dt = 0

and the pseudo-arclength equation is given by
ˆ 1

0

(
u(1)(t)− u(0)(t)

)t
φ(t) dt = ∆s .

In the latter the terms involving λ̇ and Ṫ drop out since the φ used in this step satisfies
(55), which corresponds to (54) for λ̇ = 0 = Ṫ .

Notes:

• There are a number of packages available for numerical continuation of fixed points,
periodic orbits, as well as for continuation of bifurcations. All of them are freely
available.

– AUTO by E. Doedel
http://indy.cs.concordia.ca/auto/
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– XPP by B. Ermentrout, stand-alone, also a general dynamical systems toolbox,
continuation based on AUTO
http://www.math.pitt.edu/~bard/xpp/xpp.html

– MATCONT by Y. Kuznetsov, written in MATLAB
https://sourceforge.net/projects/matcont/
There are detailed manuals and examples on Kuznetsov’s web site. A few of
those are also on Canvas.
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Figure 16: Lorenz84 model analyzed with MATCONT. a) Continuation of fixed point en-
countering two limit points and one Hopf bifurcation. b) Continuation of the periodic orbit
emerging from the Hopf bifurcation. Red lines indicate period-doubling bifurcation. (fol-
lowing tutorial by H. Meijer).
Equations: x′ = −y∗y−z ∗z−a∗x+a∗F ; y′ = x∗y−b∗x∗z−y+G; z′ = b∗x∗y+x∗z−z

8 Use of Symmetries: Forced Oscillators

The evolution equation for the oscillation amplitude that is obtained by multi-timing,

dA

dT
= µA+ c|A|2A ,

has a symmetry that is not directly expected from the full equations from which the ampli-
tude equation has been derived: it is equivariant under the transformation

A→ Aeiφ for any φ . (57)

Where does this symmetry come from?

The phase-shift symmetry (57) is related to the time-translation symmetry of the original
system. The original system is invariant under shifts in the origin of time,

t→ t+ ∆t .

In the expansion used in the multi-timing approach the evolution on the fast time is pe-
riodic. Therefore shifts in the fast time can be represented by shifts in the phase of the
amplitude A of the critical mode,

x(t+ ∆t) = εAeiω(t+∆t) + c.c.+ h.o.t. = εAeiω∆teiωt + c.c.+ h.o.t. .
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Thus, a shift ∆t in the fast time is equivalent to multiplying the amplitude by eiω∆t.
⇒ invariance under time translations implies equivariance under phase shift

t→ t+ ∆t ⇔ A→ Aeiω∆t . (58)

Because of this symmetry no quadratic nonlinearities are allowed in the evolution equa-
tion for the amplitude ⇒ the choice of the scaling of in the weakly nonlinear analysis is
determined by this symmetry.

In the following we will use this time-translation symmetry argument to derive equations
for the weakly nonlinear analysis of forced oscillators.

8.1 Resonant Forcing

Resonances in forced oscillations are important in many areas

• Dangerous resonances: stability of structures

– Tacoma Narrows bridge collapse

– Millenium Bridge swaying, cf. paper by D.M. Abrams.

– Tae Bo class doing their exercises to this music made skyscraper sway

–
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Figure 17: Seoul skyscraper resonance.

• Useful resonances: amplification of signals, e.g.
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– electronic circuits
– double amplification in the ear: two staged oscillators.

Otoacoustic emissions

* evoked by sound indicate processing in the inner ear (used as non-invasive
test for hearing defects)

* spontaneous emissions.

Understanding how an individual externally forced oscillator can phase-lock to the forcing
and essentially synchronize with the forcing provides also insight into resonantly coupled
multiple oscillators, e.g.,

• Laser arrays: to enhance the laser power, the waves emitted by coupled lasers have
to be in phase with each other.

• Heart cells: efficient pumping requires the near-synchronous activity of all muscle
cells. During fibrillations the cells contract incoherently and do not achieve much
pumping.

• Neurons

– Synchronous spikes of different neurons have a stronger impact on down-stream
neurons.

– Too much synchrony may amount to epileptic seizures or Parkinsonian tremor.

Types of forcing

• non-parametric forcing: the forcing introduces an additional term in the equation
Simple example: Pushing on a swing

mlθ̈ +mg sin θ = F (t) ⇒ ü+
g

l
sin θ =

1

m
F (t)

• parametric forcing: a parameter of the system is modified in time
Simple example: Pumping on a swing

ml(t)θ̈ +mg sin θ = 0 ⇒ ü+
g

l(t)
sin θ = 0

with l being the distance of the center of mass to the pivot.
By shifting his/her center of mass the person changes the effective length l of the
pendulum

Useful asymptotic expansions can be obtained for weak forcing near and away from res-
onances. The expansions and results depend on the type of resonance and the type of
forcing, which often reflect the symmetries of the overall system.

This system provides a good example to illustrate

• the important role symmetries can play in the reduction of complex systems

• how important qualitative features of a complex nonlinear system can be extracted
by expanding around special (singular) points, i.e.considering distinguished limits.

76



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

8.2 Symmetries, Selection Rule, and Scaling

In all generality, our weakly nonlinear analysis involves essentially a Taylor expansion. It
will therefore lead to an equation of the form

dA

dT
= F (A,A∗) (59)

with F (A,A∗) being a general polynomial in its arguments. But apparently the solvability
condition does not lead to the most general polynomial: certain terms do not appear. Why
not?

Very often, terms in an equation do not appear because of special symmetries. For in-
stance, the Taylor expansion of sinx does not include any even terms because sinx is odd
in x. The situation here is analogous: in the weakly nonlinear regime all oscillators have a
specific symmetry that eliminates certain terms in the amplitude expansion.

We are considering systems that - in the absence of forcing - are equivariant under arbi-
trary time translations,

t→ t+ ∆t ,

i.e. if y(t) is a solution of the original equations so is y(t+ ∆t).
This equivariance must be reflected in the resulting amplitude equation (59). However, A
does not depend on the fast time t. How do the translations in the fast time t show up in
the equation for A?

Consider a solution y(t) and the time-shifted solution y(t + ∆t) and their expansions in
terms of the complex amplitude A,

y(t) = A(T ) eiωtv + c.c.+ h.o.t.

y(t+ ∆t) = A(T )eiω(t+∆t)v + c.c.+ h.o.t.

=
(
A(T )eiω∆t

)
eiωtv + c.c.+ h.o.t.

where v is the linear eigenvector associated with the critical model. The expansion implies:

• If y(t) is a solution of the original equation then A(T ) is a solution of the amplitude
equation and vice versa.

• The time-shifted function y(t+ ∆t) is represented in terms of the complex amplitude
by A(T )eiω∆t, i.e. shifting the fast time by ∆t is equivalent to rotating the complex
amplitude A by eiω∆t.

• If y(t + ∆t) is a solution of the original equation then A(T )eiω∆t is a solution of the
amplitude equation and vice versa.

Using the fact that with y(t) also y(t+∆t) is a solution and that the amplitude equation itself
(i.e. its coefficients) does not depend on t or ∆t, one obtains the following commutative
diagram
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y(t) solves the original equation ⇔ A(T ) solves the amplitude equation
m m

y(t+ ∆t) solves the original equation ⇔ A(T )eiω∆t solves the amplitude equation

One can think of it also this way: using the ansatz for y(t+∆t) in the expansion generates
exactly the same expressions everywhere as they are obtained with y(t), except with
A(T ) everywhere replaced by A(T )eiω∆t, and therefore A(T )eiω∆t has to satisfy the same
equation as does A(T ).

Notes:

• The implication that y(t) solves the original equation, iff A(T ) solves the amplitude
equation holds only in the limit of small amplitudes.

• This symmetry argument makes use of the multi-timing assumption that the slow
time T and the fast time t are independent variables: the time translation is only ap-
plied to the fast time, where the dynamics are periodic, but not to the slow time where
the dynamics may not be periodic and where shifts in time would not necessarily be
equivalent to phase shifts. That is an approximation: the two time variables are not
really independent and for solutions that are not strictly periodic, e.g. with a non-
periodic time dependence of A(T ), the symmetry argument does not hold. In fact, in
the center manifold reduction, which does not use multi-timing, additional terms arise
in the amplitude equations. They can, however, be shifted to higher orders by near-
identity transformations of the amplitude. The resulting normal form does have the
phase-shift symmetry (58). The equations obtained with our symmetry arguments
generate that normal form (in a non-rigorous way).

One says:

• Translations ∆t in time induce an action on the amplitude:

t→ t+ ∆t ⇒ A(T )→ A(T )eiω∆t .

In this case the action corresponds to a phase shift by an arbitrary amount ∆φ =
ω∆t.

• The amplitude equation must be equivariant under that action:
all terms of the amplitude equation must transform the same way under that opera-
tion.

8.2.1 Selection rule

Since the amplitude equation arises in an expansion in terms of the complex amplitude it
has the general form

d

dT
A = F(A,A∗) =

∑
m,n

amnA
mA∗n . (60)
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If A(T ) is a solution to (60) so must be A(T )ei∆φ for arbitrary ∆φ.

Thus
d

dT
Aei∆φ = F(Aei∆φ, A∗e−i∆φ) =

∑
m,n

amnA
mA∗nei(m−n)∆φ .

Inserting dA/dT from (60) we get

∑
m,n

amnA
mA∗n ei∆φ =

∑
m,n

amnA
mA∗nei(m−n)∆φ .

Equating like powers of A and A∗ implies

amn = amne
i∆φ(m−n−1) for all ∆φ .

Thus, we get the selection rule

either m = n+ 1 or amn = 0

Alternatively, one can express this result also as:

The action induced by the time-translation symmetry transforms the terms in the expan-
sion as

AnA∗m → AnA∗mei∆ϕ (n−m)

• Equivariance of the amplitude equation under this action requires that for all terms
in the amplitude equation the difference n−m must be the same:
thus

n−m = k for some k ∈ N.

• Since the amplitude equation has a term d
dT
A in it one has k = 1.

Thus, the only terms allowed are of the form

|A|2lA 0 ≤ l ∈ N .

8.2.2 Scaling

In the weakly nonlinear regime y is small. Since we do not know the proper scaling yet
we do not introduce an explicit ε but rather assume that the amplitude A(T ) is small. To
leading order in the amplitudes one therefore gets

∂TA = µA− γ|A|2A ,

implying the scaling
d

dT
∼ µ ∼ |A|2 .

Notes:
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• The symmetry condition allows us to write down the form of the resulting amplitude
equation without performing the nonlinear expansion in detail.

• Of course, to obtain the values of the coefficients one still has to do the algebra.

• But the algebra is simplified since the scaling of the various parameters can be
determined before hand (no trial and error needed).

8.3 Non-resonant Forcing

Consider ω = αω0 with α irrational.

To include this information it is useful to consider an extended dynamical system in which
the forcing is considered an additional dynamical variable rather than an external force
(somewhat similar to the extension of the dynamical system when deriving the center
manifold away from the bifurcation point). Consider for simplicity and concreteness the
forced Duffing oscillator,

¨̂y + β̂ ˙̂y + ω2
0 ŷ + αŷ3 − f̂ = 0 (61)

¨̂
f + ω2f̂ = 0 (62)

where we assume β̂, and ŷ are small. In addition, we assume weak forcing, f̂ small. At
this point it is not clear how these quantities scale with each other.

Expand now

ŷ = A(T )eiω0t + A(T )∗e−iω0t + . . .

f̂ = F (T )eiωt + F (T )∗e−iωt

Note:

• the expansion for f̂ does not have any higher order terms since its evolution (62) is
linear and is not coupled to y.

• since the forcing is now part of the dynamical system this extended dynamical sys-
tem is invariant under any time translations.

The expansion will lead to solvability conditions of the type

∂TA = FA(A,A∗, F, F ∗) =
∑
klmn

aklmnA
kA∗lFmF ∗n

∂TF = FF (F, F ∗) =
∑
m

fmnF
mF ∗n

Note:

• The equation for F is actually linear.
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Time translations act on the amplitude A(T ) and F (T ) as

t→ t+ ∆t ⇒ A→ Aeiω0∆t F → Feiω∆t

Selection Rule

Considering the fact that ω = αω0 with α irrational, the selection rule

k − l + α (m− n) = 1

implies actually two equations

m = n and k = l + 1 .

Since m = n the forcing appears only in the form of |F |2 and the lowest-order term is given
by

|F |2A
Thus, the phase of the forcing does not play a role reflecting that there is no resonance
between the oscillator and the forcing.

Balance saturation and forcing

A3 ∼ F 2A ⇒ F ∼ A

resulting in the amplitude equation

A′ =
(
µ+ |F |2

)
A− γ|A|2A (63)

Notes:

• Non-resonant forcing does not introduce new terms in the equation of the unforced
oscillator (at any order), it only modifies its coefficients. None of the terms are phase-
sensitive.

– in principle, all coefficients depend on |F |2

– the strongest effect of the forcing is on the bifurcation parameter µ because it is
small

– only for the linear term is the shift of the coefficient of the same order as the
coefficient itself and therefore relevant at leading order

8.4 1:1 Forcing

Now consider forcing near the 1:1-resonance, i.e. there is a term in the basic equation
that is periodic with time 2π/ω, with |ω − ω0| � 1, where ω0 is the Hopf frequency.

When 0 6= |ω − ω0| � 1 is fixed, the ratio of the two frequencies is either irrational or
‘almost irrational’. The analysis of the irrational case shows that this will not lead to any
new terms. Therefore consider the exact resonance ω = ω0.
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With 1:1-resonance the system is not invariant for arbitrary time shifts any more, but still
for shifts

t→ t+
2π

ω
.

With the expansion
y(t, T ) = A(T )eiωt + A(T )∗e−iωt +O(ε)

time translations induce the action

t→ t+
2π

ω
⇒ A→ Aeiω

2π
ω = A

i.e. the amplitude is unchanged by such translations. One says, in this case the action of
the symmetry is trivial.

Thus

• with 1:1-forcing any polynomial in A and A∗ is allowed by symmetries

∂TA = a00 + a10A+ a01A
∗ + a20A

2 + . . . . (64)

Scaling

We also assume weak forcing. The amplitude of the forcing has not entered our symmetry
consideration leading to (64). Use again an extended dynamical system like (61,62) and
expand again as

y = A(T )eiω0t + A(T )∗e−iω0t + . . .

f = F (T )eiω0t + F (T )∗e−iω0t .

Note:

• Since the forcing is now part of the dynamical system this extended dynamical sys-
tem is invariant under any time translations.

Again, the expansion will lead to solvability conditions of the type

∂TA =
∑
klmn

aklmnA
kA∗lFmF ∗n ∂TF =

∑
klmn

fklmnA
kA∗lFmF ∗n .

Time translations act on the amplitude A(T ) and F (T ) as

t→ t+ ∆t ⇒ A→ Aeiω0∆t F → Feiω0∆t ,

i.e. for the 1:1-resonance, ω = ω0, A and F transform the same way under time transla-
tions. The selection rule is therefore

k − l +m− n = 1 .

In terms of powers in A and A∗ this condition does not impose any restrictions, consistent
with (64).

What are the lowest-order terms?
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• It makes sense, to aim to retain a nonlinear term that is saturating even without forc-
ing. This is, however, not strictly required. Generically, the leading-order saturating7

term without forcing is |A|2A.

• The leading-order forcing term is F , i.e. k = l = n = 0.

• To balance these two essential terms we have

F ∼ A3

⇒ to leading order the only term containing the forcing is F .

To leading order we then get

∂TA = a1000A+ a0010F + a2100|A|2A . (65)

Summary:

• The oscillation amplitude A and the forcing amplitude F are each associated with
the common resonance frequency ω0.

• In terms of Fourier modes all terms in the resulting amplitude equation have to cor-
respond to the same frequency, which for the A-equation is ω0.

• No attention has to be paid to the equation for the forcing amplitude since the equa-
tion (62) for the forcing is not coupled to the oscillation amplitude.

How can we capture a small detuning ∆ω between ω and ω0? So far we took F to be
constant. However, it could also evolve on the slow time scale T ,

F = FeiΩT ,

which would correspond to a slightly different forcing frequency,

f(t) = Fei(ω0t+ΩT ) + c.c. .

This modifies the amplitude equation (65),

∂TA = a1000A+ a0010FeiΩT + a2100|A|2A . (66)

Due to the form of the cubic nonlinearity the time-dependent coefficient can be absorbed
into the amplitude A by writing

A = AeiΩT ,

yielding
∂TA = (a1000 − iΩ)A+ a0010F + a2100|A|2A .

Note:
7Whether this term is actually saturating will depend on the sign of its coefficient.
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• The imaginary part of the linear coefficient gives the detuning between the Hopf
frequency and the forcing frequency.

• To capture near-resonant behavior in a weakly nonlinear approach one has to ex-
pand around the exact resonance, i.e. one has to consider the distinguished limit of
ω − ω0 ∝ A2.

• If the detuning is large compared to A2, one obtains (63) and the forcing is essentially
non-resonant in a weakly nonlinear asymptotic approach.

• Since the term F breaks the symmetry A→ Aeiϕ, the forcing will lead to qualitatively
new phenomena.

8.5 3:1 Forcing

Consider now ω = 3ω0 and use the expansion

y = A(T )eiω0t + A(T )∗e−iω0t + . . .

f̂ = F (T )e3iω0t + F (T )∗e−3iω0t

It induces the action

t→ t+ ∆t ⇒ A→ Aeiϕ F → Fe3iϕ with ϕ = ω0∆t

AkA∗lFmF ∗n → AkA∗lFmF ∗neiϕ(k−l+3(m−n))

Selection Rule

for the equation for A

k − l + 3 (m− n) = 1 ⇒ k − l = 1− 3 (m− n)

Identify the lowest-order terms in the forcing

F :
m− n = 1 ⇒ k − l = −2 k = 0 l = 2 ⇒ FA∗2

F ∗:
m− n = −1 ⇒ k − l = 4 k = 4 l = 0 ⇒ F ∗A4

For any small A one has FA∗2 � F ∗A4. Therefore use FA∗2 to balance saturation and
forcing

A3 ∼ FA2 ⇒ F ∼ A

Keeping only terms up to cubic order we get therefore the restriction

k + l +m+ n ≤ 3

We have already considered the case m+ n = 1.
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Consider now m+ n = 2:

m = 2 n = 0 ⇒ k − l = −5 ⇒ F 2A∗5

m = 1 n = 1 ⇒ k − l = 1 ⇒ |F |2A

m = 0 n = 2 ⇒ k − l = 7 ⇒ F ∗2A7

For m+ n = 3 we get the condition

k = 0 = l ⇒ 3(m− n) = 1 cannot be satisfied

To leading order symmetry and scaling show that the equation has to have the form

∂TA =
(
µ+ β|F |2

)
A− γ|A|2A+ δFA∗2 (67)

Notes:

• Through the term β|F |2 the forcing modifies the linear coefficient of the equation

– depending on the sign of βr the forcing can enhance or reduce the damping

– through βi|F |2 the frequency of small-amplitude oscillations are modified by the
forcing

• The forcing will lead to qualitatively new phenomena only through the new term
involving A∗2, because only it is phase-sensitive and breaks the continuous phase
symmetry A→ Aeiϕ (there is a residual discrete phase-shift symmetry ϕ 6= 2π

3
).

• For consistent scaling we need µ = O(A2) and F = O(A).

• (67) captures the weakly nonlinear behavior of all generic, weakly forced oscillators
near the 1:3 resonance. Different oscillators only differ in the values of the coeffi-
cients. If a specific system has additional symmetries, coefficients in (67) can vanish
although they are allowed by the time translation symmetry.

• In the resonant cases - as those discussed before - all the coefficients depend also
on |F |2, but these effects are of higher order unless the corresponding coefficient
vanishes (or is small) in the absence of the forcing.

Higher Resonances:

• Resonant forcing with higher resonances (m : 1 with m ≥ 4) does not lead to addi-
tional terms in the lowest order amplitude equation

– but it introduces new higher-order terms that are phase-sensitive

– to capture aspects of its impact on the system in a leading-order amplitude
equation one may have to consider singular limits like |γ| � 1 to make the
higher-order phase-sensitive terms of the same order as the formally lower-
order nonlinear terms, i.e. consider higher singular points.
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8.6 A Quadratic Oscillator with 3:1 Forcing

Consider the forced oscillator

∂2
t̃ y + β̂∂t̃y + ω2

0y + αy2 = f̂(t̃) (68)

with f̂ ∼ cosωt̃ where ω is close to 3ω0.

We want to reduce this equation to an amplitude equation using multiple time scales.

For weak forcing and weak damping we expect for the oscillation amplitude A on symmetry
grounds the equation

∂TA =
(
µ+ β|F |2

)
A− γ|A|2A+ δFA∗2 .

All 5 terms will arise at the same order if the following scaling is satisfied

∂T = O(µ) = O(A2) F = O(A) .

Notes:

• The oscillator equation has only a quadratic nonlinearity. How will the cubic nonlin-
earities be generated that the symmetry arguments predict?

• The forcing is non-parametric, i.e. it is given by an inhomogeneous term rather
than a time-dependent coefficient. Why is there then no inhomogeneous term in the
amplitude equation?

Introduce a small parameter ε explicitly via

y = εy1 + ε2y2 + . . .

and the rescaled variables

T = ε2t, β̂ = ε2β, f̂ = εF , ω = 3
(
ω0 + ε2Ω

)
The amplitude equation is then expected to arise at O(ε3).

We get then
∂t̃ = ∂t + ε2∂T ∂2

t̃ = ∂2
t + ε22∂t∂T +O(ε4) .

O(ε):

∂2
t y1 + ω2

0y1 = F cos
(
3
(
ω0 + ε2Ω

)
t
)

=
1

2
F
{
e3iω0t+3iΩT + e−3iω0t−3iΩT

}
Thus, the structure of the leading-order equation is

Ly1 ≡
(
∂2
t + ω2

0

)
y1 = I1,

i.e. the equation is inhomogeneous.

