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1 Asymptotic Evaluation of Integrals1

Motivation:

Many functions and solutions of differential equations are given or can be written in terms

of definite integrals that depend on additional parameters.

E.g. modified Bessel function

K0(x) = e−x
∫ ∞

0

(
t2 + 2t

)−1/2
e−xtdt

Integrals with parameters also arise from Fourier and Laplace transforms

f̃(ω) =
1

2π

∫ ∞

−∞
e−iωtf(t) dt.

It is often useful to extract the behavior of such a complicated solution in limiting cases,

e.g. for large values of the argument,

• to get analytical insight into the behavior of the solution: is it decaying or diverging?

if so, how? Any oscillatory behavior?

• for faster numerical evaluation

– such a function could appear as a Green’s function in a numerical code and could

be called many times

– the evaluation of the integral could be effected by round-off errors if the integrand

is strongly oscillatory leading to many cancellations

– divergences are difficult to treat numerically

Often one could analyse the differential equation leading to that special function in that

limiting case. But then not all boundary conditions are exploited and one looses information

(prefactors). If one has an integral representation of that function one can analyze that in

the limit, which retains the full boundary information.

E.g.

y′ = xy + 1 y(0) = 0

For large x one can get the approximate solution via

y′ = xy

d

dx
ln y = x ⇒ y = y0e

1
2
x2

To obtain the prefactor y0 one needs to use the initial condition. However, the approximate

solution is only valid for x→ ∞ and not for x = 0.

1This chapter follows quite closely Bender & Orszag.
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Here we can get an integral expression for the solution using an integrating factor

d

dx

(

e−
1
2
x2y
)

= e−
1
2
x2

Using the initial condition y(0) = 0 we get

y(x) = e
1
2
x2
∫ x

0

e−
1
2
t2dt

From this integral one can get the asymptotic behavior of y(x) for x → ∞ including the

prefactor y0.

Practical Note:

• For many of the expansions and perturbation methods maple and mathematica can

be very useful. Both are available on the departmental computer network.

1.1 Elementary Examples

Consider

I(x) =

∫ 2

0

cos

[
1

x

(
t2 + t3

) 1
4

]

dt

For large x one can easily approximate

lim
x→∞

I(x) =

∫ 2

0

lim
x→∞

cos

[
1

x

(
t2 + t3

) 1
4

]

dt =

∫ 2

0

cos [0] dt = 2

But: Not always one can interchange the limit with the integral!

Reminder:

If the series expansion
∑N

n=0 fn(t) converges to f(t) uniformly for all t in the interval [a, b],
i.e. for any ǫ > 0

∣
∣
∣
∣
∣

N∑

n=0

fn(t)− f(t)

∣
∣
∣
∣
∣
< ǫ for N > N0(ǫ)

with N0(ǫ) independent of t ∈ [a, b], then the series can be integrated term by term, i.e.

∫ b

a

f(t)dt =

∫ b

a

lim
N→∞

N∑

n=0

fn(t)dt = lim
N→∞

N∑

n=0

∫ b

a

fn(t)dt

Thus, to show the validity for our example I(x) we would consider the series expansion of

cos
[
1
x
(t2 + t3)

1
4

]

for y ≡ x−1 → 0 and show uniform convergence within the interval [0, 2].

Example 1

Consider the small-x behavior of I(x) =
∫ 1

0
1
t
sin xt dt

∫ 1

0

1

t
sin xt dt =

∫ 1

0

1

t

{

xt− 1

3!
(xt)3 + . . .

}

dt

7
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The convergence of the series

x− 1

3!
x3t2 +

1

5!
x5t4 + . . .

to t−1 sin(xt) is uniform for all t ∈ [0, 1]: use ratio test

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣

= limn→∞
1

(2(n + 1)− 1) (2(n+ 1)− 2)
x2t2

= x2t2 limn→∞
1

(2(n + 1)− 1) (2(n+ 1)− 2)
= 0 for all t ∈ [0, 1]

In particular,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
< 1 bounded away from 1

Therefore we integrate term by term to get

∫ 1

0

1

t
sin xt dt ∼ x− 1

3!

1

3
x3 +

1

5!

1

5
x5 . . .