The linear operator L is singular: Le±iωot = 0 but Leniωot 6= 0 for n 6= 1,−1.
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The general solution at this order is therefore given by

y1 = Aeiω0t +Be3iω0t + A∗e−iω0t +B∗e−3iω0t ,

with A yet undetermined and

−8ω2
0B =

1

2
Fe3iΩT B = − 1

16ω2
0

Fe3iΩT .

O(ε2):
∂2
t y2 + ω2

0y2 = −αy2
1 = −α

{
Aeiω0t +Be3iω0t + A∗e−iω0t +B∗e−3iω0t

}2

The r.h.s. has no terms proportional eiω0t or e−iω0t ⇒ no secular terms arise and we can
solve for y2 without any solvability condition arising.

y2 = C +De2iω0t + Ee4iω0t + Fe6iω0t +D∗e−2iω0t + E∗e−4iω0t + F ∗e−6iω0t

with

F =
1

35

αB2

ω2
0

E =
2

15

αAB

ω2
0

D =
1

3

α

ω2
0

{
A2 + 2A∗B

}
C = −2α

ω2
0

{
|A|2 + |B|2

}
.

O(ε3):
∂2
t y3 + ω2

0y3 = −2αy1y2 − β∂ty1 − 2∂t∂Ty1

Secular terms arise from the term y1y2,

y1y2 ∼ . . . AC + . . . BD∗ + . . . A∗D + . . . B∗E

Collecting these terms with Maple or Mathematica one gets

∂2
t y3+ω2

0y3 = eiω0t

{
−∂TA−

1

2
βA− i6

5

α2

ω3
0

|B|2A− i5
3

α2

ω3
0

|A|2A+ i
α2

ω3
0

BA∗2
}

+non-secular terms .

Inserting B we get an equation of the form

∂TA =
(
µ+ µ2|F|2

)
A− γ|A|2A+ δFA∗2e3iΩT .

Eliminate the time-dependence of the coefficent of the forcing via the rotation

A = ÂeiΩT ,

which yields
∂TA =

(
µ+ µ2|F|2

)
A− γ|A|2A+ δFA∗2 (69)

with the coefficients

µ = −1

2
β − iΩ µ2 = − 3

640
i
α2

ω7
0

γ = −5

3
i
α2

ω3
0

δ = − 1

16
i
α2

ω5
0

.

Notes:
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• The nonlinearities of the amplitude equation are not directly determined by the non-
linearities of the underlying differential equation from which it is derived. Higher-order
nonlinearities can always be generated by cycling through the lower-order nonlinear-
ities.

• The determining factor for the form of the amplitude equation is the action on the
amplitude that is induced by the symmetries of the underlying equation.

• The form of the nonlinearities of the underlying equation may determine aspects of
its symmetries. For instance, if the underlying equation is odd in y it induces the
additional action A → −A under which the amplitude equation must be equivariant
as well. For (69) this would imply that δ = 0.

• Symmetries can make coefficients zero but not non-zero.

• Among the coefficients, only µ is small, µ = O(A2) = O(F 2).

Analysis of the Amplitude Equation

To get steady-state solutions it is better to write (69) in terms of magnitude and phase

A = R(T )eiφ(T )eiθ

∂TR + iR∂Tφ =
(
µ+ µ2|F |2

)
R− γ|R|2R + δ FR2e−3iφe−3iθ .

In general, δ and F are complex. However, one can absorb the argument of δ = δ̄eiψδ and
the phase of F = F̄eiψF by a constant phase shift θ = 1

3
(ψδ + ψF ). Thus, without loss of

generality one can assume F and δ to be real and positive. In the following write F instead
of F , for ease of writing.

Introduce m = µ+ µ2 |F |2 ≡ mr + imi etc.

∂TR = mrR− γrR3 + |δ|FR2 cos 3φ (70)
R∂Tφ = miR− γiR3 + |δ|FR2 sin 3φ (71)

Analyze the fixed points (critical points) of (70,71).

There is always a fixed point
R(1)
∞ = 0

i.e.
y = − f

8ω2
0

cos
(
3
(
ω0 + ε2Ω

)
t
)

+ h.o.t.

Its linear stability is determined by

∂TA =
(
µ+ µ2|F |2

)
A

it is linearly stable for
µr + µ2r |F |2 < 0

with µ2r = 0 and µr = −1
2
β this is always the case for the oscillator (68). Thus, if there is a

nonlinear solution it does not arise via a bifurcation off this basic state.
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For R∞ 6= 0 one gets

|δ|2F 2R2 =
(
mr − γrR2

)2
+
(
mi − γiR2

)2

i.e.
|γ|2R4 −

{
2 (mrγr +miγi) + |δ|2F 2

}
R2 + |m|2 = 0 (72)

R2 =
{} ±

√
∆

2 |γ|2
.

We need positive solutions for R2. Consider the discriminant ∆,

∆ =
{

2 (mrγr +miγi) + |δ|2F 2
}2 − 4|γ|2|m|2 .

Because |γ|2|m|2 > 0, both solutions have either the same sign or they are complex.

Note:

• In particular, R = 0 cannot be a solution of this equation. This is consistent with
the fact that the solution R

(1)
∞ = 0 is linearly stable for all F and therefore does not

undergo a (local) bifurcation.

We need R2 > 0. Consider F 2 →∞,

{} → |δ|2F 2 > 0 .

Since the sign of the solution of the biquadratic equation (72) does not change, R2 > 0 for
all F for which R2 is real (i.e. R2 becomes complex before {} becomes negative).

To get any steady-state solutions we need the discriminant to be non-negative

∆ =
{

2 (mrγr +miγi) + |δ|2F 2
}2 − 4|γ|2|m|2

= |δ|4F 4 + 4|δ|2F 2 (mrγr +miγi)− 4 (mrγi −miγr)
2

!︷︸︸︷
≥ 0 .

In our case: γr = 0 and µ2r = 0

∆ = |δ|4F 4 + 4|δ|2F 2miγi − 4m2
rγ

2
i

=
(
|δ|4 + 4|δ|2µ2iγi

)
F 4 + 4|δ|2F 2µiγi − 4µ2

rγ
2
i .

In addition, γi < 0, µ2i < 0. Therefore

∆ < 0 for F 2 → 0

∆ > 0 for F 2 →∞ .

Thus,

F < Fc no solution
F > Fc 2 solutions
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with Fc defined via
∆(Fc) = 0.

At F = Fc > 0 one has a saddle-node bifurcation. Solving ∆ = 0 for µi = −Ω the line of
bifurcations is given by

ΩSN = −µi =
|δ|2 + 4µ2iγi

4γi
F 2 − µ2

rγi
|δ|2

1

F 2

with two solutions appearing for Ω > ΩSN .

Ω

F 2

2 Solutions

No Solutions

Figure 18: Phase diagram for quadratic oscillator with γr = 0 = µ2r and γi < 0 and µ2i < 0.
The line denotes a line of saddle-node bifurcations. Note: for all parameter values there
is the additional solution R(1)

∞ = 0.

a) Ω

R2

b) F

R2

Figure 19: a) Bifurcation diagram for quadratic oscillator with γr = 0 = µ2r obtained by
cutting the phase diagram along a line of constant F . The circle denotes the saddle-node
bifurcations. Note: for all parameter values there is the additional solution R

(1)
∞ = 0. b)

Bifurcation diagram when varying F at fixed Ω.
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Notes:

• For the 3:1-resonance the phase-locked forced solution does not arise in a bifurca-
tion off the basic solution y = − f

8ω2
0

cos (3 (ω0 + ε2Ω) t) + h.o.t.; instead it arises at
finite amplitude through a saddle-node bifurcation.

• The saddle-node bifurcation is systematically captured by this amplitude equation,
since

ΩSN = O(F 2) = O(
µ2
r

F 2
) = O(µr) R2

SN =
{}

2 |γ|2
= O(µr, F

2)

without any assumption on the O(1)-parameters of the original equation (68). I.e.,
as µ→ 0 and F → 0 the amplitude at the saddle-node bifurcation goes to 0.

9 Higher-Dimensional Center Manifolds: Mode Interac-
tion

The dimension of the center manifold is given by the number of eigenvalues that cross the
imaginary axis (or go through 0) simultaneously when the control parameter is changed.
The behavior on the center manifold becomes then more complex, resulting from the
interaction of these different modes.

Such a situation is often the result of symmetries, which may require that symmetrically
related modes destabilize the basic state for the same control parameter value. For in-
stance, in Rayleigh-Benard convection in a square container convection rolls can equally
appear along the x-axis and along the y-axis.

9.1 Center-Manifold from PDE

Consider as a model system the PDE

∂

∂t
ψ = Rψ −

(
∂2

∂x2
+ 1

)2

ψ +

(
∂

∂x
ψ

)2

(73)

with periodic boundary condition in a 1-dimensional system of length L.

This equation is similar to the Kuramoto-Sivashinsky equation

∂

∂t
ψ = − ∂4

∂x4
ψ − ∂2

∂x2
ψ +

(
∂

∂x
ψ

)2

, (74)

which describes diffusive instabilities of laminar flames and other long-wave instabilities.
Note, that the only parameter of the Kuramoto-Sivashinsky equation is the system size L.
For our purposes it is therefore more useful to work with the modification (73), which has
the additional control parameter R.

Simple fixed-point solution: ψ = 0.
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Linear stability:

Since the PDE has constant coefficients make a Fourier ansatz

ψ = Aeσteiqx with q =
2π

L
n ,

where n is an integer. This results in the real growth rate

σ = R−
(
−q2 + 1

)2
.

stable

unstable neutral curve             

q=1c

µ

q

Notes:

• The fixed point is unstable for R > Rn(q) = (1− q2)
2.

• When increasing R the fixed point is first destabilized at R ≡ Rc = 0 with q ≡ qc = 1.

• For R > Rc the fixed point is unstable to a continuous range of modes qmin ≤ q ≤
qmax.
In an infinite system the fixed point would be destabilized by infinitely many modes.
In a finite system the destabilization is via a finite discrete set of modes.

a)

T

T+   T∆ b)

Ω

Figure 20: Examples of instabilities of a spatially homogeneous state to periodic struc-
tures. a) Rayleigh-Benard convection. b) Taylor vortex flow.

Weakly nonlinear analysis
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Focusing on spatially periodic solutions we expand in Fourier modes,

ψ = Aeiqx +Be2iqx + C +De3iqx + Ee4iqx + . . .+ c.c.
∂

∂x
ψ = iqAeiqx + 2iqBe2iqx + 3iqDe3iqx + 4iqEe4iqx + . . .+ c.c. ,

which leads to a coupled set of ODEs for the amplitudes

eiqx :
d

dt
A = RA− (1− q2)2A︸ ︷︷ ︸

µA

−4q2A∗B − 12q2B∗D + 0 · AC + . . . (75)

e0iqx :
d

dt
C = RC − C − 2q2|A|2 − 8q2|B|2 − 18q2|D|2 + . . .

e2iqx :
d

dt
B = RB − (1− 4q2)2B − q2A2 − 6q2A∗D + . . .

e3iqx :
d

dt
D = RD − (1− 9q2)2 − 4q2AB + . . .

Choose q and R on the neutral stability curve R = Rn(q) close to the minimum:

• The Fourier mode A with wavenumber q spans the center eigenspace E(c).

• All other Fourier modes are damped: they are in the stable eigenspace E(s).

⇒ Perform a center-manifold reduction8.

To include the dependence on R = Rn(q) + µ use a suspended system by including the
differential equation for µ,

d

dt
µ = 0 .

On the center manifold the amplitudes in the stable eigenspace are given by strictly non-
linear functions of the coordinates on the center eigenspace,

B = hB(A,A∗, µ) C = hC(A,A∗µ) D = hD(A,A∗µ) . . . .

Thus, B, C, D etc. are at least quadratic in A, A∗, µ.

• There is no term of O(A2) in (75).

• In this model the mode C does not contribute to (75).

• The contribution from D to the evolution equation for A is O(BD), which is at least a
quartic term, and can be neglected.

• ⇒ the lowest nonlinearity is cubic and we need only B and that only to O(A2).

8For q < 1 further away from the minimum additional modes with wavenumber nq can destabilize ψ = 0.
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Expand
hB = αBA

2 + βB|A|2 + γBA
∗2 + δBµ

2 + ρBµA+ τBµA
∗ + . . .

and similarly for hC and hD.

Insert hB,C,D into the equation for d
dt
B (using d

dt
µ = 0):

∂

∂A
hB(A,A∗, µ)

d

dt
A+

∂

∂A
h∗B(A,A∗, µ)

d

dt
A∗ = (Rn + µ)hB−(1−4q2)2hB−q2A2−6q2A∗hD+. . .

Consider the terms at O(A2):
All the terms on the left-hand side are at least of cubic order. To O(A2) the only inhomo-
geneous term (in terms of hB) is the term −q2A2 on the right-hand side: we need the term
αBA

2 in hB to balance it and we can set βB = 0 and γB = 0,

0 = RnαB − (1− 4q2)2αB − q2

αB =
1

(1− q2)2 − (1− 4q2)2
B =

1

(1− q2)2 − (1− 4q2)2
A2 .

For q = 1, which corresponds to the minimum of the neutral curve, one gets

αB = −1

9
B = −1

9
A2 + . . .

Inserting B into (75) the evolution equation on the center manifold is given by

d

dt
A = µA− 4

9
|A|2A+ . . . (76)

Notes:

• The equation has the same form as the normal form for a Hopf bifurcation ⇒ the
magnitude R of A decouples from the phase φ,

A = R(t)eiφ
d

dt
R = µR− 4

9
R3 .

The pattern arises in a supercritical pitch-fork bifurcation.

• The phase φ is arbitrary: (76) is equivariant under

A→ Aeiφ for arbitrary φ .

The origin of this phase-shift symmetry is the spatial translation symmetry x → x +
∆x of (73),

ψ(x+ ∆x, t) = Aeiq(x+∆x) +Be2iq(x+∆x) + C +De3iq(x+∆x) + . . .

= Aeiq∆xeiqx +Be2iq∆xe2iqx + C + . . .

i.e. translations in x are equivalent to phase shifts in A, they induce the same action
on the amplitudes as the time-translation symmetry does for the Hopf bifurcation.
⇒ the amplitude equation (76) must be equivariant under arbitrary phase shifts.
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• The phase-shift symmetry is exact for (76), whereas for the Hopf bifurcation the
symmetry is only present in the normal form. The difference is associated with the
use of two-timing in the Hopf bifurcation, while no multiple scales were introduced
in the spatial case. With multi-timing the shifts in time were only applied on the fast
time, where it lead to the phase-shift symmetry, but not on the slow time, where no
specific symmetry would be induced because the dynamics in the slow time variable
is allowed to be arbitrary, rather than periodic9.

• In contrast to the equation for the Hopf bifurcation, the coefficients of (76) are real.
This is not specific to the PDE (73). Rather, it is a consequence of the reflection
symmetry x → −x of the original PDE (73), which induces complex conjugation as
the action on A,

x→ −x A→ A∗ .

⇒ (76) has to be equivariant under complex conjugation, implying the coefficients
are real.

• (76) can also be derived using multiple scales.

9.2 Interaction of Stripes of Different Orientations: Stripes vs Squares

x

y

Figure 21: Isotropic neutral
curve in 2 dimensions.

Consider the two-dimensional version of an extended KS-
equation,

∂

∂t
ψ = Rψ − (∆ + 1)2 ψ + a (∇ψ)2 − ψ3 ,

with cubic nonlinearity and periodic boundary conditions.

Linear stability of basic state ψ = 0:

ψ = eσteiq·r σ = R−
(
−q2 + 1

)2

The growth rate does not depend on the orientation of the
wave vector q: the system is isotropic.
Infinitely many modes with different orientation destabilize
the basic state simultaneously.

Consider a square system of size L × L . The allowed wave vectors are then given by
q = 2π

L
(m,n) with m,n integer.

For simplicity consider the case in which q ≡ 2π
L

is close to the neutral curve, i.e. the
growth rate σ is small. In that case we expect that an amplitude expansion of the form

ψ = A1e
iqx + A2e

iqy +B20e
2iqx +B00 +B02e

2iqy +B22e
2iqx+2iqy + . . . c.c.

9If the spatial dependence is not exactly periodic spatial translations do not induce an exact phase-shift
symmetry. Thus, in situations in which slow spatial variations arise (see below), the phase-shift symmetry is
also only approximate.
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will be sufficient. The center eigenspace is given by E(c) = (A1, A2) ⇒ we expect two
coupled equations for the evolution of A1 and A2 on the center manifold,

d

dt
A1 = f1(A1, A

∗
1, A2, A

∗
2) (77)

d

dt
A2 = f2(A1, A

∗
1, A2, A

∗
2) . (78)

Can we obtain the form of the equation without a detailed center-manifold reduction or
multiple-scale analysis? Employ the symmetries of the system.

i) Translation symmetries:

ψ(x+ ∆x, y + ∆y) = A1e
iq(x+∆x) + A2e

iq(y+∆y) + . . .

The translation symmetry invokes the action

A1 → A1e
iq∆x A2 → A2e

iq∆y .

Thus: the resulting amplitude equations must be equivariant under independent arbitrary
phase shifts,

A1 → A1e
iφ1 A2 → A2e

iφ2 .

Consider the transformation of (77) under the two phase shifts:

φ1 :

eiφ1
d

dt
A1︸ ︷︷ ︸

f1(A1,A∗1,A2,A∗2)

= f1(A1e
iφ1 , A∗1e

−iφ1 , A2, A
∗
2)

eiφ1 f1(A1, A
∗
1, A2, A

∗
2) = f1(A1e

iφ1 , A∗1e
−iφ1 , A2, A

∗
2) (79)

φ2 :
d

dt
A1 = f1(A1, A

∗
1, A2e

iφ2 , A∗2e
−iφ2)

f1(A1, A
∗
1, A2, A

∗
2) = f1(A1, A

∗
1, A2e

iφ2 , A∗2e
−iφ2) . (80)

The amplitude equation is obtained in a Taylor expansion in A1,2 and A∗1,2,

f1(A1, A
∗
1, A2, A

∗
2) =

∑
α

(1)
mnm′n′ A

m
1 A
∗m′
1 An2A

∗n′
2

f1(A1e
iφ1 , A∗1e

−iφ1 , A2e
iφ2 , A∗2e

−iφ2) =
∑

α
(1)
mm′nn′ e

iφ1(m−m′)eiφ2(n−n′)Am1 A
∗m′
1 An2A

∗n′
2 .

To satisfy (79,80) the only terms allowed in the sum are those with

m−m′ = 1 and n− n′ = 0

Thus
f1(A1, A

∗
1, A2, A

∗
2) = A1

∑
m≥0,n≥0

α(1)
mn|A1|2m |A2|2n

and analogously

f2(A1, A
∗
1, A2, A

∗
2) = A2

∑
m≥0,n≥0

α(2)
mn|A1|2m |A2|2n .
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To lowest nonlinear order in Ai we get

d

dt
A1 = α

(1)
00 A1 + A1

(
α

(1)
10 |A1|2 + α

(1)
01 |A2|2

)
+ . . . (81)

d

dt
A2 = α

(2)
00 A2 + A2

(
α

(2)
10 |A1|2 + α

(2)
01 |A2|2

)
+ . . . . (82)

ii) Reflections about the diagonal:

Interchanging x↔ y,

ψ(y, x) = A1e
iqy + A2e

iqx + . . .+ c.c. = A2e
iqx + A1e

iqy + . . .+ c.c. ,

induces the action
A1 ↔ A2 .

The amplitude equations (81,82) must therefore be in addition equivariant under the ex-
change A1 ↔ A2.

Acting on (81) yields

d

dt
A2 = α

(1)
00 A2 + A2

(
α

(1)
10 |A2|2 + α

(1)
01 |A1|2

)
+ . . .

which is to be compared with (82). This requires

α
(1)
00 = α

(2)
00 α

(1)
10 = α

(2)
01 α

(1)
01 = α

(2)
10 .

Setting α(1)
00 = µ and a(1)

10 = a gives

d

dt
A1 = µA1 − aA1

(
|A1|2 + g|A2|2

)
+ . . . (83)

d

dt
A2 = µA2 − aA2

(
g|A1|2 + |A2|2

)
+ . . . (84)

with

a = −a(1)
10 = −a(2)

01 and g =
α

(1)
01

α
(2)
01

.

Notes:

• The growth rate µ has to be equal for the stripes of different orientation.

• µ is the bifurcation parameter.

• In addition to a there is another parameter, g, which captures the strength of the
competition between the modes relative to the self-saturation.

• Because of the reflection symmetry the impact of A1 on A2 has to be equal to that of
A2 on A1.
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Because of the translation symmetry (phase-shift symmetry) the equations can again be
separated into equations for the magnitudes and the phases: Ai = Rie

iφ1,

d

dt
R1 = µR1 − aR1

(
R2

1 + gR2
2

)
d

dt
R2 = µR2 − aR2

(
gR2

1 +R2
2

)
d

dt
φ1 = 0

d

dt
φ2 = 0 .

Notes:

• The equations for the phases φi decouple from the equations for the amplitudes
because of translation symmetry.

• The phases determine the position of the patterns in the system, which is arbitrary
due to the translation symmetry of the system.

• The phases represent soft modes:
there are two eigenvalues λφ1,2 = 0 ⇒ the patterns do not relax back to the original
position after a shift in their position, i.e. after a perturbation in their phases
⇒ the vanishing of these two eigenvalues points to slow dynamics that arises if the
phases are perturbed and which can allow a further reduction of the system (cf.
Sec.10.1).

Analysis of the Amplitude Equations:

Consider the various kinds of fixed points. For simplicity absorb a into the amplitudes A1,2.

1. A1 = 0 = A2: basic state, it is stable for µ < 0 and unstable for µ > 0.

2. A1 6= 0, A2 = 0:
The non-trivial fixed point is given by

A1 =
√
µeiφ

and arises in a super-critical pitchfork bifurcation as in the one-dimensional case.
The phase φ is again arbitrary.

3. A1 = 0, A2 6= 0 :
A2 =

√
µeiφ

analogous to case 2.

4. A1 = R1e
iφ1 6= 0, A2 = R2e

iφ2 6= 0:
The two amplitudes satisfy

0 = µ−R2
1 − gR2

2

0 = µ−R2
2 − gR2

1 ,

thus µ = R2
1 + gR2

2 = R2
2 + gR2

1, i.e.

(1− g)R2
1 = (1− g)R2

2 .
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(a) If g 6= 1:
R2

1 = R2
2 =

µ

1 + g

This solution corresponds to square patterns with equal amplitudes of the stripes
in the x- and y-direction.
Within the subspace defined by R1(t) = R2(t) ≡ R(t) ( ‘square sub-space’) one
has

d

dt
R = µR− (1 + g)R3 .

The bifurcation to squares is super-critical for g > −1 and is subcritical for
g < −1.

(b) If g = 1:
µ = R2

1 +R2
2 ,

but R1 and R2 cannot be determined individually at this order:
One needs to go to higher order to resolve this indeterminacy.

Stability of fixed points:

1. Basic state: clear

2. Stripes
Linearize around the fixed point (R10, 0),

R1 = R10 + εR11

R2 = εR21

with R2
10 = µ.

O(ε):

d

dt
R11 = µR11 − 3R2

10R11 = −2µR11

d

dt
R21 = µR21 − gR2

10R21 = µ (1− g)R21

• R11 never destabilizes the stripes (since µ > 0), i.e. within the subspace corre-
sponding to stripes this solution is linearly stable.

• R21 destabilizes the stripes for g < 1.

• Thus: stripes are linearly unstable for g < 1. This instability brings in the per-
pendicular mode and leads out of the stripe subspace.

3. Squares:
Linearize around (R10, R20),

R1 = R10 + εR11

R2 = R20 + εR21 .
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O(ε):

d

dt
R11 = µR11 − 3R2

10R11 − gR2
20R11 − 2gR10R20R21

=
(
µ− 3R2

10 − gR2
20

)
R11 − 2gR10R20R21

d

dt
R21 = µR21 − 3gR2

20R21 − gR2
10R21 − 2gR10R20R11

= −2gR10R20R11 +

µ− 3R2
20 − gR2

10︸ ︷︷ ︸
µ 1+g−3−g

1+g

R21

using R2
10 = R2

20 = µ
1+g(

d
dt
R11

d
dt
R21

)
= −µ 2

1 + g

(
1 g
g 1

)(
R11

R21

)
.

The eigenvalues are given by

(1− λ)2 − g2 = 0 λ1,2 = 1± g

with coresponding eigenvectors

v1 =

(
1
1

)
v2 =

(
1
−1

)
.

The growth rates are then given by

σ1 = −2µ < 0 for µ > 0

σ2 = −2µ
1− g
1 + g

.

(a) 1 < g : σ1 < 0, σ2 > 0
The mode v2 destabilizes the squares and makes the amplitudes R1 and R2

different. Suspect an instability towards stripes.

(b) −1 < g < 1 : σ1 < 0, σ2 < 0
Squares are linearly stable.

(c) g < −1 : σ1 > 0, σ2 < 0
σ1 > 0 since for g < −1 these squares exist only for µ < 0 (subcritical).
Squares are linearly unstable with respect to mode v1: the instability suggests
a transition to large-amplitude squares. But: the stability of is determined by
higher-order terms and the weakly nonlinear analysis may not be sufficient,
unless g is close to −1.

Thus:

• For g 6= 1 either squares or stripes are linearly stable.
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• For |g−1| � 1 we need to keep higher-order terms to determine stabilities: one finds
mixed-modes in which 0 6= R1 6= R2 6= 0.

a) b)

Figure 22: a) 1 < g. b) −1 < g < +1.

Symmetries play a powerful role:

• Symmetries restrict the form of the terms that can arise in the amplitude equations:
they allow to predict the form of the equations based solely on

– the results of the linearization (critical eigenvalue and eigenvectors) and

– the action of the symmetries on the destabilizing modes.

• Symmetries simplify the analysis of the amplitude equations

– e.g., squares have reflection symmetry R1 ↔ R2, one can show that therefore
the eigenvectors of the linearization around the squares have to be either even
or odd with respect to that reflection,

ve =

(
1
1

)
vo =

(
1
−1

)
.

The diagonalization of the matrix is therefore much easier: symmetries reduce
the order of the matrix that needs to be diagonalized, here from 2× 2 to 1× 1.
This can be a great advantage for higher-dimensional center manifolds.

• Symmetries allow to identify which coefficients of the equations are relevant to an-
swer a certain question: one can restrict the evalution to only those coefficients.
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9.3 Interaction of Stripes of Different Orientations: Stripes vs Hexagons

Figure 23: Hexagon patterns in non-Boussinesq Rayleigh-Benard convection. Top view.
(Bodenschatz et al., 1991)

In many physical systems the patterns that arise immediately above the onset of the insta-
bility are hexagonal, not stripes or squares. Consider therefore two-dimensional systems
in which three Fourier modes destabilize the unpatterned state simultaneously in a steady
bifurcation,

ψ = z1(t) eik1·r + z2(t) eik2·r + z3(t) eik3·r + c.c+ h.o.t.

with wave vectors

k1 = (1, 0) k2 = (−1

2
,

√
3

2
) k3 = (−1

2
,−
√

3

2
)

and growth rates

σ1 = σ2 = σ3 = 0 at the bifurcation point µ = 0.
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Since now three amplitude equations will arise from the solvability conditions the analysis
can become more complicated. It is a good example to introduce concepts that are useful
for more complicated systems.

We expect equations of the form

żi = Fi(z1, z2, z3,z
∗
1 , z
∗
2 , z
∗
3) i = 1, 2, 3 ,

where three functions Fi on the right-hand side constitute a mapping from C3 to C3. Con-
sider systems that exhibit a number of symmetries

• translation symmetry in x- and y-direction

• rotation symmetry (isotropy)

• reflection symmetries in the plane x→ −x and y → −y

The amplitude equations therefore need to be equivariant with respect to all these sym-
metries of the system.

The symmetry operations γ of any object form a group Γ, i.e.

• The composition of two symmetry operations is again a symmetry operation

γ1,2 ∈ Γ ⇒ γ1 ◦ γ2 ∈ Γ .

• There is a symmetry operation that leaves the object unchanged

1 ∈ Γ .

• For each symmetry operation γ there is an inverse γ−1, i.e. an operation that brings
the object back into the state before γ was applied

γ−1 ◦ γ = 1 .

The invariance/equivariance of the equations needs to hold for all elements γ ∈ Γ. How-
ever, typically the elements of the group can be obtained from a smaller number of gener-
ators. In that case it is sufficient to show the invariance/equivariance for the generators.
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Figure 24: Symmetries of a
hexagon.

Consider the example of the symmetries of a hexagon,

• six rotations R by 60◦

• 3 reflections κ1 about the axes defined by ki

• 3 reflections κ2 about the axes rotated by 30◦ rela-
tive to the ki.

They form a dihedral group denoted by D6. One can
show that all these operations can be generated by the
4 generators

• the permutations of (z1, z2, z3):

P12(z1, z2, z3) = (z2, z1, z3) (85)
P23(z1, z2, z3) = (z1, z3, z2) (86)
P13(z1, z2, z3) = (z3, z2, z1) (87)

• the point inversion I:
(z1, z2, z3)→ (z∗1 , z

∗
2 , z
∗
3) (88)

For instance, a rotation by 60◦ anti-clockwise is given by P13 ◦ I
We still need to identify the action of T2 on the amplitudes zi

T∆x(z1, z2, z3) = (eik∆xz1, e
− 1

2
ik∆xz2, e

− 1
2
ik∆xz3) (89)

T∆y(z1, z2, z3) = (z1, e
√
3

2
ik∆yz2, e

−
√
3
2
ik∆yz3) (90)

In the following we consider the representation (85,86,87,88,89,90) of T2 u D6 on C3.

In our previous analysis we found that each term in the amplitude could be thought of as
consisting of an equivariant term multiplied by an invariant function, e.g. in

∂TA =
(
µ+ β|F |2

)
A− γ|A|2A+ δFA∗2

the term (µ+ β|F |2)A represents a mapping C → C that is equivariant under the phase
shift A → Aeiφ. It is comprised of the basic equivariant term A and a function (µ+ β|F |2)
of the phase-invariant quantity |F |2. It is therefore in general useful to identify ways to
generate all invariant functions and all equivariant functions.

For our problem at hand the symmetries are given by translations in the plane T2 com-
bined with D6.

Terms invariant under T2 are ui ≡ |zi|2 and z1z2z3. Basic invariants under T2 u D6 are
then

σ1 = u1 + u2 + u3 σ2 = u1u2 + u1u3 + u2u3 σ3 = u1u2u3

q = z1z2z3 + z∗1z
∗
2z
∗
3

Note:
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• ui = O(z2), σi = O(z2i), q = O(z3).

Basic equivariant terms are

(z1, z2, z3) (z∗2z
∗
3 , z
∗
1z
∗
3 , z
∗
1z
∗
2)

For example operating with P13 on each zi yields

P13(z∗2z
∗
3 , z
∗
1z
∗
3 , z
∗
1z
∗
2) = (z∗2z

∗
1 , z
∗
1z
∗
3 , z
∗
3z
∗
2) ,

which is equivalent to interchanging the first and third element in (z∗2z
∗
3 , z
∗
1z
∗
3 , z
∗
1z
∗
2).

One can then show (Buzano and Golubitsky, 1983):

All mappings g : C3 → C3 that are equivariant under this representation of T2 u D6 have
the form

g = l1

 z1

z2

z3

+l2

 u1z1

u2z2

u3z3

+l3

 u2
1z1

u2
2z2

u2
3z3

+m1

 z∗2z
∗
3

z∗1z
∗
3

z∗1z
∗
2

+m2

 u1z
∗
2z
∗
3

u2z
∗
1z
∗
3

u3z
∗
1z
∗
2

+m3

 u2
1z
∗
2z
∗
3

u2
2z
∗
1z
∗
3

u2
3z
∗
1z
∗
2


where li = li(σi, q) and mi = mi(σi, q) are T2 u D6−invariant functions.

Giving the terms up to cubic order explicitly one gets

ż1 =

l10 + l11 σ1︸︷︷︸
u1+u2+u3

 z1 + l20u1z1 +m10z
∗
2z
∗
3 +O(z4

i )

and the corresponding cyclic permutations. Written explicitly, we get

ż1 = µz1 + αx∗2z
∗
3 + βz1

(
|z1|2 + γ

(
|z2|2 + |z3|2

))
+O(z4

i )

ż2 = µz2 + αx∗3z
∗
1 + βz2

(
|z2|2 + γ

(
|z3|2 + |z1|2

))
+O(z4

i )

ż3 = µz3 + αx∗1z
∗
2 + βz3

(
|z3|2 + γ

(
|z2|2 + |z1|2

))
+O(z4

i )

The analysis of all fixed points of these equations and their stability can be quite involved.
Group theory can be very useful in identifying what kind of fixed points are actually pos-
sible and what the form of the linearization around those fixed points is (Buzano and
Golubitsky, 1983; Golubitsky et al., 1988).

For the cubic terms in the amplitude equations to be kept consistently along with the
quadratic terms the coefficient α has to be small. In that case

• Hexagons arise subcritically via a transcritical bifurcation

• Stripes appear in pitchfork bifurcation, which is supercritical for β < 0. They are
unstable to the hexagons.

• Depending on γ, hexagons become unstable to stripes for larger amplitudes or they
remain stable.

• The instabilities of the hexagons and the stripes is mediated by a branch of a steady
solution in which all modes zi have different magnitudes.
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10 Steady Spatial Patterns: Real Ginzburg-Landau Equa-
tion

So far we have only considered patterns that are strictly periodic, with qmin < q < qmax (cf.
Swift-Hohenberg equation (73)). Effectively, we have considered systems of size L = 2π

q
,

which contain only a single wavelength.

qmin

µ

max
q q

What about large systems that include many wavelengths? What about patterns that have
different wavelengths in different parts of the system? What is their dynamics? How can
we describe them?

Close to the minimum of the neutral curve the range of wavenumbers that destabilize the
homogeneous state is small: q = qc+εQ, all wavenumbers correspond to small deviations
from critical wavenumber qc, We expanded ψ as

ψ(x, t) = εA(T )eiqx +O(ε2) with qmin < q < qmax

= εA(T )ei(q−qc)x︸ ︷︷ ︸
A(X,T )

eiqcx +O(ε2)

⇒ we can introduce a slow space variable X = εx and incorporate the small changes in
the wavelength in the slow spatial variation of A.

Note:

• If the slow spatial variation of A is not periodic, one obtains patterns with wavenum-
bers that vary in space.

Expansion:

ψ = εA(X,T )eix + ε2B(X,T )e2ix + ε2C(X,T ) + ε3D(X,T )e3ix + . . .+ c.c. (91)

with T = ε2t and µ = ε2µ2

Note:

106



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

• This amounts to a true multi-scaling in space: the usual spatial variable x is replaced
by two spatial variables

ψ(x)→ ψ(ξ,X) ∂x → ∂ξ + ∂xX ∂X .

How to pick the scaling for the slow spatial variable?

Consider a reflection-symmetric systems like (73) or (74) and use symmetry arguments:

• As before the symmetry x↔ −x implies that the coefficients of the amplitude equa-
tion are real.

• In addition, it implies the equivariance of the resulting amplitude equation under
X ↔ −X.

• The first term involving ∂
∂X

and A that is allowed is therefore ∂2
XA.

• Balance ∂2A
∂X2 ∼ |A|2A⇒ ∂X = O(ε). Thus, we have

∂x → ∂x + ε∂X .

Since the fast spatial variable ξ corresponds to the original spatial variable x it is
customary not to introduce a new symbol for it.

We therefore expect an equation of the form

∂TA = δ∂2
XA+ µA+ γ|A|2A .

Apply the expansion (91) to the Swift-Hohenberg equation,

∂

∂t
ψ = Rψ −

(
∂2

∂x2
+ 1

)2

ψ − ψ3 , (92)

using with R = ε2µ2. For the derivatives we have then

∂2

∂x2
→ ∂2

∂x2
+ 2ε

∂2

∂x∂X
+ ε2

∂2

∂X2

∂4

∂x4
→ ∂4

∂x4
+ 4ε

∂4

∂x3∂X
+ 6ε2

∂4

∂x2∂X2

i) O(ε) :

0 = 0 .

Formally we have L0 = −(∂2
x + 1)2. This operator is singular since L0e

ix = 0
⇒we expect solvability conditions at higher orders.

ii) O(ε2):
0 = −(4(−i)∂XA+ 2 · 2i∂XA)

is already satisfied.

Note:
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• One can check that this condition is automatically satisfied when one expands around
the minimum of the neutral curve. Expansions around other wave numbers lead to
non-trivial terms at O(ε2).

iii) O(ε3):

eix : ∂TA = µ2A− (6(−1)∂2
XA+ 2∂2

XA)− 3|A|2A

e3ix : 0 = 64D − A3 ⇒ D =
−A3

64

Thus, the solvability condition is given by

∂TA = 4∂2
XA+ µ2A− 3|A|2A . (93)

Note:

• This equation is called the real Ginzburg-Landau equation. This refers to the fact
that it is similar in spirit to the equation that was first introduced in the context of
phase transitions by Vitaly Ginzburg building on the equation without spatial deriva-
tive proposed by Lev Landau. In that equation A is an order parameter like the
density in a liquid-gas transition or the magnetization in ferromagnetism. It is real.

• The coefficients in (93) are real due to the reflection symmetry x→ −x.

Because of the form of the nonlinearity it allows simple spatially periodic solutions,

A = ReiQX with R2 =
1

3
(µ2 − 4Q2) ,

which yield periodic solutions with wavenumber q = 1 + εQ,

ψ = εReiQXeix + · · · = εRei(1+εQ)x + . . . .

Note:

• The real Ginzburg-Landau equation allows also more complicated solutions in which
the magnitude and/or the wavenumber depend on space and time. In that way it
captures a wide range of phenomena seen in simulations of (92) and much more
complex PDEs.

10.1 Phase Dynamics: Slow Dynamics Through the Breaking of a
Continuous Symmetry

The breaking of a continuous symmetry leads in general to slow dynamics, which allow a
reduction of the system.

Consider a pattern in a large, translation-invariant system
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The wave number can vary slowly in space:

• will the pattern relax to a perfectly periodic pattern?

• can the dynamics be described in simple terms?

Spatial translation symmetry:

• The pattern can be shifted by arbitrary distances, there is no restoring force that
would move the pattern back to the original position.

• Mathematically: the linearization of the equations around that steady pattern has a
0 eigenvalue, which implies a separation of time scales.

For concreteness, consider a steady solution ψ0(x) to the Swift-Hohenberg equation

∂tψ = Rψ −
(
∂2
x + 1

)2
ψ − ψ3 .

Any shifted solution ψ0(x+ ∆x) is also a steady solution, i.e.

Rψ0(x+ ∆x)−
(
∂2
x + 1

)2
ψ0(x+ ∆x)− ψ3

0(x+ ∆x) = 0 for any ∆x .

Taking a derivative with respect to ∆x yields

Rψ′0(x)−
(
∂2
x + 1

)2
ψ′0(x)− 3ψ2

0(x)ψ′0(x) = Lψ′0 = 0 (94)

where
L ≡ R−

(
∂2
x + 1

)2 − 3ψ2
0

is the operator arising from the linearization around ψ0(x).

expansion compression

Expect:

• Dynamics arise only from spatial variations (gradients) in the translation. They lead
to expansions and compressions, which amount to gradients in the wavenumber.
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• If the expansions/compressions occur on longer and longer spatial scales, the relax-
ation will become slower and slower.

• Mathematically: for long-wave perturbations the 0-eigenvalue is only perturbed slightly:
small eigenvalue⇒ slow dynamics

Thus: the long-wave dynamics will be slow ⇒ there is a separation of time scales ⇒ a
reduction in the dynamics should be possible.

For simplicity, consider the real Ginzburg-Landau equation rather than the Swift-Hohenberg
equation as a basic system,

∂tA = ∂2
xA+ µA− |A|2A ,

because we have exact periodic solutions for it. Since we will introduce yet super-slow
time and space variables, write x and t as fast variables.

Rewrite it in terms of magnitude and phase: A = Reiφ,

∂tR = ∂2
xR− (∂xφ)2R + µR−R3 (95)

∂tφ = ∂2
xφ+ 2∂xφ

∂xR

R
. (96)

Consider first patterns with constant wavenumber

φ = qx R =
√
µ− q2 .

Thus, the pattern amplitude depends on the wavenumber and goes to 0 at the neutral
curve where σ(q) = 0.

Morevover, q = ∂φ
∂x

. Allowing the wavenumber to vary in space, q = q(x), the equation for
the phase becomes

∂tφ = ∂xq + 2q
∂xR

R
.

Notes:

• For spatially periodic solutions, which have constant magnitude and wavenumber,
∂tφ = 0.

• For long-wave perturbations the dynamics are slow: ∂tφ→ 0 as ∂xR→ 0 and ∂2
xφ =

∂q
∂x
→ 0.

• A spatially varying wavenumber cannot be implemented as A = R(q(x))eiq(x)·x, i.e.
φ(x) 6= q(x) · x. The phase φ(x) ‘counts’ the number of periods from the origin x = 0
to the position x. This number of periods depends not only on the wavenumber at x,
but on the wavenumber everywhere between x = 0 and x. Therefore

φ(x) =

ˆ x

0

q(x′)dx′ or q =
∂φ

∂x
.
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We want slow variations of q in space and time,

q = q(X,T ) .

To capture this in the phase, introduce a phase Φ that depends on super-slow scales,

1

ε
Φ(X,T ) = φ(x, t) with X = εx T = ε2t .

We have then
q =

∂φ

∂x
= ε

∂φ

∂X
= ε

1

ε

∂

∂X
Φ(X,T ) =

∂Φ

∂X
= O(1)

and
∂q

∂x
= ε2

∂2

∂X2
φ = ε

∂2Φ

∂X2
= O(ε) .

The scaling of X and T is motivated by the diffusive character of the equation (96) for the
phase φ.

Note:

• This expansion is similar to the WKBJ-expansion, since A = R(X,T )e
1
ε
iΦ(X,T ), but

here the equations are nonlinear.

Allowing variations in the wavenumber, q = q(X,T ), we expand the solution,

A(x, t) = A0(φ(x, t), X, T ) + εA1(φ(x, t), X, T ) +O(ε2)

= A0(
1

ε
Φ(X,T ), X, T ) + εA1(

1

ε
Φ(X,T ), X, T ) +O(ε2) .

We need to rewrite the derivatives in terms of the phase and the slow variables,

∂

∂t
→ ε

∂Φ

∂T

∂

∂φ
+ ε2

∂

∂T
∂

∂x
→ ∂Φ

∂X

∂

∂φ
+ ε

∂

∂X
= q(X,T )

∂

∂φ
+ ε

∂

∂X

∂2

∂x2
→

(
q(X,T )

∂

∂φ
+ ε

∂

∂X

)(
q(X,T )

∂

∂φ
+ ε

∂

∂X

)
= q2 ∂

2

∂φ2
+ 2εq

∂

∂φ

∂

∂X
+ ε

∂q

∂X

∂

∂φ
+ ε2

∂2

∂X2

= q2 ∂
2

∂φ2
+ 2εq

∂

∂φ

∂

∂X
+ ε

∂q

∂X

∂

∂φ
+ ε2

∂2

∂X2
.

Note, the derivatives with respect to φ are with respect to the first argument of A.