Example 2 I(x) =
∫∞
x
tα−1e−t dt

Determine the behavior of the incomplete Γ-function for small x

Γ(α, x) =

∫ ∞

x

tα−1e−t dt

We would like to expand the exponential and then integrate term by term. This would lead

to terms ∫ ∞

x

tα−1 1

n!
(−t)n dt

which diverge at the upper limit for large enough n. To treat the upper limit we need to

keep the exponential. Depending on a we need to do this in different ways:

i) α > 0

Try to write the integral in terms of an integral that does not involve the limit x → ∞.

Rewrite

∫ ∞

x

tα−1e−t dt =

∫ ∞

0

tα−1e−t dt−
∫ x

0

tα−1

∞∑

n=0

(−t)n
n!

dt (1)

= Γ(α)−
∞∑

n=0

(−1)n
xn+α

(n + α)n!

since the second term can again be integrated term by term:
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=
tn+1+α−1

tn+α−1

n!

(n+ 1)!
=

t

n+ 1
<

x

n+ 1
< 1 for all t ∈ [0, x] and n + 1 > x. (2)

Notes:
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• Extending the integral to x = 0 worked because the definite integral
∫∞
0

exists.

• The goal is to extract the x-dependence of the integral. It is therefore sufficient if

the integral can be rewritten in terms of another x-dependent integral and an x-

independent integral, even if the latter can only be evaluated numerically.

• What happens for α < 0? Then the individual integrals in the series cannot be done.

ii) α ≡ −ᾱ < 0 but not an integer

Now negative powers of t appear and the integral cannot be extended to x = 0 straightfor-

wardly. Look at the low and high powers in t separately:

∫ ∞

x

t−ᾱ−1e−tdt =

∫ ∞

x

1

tᾱ+1
− 1

tᾱ
+

1

2

1

tᾱ−1
. . . (−1)N

1

tᾱ+1−N
︸ ︷︷ ︸

decay faster than t−1 for t→∞

+ (−1)N+1 1

tᾱ+1−N−1
+ . . .

︸ ︷︷ ︸

grows more slowly than t−1 for t→0

dt

• low powers: up to a certain N the first integral can be done directly without using the

exponential

need ᾱ + 1−N > 1 i.e. N < ᾱ

Let us choose the largest N that satisfies this condition.

• high powers: integral would diverge at x→ ∞ ⇒ the exponential has to be kept.

For sufficiently large N the integral can be extended to x = 0. We need

ᾱ + 1−N − 1 < 1 i.e. N + 1 > ᾱ

• Thus, we can satisfy both conditions if we choose N to satisfy

N < ᾱ < N + 1

Note, that this condition can be met for any non-integer ᾱ.

Now, split the power series under the integral into two parts:

∫ ∞

x

tα−1e−t dt =

∫ ∞

x

t−ᾱ−1
N∑

n=0

(−t)n
n!

dt+

∫ ∞

x

t−ᾱ−1
∞∑

n=N+1

(−t)n
n!

dt

Then, by construction the first integral, which does not involve a series, converges at the

upper limit t→ ∞.
∫ ∞

x

t−ᾱ−1
N∑

n=0

(−t)n
n!

dt = −
N∑

n=0

(−1)n
xn−ᾱ

(n− ā)n!

The second integral involving the series cannot be done term by term: because of the upper

limit the convergence is not uniform (cf. (2)). But it poses no problem at the lower limit

t = x→ 0: the term in the integrand with the lowest power in t is

t−ᾱ−1+N+1 = tN−ᾱ with N − ᾱ > −1

9
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Therefore exploit the integral over [0,∞)

∫ ∞

x

t−ᾱ−1

∞∑

n=N+1

(−t)n
n!

dt =

∫ ∞

0

t−ᾱ−1

∞∑

n=N+1

(−t)n
n!

dt−
∫ x

0

t−ᾱ−1

∞∑

n=N+1

(−t)n
n!

dt.

The second integral can be performed term by term

∫ x

0

t−ᾱ−1

∞∑

n=N+1

(−t)n
n!

dt =

∞∑

n=N+1

(−1)n
xn−ᾱ

(n− ā)n!
. (3)

Bring back the exponential function strategically for the first integral

∫ ∞

0

t−ᾱ−1

∞∑

n=N+1

(−t)n
n!

dt =

∫ ∞

0

t−ᾱ−1

{

e−t −
N∑

n=0

(−t)n
n!

}

dt.

This integral converges at the lower limit because all the low powers of t are eliminated due

to N − ā > −1. It converges at the upper limit because the high powers are given by those

of the exponential function and the highest exponent of the term without the exponential

is N − ā − 1 < −1. We cannot evalute the 2 terms individually; evaluate the two terms

together therefore by repeated integration by parts to eliminate the sum iteratively by

taking derivatives

∫ ∞

0

t−ᾱ−1

{

e−t −
N∑

n=0

(−t)n
n!