Inserting the expansion into the Ginzburg-Landau equation we obtain at the various orders
in ε

O(ε0) :

0 = µA0 + q2 ∂
2

∂φ2
A0 − |A0|2A0 . (97)
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This is the original Ginzburg-Landau equation, rewritten in terms of the phase. The solu-
tion is

A0 =
√
µ− q(X,T )2eiφ .

Note:

• Through the wavenumber q = q(X,T ), the amplitude A0 becomes explicitly depen-
dent on X and T .

O(ε) :

∂Φ

∂T

∂A0

∂φ
= µA1 + q2 ∂

2

∂φ2
A1 − 2|A0|2A1 − A2

0A
∗
1 + 2q

∂2A0

∂φ ∂X
+
∂2Φ

∂X2

∂A0

∂φ
.

The X-dependence of A0 is via q(X,T )

∂2A0

∂φ ∂X
=

∂

∂φ

∂A0

∂q

∂q

∂X
=

∂q

∂X

∂

∂q

∂A0

∂φ
=
∂2Φ

∂X2

∂

∂q

∂A0

∂φ

Reorder to get

LA1 = −∂Φ

∂T

∂A0

∂φ
+
∂2Φ

∂X2

∂A0

∂φ
+ 2q

∂2A0

∂φ ∂X
(98)

with
LA1 = µA1 + q2 ∂

∂φ2
A1 − 2|A0|2A1 − A2

0 CA1 where CA1 = A∗1 .

Is L invertible or singular?

The starting point for this analysis is the fact that when the pattern is shifted rigidly it
does not return to the original position, since the system is translation invariant. Thus,
such a perturbation has a vanishing growth rate, which must also be described by this
linearization. The spatial translation symmetry is reflected in the fact that the coefficients
in the Ginzburg-Landau equation - and therefore also in (97) - are space-independent. In
our rescaled coordinates this amounts to an independence of φ. Consider therefore the
φ-derivative of (97),

0 =
∂

∂φ

{
µA0 + q2 ∂

2

∂φ2
A0 − |A0|2A0

}
= µ

∂A0

∂φ
+ q2 ∂

2

∂φ2

∂A0

∂φ
− 2|A0|2

∂A0

∂φ
− A2

0

∂A∗0
∂φ

= L∂A0

∂φ
.

Thus, L is singular and its zero-eigenvector is ∂A0

∂φ
(cf. (94)).

Note:

• Quite generally, the translation mode ∂A
∂φ

characterizes the linear perturbation asso-
ciated with a small spatial shift of a pattern A(φ):

A(φ+ ∆φ) = A(φ) +
∂A

∂φ
∆φ+O(∆φ2) .
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• The existence of the translation mode requires that the system has a continuous
symmetry and that this symmetry is broken by the solution around which we expand
(A0).

– In order for the derivative with respect to the shift ∆φ make sense, there must
be a continuous family of solutions differing in ∆φ.

– If A does not brake the continuous symmetry, then ∂A
∂φ

= 0 and the eigenvector
is a zero-vector, i.e. ∂A

∂φ
is not an eigenvector at all.

To solve the equation atO(ε) we therefore have to satisfy a solvability condition associated
with the translation mode ∂A0

∂φ
. It involves the eigenvector of the adjoint of L or the left

eigenvector of L. To define an adjoint of L, one has to define first a scalar product in the
space of solutions. The adjoint depends in general on the scalar product chosen. In this
case, one can define a scalar product that makes L self-adjoint.

For 2π-periodic complex functions ψ1,2 consider the usual scalar product

〈ψ1, ψ2〉 =

ˆ 2π

0

ψ∗1ψ2 dφ .

Then, integrating by parts as usually, yields

〈ψ1,Lψ2〉 =

ˆ 2π

0

ψ∗1 (Lψ2) dφ

=

ˆ
ψ∗1

µψ2 + q2∂2
φψ2 − 2|A0|2ψ2 − A2

0 Cψ2︸︷︷︸
ψ∗2

 dφ

=

ˆ (
µψ∗1 + q2∂2

φψ
∗
1 − 2|A0|2ψ∗1

)
ψ2 dφ−

ˆ
A2

0 ψ
∗
1ψ
∗
2 dφ .

Compare this with

〈Lψ1, ψ2〉 =

ˆ 2π

0

(Lψ∗1) ψ2dφ

=

ˆ (
µψ∗1 + q2∂2

φψ
∗
1 − 2|A0|2ψ∗1

)
ψ2 dφ−

ˆ
A∗20 ψ1ψ2︸ ︷︷ ︸
(A2

0ψ
∗
1ψ
∗
2)
∗

dφ .

Thus, the term involving C is not the same in the two expressions and L is not self-adjoint.

However, the two terms involving C are complex conjugates of each other. One can there-
fore define a new scalar product by taking only the real part,

〈ψ1, ψ2〉< = <
(ˆ 2π

0

ψ∗1ψ2 dφ

)
.

With this scalar product L is self-adjoint,

〈ψ1,Lψ2〉< = 〈Lψ1, ψ2〉< ,
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and the left and right eigenvectors are the same. We therefore project (98) onto the left
eigenvector ∂φA0,

0 = 〈∂φA0,LA1〉< =

〈
∂φA0,−

∂Φ

∂T

∂A0

∂φ
+
∂2Φ

∂X2

∂A0

∂φ
+ 2q

∂2Φ

∂X2

∂

∂q

∂A0

∂φ

〉
<
,

i.e.

<
ˆ 2π

0

∂φA
∗
0

−∂Φ

∂T

∂A0

∂φ
+
∂2Φ

∂X2

∂A0

∂φ
+ 2q

∂2Φ

∂X2

∂

∂q

∂A0

∂φ︸ ︷︷ ︸
∂
∂φ

∂A0
∂q

 dφ = 0 .

Here A0 =
√
µ− q(X,T )2 eiφ and

∂A0

∂q
=

−q√
µ− q2

eiφ = − q

µ− q2
A0 .

We therefore get for the solvability condition

<
ˆ 2π

0

∂φA
∗
0 ∂φA0︸ ︷︷ ︸
|∂φA0|2

dφ

(
−∂Φ

∂T
+
∂2Φ

∂X2
− ∂2Φ

∂X2

2q2

µ− q2

)
= 0

implying
∂Φ

∂T
= D(q)

∂2Φ

∂X2
with D(q) =

µ− 3q2

µ− q2
. (99)

Notes:

• The phase satisfies a diffusion equation: wavenumber gradients relax diffusively.
This is due to the fact that the system is reflection-symmetric in space, but not in
time.

• The diffusion coefficient D(q) depends on the wavenumber q = ∂XΦ, which makes
the phase diffusion equation nonlinear.

• The pattern exists over the whole range of wavenumbers −√µ < q < +
√
µ. How-

ever, the diffusion coefficient changes sign already at

qEckhaus = ±
√
µ

3
.

For D(q) < 0 the periodic pattern is unstable to modulations. This instability was first
identified by Eckhaus in terms of a side-band instability (Eckhaus, 1965).

µ
µ

⇒

SH

stable

q q
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• This approach does not make use of any small amplitudes; it is based solely on the
assumption of a slowly varying wavenumber. Therefore it can be applied directly
to the equations describing the system on the original (fast) scales, e.g. the Swift-
Hohenberg equation or Navier-Stokes equation etc. → e.g. experiments in Taylor
vortex flow (cf. Fig.26).

• The Eckhaus instability is a universal instability of steady one-dimensional patterns.

The Eckhaus instability is a long-wave instability. Consider small modulations around a
wavenumber q0, which allows to ignore the q-dependence of D(q),

∂Φ

∂T
= D(q0)

∂2Φ

∂X2
. (100)

Using Φ = Φ0e
σt+iPX we get

σ = −D(q0)P 2 .

Figure 25: Growth rate for the Eckhaus instability.

For D(q0) < 0 the diffusion equation is ill-posed, the fastest growing modes would have
infinite modulation wavenumber P . We therefore need to regularize the equation. For
|D(q0)| � 1 one can go to higher order in the expansion and obtains due to reflection
symmetry

∂Φ

∂T
= D(q0)

∂2Φ

∂X2
−D4(q0)

∂4Φ

∂X4
.

Then
σ(P ) = −D(q0)P 2 −D4(q0)P 4 .

The fastest growing mode has a finite perturbation wavenumber Pmax

P 2
max = − D(q0)

2D4(q0)
.

For D(q0) = 0, Pmax = 0, corresponding to an infinite wavelength of the perturbation.
Therefore, in a system of finite size L the onset of the instability is delayed and occurs for

D(q0) = −D4(q0)

(
2π

L

)2

< 0 .
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Figure 26: Stability limits for axisymmetric vortices in Taylor vortex flow. Here εR mea-
sures the distance from the onset of formation of patterns. Symbols: experimental results
(Dominguez-Lerma et al., 1986), dashed line: stability limit based on the cubic amplitude
equation (cf. (99)), solid line: D(q) = 0 for the fully nonlinear fluid pattern (Riecke and
Paap, 1986).

Notes:

• Nonlinear evolution of Eckhaus instability:

– For D < 0 the solution to (100) blows up ⇒ the assumption (101) of small
gradients breaks down.

– No saturation of the instability: the modulation drives the wavenumber locally
further into the unstable regime making phase-diffusion equation leads to sin-
gularity in finite time

– Phase slip⇒ change in wave number

10.1.1 Easier Derivation of the Linear Phase Diffusion Equation

If one limits oneself to small changes in the wavenumber, one can derive a linear diffusion
equation somewhat more easily. Consider a pattern with almost constant wavenumber,

φ = qx+ εΦ(X,T ), X = εx, T = ε2t︸ ︷︷ ︸
superslow scales

(101)

R = R0 + ε2r(X,T ) .

Insert
∂R

∂t
= ε4

∂r

∂T

∂R

∂x
= ε3

∂r

∂X

and
∂φ

∂t
= ε3

∂Φ

∂T

∂φ

∂x
= q + ε2

∂Φ

∂X

∂2φ

∂x2
= ε3

∂2Φ

∂X2
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into the Ginzburg-Landau equation.

O(ε0) :

0 = (µ− q2)R0 −R3
0 ⇒ R0 =

√
µ− q2 .

This recovers the usual steady pattern.

O(ε2) :

0 = −2q∂XΦR0 − q2r + µr − 3R2
0 r

= −2q∂XΦR0 − 2R2
0r

r = − q

R0

∂XΦ

Thus, the amplitude changes with the change ∂XΦ of the wavenumber.

O(ε3) :

∂TΦ = ∂2
XΦ + 2

q

R0

∂Xr

= ∂2
XΦ +

2q

R0

(
− q

R0

)
∂2
XΦ

= ∂2
XΦ

{
1− 2q2

µ− q2

}
Thus:

∂Φ

∂T
= D(q)

∂2Φ

∂X2
with D(q) =

µ− 3q2

µ− q2
, (102)

which corresponds to (99) for fixed q.

11 Oscillations: Complex Ginzburg-Landau Equation

Consider oscillations in a spatially extended system. Will the oscillations at different loca-
tions be synchronized? Can the system support traveling waves? Are such waves stable?
Close to a Hopf bifurcation we can derive a weakly nonlinear equation to address these
questions.

Consider systems that are reflection symmetric and have translation symmetry in space.

In a weakly nonlinear description of a Hopf bifurcation the oscillations will be given in the
form

ψ(x, t) = εA(X,T ) eiωht + εA(X,T )∗ e−iωht + h.o.t. . . .

Symmetries:

• The reflection symmetry x↔ −x acts trivially on A,

A→ A ,

and therefore does not impose any condition on the coefficients of the resulting am-
plitude equation. But it does require the amplitude equation to be equivariant under
X ↔ −X, i.e. the spatial derivatives have to be even.
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• The translation symmetry x → x + ∆x also acts trivially on A. On the slow scale it
implies that the coefficients of the equation are independent of X.

Scaling:

• Since only even spatial derivatives are possible we get

∂2
X ∼ O(A2) ⇒ X = εx .

We expect therefore

∂TA = (dr + idi) ∂
2
XA+ (µr + iµi) A− (gr + igi) |A|2A ,

i.e. all the coefficients will in general be complex.

By rescaling the amplitude, time, and space variables and by transforming A→ eiµitA we
can simplify the equation to

∂TA = (1 + ib) ∂2
XA+ A− (1 + ic) |A|2A (103)

with only 2 parameters, b and c.

Note:

• In analogy to the real Ginzburg-Landau equation (93), this equation is called the
complex Ginzburg-Landau equation (CGL). It provides the universal description of
weakly nonlinear oscillations in spatially homogeneous and reflection symmetric sys-
tems.

• In the rescaling leading to (103) it is assumed that the Hopf bifurcation is supercritical
(i.e. gr > 0).

• Through this rescaling the bifurcation parameter is fixed to µr = +1; in particular it is
taken to be positive.
If one wants to have the ability to vary the control parameter across the Hopf bifur-
cation, one simply retains the parameter µr.

The CGL allows simple periodic solutions,

A = ReiQX+iΩT with R2 = 1−Q2 and Ω = −cR2 − bQ2 = −c− (b− c)Q2 ,

implying for the original microscopic system

ψ(x, t) = εReiεQx+i(ωh+ε2Ω)t + c.c.+ h.o.t. .

Notes:

• For Q 6= 0 the phase of the oscillation is not the same at all locations; they are not
synchronized. The solution represents a traveling wave,

ψ(x, t) = ψ(qx+ ωt) .
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• The frequency of the oscillations depends

– on the amplitude through c.

– on the wavenumber through b.

• The phase velocity, which is the velocity with which the extrema of the wave travel,
is given by

vφ =
ω

q
=
ωh + ε2Ω

εQ
.

• The group velocity, which is the velocity of wave packets, is given by

vg =
dω

εdQ
= −2ε(b+ c)Q .

11.1 Phase Dynamics for Oscillations

Analogous to the derivation of the phase equation for spatial patterns (99) one can also
derive a phase equation for oscillations. However, while the slow dynamics of the phase of
spatial patterns arises from the breaking of the continuous translation symmetry in space,
for the oscillations the origin of the slow phase dynamics is the breaking of the continuous
translation symmetry in time:

• The phase of the spatially homogeneous oscillations is arbitrary

A = Reiωteiφ φ ∈ R

and a spatially homogeneous shift in the phase does not experience a ‘restoring
force’.

• If the phase is shifted differently at different locations, the phase differences lead to
an interaction between the oscillations at different locations that changes the phase.

• If the variation of the phase occurs on a long spatial scale, the interaction leads to a
slow temporal evolution. This evolution can be captured by the reduction to a phase
equation.

Consider as example the complex Ginzburg-Landau equation10,

∂tA = (1 + ib) ∂2
xA+ A− (1 + ic) |A|2A , (104)

again writing the variables as fast variables, since we will introduce super-slow variables.

Rewrite in terms of A = Reiφ,

∂tR + iR∂tφ = (1 + ib)
(
∂2
xR + 2i∂xφ∂xR +R

(
i∂2
xφ− (∂xφ)2))+R− (1 + ic)R3 .

10An analogous analysis could be performed directly on the microscopic equations, even for oscillations
at finite oscillation amplitude.
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Separating real and imaginary parts yields

∂tR = ∂2
xR−R (∂xφ)2 − b

(
2∂xφ ∂xR +R∂2

xφ
)

+R−R3 (105)

∂tφ = b

(
1

R
∂2
xR− (∂xφ)2

)
+

2

R
∂xφ ∂xR + ∂2

xφ− cR2 . (106)

Note:

• In contrast to the case of the real Ginzburg-Landau equation, the phase is coupled to
the amplitude and its evolution depends on the wavenumber ∂xφ itself and not only
on wavenumber gradients.

To derive an equation for the evolution of the wavenumber or the phase consider for sim-
plicity small perturbations of the phase around the uniform oscillations, A = ReiΩt,

φ = −ct+ εΦ(X,T ) and R = R0 + εαr(X,T ) . (107)

As was the case in the analysis leading to (102), this restricts the analysis to small changes
in the local wavenumber, which is not the case for the more involved WKBJ-like approach
used in the derivation of (99). Here, X and T are super-slow scales, yet slower than the
scales of the complex Ginzburg-Landau equation. The case of traveling waves (Q 6= 0)
can be treated analogously.

Since a spatially uniform change of the phase does not have any effect on the dynamics,
we expect a phase equation of the form

∂TΦ = F (∂XΦ, ∂2
XΦ, . . .) ,

with no dependence on the phase Φ itself. Due to the spatial reflection symmetry, which
does not affect the temporal phase φ itself, all terms in the phase equation need to have
an even number of spatial derivatives. We therefore expect the balance ∂T ∼ ∂2

X . This
suggests the scaling

X = εx T = ε2t .

Insert (107) in (105,106):

O(ε0) :
0 = R0 −R3

0 ⇒ R0 = 1 .

The first non-trivial contributions arise at O(ε3)⇒ choose α = 3.

O(ε3) :

0 = −bR0∂
2
XΦ + r − 3R2

0r ⇒ r = −1

2
b∂2

XΦ

∂TΦ = ∂2
XΦ− 2cR0r .

This yields
∂TΦ = (1 + bc) ∂2

XΦ .

Notes:
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• The phase Φ evolves diffusively with a diffusion coefficient given by

D = 1 + bc .

• The diffusion coefficient can be negative:
For bc < −1 homogeneous oscillations are unstable to long-wave perturbations.
This instability is called the Benjamin-Feir instability.

• One can also derive the phase equation for traveling wave solutions (Q 6= 0),

A = Rei(QX+ΩT )eiφ .

The resulting equation shows that for bc > −1 the waves are stable in a wavenumber
band [−Qm,+Qm] around Q = 0. This situation is similar to that of the Eckhaus
instability (99) for steady patterns. However, the stable band closes at bc = −1 and
for bc < −1 these waves are unstable for all wavenumbers. Thus, for bc < −1 (103)
has no stable traveling wave solutions.

• For |D| � 1 one can derive a nonlinear phase equation, which is the Kuramoto-
Sivashinsky equation,

∂Tφ = D∂2
xφ+ g∂4

xφ+ h(∂xφ)2 .

Numerical Simulations (Chaté, 1994):

• The Benjamin-Feir instability leads to different chaotic states depending on b and c

– Phase turbulence: persistently evolving modulation of the wavenumber and as-
sociated with it of the amplitude, but the amplitude remains bounded away from
0. Thus there are no phase slips and the total phase is conserved.

– Amplitude turbulence: phase slips, during which the magnitute |A| goes to 0,
occur irregularly and persistently, changing the local wavenumber.

• Turbulence can also arise in the regime in which some plane waves are linearly
stable (Benjmain-Feir-stable regime).
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186 H Chat6 

general, as shown from the analysis of many physical, chemical, and biological situations. 
Here only its simplest version in one space dimension is considered, thereby hopefully 
focusing on the generic properties of the model. Suitable scaling of the complex amplitude 
A, space, and time, allows the equation to be written in function of only two real parameters 
bl and b3: 

& A  = A +  (1 + ibl)a,,A - (b3 - i)lAIZA 

where b3 z 0 and x E [0, L]. This somewhat unusual choice of scaling is related 
to the region of the parameter space that is of interest here [4]. The ‘real‘ Ginzburg- 
Landau equation, known to possess a purely relaxational dynamics 151, is recovered in the 
61 = O,b3 + 00 l i t .  Another limit of interest is 63 = 0, bl + CO, corresponding 
to the integrable, purely dispersive dynamics of the nonlinear Schrodinger equation [6]. 
Plane wave solutions of the form A = UK expi(kx f mkt) with U: = (1 - k2)/b3 
and 
(b3 - bl)/(3b3 - bl + 2/b3) [7]. This band of wavevectors shrinks to zero on the bt = b3 
(BF) line, which corresponds to the Benjamin-Feir or modulational instability of the k = 0 
state. 

= I/b3 - (bl + l/b3)kZ are linearly stable, if 61 < b3 and kz e kklhaUs - - 

0.0 0.5 ~ 1.0 1.5 

Figure 1. Phase diagram in the (bl, b3) pyameter plane. Line LI and the portion of line L2 
above the BF Benjamin-Feir line were determined in [I]. Details on the determination of line 
L3 and in pmicular when bg + 0 will be reported elsewhere 1261. The poins of line L2 for 
bl = 0.5 and bl = 0.75 give an idea of the impohvlce of the size-effects when approaching 
the BF line. The rightmost points were obtained for the largest sizes (L = 1000,2000). 

It was shown in [l] $at the complex Ginzburg-Landau equation exhibits spatiotempo- 
rally disordered regimes (‘amplitude’ or ‘defect’ turbulence) in the region of the (61, 63) 
plane to the left of lines LI and Lz (figure 1). In particular the line LI was determined via 
the measure of quantities’ such as correlation functions and the density of defects. In the 
present paper, the prolongation of Lz below the Benjamin-Feir bl = b3 line is studied. For 
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Figure 27: Phase diagram for 1-dimensional CGL (Chaté, 1994). Space-time diagrams for
phase turbulence, amplitude turbulence, and bichaos (depending on initial conditions one
obtains phase turbulence or amplitude turbulence).

The complex Ginzburg-Landau equation can easily be extended to 2 dimensions

∂tA = (1 + ib) ∆A+ A− (1 + ic) |A|2A .

• The Benjamin-Feir instability arises also in this case. As in 1 dimension, it can lead
to phase turbulence or amplitude turbulence.

• Amplitude turbulence is characterized by the appearance of defects at which the
magnitude |A| vanishes. They correspond to rotating spirals.

• The spirals are topologically stable: the integral over the phase along any contour
that encircles a spiral core is either 2π or −2π, depending on the ‘charge’ of the
spiral; the spiral core (the zero of the magnitude of the complex amplitude) cannot
simply disappear by itself, since it would require unwinding the phase everywhere.
Spiral cores can only disappear through a collision with a spiral core of opposite
charge.

• There are analytical approaches that treat the spirals as discrete objects and allow
to obtain evolution equations for their position and how they interact (Aranson and
Kramer, 2002).
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1.0 
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-1.0 ]- 

0.0 
b3 

349 

Fig. 1. Phase diagram of the two-dimensional CGL equation. Phase turbulence is observed between lines L 
and BF, defect turbulence to the left of line T, and frozen states exist (approximately) to the fight of line 
$2. Details are given in the text. 

equation has been recognized as the relevant equation for the slow modulations of  
oscillations in a continuous medium near a Hopf  bifurcation [2] .  More generally, it 
appears in the description of  spatially-extended systems when oscillations or waves are 
present. 

Under the form (1) ,  the CGL equation has been reduced (without loss of  generality) 
to its simplest from, with only two real parameters, bl and b3. The first term of  the rhs 
is related to the linear instability mechanism which led to oscillations. The second term 
accounts for diffusion and dispersion, while the cubic nonlinear term insures - if b3 > 0, 
otherwise other terms may be necessary - the saturation of  the linear instability and is 
involved in the renormalisation of the oscillation frequency. Two important limits are 
worth mentioning: when bl = 0, b3 ~ oo, one has the real Ginzburg-Landau equation, 
which possesses a Lyapunov functional and thus exhibits only relaxational dynamics [ 3 ]. 
When bl ~ oo, b3 = 0 dispersion plays the essential role, as one recovers the nonlinear 
Schr6dinger equation [4] .  In the general case, sustained spatio-temporally digordered 
regimes are observed in large regions of  the parameter plane (Fig. 1). 

The genericity of  the CGL equation, associated to its relative simplicity, has made it 
one of  the favorite playgrounds for testing ideas about spatio-temporal chaos in a rather 
realistic context [5] .  It is only recently, though, that a comprehensive study has been 
undertaken, as it was realized that away from the intricacy of  the bifurcation diagrams at 
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Figure 28: Phase diagram for 2-dimensional CGL (Chaté, 1994). Snapshot of phase
turbulence. Note that the magnitude of A is bounded away from 0: no defects.
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Figure 29: Snapshot of defect turbulence in the two-dimensional CGL (b1 = 2, b3 = 1
(Chaté, 1994)).
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Figure 30: Snapshot of spirals in the two-dimensional CGL (b1 = 2, b3 = 1.51 (Chaté,
1994)).
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Figure 31: Snapshot of spirals of finite size in the turbulent background in the two-
dimensional CGL (b1 = 2, b3 = 1.33 (Chaté, 1994)). The initial condition was a state
of spirals obtained for b3 = 1.51.
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12 Fronts and Their Interaction

Consider nonlinear PDEs with spatial translation symmetry that have multiple stable spa-
tially homogeneous solutions

• ⇒ there must be also solutions that connect the stable states: fronts or kinks

• these fronts are heteroclinic in space: they connect two different fixed points for
x → ±∞. They are topologically stable: they cannot disappear except at infinity or
by collision with ‘anti-fronts’.

• This is to be compared to homoclinic solutions which connect to the same fixed point
for x → ±∞, i.e. localized ‘humps’ (like the solitons). They are not topologically
stable since they can disappear, e.g., due to a sufficiently large perturbation.

stable

stable

unstable

x

ψ

Figure 32: Fronts connecting two stable and one unstable spatially homogeneous state.

Questions:

• Do such fronts travel? What determines their speed?

• How do the fronts interact? Can they from stable bound states: localized domains?
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a)
b)

Figure 33: Localized wave trains in convection of water-alcohol mixtures. a) Top view of
annular convection cell. In this regime the localized waves are spatially more extended,
resembling bound states of fronts. Two slowly drifting, stable localized wave trains are
seen Kolodner et al. (1988). b) Numerical simulations of localized states and of extended
traveling waves Barten et al. (1991, 1995).

12.1 Single Fronts Connecting Stable States

Consider a simple nonlinear diffusion equation

∂tψ = ∂2
xψ + f(ψ) ≡ ∂2

xψ − ∂ψV (ψ;λ)

where λ is a control parameter of the system.

This equation can be written in variational form

∂tψ = −δV{ψ}
δψ

with V{ψ} =

ˆ
1

2
(∂xψ)2 + V (ψ;λ)dx
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Assume V (λ;ψ) has two minima at ψ = ψ1,2, corresponding to stable, spatially homoge-
neous solutions.

Look for ‘wave solution’, i.e. a steadily propagating front solution

ψ = ψ(ζ) with ζ = x− vt

which satisfies

∂2
ζψ + v∂ζψ = +∂ψV (ψ) ≡ −∂ψV̂ (ψ) with V̂ (ψ;λ) = −V (ψ;λ).

Notes:

• this equation can be read as describing the position ψ of a particle in the potential
V̂ (ψ) and experiencing friction with coefficient v.

• we are interested in solutions that start at ψ1 and end at ψ2

ψ(ζ)→ ψ1 for ζ → −∞ ψ(ζ)→ ψ2 for ζ → +∞

• since in terms of V̂ (ψ) the ‘positions’ ψ1,2 are actually maxima, the ‘friction’ v must
be tuned exactly such that the particle, starting at one maximum, stops at the other
maximum:
⇒ the velocity is uniquely determined.

• depending on the relative heights of the maxima the ‘friction’ may be negative.

• for fronts connecting a stable state with an unstable state the velocity (‘friction’) is not
uniquely determined: the unstable state corresponds to the minimum of the potential
for the ‘particle’ and the ‘particle’ will end up in that minimum for a wide range of
friction values. The velocity selection in this situation is an interesting problem (e.g.
van Saarloos (1988)).
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a)

v>0
V

ψ

b)

v<0

ψ

V

Figure 34: Fronts correspond to a particle moving in a potential with friction. a) friction
positive. b) friction negative.

12.1.1 Perturbation Calculation of the Front Velocity

Assume there is a parameter value, λ = λ0 ≡ 0, for which the front solution ψ(x;λ = 0) is
stationary. If one has access to that solution one can obtain the front velocity for close-by
parameter values perturbatively.

Expand
λ = ελ1 v = εv1 + ε2v2 + h.o.t. ψ = ψ0(x) + εψ1 + h.o.t.

O(ε0):
∂2
xψ0 + ∂ψV̂ (ψ0; 0) = 0

yields the equation for the stationary front

O(ε):
∂2
xψ1 + ∂2

ψV̂ (ψ0; 0)
∣∣∣︸ ︷︷ ︸

L

ψ1 = −v1∂xψ0 − λ1 ∂λ∂ψV̂ (ψ;λ)λ=0,ψ=ψ0 (108)

Can we invert the operator L and solve directly for ψ1?
The system is invariant under spatial translations: take the x-derivative of the equation at
O(ε0):

∂x

[
∂2
xψ0 + ∂ψV̂ (ψ; 0)

]
= ∂2

x∂xψ0 + ∂2
ψV̂ (ψ; 0)

∣∣∣
ψ=ψ0

∂xψ0 = L ∂xψ0
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Since ψ0(x) breaks the continuous translation symmetry ∂xψ0 does not vanish and is a
proper eigenvector of L with eigenvalue 0.
Thus, L is singular and the eigenvector associated with the 0 eigenvalue is the translation
mode ∂xψ0.

Note:

• if ψ0 did not break the translation symmetry, ∂xψ0 would vanish and not represent
an eigenvector and there would be no 0 eigenvalue associated with the translation
symmetry and L could be invertible.

L is self-adjoint⇒ ∂xψ0 is also its left 0-eigenvector.

Project (108) on ∂xψ0

0 =

ˆ +∞

−∞
∂xψ0

[
−v1∂xψ0 − λ1∂λ∂ψ V̂ (ψ;λ)

∣∣∣
λ=0,ψ=ψ0

]
dx

v1

ˆ ∞
−∞

(∂xψ0)2 dx = −λ1∂λ

ˆ +∞

−∞
∂ψV̂ (ψ0;λ) ∂xψ0︸ ︷︷ ︸

∂xV̂ (ψ0(x);λ)

dx

Thus

v1

ˆ ∞
−∞

(∂xψ0)2 dx = −λ1 ∂λ [V (ψ0(x);λ)]|λ=0|
+∞
x=−∞ ≈ − V (ψ0(x);λ1)|+∞x=−∞ (109)

Notes:

• The l.h.s of the equation can be read as the amount of work performed by the friction
ˆ +∞

−∞

(
β
dx

dt

)
dx

dt
dt︸ ︷︷ ︸

dx

• The r.h.s of the equation can be read as the difference in potential energy between
initial and final state

• Important: the perturbation method does not rely on the existence of a potential
⇒ it works also when there are multiple coupled components ψj(x, t) satisfying non-
linear PDEs that cannot be derived from a potential and the front motion cannot be
interpreted in terms work performed and change in the potential.

12.2 Interaction between Fronts

Consider fronts of the nonlinear diffusion equation

∂tψ = ∂2
xψ − ψ + cψ3 − ψ5 (110)

Notes:
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• the coefficients of ∂2
xψ, ψ, and of ψ5 can be chosen to have magnitude 1 by rescaling

of space, time and ψ.

• the coefficient of ψ is chosen negative: ψ = 0 is linearly stable

• the coefficient of ψ5 is chosen negative: saturation at large values of ψ

ψ

V

Figure 35: Potential with minima at ψ0 and ±ψ0.

Homogeneous stationary states:

linearly stable

ψ = 0 or ψ2
0 =

c+
√
c2 − 4

2

linearly unstable

ψ2
u =

c−
√
c2 − 4

2

Consider two fronts that connect ψ = 0 with ψ = ψ0

L
x ψ

ψ
R L

RL
x

R

ψ

ψ
m

x

Figure 36: Front positions.

Goal:
Obtain evolution equations for the positions xL and xR. These equations would describe
the interaction between the two fronts and reduce the PDE to coupled ODEs.

For such a reduction we need a separation of time scales
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• The relaxation of ψ to the equilibrium values ψ0 and ψ = 0 should be much faster
than the motion of the individual fronts.

• For the motion to be slow in the presence of the interaction between the fronts the
interaction must be weak:
consider widely separated fronts, xR − xL large, then the fronts deform each other
only weakly.

Note:

• Since the fronts approach their asymptotic value ex2frontxlxr.fig 2frontxlxr.pdfponentially
fast, it turns out that the interaction is exponentially weak in the distance between
the fronts.

Ansatz:

ψ = ψL + ψR −ψ0︸︷︷︸
subtract common part

+εψ1 + . . .

with
ψL = ψF (x− xL(T )) ψR = ψF (xR(T )− x)

T = εt c = c0 + εc1 c0 =
4√
3

ψF (ζ) = ψ0

√
1

2
(1 + tanh ζ) ψ0 = 3

1
4

Notes:

• c0 can be determined as the point where the potential V (ψ) = +1
2
ψ2 − 1

4
cψ4 + 1

6
ψ6

has the same value at the two minima ψ = 0 and ψ = ψ0 (cf. Sec.12.1.1).

• The scaling of T relative to c− c0 can be gleaned from (109).

Denote
ψ′L ≡

dψF (ξL)

dξL

∣∣∣∣
ξL=x−xL

ψ′R ≡
dψF (ξR)

dξR

∣∣∣∣
ξR=xR−x

Then
∂tψL = ψ′L

dξL
dt

= −εψ′L∂TxL ∂tψR = ψ′R
dξR
dt

= +εψ′R∂TxR

Note: dψL
dx

= ψ′L, but dψR
dx

= −ψ′R.

Insert expansion

0 = ε {ψ′L ∂TxL − ψ′R ∂TxR}+ ψ′′L + ψ′′R + εψ′′1 − ψL − ψR + ψ0 − εψ1

+ (c0 + εc1) {ψL + ψR − ψ0 + εψ1}3 − {ψL + ψR − ψ0 + εψ1}5
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For x < xm ≡ 1
2
(xL + xR) we have xR − x� 1:

ψR − ψ0 = ψ0

{√
1

2
(1 + tanh (xR − x))− 1

}

= ψ0

{√
1

2

exR−x + ex−xR + exR−x − ex−xR
exR−x + ex−xR

− 1

}

= ψ0

{
1√

1 + e−2(xR−x)
− 1

}
→ −1

2
ψ0e

−2(xR−x) for xR − x→∞

Analogously for x > xm we have x− xL � 1:

ψL − ψ0 → −
1

2
ψ0e

−2(x−xL)

Consider now the expansion separately for x < xm and x > xm.

For x < xm:

{ψL + (ψR − ψ0) + εψ1}3 = ψ3
L+3ψ2

L (ψR − ψ0)++3εψ1ψ
2
L+O

(
(ψR − ψ0)2 , ε (ψR − ψ0) , ε2

)
and

{ψL + (ψR − ψ0) + εψ1}5 = ψ5
L+5ψ4

L (ψR − ψ0)++5εψ1ψ
4
L+O

(
(ψR − ψ0)2 , ε (ψR − ψ0) , ε2

)
Using that ψL,R satisfy the O(ε0) equations

ψ′′L − ψL + c0ψ
3
L − ψ5

L = 0 ψ′′R − ψR + c0ψ
3
R − ψ5

R = 0

we get for x < xm

−ε
{
ψ′′1 − ψ1 + 3c0ψ

2
Lψ1 − 5ψ4

Lψ1

}︸ ︷︷ ︸
LLψ1

= ψ′′R + (ψR − ψ0)
{
−1 + 3c0ψ

2
L − 5ψ4

L

}
+

+ε
{
c1ψ

3
L + ∂TxLψ

′
L − ∂TxRψ′R

}
with

LL = ∂2
x − 1 + 3c0ψ

2
L − 5ψ4

L

For x > xm

−εLRψ1 = ψ′′L + (ψL − ψ0)
{
−1 + 3c0ψ

2
R − 5ψ4

R

}
+

+ε
{
c1ψ

3
R + ∂TxLψ

′
L − ∂TxRψ′R

}
with

LR = ∂2
x − 1 + 3c0ψ

2
R − 5ψ4

R

To obtain evolution equations for xL and xR we need two solvability conditions

Translation symmetry:

• single front: ∂xψL,R is a 0-eigenvector
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• two interacting fronts: there is only one exactly vanishing eigenvalue with the eigen-
vector arising from the double-front solution ∂xψLR, for which the xR − xL is not
growing or shrinking

Note:

• the double-front solution is stationary for c slightly different than c0 due to the inter-
action between the two fronts.

How do we get a second solvability condition?

We want the perturbation expansion to remain well-ordered in the limit xR − xL →∞.
Thus, even if the fronts are infinitely far apart, we want ψ1 to remain small compared to
ψL + ψR − ψ0

• for any finite L: only 1 translation mode, which is (approximately) ∂x (ψL + ψR − ψ0)

• for L =∞: 2 independent fronts⇒ expect 2 translation modes

LL∂xψL = 0 LR∂xψR = 0

Project in the two domains x < xm and x > xm separately onto the two translation modes
∂xψL,R, respectively.

x < xm:

−ε
ˆ xm

−∞
ψ′LLLψ1dx = ε∂TxL

ˆ xm

−∞
ψ′2Ldx− ε∂TxR

ˆ xm

−∞
ψ′Lψ

′
Rdx+

ˆ xm

−∞
ψ′Lψ

′′
Rdx+

+

ˆ xm

−∞
ψ′L
{
−1 + 3c0ψ

2
L − 5ψ4

L

}
(ψR − ψ0) dx+ εc1

ˆ xm

−∞
ψ′Lψ

3
Ldx

For xm → ∞ the operator LL is self-adjoint and we could roll it over to ψ′L and the l.h.s.
would vanish. For finite xm boundary terms arise.
Integrate the l.h.s by parts
ˆ xm

−∞
ψ′LLLψ1dx = ψ′Lψ

′
1|
xm
−∞−

ˆ xm

−∞
ψ′′Lψ

′
1dx︸ ︷︷ ︸

ψ′′Lψ1|xm∞ −
´ xm
−∞ ∂2x(∂xψL)ψ1dx

+

ˆ xm

−∞
ψ′L
{
−ψ1 + 3c0ψ

2
Lψ1 − 5ψ4

Lψ1

}
dx

ψ′L and ψ′′L are exponentially small at xm and for x→ −∞⇒ boundary terms are exponen-
tially small and can be ignored at this order since they are already multiplied by ε. What
remains after the integration by parts is ψ1LL∂xψL, which vanishes since LL∂xψL = 0 ⇒
we obtain a solvability condition.

To estimate and evaluate the integrals rewrite in terms of

s = ex−xL and L = xR − xL

dx =
1

s
ds

ˆ xm

−∞
. . . dx =

ˆ e
L
2

0

. . .
1

s
ds
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ψL = ψ0

√
1

2

(
1 +

s− 1
s

s+ 1
s

)
= ψ0

√
1

2

1 + s2 + s2 − 1

1 + s2
= ψ0

s√
1 + s2

ψR − ψ0 → −
1

2
ψ0e

−2(xR−x) = −1

2
ψ0e

−2xRe2(x−xL)e2xL = −1

2
ψ0e

−2L s2

ψ′R → −ψ0s
ds

dx
e−2L = −ψ0s

2e−2L ψ′′R → −2ψ0s
2e−2L

∂sψL = ψ0

{
1√

1 + s2
− s2

√
1 + s2

3

}
= ψ0

1
√

1 + s2
3 ⇒ ψ′L = ψ0

s
√

1 + s2
3

We get then

0 = ε∂TxLψ
2
0

ˆ e
L
2

0

s2

(1 + s2)3

1

s
ds+ ε∂TxRψ

2
0

ˆ e
L
2

0

s
√

1 + s2
3

(
−s2

)
e−2L1

s
ds+

+ψ2
0

ˆ e
L
2

0

s
√

1 + s2
3

(
−2s2

)
e−2L1

s
ds+ (111)

+ψ2
0

ˆ e
L
2

0

s
√

1 + s2
3

{
−1 + 3c0ψ

2
0

s2

1 + s2
− 5ψ4

0

s4

(1 + s2)2

}
−s2

2
e−2L1

s
ds

+εc1
1

4
ψ4
L

∣∣x=xm

x=−∞︸ ︷︷ ︸
ψ4
0+h.o.t.

Analogously for x > xm:

0 = ε∂TxL

ˆ ∞
xm

ψ′Lψ
′
Rdx− ε∂TxR

ˆ ∞
xm

ψ′2Rdx+

ˆ ∞
xm

ψ′Rψ
′′
Ldx+ (112)

+

ˆ ∞
xm

ψ′R
{
−1 + 3c0ψ

2
R − 5ψ4

R

}
(ψL − ψ0) dx+ εc1

ˆ ∞
xm

ψ′Rψ
3
Rdx

Rewrite these integrals in terms of
u = exR−x

dx = −1

u
du

du

dx
= −u ψR = ψ0

u√
1 + u2

∂uψR = ψ0
1

√
1 + u2

3

ψ′R = −dψR
dx

= u
dψR
du

= ψ0
u

√
1 + u2

3

ψL − ψ0 → −
1

2
ψ0u

2e−2L ψ′L → ψ0u
2e−2L ψ′′L → −2ψ0u

2e−2L

Since ˆ ∞
xm

. . . dx→
ˆ 0

exR−xm
. . .

(
−1

u

)
du =

ˆ e
L
2

0

. . .
1

u
du

each integral in the expression for x > xm has a corresponding integral for x < xm and
their magnitudes are the same.
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Add (112) and (111)

0 = ε (∂TxL − ∂TxR)ψ2
0


ˆ e

L
2

0

s2

(1 + s2)3

1

s
ds−

ˆ e
L
2

0

s
√

1 + s2
3

(
−s2

)
e−2L1

s
ds

+

+2e−2Lψ2
0

ˆ e
L
2

0

s
√

1 + s2
3

(
−2s2

) 1

s
ds+

+2e−2Lψ2
0

ˆ e
L
2

0

s
√

1 + s2
3

{
−1 + 3c0ψ

2
0

s2

1 + s2
− 5ψ4

0

s4

(1 + s2)2

}
−s2

2

1

s
ds+

+εc1
1

2
ψ4

0

For large s all integrands decay at least as 1
s
⇒ the integrals are at most O(ln s) = O(L):

• We can therefore ignore the second integral with respect to the first integral in the
first term

• ε must be exponentially small in L to balance the terms

Relevant integrals:

ˆ e
L
2

0

s

(1 + s2)3ds =
1

4

(
1− 1

(1 + eL)2

)
ˆ e

L
2

0

s2

√
1 + s2

3ds =
1

2
L+ ln 2− 1 +O(e−L)

ˆ e
L
2

0

s4

√
1 + s2

3ds =
1

2
L+ ln 2− 4

3
+O(e−L)

ˆ e
L
2

0

s6

√
1 + s2

3ds =
1

2
L+ ln 2− 23

15
+O(e−L)

Thus

∂TL = −16
e−2L

ε
+ 2
√

3c1 (113)
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dL/dt

L

Figure 37: Dependence of growth rate of domain on domain size L.

Notes:

• Interaction

– attactive⇒ fixed point L = L0 for c > c0, i.e. without interaction the fronts would
be drifting apart

– decays with distance

– ⇒ localized state is unstable:
for L > L0 the attraction is insufficient and the fronts drift apart
for L < L0 the attraction is too strong and the fronts annihilate each other.

• This localized state corresponds to a critical droplet in a first-order phase transition

– ψ = 0 corresponds to the gas phase, say, and ψ = ψ0 to the liquid phase

– L = 0 corresponds to a pure gas phase, L→∞ to a pure liquid phase.

– the localized state separates these two stable phases ⇒ if there is only one
such localized state it has to be unstable.

• The interaction between the fronts is exponential and monotonic

• In a more general system the interaction could be non-monotonic, e.g.,

dL

dt
= a cosκL e−αL + bc1

then there are multiple localized states, alternating stable and unstable
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dL/dt

L

Figure 38: Oscillatory interaction between fronts would allow multiple localized states,
stable and unstable.