}

dt = − 1

ᾱ
t−ᾱ

{

e−t −
N∑

n=0

(−t)n
n!

}∣
∣
∣
∣
∣

∞

0

−
∫ ∞

0

− 1

ᾱ
t−ᾱ

{

−e−t −
N−1∑

n=0

(−t)n
n!

}

dt

The boundary terms vanish:

• at t→ ∞ because ᾱ > N

• at t = 0 because all powers inside the curly braces have exponents N + 1 > ᾱ and

higher

Thus after N + 1 integrations by parts

∫ ∞

0

t−ᾱ−1

{

e−t −
N∑

n=0

(−t)n
n!

}

dt = (−1)N+1 1

ᾱ (ᾱ− 1) . . . (ᾱ−N)

∫ ∞

0

t−ᾱ+Ne−tdt

︸ ︷︷ ︸

Γ(N−ᾱ+1)

Notes:

• The definition Γ(a) =
∫∞
0
tα−1e−tdt is valid only for α > 0.

• In rewriting the integral as Γ (N − ᾱ + 1) we used that N + 1 > ᾱ.

10
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Now use

Γ (N − ᾱ+ 1) = (N − ᾱ) (N − ᾱ− 1) . . . (N − ᾱ−N) Γ (−ᾱ) =
= (−1)N+1 (ᾱ−N) (ᾱ−N + 1) . . . (ᾱ) Γ (−ᾱ)

︸ ︷︷ ︸

Γ(α)

Thus
∫ ∞

0

t−ᾱ−1

{

e−t −
N∑

n=0

(−t)n
n!

}

dt = Γ (α)

Combining with (3) we get

∫ ∞

x

t−ᾱ−1e−tdt = Γ (α)−
∞∑

n=0

(−1)n
xn−ᾱ

(n− ᾱ)n!
= Γ (α)−

∞∑

n=0

(−1)n
xn+α

(n + α)n!

as in the case α > 0.

But: now the series contains also negative powers of x.

Summarizing again the strategy:

We separated the series into to parts

∫ ∞

x

t−ᾱ−1e−tdt =

∫ ∞

x

1

tᾱ+1
− 1

tᾱ
+

1

2

1

tᾱ−1
. . . (−1)N

1

tᾱ+1−N
︸ ︷︷ ︸

Ilow

dt+

∫ ∞

x

(−1)N+1 1

tᾱ+1−N−1
+ . . .

︸ ︷︷ ︸

Ihigh

dt

where by choosing N to satisfy N < ᾱ < N + 1

• all the terms in Ilow have an exponent smaller than -1 and decay faster than t−1 for

t → ∞; therefore the integrals can be done straightforwardly. We chose the largest

value for N that satisfies that condition.

• the terms in Ihigh have an exponent larger than -1:

– the terms decay more slowly than t−1 for t → ∞ and cannot integrated individu-

ally. We need to retain the exponential.

– these terms grow less than t−1 for t→ 0 and therefore allow the lower limit of the

integral to be pushed to 0. This leads to the complete Γ-function and an integral

involving only small values of t.

iii) α < 0 integer

using similar techniques one gets (cf. Bender&Orszag 6.2 example 4)

Γ (−N, x) = (−1)N+1

N !

(

γ −
N∑

n=1

1

n

)

+
(−1)N+1

N !
ln x−

∞∑

n=0,n 6=N
(−1)n

xn−N

(n−N)n!

This expression differs qualitatively from the other ones by the appearance of the ln x.
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1.2 Integration by Parts

Consider integration by parts of an integral of the form
∫ x

a
tnf(t)dt. There are two ways to

integrate by parts

i) ∫ x

a

tnf(t)dt =
1

n + 1
tn+1f(t)

∣
∣
∣
∣

x

a

−
∫ x

a

1

n + 1
tn+1df

dt
dt

ii) ∫ x

a

tnf(t)dt = tnF (t)|xa −
∫ x

a

ntn−1F (t)dt

with F (t) being an arbitrary antiderivative of f(t)

dF (t)

dt
= f(t)

We have made progress if we can neglect the integral term that arises.