For oscillatory interaction fronts can ‘lock’ into each other at multiple positions and
arrays of fronts can actually be spatially chaotic (Coullet et al., 1987). This occurs,
for instance, in a nonlinear diffusion equation that includes fourth spatial derivatives,

∂tψ = µ∂2
xψ − ∂4

xψ − ψ − ψ3 .

Figure 39: Spatially chaotic array of fronts and ‘anti-fronts’ connecting the states ψ = ±1
(Coullet et al., 1987).

• Localized states stabilized by the oscillary interaction between fronts arise in the
subcritical Swift-Hohenberg equation

∂tψ = Rψ −
(
∂2
x + 1

)2
ψ + ψ3 − ψ5 . (114)

137



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University
H. Sakaguchi, H.R. Brand/Physica D 97 (1996) 274-285 277 

I1) 
E 

900 
800 
700 
600 
500 
400 
300 
200 
100 

0 

1 i i 

I I I 

0 50 100 
X 

, I 
150 200 250 

Fig. 1. Localized solution filling half of the cell for the follow- 
ing parameter values: a = -1.6,  b = 3.0, c = 1.0, d = 1.0, 
and q0 = 1.0. This stable localized solution was reached 
starting from deterministic initial conditions: half-filling with 
~P = A0 sin(qx) with q = q0, where A0 was chosen to satisfy 
the time-independent equation (Eq. (1)). 
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Fig. 2. Range of existence of localized states: the square of the 
prefactor of the cubic term b 2 is plotted versus the (subcritical) 
distance from threshold, a; all other parameter values are fixed: 
c = 1.0, d = 1.0, qo = 1.0. When starting with values for a 
and b on the left of the stable tongue the width of the initial 
pattern is shrinking to zero; when starting to the right of the 
stable region of a and b the initial state expands and fills in 
the whole cell. 

Eq.  (1) is associa ted wi th  a L iapunov  funct ional  L:  
7't = - 3 L  /8~p with 

L: f + 1c~/t6 

+ ½d((q 2 + axx)~p) 2] = f (2) 
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Fig. 3. Coexistence of stable stationary states of four different 
lengths. The parameter values are a = -1.4, b = 3.0, c = 1.0, 
d = 1.0 and q0 = 1.0. The run was started with the following 
initial conditions: ~p = A0 sin(qx) with A0 ¢ 0 only in the 
regions where a pattern exists, q = q0, and A 0 was evaluated 
the same way as for Fig. 1. 

Eq.  (1) has two stable states. One  is the zero  field 
state: ~ = 0 and the other  is a spatial ly per iodic  state. 
I f  the parameters  a and b are smal l  enough,  one  ex-  
pects  that the per iodic  state can be  wri t ten as 7t = 
A1 (e iq°x + c.c.), where  the ampl i tude  A1 is approx-  
imate ly  A 2 = {3b + ~/9b 2 + 40ac}/20c. T h e  'en-  
e rgy '  per  unit length  E is 0 for  the zero f i e ld  state 
and - a a ~  - 1.5ba 4 + 10cA6/3 for  the per iodic  state. 
There fore  the per iodic  state is preferable  to the zero 
state for  a > -27b2/160c for  small  e n o u g h  a,  b. 
W h e n  a = -27b2/160c, the zero field state has the 
same energy  as the per iodic  state, and so the interface 
be tween  the two states is stationary f r o m  the point  o f  
v iew of  ' ene rgy '  balance.  W h e n  a > -27b2/160c, 
the per iodic  state tends to invade the z e r o  field state. 
There fore  the parameter  range  o f  t h e  stable loca l ized  
state in Fig.  2 is tangent  t o  the straight l ine a = 
-27b2/160c when  a and b are small  enough.  Fig.  2 
shows that the interface be tween  the zero f i e ld  state 
and the per iodic  state is i m m o b i l e  in a finite pa ramete r  
range near  the parameter  value  for  which  the ' ene rgy '  
per  unit  length o f  the per iodic  state is 0. 

It turns out  that, starting f rom different  initial con-  
ditions, stable local ized  states o f  different  lengths  can 
be  generated.  In Fig.  3 w e  have plot ted an example  
o f  a state which  contains  pulses  o f  four  vast ly differ- 
ent  lengths  separated by regions  o f  varying lengths for 
which  the va lue  o f  the field ~ vanishes.  The  third lo- 
ca l ized  state at x -,~ 125 is the shor t e s t ]oca l i zed  state 
and the second loca l ized  state at x "~ 100 is the second 
shortest  loca l ized  state possible.  The  lengths  o f  the 

Figure 40: Localized states of various lengths in the subcritical Swift-Hohenberg equation
(Sakaguchi and Brand, 1996)

The oscillatory interaction arises from the interaction between the slow modulation
of the pattern amplitude that constitutes the front and the fast oscillations of the
underlying pattern.

• The oscillatory interaction does not arise in the real Ginzburg-Landau equation; it is
beyond all orders (exponentially small) in the multi-scale expansion leading to the
Ginzburg-Landau equation. Advanced asymptotic techniques can capture this inter-
action and show the complexity of the bifurcation diagrams (Chapman and Kozyreff,
2009).

a)

 

F1!1"X#$
e3X=2

"1%eX#3=2!i!=2

&'6%eX! i!"4(4X%4i"(eX#%EDT):
(10)

This was derived using 1=
!!!
n
p

as a small parameter in the
recurrence equations. The value of ‘2 can only be deter-
mined numerically, either by solving the recurrence equa-
tions exactly all the way up to large values of n, or by
solving (2) numerically for an appropriate set of parameter
values. Let us remark that (9 ) does not represent the full
solution ffn;kgfor large n. In particular, there is another
eigenvector, associated with # $

!!!!!!
(i
p

, and for which the
dominant elements are fn;0 and fn;(2. However, its con-
tribution to rhsN will not affect our result at leading order,
so we will simply ignore it in the present discussion. We
also draw attention to the special role played by X $ i" in
(9 ). Actually, there is a complementary set of eigenvectors
associated with X $ (i" such that fn"x; X# is real for real
values of X. These will be taken into account at the end of
this development by requiring that the remainder $f be
real as well.

Using (9 ), we now compute rhsN in the vicinity of the
Stokes line, which joins X $ i" and X $ (i". To this
end, we set X $ i"( ir exp"i"%# with r fixed between 0
and 2" and % variable. The latter corresponds to the Stokes
variable in Berry’s treatment of Stokes’s discontinuities
[18]. With this parametrization, X is on the Stokes line
when %$ 0. The large-n terms of ffn;kgare then found to
produce

 4i‘2"%"F0 % F2e2i !x# ""##
N%2""N=2% &% 2#
"i"( X#N=2%&%2

(11)

in rhsN, and the key observation [14] is that, at optimal
truncation, where N=2% &% 1 * r="2, the fraction
above is asymptotic to

 i

!!!!!!!
2"
r

s
"(5 exp

"!"
4
( i! ln"( "

"2 (
r%2

2
( i X

"2

#
: (12)

This means that the fraction in (11) is locally equivalent to
the fast-oscillating factor exp"(iX="2# $ exp"(ix#, and
this turns rhsN into a resonant driving term in (7 ). This is
only true very close to the Stokes line, as attested by the
exp"(r%2=2# factor. Because of this fast variation relative
to the X scale, we must solve (7 ) locally using % instead of
X as the slow scale. In doing so, we find that rhsN produces
the particular solution

 $f% $ "(2'‘02
F0e(i !x % F2ei !x

2
ei’(i! ln"

Z %

(1

e(rv
2=2

!!!!!!!!!!!
2"=r

p dv

in $f, where ' $ "(4 exp"("="2# and ‘02 $ 4"‘2 &

exp"!"=4#. In this expression, the integral factor vanishes
as %! (1 [corresponding to X $ i""( r# % 0()] and
equals one as %! 1 [corresponding to X $ i""( r# %
0%]. Thus $f% is ‘‘switched on’’ upon crossing the Stokes
line towards positive values of X [18]. Finally, having
obtained $f%, the complementary contribution $f( asso-
ciated with the pole X $ (i" makes $f real on the real-X
axis. Hence, for X < 0,

 $f $ $fE;

but for X > 0,

 $f $ $fE % "(2'Re'‘02"F0e(i !x % F2ei !x#ei’(i! ln"):

We now have all the necessary information to construct a
finite spatial domain of oscillation. Indeed, $f, although
exponentially small, is an exponentially increasing func-
tion of X and this ultimately leads to a down-switching
front. Assembling the various pieces of solution we have
obtained thus far, we construct a finite periodic domain of
size d+ 1. On the left of the domain, the solution is given
by the approximate formula

 f"x; X;’L# * f0"x% ’L; X# % $f"x; X;’L#;

while, by symmetry, the right side is described by the
down-switching front f"d( x; "2d( X;’R#. From (6),
the oscillations in the left part are controlled by the ex-
ponential factor expi"x% ’L ( !X=2# as X ! 1, while
in the right part, the corresponding factor is expi"x( d(
’R ( !X=2% "2!d=2# as "2d( X ! 1. In order for
these oscillations to smoothly join, we thus have to impose

 ’L $ (’R ( d% "2!d=2% 2m";

where m is an arbitrary integer. Considering next slow-
varying amplitudes, the exponentially growing terms in
$f"x; X; ’L# [see (8) and (10)] must match the exponential
start of the down-switching in f0"d( x% ’R; "2d( X#.
This leads to ’R $ ’L and
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FIG. 1. Bifurcation diagram for " $ 0:55. Thick line: analyti-
cal formula. Thin line: numerical simulation.
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Fig. 3. (a) Bifurcation diagram showing the four branches of localized (ho-
moclinic) states near r = 0. The branch of uniform patterned solutions uP is
also shown. The lower panels show the homoclinic solutions on the (b) φ = 0,
(c) φ = π , (d) φ = π/2, and (e) φ = 3π/2 branches at r = −0.15. The dotted
lines in these panels show the leading order envelope computed in (13).

Fig. 4. (a) Bifurcation diagram showing the two homoclinic branches together
with the flat and patterned branches of Fig. 2. Away from the origin the ho-
moclinic branches are contained within the pinning region (shaded) between
rP 1 ≃ −0.7126 and rP 2 ≃ −0.6267. Thick lines indicate stable solutions. The
dashed vertical line marks the location of the Maxwell point rM1 between the
flat and patterned branches. (b) Closeup showing the ‘rungs’ connecting the
snaking branches. Labels mark the locations of the profiles shown in Fig. 5.

tude is small and the width of the sech envelope is large enough
to contain many wavelengths of the underlying pattern. Away
from the origin the amplitude grows and becomes comparable
to the amplitude of the patterned states (specifically, the stable

Fig. 5. Sample localized profiles as indicated in Fig. 4. (a), (f) lie on the φ = π/2
branch while (c), (d) lie on the φ = 0 branch. (b), (e) lie on the asymmetric
‘rungs’ at r = −0.66.

branch above the bifurcation at r3) and the width decreases until
it is comparable to Lc, the wavelength of the underlying pattern.
Beyond this point both the even and odd branches undergo a se-
ries of saddle-node bifurcations responsible for the terminology
homoclinic snaking. Each saddle-node bifurcation adds a pair
of oscillations to the profile uℓ(x), and the saddle-node bifurca-
tions asymptote exponentially rapidly to rP 1 and rP 2. At each
value of r within this range there exists an infinite number of so-
lutions, each of a different width. Higher up along each ‘snake’
the solutions uℓ(x) begin to look like a pattern of wavelength
Lc and uniform amplitude, truncated at either end by a station-
ary ‘front’ of width of order Lc connecting this state to u0. The
amplitude of this state is nearly identical to the upper branch
of the patterned solutions. These results suggest that within the
region rP 1 < r < rP 2 there exist heteroclinic connections be-
tween the flat and patterned states as well. Far up each branch
shown in Fig. 4, after many saddle-node bifurcations, the ho-
moclinic solutions uℓ(x) connecting the flat state u0 to itself
resemble two of these heteroclinic connections, from u0 up to
the patterned state and then from the patterned state back down
to u0. These (Pomeau) fronts are stationary even away from rM1
because of pinning by the underlying wavetrain [15]. Indeed
we may think of the region rP 1 < r < rP 2 as a Maxwell point
that has been broadened by pinning to the underlying patterned
state, a picture supported by the presence within this region of
the Maxwell point rM1 at which the u0 and patterned branches
have the same energy.

Fig. 4 also indicates the stability of the localized solutions
in time, a consideration that is absent from the general the-
ory of reversible systems. The eigenvalue problem (5) yields
the growth rate of infinitesimal perturbations of the homoclinic
solutions at each point along the branches, as well as the as-
sociated eigenfunctions ũ(x). The eigenfunctions that play a
critical role in what follows are localized around the base state
uℓ(x) and are therefore insensitive to the exact choice for L.
The results for the even (φ = 0,π) and odd (φ = π/2,3π/2)

branches are shown in Fig. 6. Near the origin the even branches
are unstable to even perturbations, while the odd branches are
unstable to both odd and even perturbations. Each zero crossing

Figure 41: a) Analytical prediction (thick) compared with numerical results (thin) for the
snaking bifurcations in (114) (Kozyreff and Chapman, 2006). b) Numerically determined
bfurcation diagram for (114) showing the relationship between the periodic and localized
solutions (Burke and Knobloch, 2007).
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320 S.J. Chapman, G. Kozyreff / Physica D 238 (2009) 319–354

Fig. 1. Example of localised patterns resulting from the existence of stationary fronts between the homogeneous and periodic solutions of (1). Reproduced from [69] with
permission.

Fig. 2. The bifurcation diagram of (3) with ✏ = 0.55, determined through the asymptotic analysis of Section 5. The horizontal lines are the ‘‘rungs’’ of the ladders. Each
point on the ladder represents two asymmetric localised solutions, which are the image of one other by the transformation x ! �x. The rungs do not start at the folds of
the snakes, even though they approach them exponentially as the size of the localised solution increases.

grows strongly influences the shape of the snakes in the bifurcation diagram. Even for two-dimensional patterns that are localised in only
one direction, the discussion of the stability becomes significantly more involved [37,18].

While plenty of numerical evidence [9,65,66,56,71,6,7,10] and experimental confirmations [59,70,51,68,50,62,31,4,58,67] of the
existence of localised patterns have been gathered over the years, their theoretical description has remained extremely difficult (see [63]
for a review). Some important results have been obtained in one spatial dimension, where geometrical arguments in the phase-space
establish the existence and robustness of localised patterns [39,24,36]. In this regard, Lin’s method is proving useful to find one’s way
in the multi-dimensional phase spaces where these homoclinic orbits sit [44,49]. For further analytical understanding, multiple-scales
analysis seems the obvious way forward. Indeed, near the bifurcation point where the oscillations are born, there is a natural separation
of spatial scales: one is associated with the progressive onset of oscillations, another corresponds to the oscillation period. A standard
multiple-scales analysis, however, leads to the incorrect conclusion that fronts are only stationary at the Maxwell point. Such an analysis
misses the exponentially small terms that couple the slow and fast scales. As a result, it cannot explain the fact that the slowly varying
front can be pinned to the underlying periodic structure over a finite parameter range. This question was posed in [61] and has stimulated
much research towards improving the multiple-scales approach. However, it was solved only recently [45] by a study beyond all orders
of the multiple-scales analysis and the purpose of this paper is to explain in detail how.

Figure 42: Relationship between localized solutions of (114) on the various bifurcation
branches, obtained by asymptotic analysis (Chapman and Kozyreff, 2009).

• A non-monotonic interaction does arise in the complex Ginzburg-Landau equation.

– There the front velocity depends on the wavenumber of the waves, which in
turn is selected by the front and modified by the interaction between the fronts.
For weak dispersion perturbation theory gives stable localized waves (Malomed
and Nepomnyashchy, 1990).

– For strong dispersion localized waves can be obtained via a perturbation anal-
ysis of the solitons of the nonlinear Schrödinger equation (Fauve and Thual,
1990) (cf. Sec.13).
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(a)

].0-

Writing

W(x, t) = [rp(x)+ w(x, t)]exp[ —iep(t)],
we get from Eq. (2) the linearized evolution equation for
the perturbation w,

8, w =Lw+ eR (W)exp(iep), (3)
with Lw i[—4hpw+B„„w+2rp(2w+w)]. The phase
and dilatation invariances imply the existence of neutral
eigenmodes for the operator L. One can check that they
are, respectively, irp and 8ro/&hp. Indeed, we have

SP4CE L (iro) 0 L (r)ro/'r)Ao) 8&p(lro) (4)
(b) Equations (4) represent a codimension-two singularity. '

In other words, they show that the size of the pulse and
its phase are coupled (see the equations given in Ref.
11).
'When R~O we thus look for slowly varying solitons in

the form

0" W(x, t) 25(t)sech[26(t)x]exp[ —ie(t)] . (5)

10
SPACE

20

FIG. 1. 1D pulselike solution in the case p —0.24,
a 0.15, P 2.4, y —1.65, and b 2; interval length, L 20.
(a) Amplitude profile l W(x) l. (b) Phase profile p(x)
argW(x). Although the coefficients of the dissipative terms

are not small, the amplitude predicted by Eq. (7) agrees within
5% ~ith the numerical result; however, the dissipative pulse
size is about 65% the one of the corresponding soliton.

The temporal evolution of a soliton under the action of
a perturbation is a well-known problem of soliton theory,
and can be solved with the inverse-scattering method. "
The temporal evolution of h(t) can be found in a simpler
way here: Multiplying Eq. (1) by W and integrating on
space leads to the evolution equation for f— dx l W ),
1 d dx) W)'2 dt 4--

2
Q ao 98'

+PI w)'+y) w l' .

pulses exist for values of p within a finite band. They
are obtained with a great variety of initial conditions.
For instance, a phase-unstable homogeneous state
l W) &0 often evolves to a pulselike solution. Station-
ary localized pulses are thus structurally stable solutions
of Eq. (1).
The shape of the pulse amplitude reminds one of the

pulselike soliton of the nonlinear Schrodinger equation,
which corresponds to p a p y b 0 in Eq. (1).
We thus look for a perturbative approach with p, a, p, y, b
of order e« 1, and write Eq. (1) in the form

jj 8' +2t ) W)~W+~R(W).
t g 2

(2)

When R =0 Eq. (2) has a well-known family of one-
soliton solutions, Wp(x, t) =rp(x)exp[ —iep(t)], with
rp(x) =2aosech(2apx) and ep(t) - 4apt+ q p. The-
existence of this family traces back to the invariance of
the nonlinear Schrodinger equation under rotations in
the complex plane, W Wexp(i8), and dilatations
8' A8', x Xxandt k t.

(6)

We get from Eqs. (5) and (6) the evolution equation
for the soliton size h„

2 de/dt ph+ —', (—a+2p)d + '~~' yh

If 2p& a, Eq. (7) has two nonzero solutions b, ~ for
p, & p & 0, with p, 5(—a+2p) /96y. Only the larger
h, + is stable, and gives the size of the pulse. The dissipa-
tive terms of Eq. (1) thus stabilize one of the soliton
solutions (5) and select its size by breaking the scale in-
variance associated with the conservative problem. Note
that this selection mechanism among the family of solu-
tions (5) by the dissipative terms of Eq. (1) also occurs
when Eq. (1) represents a supercritical bifurcation
(p & 0). However, the existence of a stationary solution
6 in Eq. (7) then requires p & 0, and the W 0 solution
is no more stable. Thus, the stable pulselike solutions
described here require the existence of a subcritical bi-
furcation. Then, in the interval range of p ~here two
stable homogeneous solutions of Eq. (1) exist, p, & p
&0, with p, p /4y, there exists an order e interval,
p, & p & 0, where a pulselike solution of size

283
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Figure 43: Dissipatively perturbed NLS-soliton. a) Amplitude. b) Phase, displaying the
opposite wavenumbers selected by the two ‘fronts’ and the transition layer in the center
(Fauve and Thual, 1990) (cf. (Malomed and Nepomnyashchy, 1990)).

In either case there is only a single stable localized state for given parameters (no
snaking).
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13 Nonlinear Schrödinger Equation

Consider oscillations in a nonlinear conservative system, i.e. a system without dissipation.

Classic example: pendulum of length L without damping:

∂2
t ψ = −ω2

0 sinψ with ω =
g

L

More generally, the right-hand side could be any function f(ψ) (with f(0) = 0)

Consider nonlinear oscillations in a continuum (many coupled pendula)

∂2
t ψ − c2∂2

xψ + ω2
0 sinψ = 0 (115)

Note: this nonlinear equation is called the sine-Gordon equation in analogy to the linear
Klein-Gordon equation

∂2
t ψ − c2∂2

xψ + ω2
0ψ = 0

The Klein-Gordon equation allows simple traveling waves

ψ = Aeiqx−iωt + A∗e−iqx+iωt with ω2 = ω2
0 + c2q2

Weakly nonlinear regime: expect traveling waves with slightly different frequency and
slightly different wave form.

Aim: weakly nonlinear theory for such waves that allows also spatially slow modulations
of the waves, e.g. spatially varying wavenumbers or wave packets

Note:

• expect similarities between these traveling waves and the waves arising from a Hopf
bifurcation, i.e. expect analogy to complex Ginzburg-Landau equation
⇒ use similar approach and try multiple scales with similar scaling

• but: in contrast to the CGL conservative systems do not have attractors

Multiple-Scale Analysis:

Right-traveling wave

ψ = εA(X,T1, T2, . . .)e
iqx−iωt + εA∗(X,T1, T2, . . .)e

−iqx+iωt + ε2ψ2 + ε3ψ3 + . . . (116)

with T1 = εt, T2 = ε2t, X = εx.

For a wave packet one would have A→ 0 for X → ±∞.