In each step the power of the polynomial in the remaining integral

• increases in i): suggests using it for approximations for small x

• decreases in ii): suggests using it for approximations for large x

Example 1: Taylor series and remainder

f(x) = f(0) +

∫ x

0

f ′(t)dt

= f(0) + (t− x) f ′(t)|t=xt=0 −
∫ x

0

(t− x) f ′′(t) dt

= f(0) + xf ′(0) +

∫ x

0

(x− t) f ′′(t) dt

Note: in this case it is more useful to use t− x rather than t as the antiderivative of 1

Repeated integration by parts yields

f(x) =
N∑

n=0

xn

n!
f (n)(0) +

1

N !

∫ x

0

(x− t)N f (N+1)(t) dt

No approximation has been made:

• the integral term gives exactly the remainder of the Taylor expansion; it can be used

to obtain detailed error estimates.
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For convergence we need that the integral grows more slowly than N ! for fixed x.

Example 2: I(x) =
∫∞
x
e−t

4
dt for x→ ∞

Motivated by case ii) above we would like to integrate the exponential. Rewrite it therefore

as a derivative with compensating terms and rewrite I(x) as

I(x) = −1

4

∫ ∞

x

1

t3
d

dt

(

e−t
4
)

dt

= −1

4

1

t3
e−t

4

∣
∣
∣
∣

∞

x

+
1

4

∫ ∞

x

−3

t4
e−t

4

dt

Estimate the integral term

∫ ∞

x

1

t4
e−t

4

dt <
1

x4
I(x) ≪ I(x) for x→ ∞

Therefore we get

I(x) ∼ 1

4

e−x
4

x3
x→ ∞

Higher-order terms are obtained in the same way by repeated integration by parts.

Example 3: I(x) =
∫ x

0
t−

1
2 e−tdt for x→ ∞

Try straight-forward integration by parts

I(x) = −t− 1
2 e−t

∣
∣
∣

x

0
− 1

2

∫ x

0

t−
3
2 e−t dt

This will not work: both terms diverge at the lower limit, although the original integral

does not have that problem.

In this case one can take care of the lower limit by noting

∫ ∞

0

t−
1
2 e−tdt = Γ(

1

2
) =

√
π

I(x) =

∫ ∞

0

t−
1
2 e−tdt−

∫ ∞

x

t−
1
2 e−tdt

=
√
π + t−

1
2 e−t

∣
∣
∣

∞

x
+

1

2

∫ ∞

x

t−
3
2 e−t dt

︸ ︷︷ ︸

< 1
x

∫ ∞
x
t−

1
2 e−tdt

Thus

I(x) ∼ √
π − e−x√

x
(4)

Note:

13
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• if the integration by parts leads to a boundary contribution that diverges or is even

only much larger than I(x) itself the integration by parts will not work: that large

contribution needs to be canceled by the integral in the remainder, i.e. that integral

will also be large and cannot be neglected.

Example 4: Stieltjes integral I(x) =
∫∞
0

e−t

1+xt
dt for small and large x

Small x:

we want to integrate by parts repeatedly to generate terms xn, n > 0

Since
d

dt

1

1 + xt
= −x 1

(1 + xt)2

we write

I(x) =
︸︷︷︸

i.b.p.

− 1

1 + xt
e−t
∣
∣
∣
∣

∞

t=0

+

∫ ∞

0

−x 1

(1 + xt)2
e−tdt

=
︸︷︷︸

i.b.p.

1 + x
1

(1 + xt)2
e−t
∣
∣
∣
∣

∞

0

+ x2
∫ ∞

0

2

(1 + xt)3
e−tdt

= 1− x+ . . . (−1)n−1 (n− 1)!xn−1 + (−1)n n! xn
∫ ∞

0

1

(1 + xt)n+1 e
−tdt

The integrals generated by the integration by parts exist for all n. Therefore we get for

small x the series

I(x) ∼
∞∑

n=0

(−1)n n! xn x→ 0

Clearly, this series does not converge to I(x) for any fixed x and N → ∞: the individual

terms even diverge for fixed x as n→ ∞.

What sense can we make of such a series? Can it be of any use?

14



420-2 Asymptotics H. Riecke, Northwestern University

Figure 1: Stieltjes integral and its asymptotic approximations. Note that for only for

small x the approximation with more terms is better than the approximation keeping fewer

terms. For larger x the situations is reverse!