For small ψ we can expand the sinψ = ψ − 1
6
ψ3 + . . . and we consider

∂2
t ψ − c2∂2

xψ + ω2
0ψ =

1

6
ω2

0ψ
3

O(ε) : recover linear dispersion relation
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∂2
t ψ1 − c2∂2

xψ1 + ω2
0ψ1︸ ︷︷ ︸

Lψ1

= 0 ⇒ ω2 = ω2
0 + c2q2

⇒ L is singular with Leiqx−iωt = 0

O(ε2) :
∂2
t ψ2 − c2∂2

xψ2 + ω2
0ψ2︸ ︷︷ ︸

Lψ2

= (2iω∂T1A+ 2iq∂XA) eiqx−iωt + c.c.

since L is singular we get a solvability condition:
coefficients of eiqx−iωt and e−iqx+iωt must vanish

2iω∂T1A+ 2iqc2∂XA = 0

∂T1A = −vg∂XA with vg =
dω(q)

dq
= c2 q

ω

Thus: the wave packet travels to leading order with the group velocity vg

A = A(X − vgT1, T2)

Then

ψ2 = 0

O(ε3) :

∂2
t ψ3 − c2∂2

xψ3 + ω2
0ψ3 =

1

6
ω2

0A
3e3iqx−3iωt +(

−∂2
T1
A+ 2iω∂T2A+ c2∂2

XA+
1

6
3ω2

0|A|2A
)
eiqx−iωt + c.c.

Use the result from O(ε2)

∂2
T1
A = ∂T1 (−vg∂XA) = v2

g∂
2
XA

and get

∂T2A =
−1

2iω

(
(c2 − v2

g)∂
2
XA+

1

2
ω2

0|A|2A
)

Consider d2ω/q2 using implicit differentiation:

ω2 = ω2
0 + c2q2

2ω
dω

dq
= 2c2q ⇒ dω

dq
= vg = c2 q

ω(
dω

dq

)2

+ ω
d2ω

dq2
= c2 ⇒ d2ω

dq2
=
c2

ω3

(
ω2 − c2q2

)
=
c2

ω3

(
ω2 −

v2
gω

2

c2

)
Thus:

∂T2A = i
1

2

d2ω

dq2
∂2
XA+ i

1

4

ω2
0

ω
|A|2A

Notes:
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• this equation is the nonlinear Schrödinger equation (NLS)

• the NLS has the same form as the CGL, except that all coefficients are purely imag-
inary
real parts of the coefficients correspond to dissipation (i.e. diffusion and approach to
an attractor on which the oscillation amplitude is fixed, R = |A|)

• the NLS is the generic description for small-amplitude waves in non-dissipative me-
dia

Use of Symmetries:

The sine-Gordon equation (115) is invariant under

reflections in space: x→ −x

reflections in time: t→ −t

translations in space: x→ x+ ∆x

translations in time: t→ t+ ∆t

As in the case of the CGL the translations imply that the equation for A is equivariant
under A→ Aeiφ for arbtrary φ.

Action of the reflections:

• under spatial reflections (and under reflections in time) a right-traveling wave is trans-
formed into a left-traveling wave

• (116) includes only a right-traveling wave: pure spatial reflections cannot be repre-
sented within the class of functions (116)

• combined reflections in time and space, however, have a simple action on the am-
plitude A in the ansatz (116)

x→ −x combined with t→ −t induces T2 → −T2, X → −X, A→ A∗

Apply to general evolution equation

∂TA = aA+ d∂2
XA+ c|A|2A → −∂TA∗ = aA∗ + d∂2

XA
∗ + c|A|2A∗

taking the complex conjugate implies

−∂TA = a∗A+ d∗∂2
XA+ c∗|A|2A

Thus:

all coefficients are purely imaginary: a = −a∗, d = −d∗, c = −c∗
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13.1 Some Properties of the NLS

Consider the NLS in the form

∂tψ =
i

2
∂2
xψ + is|ψ|2ψ with s = ±1

Note:

• the magnitude of the coefficients can be absorbed into the amplitude and the spatial
scale

• the overall sign of the r.h.s. can be absorbed by running time backward t→ −t

• the relative sign s between ∂2
xψ and |ψ|2ψ cannot be changed by scaling or coordinate

transformations

– s = +1: focussing case (spatially homogeneous oscillations linearly unstable,
cf. Benjamin-Feir instability of CGL).

– s = −1: defocussing case.

The NLS does not have a Lyapunov functional but is a Hamiltonian system with Hamilto-
nian (energy) functional

H{ψ, ψ∗} =
1

2

ˆ
|∂xψ|2 − |ψ|4dx

i.e.
∂tψ = −iδH{ψ, ψ

∗)

δψ∗
(117)

since using integration by parts and employing the basic property of functional deriva-
tives11,

δψ(x)

δψ(x′)
= δ(x− x′),

one gets
δH{ψ, ψ∗)

δψ∗
=

δ

δψ∗
1

2

ˆ
−∂2

xψ ψ
∗ − ψ2ψ∗2 dx = −1

2
∂2
xψ − ψ2ψ∗

Note:

• because of the factor i in (117) the energy of the system does not decrease with
time as it does in systems with a Lyapunov functional. Instead it is conserved.

Conserved Quantities:
11ψ(x) can be thought of as a vector with x labeling its component. The functional derivative is then

analogous to dvi

dvj
= δij for a vector v = (v1, . . . , vn).
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• L2-norm of ψ: N =
´
|ψ|2dx

d

dt
N =

ˆ
∂tψ ψ

∗ + ψ ∂tψ
∗dx = (118)

=

ˆ (
i

2
∂2
xψ + i|ψ|2ψ

)
ψ∗ − ψ

(
i

2
∂2
xψ
∗ + i|ψ|2ψ∗

)
dx

=︸︷︷︸
integration by parts

ˆ
i

2
∂2
xψ ψ

∗ −
(
i

2
∂2
xψ

)
ψ∗dx = 0

• total energy H
to compute d

dt
H note that (118) can be written as
ˆ
∂tψ ψ

∗ + ψ∂tψ
∗dx =

ˆ
∂tψ

δN{ψ, ψ∗)
δψ(x)

+
δN{ψ, ψ∗)
δψ∗(x)

∂tψ
∗ dx

i.e. think of ψ(x, t) as a vector with components labeled by x, each of which depends
on t

d

dt
H =

ˆ
δH{ψ, ψ∗)

δψ
∂tψ +

δH{ψ, ψ∗)
δψ∗

∂tψ
∗ dx =

=

ˆ
−i∂tψ∗ ∂tψ + i∂tψ ∂tψ

∗ dx = 0

Significance of conserved quantities:

Example:

• Newton’s equation of motion conserves total energy

m
d2

dt2
x = F (x) = − d

dx
V (x)

multiply by d
dt
x

m
d

dt
x
d2

dt2
x = − d

dt
x
d

dx
V (x)

1

2
m
d

dt

((
d

dt
x

)2
)

= − d

dt
V (x)

i.e.
d

dt

(
1

2
mẋ2 + V (x)

)
= 0

1

2
mẋ2 + V (x) = E = const.

ẋ =

√
2

m
(E − V (x)) ⇒ t =

ˆ
dx√

2
m

(E − V (x))

Thus:
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– using energy conservation reduces the order of the differential equation:
expresses ẋ as a function of x

– solution can be obtained by simple integration (quadrature): the system is called
integrable

– for two interacting particles x1(t) and x2(t) energy conservation alone leads to
a single relation between the two velocities

1

2
mẋ2

1 +
1

2
mẋ2

2 + V (x1, x2) = E = const.

to express each velocity ẋi in terms of the positions xi would need a second
equation: a second conserved quantity

– in general: for Newton’s equations of motion with N degrees of freedom to be
integrable one needs N independent, conserved quantities.

Note:

• Hamiltonian systems with N degress of freedom are integrable if they have N inde-
pendent conserved quantities.

• the NLS has infinitely many degrees of freedom and infinitely many conserved quan-
tities.
It can be shown to be integrable. Exact solutions can be obtained by the inverse
scattering transform (well beyond this class).

13.2 Soliton Solutions of the NLS

For s = +1 the NLS has exact localized solution of the form

ψ(x, t) = λ
1

cosh ρx
eiωt

Inserting into NLS yields

∂tψ −
i

2
∂2
xψ − si|ψ|2ψ = λ

(
iω

1

cosh ρx
− i

2
ρ2 cosh2 ρx− 2

cosh3 ρx
− siλ2 1

cosh3 ρx

)
eiωt =

= λ
i

cosh3 ρx

(
cosh2 ρx

(
ω − 1

2
ρ2

)
+ ρ2 − sλ2

)
eiωt

Thus we need s = +1 and

ρ = λ ω =
1

2
λ2 ⇒ ψ(x, t) = λ

1

coshλx
ei

1
2
λ2t (119)

Note:

• the parameter λ is arbitrary : there is a one-parameter family of solutions with differ-
ent amplitudes and associated different frequencies and width
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• the soliton solution is not an attractor: small perturbations do not relax and the
solution does not come back to the unperturbed solution

• in fact, (119) corresponds already to a three-parameter family due to translation
symmetry in space and time

NLS also allows transformations into moving frames of reference (boosts): u = x− ct

Consider
ψ̃(x, t) = ψ(t, x− ct)eiqx+iωt

where ψ(t, x) is a solution. For ψ̃ to be a solution, as well, q and ω have to satisfy certain
conditions. Insert ψ̃ into NLS

∂tψ̃ −
i

2
∂2
xψ̃ − si|ψ̃|ψ̃ =

(
∂tψ − c∂uψ + iωψ − i

2

(
∂2
uψ + 2iq∂uψ − q2ψ

)
− si|ψ|2ψ

)
eiqx+iωt =

=

(
∂uψ (−c+ q) + iψ

(
ω +

1

2
q2

))
eiqx+iωt

using that ψ(t, u) satisfies NLS. Require

c = q ω = −1

2
q2

Note:

• the boost velocity c or the background wavenumber q is a free parameter generating
a continuous family of solutions

Thus:

The focussing Nonlinear Schrödinger equation has a four-parameter family of solutions of
solitons

ψ(x, t) = λ
1

cosh (λ(x− qt− x0))
eiqx+i 1

2
(λ2−q2)t+iφ0

After a perturbation (change) in any of the four parameter q, λ, x0, φ the solution does not
relax back to the unperturbed solution but gets shifted along the corresponding family of
solutions.

Note:

• Surprising feature of solitons:
during collisions solutions become quite complicated, but after the collisions the soli-
tons emerge unperturbed except for a shift in position x0 and the phase φo. In par-
ticular, the other two parameters, λ and q, are unchanged, although there is also no
‘restoring force’ to push them back to the values before the collision.

• general solution can be described in terms of a nonlinear superposition of many
interacting solitons and periodic waves (captured by inverse scattering theory).
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13.3 Perturbed Solitons

Consider soliton-like solutions of the (focussing) NLS with small dissipative perturbations

∂tΨ−
i

2
∂2
xΨ− i|Ψ|2Ψ = εP (Ψ, ∂xΨ, . . .)

For small perturbations expect slow evolution along the family of solutions:

T = εt λ = λ(T ) q = q(T ) x0 = x0(T ) φ0 = φ0(T )

For simplicity: focus on perturbations for which soliton remains stationary: c = 0

Slow changes in the frequency ω = 1
2
(λ2 − q2): need to deal with the phase

ω(T ) =
d

dt
φ

Ansatz for the expansion

Ψ = ψ(Θ, T ) eiφ = (ψ0(Θ, T ) + εψ1(Θ, T ) + . . .) eiφ

where
ψ0(Θ) = λ(T )

1

cosh Θ
, Θ = λ(T )x

and
λ(T ) = λ0(T ) + ελ1(T ) + . . . , ω(T ) = ω0(T ) + εω1(T ) + . . .

with
ω0(T ) =

1

2
λ0(T )2

Note:

• the phase φ evolves on the O(1) time scale, d
dt
φ = ω, but the frequency changes on

the slow time scale as the solution evolves along the family of solutions

• in the general case (q 6= 0) one would have to introduce a spatial phase θ(x, t) as
well

Θ = λ(T )θ(x, t)

Rewrite NLS in terms of ψ rather than Ψ

iωψ − i

2
λ2∂2

Θψ − i|ψ|2ψ = ε
(
−∂Tψ + e−iφP (Ψ, ∂xΨ, . . .

)
Insert expansion of ψ

O(ε0) :

iω0ψ0 −
i

2
λ2

0∂
2
Θψ0 − i|ψ0|2ψ0 = 0
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confirms
ω0 =

1

2
λ2

0

O(ε):

Lψ1 ≡ iω0ψ1 −
i

2
λ2

0∂
2
Θψ1 − i

(
2|ψ0|2ψ1 + ψ2

0ψ
∗
1

)
= −∂Tψ0 − iω1ψ0 − iλ0λ1∂

2
Θψ0 + e−iφP

The unperturbed soliton ψ0 is part of a four-parameter family of solutions,

ψ0 = ψ0(x, t;x0, φ0, λ, q)

Taking derivatives of

∂tψ0 =
i

2
∂2
xψ0 + is|ψ0|2ψ0

with respect to the four parameters shows that L has four vanishing eigenvalues:

the linear operator L is singular.

Note:

• these eigenvectors are analogous to translation modes (cf. homework). They arise
from breaking of a continuous symmetry of the equation.

To get a solvability condition we need to project the O(ε)-equation onto the relevant left
eigenvectors.

Projections need a scalar product. For functions the scalar product typically involves some
integral over the domain. Here we can make iL self-adjoint12 by a suitable choice of the
scalar product. Choose

〈ψ1, ψ2〉 = <
(ˆ ∞
−∞

ψ∗1ψ2dΘ

)
Then * missing on ψ1in3rd row. check calculation again

〈ψ1, iLψ2〉 = <
(ˆ ∞
−∞

ψ∗1iLψ2dΘ

)
=

= <
(ˆ

ψ∗1

(
−ω0ψ2 +

1

2
λ2

0∂
2
Θψ2 +

(
2|ψ0|2ψ2 + ψ2

0ψ
∗
2

))
dΘ

)
=

= <
(ˆ
−ω0ψ

∗
1ψ2 +

1

2
λ2

0∂
2
Θψ1 ψ2dΘ

)
+

+

ˆ
ψ1r

(
2|ψ0|2ψ2r + ψ2

0ψ2r

)
+ ψ1i

(
2|ψ0|2ψ2i + ψ2

0ψ2i

)
dΘ =

= <
(ˆ

(iLψ1)ψ2dΘ

)
= 〈iLψ1, ψ2〉

Thus, with this scalar product the left eigenvectors are identical to the right eigenvectors.

Note:
12Note that the terms −ω0 and 1

2λ
2
0∂

2
Θ are suggestive of iL being self-adjoint.
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• it turns out that two of the 0-eigenvalues of iL are associated with proper eigenvec-
tors, whereas the other two have generalized eigenvectors.

Ψφ0 : iLiψ0 = 0 Ψx0 : iL∂Θψ0 = 0

Ψλ : iL (Θ∂Θψ0 + ψ0) = iλ2
0ψ0 Ψq : iLiΘψ0 = −λ2

0∂Θψ0

• of course Liψ0 = 0, but iψ0 is a left-eigenvector of iL but not of L

• (iL)2 iΘψ0 = 0 and (iL)2 (Θ∂Θψ0 + ψ0) = 0 as expected of generalized eigenvect

Focus on simple dissipative perturbation (µ, α, γ ∈ R),

P (Ψ) = µΨ + α|Ψ|2Ψ + γ|ψΨ|4Ψ (120)

Then we need only the eigenvector Ψφ associated with the phase invariance φ→ φ+ ∆φ

Ψφ0 = iψ0

Thus using iL, i.e. after multiplying O(ε)-equation by i,

0 = 〈iψ0, iLψ1〉 = <
ˆ
−iψ0 i

(
−∂Tψ0 − iω1ψ0 − iλ0λ1∂

2
Θψ0 + e−iφP

)
dΘ =

=

ˆ
ψ0

(
−∂Tψ0 + µψ0 + αψ3

0 + γψ5
0

)
dΘ

Use ψ0 = λ 1
cosh Θ

and
ˆ

1

cosh2 Θ
dΘ = 2

ˆ
1

cosh4 Θ
dΘ =

4

3

ˆ
1

cosh6 Θ
dΘ =

16

15

to get
d

dT
λ = µλ+

2

3
αλ3 +

8

15
γλ5 (121)

Notes:

• the dissipative perturbations P lead to a slow evolution of the amplitude of the per-
turbed soliton close to the soliton family of solutions: slow manifold

• with increasing amplitude the perturbed soliton becomes narrower

• non-trivial fixed points

– α < 0:
supercritical pitch-fork bifurcation

λ2 =
3

2

µ

α
+ h.o.t. if µ > 0.

Within the amplitude equation (121) the fixed point is stable.
However: do not expect this localized soliton-like solution to be stable within the
full NLS since Ψ = 0 is unstable for µ > 0: perturbations will grow far away from
the soliton
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– α > 0:
subcritical pitch-fork bifurcation

λ2
1,2 = −5

8

α

γ
± 15

16γ

√
4

9
α2 − 32

15
µγ

two soliton-like solutions created in saddle-node bifurcation at α2 = 24
5
µγ

within (121) the one with larger amplitude is stable, the other unstable.
Background state Ψ = 0 is linearly stable for µ < 0.

• full solution consists of four coupled evolution equations for λ, q, x0, φ0:

– would have to check that for the perturbation (120) the equations for q, x0, and
φ0 have stable fixed points with q = 0, x0 = const. and φ0 = const.

– a general perturbation can make soliton travel, q 6= 0, d
dT
x0 6= 0.

Figure 44: Localized wave trains in convection of water-alcohol mixtures. Top view on
annular convection cell. Two localized wave trains are seen. (P. Kolodnder, D. Bensimon,
and C.M. Surko, Phys. Rev. Lett. 60 (1988) 1723).

Notes:

• experiments in convection of water-alcohol mixtures: onset of convection via a sub-
critical Hopf bifurcation

• quintic complex Ginzburg-Landau equation
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– for strong dispersion, i.e. large α and β, the complex Ginzburg-Landau equation
can be considered as a perturbed NLS: expect localized solutions in the form of
perturbed solitons (cf. O. Thual and S. Fauve, J. Phys. (Paris) 49 (1988) 1829).

– for weak dispersion perturbation approach via interacting fronts (B.A. Malomed
and A.A. Nepomnyashchy, Phys. Rev. A (1990) 6009)
subcritical bifurcation

* bistability between conductive state (Ψ = 0) and convective state (Ψ = Ψ0 6=
0)

* front solutions Ψ±(x, t)→ 0 for x→ ∓∞ and Ψ±(x, t)→ Ψ0 for x→ ±∞

* fronts Ψ+ and Ψ− can interact and form a stable pair: wide localized wave
train .

x Rx L

A = 0

A = A c
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14 Appendix: Review of Some Aspects of 1-d Flows

14.1 Flow on the Line

Any first-order differential equation with constant coefficients,

ẋ = f(x), (122)

can be solved exactly for any f(x) by separation of variables

ˆ x

x0

dx

f(x)
= t− t0 (123)

Example: ẋ = sinx

t =

ˆ
dx

sinx
=

ˆ
cscxdx (124)

t = − ln | cscx+ cotx|+ C (125)

Now what? What have we learned?

Even if we could solve for x, would we have an overview of the behavior of system for
arbitrary initial conditions?

Geometrical picture: phase space (or phase line in 1 dimension)

x

ẋ = f(x) defines a flow in phase space or a vector field

For 1d: plot in addition f(x)

f(x)

Conclude: for any initial condition system ends up in one of the fixed points at xn =
(2n+ 1)π.
Fixed points are stagnation points of the flow

Stability of Fixed Points:

Inspection of phase line:

• flow into xn = (2n+ 1)π: stable

153



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

• flow out of xn = 2nπ: unstable

Compute linear stability by linearization around fixed point x0

x = x0 + εx1(t) ε� 1

insert
d

dt
(xo + εx1) = f(x0 + εx1)

expand and collect like orders in ε

O(ε0) : 0 = f(x0)

recovers equation for the fixed point x0

O(ε1) :
d

dt
x1 =

df

dx

∣∣∣∣
x0

x1 ≡ λx1

Thus:
x1 = x1(0) eλt

λ < 0 : linearly stable
λ = 0 : marginally stable
λ > 0 : (linearly) unstable

In our example:
0 = f(x0) = sinx0 x0 = nπ

λ = f ′(x0) = cos x0 = cosnπ

linearly stable: n odd linearly unstable: n even

Notes:

• for coupled systems f ′(x) is replaced by Jacobian matrix:
linear stability determined by eigenvalues of the Jacobian.

• linear stability describes only infinitesimal perturbations
a linearly stable fixed point can be unstable to perturbations of finite size
e.g. in example perturbation could push system beyond the unstable fixed point
separating the two linearly stable fixed points

14.1.1 Impossibility of Oscillations:

Can the solution approach fixed point via oscillations?
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t

No!

graphically:

to get to other side need to cross fixed point

→ system evolves monotonically between fixed points

More general concept: Potential

In 1 dimension autonomous systems can always be written as

ẋ = f(x) = −dV
dx

with V = −
ˆ
f(x)dx (126)

Consider:

dV

dt
=
dV

dx
ẋ = −(

dV

dx
)2 ≤ 0 (127)

V is non-increasing⇒ V cannot return to previous value

dV

dt
= 0 ⇒ dV

dx
= 0 ⇒ ẋ = 0 fixed point (128)

Thus:

• if V is bounded from below x always goes to a fixed point

• the fixed point could be at infinity, e.g. for V (x) = 1
1+x2
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Note:

• such a V that is bounded from below is also called a Lyapunov functional for the
flow.

Compare: mechanical system in overdamped limit

mẍ = −βẋ+ F (x) (129)

for very small mass (no inertia)

ẋ =
1

β
F (x) (130)

Overshoot requires inertia, 2nd derivative, i.e. 2-dimensional flow.

Notes:

• 1-dimensional systems: there is always a potential in the autonomous case

• In higher dimensions even autonomous equations may or may not have a potential :
persistent dynamics like oscillations are possible

14.2 Existence and Uniqueness

So far we assumed we always get a unique solution for all times:

• at any time ‘we know where to go’

• we can continue this forever

Solutions to

ẋ = f(x) (131)

1. do not have to exist for all times:
for given initial condition solution may cease to exist beyond some time

2. do not have to be unique:
same initial condition can lead to different states later.

1. Existence

solution can disappear by becoming infinite

if this happens in finite time then there is no solution beyond that time

Example:

ẋ = +xα with x(0) = x0 > 0 (132)
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ˆ
x−α dx =

ˆ
dx

xα
= t+ C (133)

1

1− α
x1−α = t+ C (134)

initial conditions:

C =
1

1− α
x1−α

0 (135)

x =
(
(1− α)t+ x1−α

0

) 1
1−α (136)

Solution diverges at

t∗ =
x1−α

0

α− 1
if α > 1 (137)

i.e. for α > 1 divergence in finite time.

Note: divergence in infinite time no problem: x(t) = et

2. Uniqueness

Consider previous example for 0 < α < 1

⇒ x = 0 for t∗ =
x1−α

0

α− 1
< 0 (138)

Solution can start at t∗ with x(t∗) = 0 and grow from there.

But: x̃(t) ≡ 0 is a solution for all times

⇒ can start with x̃(t) = 0 for t < t∗ and ’switch’ to x(t) > 0 beyond t∗. The combined
solution is continuous and satisfies the differential equation.

Thus: two different solutions satisfy the same initial condition (at t∗).

2 solutions for 

same initial

condition             

solution "splits"

Worse: t∗ depends on x0

⇒ can pick any t∗ and patch the solutions at that t∗

157



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

⇒ infinitely many solutions with identical i.c. x = 0.

Note: in order to get “across the splitting” need to reach 0 in finite time
(splitting has to be crossed in finite time)

Theorem13:
If for

ẋ = f(x, t) (139)

• f(x, t) is continuous in |t− t0| < ∆t in |x−x0| ≤ ∆x and has maximum M there, and

• f(x, t) satisfies Lipschitz condition within ∆x and ∆t:

|f(x1, t)− f(x2, t)| ≤ K |x1 − x2| ∀x1, x2 ∈ |x− x0| ≤ ∆x (140)

with some constant K

then the solution exists for a finite time interval |t− t0| ≤ ∆T and is unique. The interval is
given by

∆T = min

(
∆t,

∆x

M

)
(141)

Discussion:

f(x) = |x|α does not satisfy Lipschitz condition at x = 0 for 0 < α < 1:
would need

|x|α ≤ Kx ∗ .2in∀x near x = 0 (142)

i.e. K ≥ |x|α−1 →∞ for x→ 0 and α < 1

Thus: uniqueness of solution is not guaranteed.

Note: If f ′(x) is continuous then f(x) satisfies the Lipschitz condition and the solution is
unique.

14.3 Unfolding of Degenerate Bifurcations

For a transcritical or for a pitch-fork bifurcation to occur multiple conditions need to be
satisfied:

• bifurcation occurs: ∂xf |x0,µ0 = 0

• additional coefficients “happen to vanish”

– because of some symmetry of the original system
13see, e.g., Lin & Segel, Mathematics applied to deterministic problems in the natural sciences, p.57
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– bifurcation is degenerate: the vanishing of the coefficients happens only for
special choices of the parameters of the original system

Only the saddle-node bifurcation requires only 1 condition

Saddle-node bifurcation is a codimension-1 bifurcation:
in an n-dimensional parameter space the locations where a saddle-node bifurcation oc-
curs form an n − 1-dimensional hypersurface, since one of the parameters needs to be
fixed. That hypersurface has co-dimension 1.

Question: What happens when the additional conditions are weakly broken?

Consider perturbed pitchfork bifurcation

ẋ = µx− x3 + h (143)

Solving directly for fixed point is cumbersome (although possible).

Graphic solution:

µ < 0 µ > 0

x

y = - h

µ x - x 

                        

y =
3

y 

y = - h

y = - h

y = - h

1

2

3

x

y 

Creation/annihilation of 2 fixed points

Saddle-node bifurcation at extrema of µx− x3 (if µ > 0)

xSN = ±
√

1

3
µ hSN = ∓2

3
µ

√
1

3
µ (144)

Bifurcation diagrams depend on the parameter h

Vary µ:

for h < 0:
SN

µ  
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for h > 0 the lower branch is continuous and the saddle-node bifurcation occurs on the
upper branch.

Note:

• even arbitrarily small perturbations h 6= 0 change the bifurcation diagram qualita-
tively: the pitch-fork bifurcation is not structurally stable

• with the perturbation h 6= 0 the only bifurcation that occurs is a saddle-node bifurca-
tion: generic situation, structurally stable

• to get the original unperturbed pitch-fork bifurcation we have to tune 2 parameters

µ = 0 & h = 0

pitch-fork bifurcation is a codimension-2 bifurcation in the setting of (143).

• symmetries of the system may render pitch-fork bifurcation a codimension-1 pheomenon
(here reflection symmetry)

Could consider h as the bifurcation parameter:

Vary h:

x

h

µ < 0

h

x                     

SN

SN

µ > 0

Note:

• vary h up and down beyond saddle-node bifurcations: hysteresis loop

Consider the full two-parameter bifurcation problem:

Solution surface
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µ  

                        

x

µ  

                        

h

h

1 3 1 solution

cusp

µ  

                        

h

3

1

1

Degenerate pitch-fork bifurcation at µ = 0, h = 0 :

• different cuts through the solution surface yield different bifurcation diagrams

• degenerate pitch-fork bifurcation is the organizing center for the generation of two
saddle-node bifurcations.

Notes:

• Unfolding of a degenerate bifurcation:
introduce sufficiently many parameters so that no degeneracy is left.

• Often a complex bifurcation scenario containing multiple bifurcations can be under-
stood by identifying and unfolding an underlying degenerate bifurcation.

• ‘cusp catastrophe’ is organizing center for two ‘fold catastrophes’ (→ singularity the-
ory: Thom, Zeeman).

Can consider more general unfolding of the pitch-fork bifurcation (see HW)

ẋ = µx− x3 + h+ gx2.

Unfold perfect pitch-fork bifurcation now in two steps:
(g 6= 0, h = 0): break symmetry x→ −x⇒ transcritical bifurcation
(g 6= 0, h 6= 0): break transcritical⇒ only saddle-node bifurcation
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shift

break

Note:

• in this unfolding additional bifurcation diagram possible (see HW).

14.4 Flow on a Circle

For oscillations need return: two dimensions needed

v

x t

θ

v

If oscillatory motion (circle) is sufficiently attractive consider only motion along closed orbit:

Flow on a circle

θ̇ = f(θ) θ ∈ [0, 2π] (145)

Notes:

• f(θ) cannot be arbitrary: has to be single-valued, i.e. 2π-periodic

• f(θ) gives the instantaneous frequency

Example: Overdamped Pendulum with Torque
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θ

Γ

m`2θ̈ + βθ̇ = −mg` sin θ + Γ̃ (146)

consider large damping

θ̇ = Γ− a sin θ (147)

i) a = 0 (no gravity)

θ = θ0 + Γt whirling motion (148)

oscillation in horizontal coordinate:

x = ` sin θ = ` sin(θ0 + Γt) (149)

t

x

ii) a > 0 (with gravity)

a < a = a >

0 slow 2π
2π

θ

Γ Γ Γ

fast

bottle neck
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slow
fast

θ

t t t

a < a = a >Γ Γ Γ
θ θ θ

‘ghost’ of saddle-node bifurcation
⇒ extremely slow motion

Note:

• quite generally: near a steady bifurcation the dynamics become slow:
growth/decay rates go to 0 (‘critical slowing down’).

Estimate period near bifurcation point:

T =

ˆ
dt =

ˆ 2π

0

dθ

θ̇
=

ˆ 2π

0

dθ

ω − a sin θ
(150)

θε ε+-

f(  )θ

Consider general case near saddle-node bifurcation

θ̇ = f(θ)

with

f(0) = µ, f ′(0) = 0
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⇒ f(θ) = µ+
1

2
f ′′(0)︸ ︷︷ ︸
a

θ2 +O(θ3)

T =

ˆ 2π

0

dθ

f(θ)
=

ˆ +ε

−ε

dθ

µ+ aθ2 +O(θ3)︸ ︷︷ ︸
diverges as µ→ 0

+

ˆ 2π−ε

ε

dθ

f(θ)︸ ︷︷ ︸
finite as µ→ 0

→
ˆ +ε

−ε

dθ

µ+ aθ2
+ T0 for µ→ 0

extract µ-dependence for µ→ 0 (at fixed ε) using ψ = θ√
µ

1

µ

ˆ ∈
µ1/2

− ∈
µ1/2

µ1/2 dψ

1 + aψ2
+ T0 →

1

µ1/2

ˆ ∞
−∞

dψ

1 + aψ2
+ T0 ∝ µ−1/2

Notes:

• Saddle-node bifurcation on a circle is one way to generate oscillations.
Generically one has then

T ∝ µ−1/2 (151)

• other types of bifurcations to oscillatory behavior lead to different T (µ),
e.g. Hopf bifurcation

T (µ = 0) = T0 finite. (152)

• the fact that the saddle-node bifurcation leads to oscillations is a global feature of
the system:
need global connection between the generated fixed points

Examples:

i) Synchronization of fireflies

• light up periodically
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• respond to neighboring fire flies

Consider extremely simple model for two periodically flashing fireflies

φ̇1 = ω1 + a sin(φ2 − φ1)

φ2 = ω2 + a sin(φ1 − φ2)

a > 0: for φ2 − φ1 > 0 firefly φ1 is pulled by firefly φ2

introduce phase difference: θ = φ2 − φ1

θ̇ = ω2 − ω1︸ ︷︷ ︸
∆ω

−2a sin(θ)

∆ω: frequency mismatch

• Fixed point:

|∆ω|︸︷︷︸
range of entrainment

< 2a and θ0 = arcsin
∆ω

2a
6= 0

– flies flash with a fixed phase difference: phase-locked state

– slower fly lags behind: phases are not synchronized

– common oscillation frequency (frequency synchronization)

Ω = ω1 +
1

2
∆ω

– phase-locked state disappears via a saddle-node bifurcation

• “Whirling” motion: |∆ω| > a

– phase relationship between the flashes changes continuously in time

Notes:

• entrainment is a common feature of coupled oscillators

• in the case of fireflies the coupling is not present all the time but only during the flash
(‘pulsatile’), i.e. interaction consists of ‘kicks’

ii) Excitable systems:

Many systems have finite threshold for large response. For instance, neurons show little
response to small inputs but give a large action potential (‘spike’) for inputs above a certain
threshold
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V

V = 0

t

no spikerest potential

spike

Very simple model

θ̇ = Γ− a sin θ Γ ≤ a

large perturbation      spike

small perturbations      no spike

⇒ 

⇒ 

Note:

• The size of the spike (excursion) does not depend on the size of the perturbation
once the threshold is reached.

• For Γ close to a even small perturbations can be sufficient to excite a spike.
In a saddle-node bifurcation the distance between the unstable and stable fixed
points is of O(µ1/2):

∆θthreshold ≈ θ0,u − θ0,s ∝ |Γ− a|1/2

14.5 Stability

So far we had linear stability. In higher dimensions new aspects arise. Refine our notions
of stability.

Linear Stability:

• with respect to infinitesimal perturbations

• determined by linearization
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Eigenvalues in complex plane:

linearly stable marginally stable unstable

λ ∈C

We are in particular interested in sets of points that are eventually approached by the
system:

Definition:

A set of points A (e.g. a fixed point) is attracting (is an attractor) if all trajectories that
start close to it converge to it, i.e.

for all x(0) near A : x(t)→ x∞ ∈ A for t→∞

or 

Notes:

• The attractor need not be a fixed point. It could be a periodic or a chaotic orbit.

• The system need not approach the attractor right away. Even for arbitrarily small
initial distances it could make a finite excursion:

Definition:

A set A is Lyapunov stable if all orbits that start close to it remain close to it for all times.
More technically:
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A is Lyapunov stable if for any neighborhood V of A there exists a neighborhood U ⊆ V
such that if x(0) ∈ U then x(t) ∈ V for all times.

     
V

U

Notes:

• Lyapunov stability of a set does not imply it is an attractor.

• An attractor does not have to be Lyapunov stable. E.g., the unstable fixed point
at the SNIC bifurcation point is attracting but not Lyapunov stable (one cannot find
neighborhood that limits excursion)

Definition:

A set A is asymptotically stable if it is

• attracting and

• Lyapunov stable

i.e. if all orbits that start sufficiently close to A remain close to it for all times and converge
to it as t→∞.

x(0)

Lyapunov stable assymptotically stable                                                                          

U

V
U

xFP
xFP

Notes:

• linear stability⇒ asymptotic stability

• asymptotically stable⇒ Lyapunov stability

• asymptotically stable⇒ set is attracting, it is an attractor.

• linear instability⇒ instability
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• But: asymptotic or Lyapunov stability do not imply linear stability

Lyapunov stability can be shown if the system has a Lyapunov functional, which is a
generalization of the potential.

We had Gradient Systems, Potential Systems:

If
ẋ = −∇V (x) i.e. ẋi = −∂V

∂xi

with V ≥ V0 for all x (bounded from below)
then

dV

dt
=
∑
i

∂V

∂xi
ẋi = −

∑
i

(
∂V

∂xi
)2 ≤ 0

Thus V eventually reaches a (local) minimum.

Notes:

• The potential is constant in time if and only if the system is at a fixed point:

dV

dt
= 0⇔ ∂V

∂xi
= 0⇔ ẋi = 0 for all i

• Gradient systems show no persistent dynamics, cannot use a potential to show sta-
bility of a periodic orbit, say.

More general concept: Lyapunov Functional F

Definition:

F is called a Lyapunov functional if F(x) > F(x0) for all x 6= x0 ∈ U , where x0 is a fixed
point.

Notes:

• The dynamics need not be given by ẋ = −∇F .

• x0 could be replaced by a set of points (e.g. a periodic orbit)

If F is a Lyapunov functional for a system in a neighborhood U then we have:

• if dF
dt
≤ 0 for all x 6= x0 in the neighborhood U then x0 is Lyapunov stable

• if dF
dt
< 0 for all x 6= x0 in U then x0 asymptotically stable

Examples:

a) damped particle in bounded potential

ẍ+ βẋ = −dU
dx

170



412 Methods of Nonlinear Analysis H. Riecke, Northwestern University

i.e. written as a sytem we get

ẋ = v

v̇ = −βv − dU
dx

Try to use total energy as a Lyapunov function

mF =
1

2
ẋ2 + U =

1

2
v2 + U

m
dF
dt

= vv̇ +
dU
dx
ẋ = v(−βv − dU

dx
) +

dU
dx
v = −βv2 < 0

⇒ all fixed points are asymptotically stable, the system has no periodic orbits.

b)

ẋ = −x+ 4y

ẏ = −x− y3

Simplest attempt: try quadratic function that is bounded from below:

F = x2 + ay2 with a > 0.

dF
dt

= 2x(−x+ 4y) + 2ay(−x− y3) = −2x2︸ ︷︷ ︸
≤0

+ xy(8− 2a)︸ ︷︷ ︸
undetermined

− 2ay4︸︷︷︸
≤0

⇒ choose a = 4⇒ dF
dt
< 0 for x 6= 0 6= y

⇒ (0, 0) asymptotically stable and no periodic orbits

Note:

• finding a Lyapunov function is a matter of trial and error.

14.6 Poincaré-Bendixson Theorem

• How complex can the dynamics be in 2 dimensions?

• Can we guarantee a periodic orbit without explicitly calculating it?

Poincaré-Bendixson Theorem:

If

• R is a closed bounded subset of the plane (‘trapping region’)
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• ẋ = f(x) with f(x) continuously differentiable on an open set containing R

then any orbit that remains in R for all t either converges to a fixed point or to a periodic
orbit.

Simple Illustration:

In one dimension we had: no periodic orbits

• fixed point divides phase line into left and right
⇒ cannot go back and forth
⇒ no oscillatory approach to fixed point and no persistent oscillations

In two dimensions:

What is more “complicated" than a periodic orbit?
A periodic orbit has single fundamental frequency ω

x(t) = A cosωt+B cos 2ωt+ C cos 3ωt+ . . .

Can we have 2 incommensurate frequencies,

ω1

ω2

6= m

n
irrational

e.g. beating between two different frequencies?

• Cannot spiral in and then out again without the orbit intersecting itself.

• Consider approach to periodic orbit in two dimensions:

Periodic orbit separates phase plane into inside and outside.
Oscillatory approach to periodic orbit not possible⇒ No second frequency.
System has to go to fixed point or periodic orbit.

not possible

Consequence of Poincaré-Bendixson:

• The only attractors of 2d-flows are fixed points or periodic orbits
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• No chaos in 2 dimensions.

Application: Periodic orbit in a model for oscillations in glycolysis

Yeast cells break down sugar by glycolysis: simple model

ADP adenosine diphosphate

ẋ = −x+ ay + x2y ≡ f(x, y)

F6P fructose-6-phosphate
ẏ = b− ay − x2y ≡ g(x, y)

For which parameter ranges can one guarantee the existence of a stable periodic orbit?

Obtain phase portrait:

Nullclines are those lines along which one of the variables are constant in time:

ẋ = 0 or ẏ = 0

i.e.

f = 0 ⇒ y =
x

a+ x2

g = 0 ⇒ y =
b

a+ x2

⇒ fixed point at the intersection of the nullclindes

y =
x

a+ x2
=

b

a+ x2

⇒ x = b and y =
b

a+ b2

fixed point exists for all b > 0, a > 0 since x ≥ 0 and y ≥ 0 needed for concentrations x, y

f = 0                                              

g = 0+
-

- +

y

x

Indicate flow on null clines: spiraling motion around the fixed point:
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• to fixed point?

• to periodic orbit? which?

• to infinity?

To use Poincaré-Bendixson:

1. need trapping region R

2. exclude fixed points from trapping region

1) Trapping Region:

x

y

need to exclude 

escape

Can we find line that 

does not get crossed?

Consider first x = 0 and y = 0:

f(0, y) = ay > 0 ⇒ ẋ > 0

g(x, 0) = b > 0 ⇒ ẏ > 0

Consider large x and y (check possibility of escape)

ẋ ∼ x2y
ẏ ∼ −x2y

}
on the orbit x and y satisfy

dy

dx
=

dy
dt
dx
dt

∼ −1 for large x, y

Show that slope is steeper than -1
compare |ẋ| with |ẏ| more precisely

ẋ− (−ẏ) = −x+ ay + x2 y + b− ay − x2 y

= b− x

⇒ for x > b |ẋ| < |ẏ|
⇒ flow inward along y = −x + C for x > b and C large enough to have nonlinearities
dominate the flow

for y > b
a

we have g < 0
⇒ flow inward for y > b/a
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f  

+
-

-+g

b

for y > b/a   g<0

2) Fixed Points:

only a single fixed point
(
b, b

a+b2

)
Stability analysis shows fixed point unstable for

1− 2a−
√

1− 8a < 2b2 < 1− 2a+
√

1− 8a

⇒ limit cycle guaranteed for this range of b (if a ≤ 1
8
)

outside this range of b expect convergence to fixed point.

Instability at 2(b
(1,2)
H )2 = 1 − 2a ±

√
1− 8a is a Hopf bifurcation (2 complex eigenvalues

cross the imaginary axis).

Oscillations occur for b(1)
H < b < b

(2)
H . No steady bifurcation possible.

175


	Introduction
	Central Tool: Separation of Time Scales

	Linear Systems
	Hartman-Grobman theorem

	Bifurcations in 1 Dimension
	Implicit Function Theorem
	Saddle-Node Bifurcation
	Transcritical Bifurcation
	Pitchfork Bifurcation
	Structural Stability of Bifurcations
	Saddle-Node Bifurcation
	Transcritical Bifurcation


	1d-Bifurcations in Higher Dimensions: Reduction of Dynamics
	Center Manifold Theorem
	Center-Manifold Reduction 
	Non-Uniqueness of the Center Manifold
	Comparison with a Multiple-Scale Analysis

	Numerical Approaches to Bifurcations I
	Introduction
	Pseudo-Arclength Continuation
	Branch Switching 

	Higher-Dimensional Center Manifolds: Hopf Bifurcation
	Center Manifold Approach
	Multiple-Scale AnalysisFor a simpler start-up example see Notes for 322.
	Normal Form Transformations

	Numerical Approaches to Bifurcations II
	Hopf Bifurcations and Continuing Periodic Orbits

	Use of Symmetries: Forced Oscillators
	Resonant Forcing
	Symmetries, Selection Rule, and Scaling 
	Selection rule
	Scaling

	Non-resonant Forcing
	1:1 Forcing
	3:1 Forcing
	A Quadratic Oscillator with 3:1 Forcing

	Higher-Dimensional Center Manifolds: Mode Interaction
	Center-Manifold from PDE
	Interaction of Stripes of Different Orientations: Stripes vs Squares 
	Interaction of Stripes of Different Orientations: Stripes vs Hexagons 

	Steady Spatial Patterns: Real Ginzburg-Landau Equation
	Phase Dynamics: Slow Dynamics Through the Breaking of a Continuous Symmetry 
	Easier Derivation of the Linear Phase Diffusion Equation


	Oscillations: Complex Ginzburg-Landau Equation
	Phase Dynamics for Oscillations

	Fronts and Their Interaction
	Single Fronts Connecting Stable States
	Perturbation Calculation of the Front Velocity

	Interaction between Fronts

	Nonlinear Schrödinger Equation
	Some Properties of the NLS
	Soliton Solutions of the NLS
	Perturbed Solitons

	Appendix: Review of Some Aspects of 1-d Flows
	Flow on the Line
	Impossibility of Oscillations:

	Existence and Uniqueness
	Unfolding of Degenerate Bifurcations
	Flow on a Circle
	Stability
	Poincaré-Bendixson Theorem