Estimate the error for fixed N :

E(x,N) =

∣
∣
∣
∣
∣
I(x)−

N∑

n=0

(−1)n n! xn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
(−1)n (N + 1)! xN+1

∫ ∞

0

1

(1 + xt)N+1+1
e−tdt

∣
∣
∣
∣

< (N + 1)! xN+1

∫ ∞

0

e−tdt = (N + 1)! xN+1 (5)

Thus:

• For fixed N and x → 0

– the error goes to 0

– the error is small compared to the last term in the series that is kept.

Such series appear quite often in asymptotic analysis and they can be very useful, even

though they do not converge.

Definition

A series
∑

n fn (x− x0)
αn

is called asymptotic to f(x) at x0,

f(x) ∼
∑

n=0

fn (x− x0)
αn ,

15
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if for any fixed N

∣
∣
∣
∣
∣
f(x)−

N∑

n=0

fn (x− x0)
αn

∣
∣
∣
∣
∣
≪ |x− x0|αN for x→ x0.

Notes:

• In an asymptotic series, for x → x0 the error is small compared to the last term kept

in the series.

• The series need not be an expansion in integer powers of x− x0 (α ∈ R+ ).

• If a series is asymptotic to f(x) it does not have to converge to f(x) for fixed x when

N → ∞.

• Any power series Σ∞
n=0anx

n is asymptotic to some continuous function. One can con-

struct such a function, e.g., in the form

f(x) = Σ∞
n=0anφn(x) x

n

where φn(x) has only compact support within |x| < ∆n with ∆n shrinking with n and

φn(x) = 1 for |x| < δn with δn < ∆n (cf. Bender&Orszag Ch.3.8 Example 2).

Therefore, it is not meaningful to say some series is asymptotic without specifying to

which function it is asymptotic.

• A readable overview of asymptotic series and beyond (going beyond Bender & Orszag)

are the first few chapters of J.P. Boyd’s paper The Devil’s Invention: Asymptotic,

Superasymptotic, and Hyperasymptotic Series, Acta Applicandae Mathematicae 56

(1999) 1.

Thus, the series we obtained for the Stieltjes integral is asymptotic to the integral for small

x.

Look at the error of the Stieltjes series in some more detail:

for increasing N the ratio ρ of successive error estimates is given by

ρ =
(N + 1)!xN+1

N !xN
= (N + 1)x

Thus,

• for N + 1 < x−1 we have ρ < 1 and the error shrinks with increasing N

• for N + 1 > x−1 we have ρ > 1 and the error increases with increasing N

• for each x there is an optimal N for which the error is minimal.
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Figure 2: Error of the asymptotic series for the Stieltjes integral for N = 1, 2, 4, 6, 8, 10, 12

as a function of x. The error of the optimal choice Nopt is given by the envelope of all curves

and decreases very rapidly with x→ 0.

Note:

• For the Stieltjes integral the error has the same sign and is smaller than the first

omitted term. Therefore, for a given x the optimal N is that for which the N + 1-th

term is minimal: Optimal truncation rule.

• The optimal truncation rule holds for Stieltjes-like integrals
∫∞
0
ρ(t)/(1 + xt)dt.
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Figure 3: Terms an of the Stieltjes series and the error of the series Σni=0ai for x = 0.08.
Consistent with (5) the error is smaller than the first omitted term.

a) b)

Figure 4: Absolute values of the terms an of the Stieltjes series and the absolute value of

the error of the series Σni=0ai on a log scale for x = 0.05 (a) and x = 0.1 (b).

Note:

• For an asymptotic series the error cannot be made smaller than some minimal value

and that value increases with increasing x, i.e. with increasing distance from the

expansion point.

• In a converging series the error can always be made to go to 0 for any x within the

radius of convergence.
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Large x:

we would like to generate terms x−n, n > 0. Try therefore integration by parts the other

way around.

I(x) =

∫ ∞

0

e−t
1

x

d

dt
ln (1 + xt) dt

=
︸︷︷︸

i.b.p.

1

x
ln (1 + xt) e−t

∣
∣
∣
∣

∞

t=0
︸ ︷︷ ︸

0

+
1

x

∫ ∞

0

ln (1 + xt) e−tdt

=
︸︷︷︸

i.b.p.

1

x2
[(1 + xt) ln (1 + xt)− (1 + xt)] e−t

∣
∣
∞
0
+

1

x2

∫ ∞

0

[(1 + xt) ln (1 + xt)− (1 + xt)] e−t dt

=
1

x2
+

1

x2

∫ ∞

0

[(1 + xt) ln (1 + xt)− (1 + xt)] e−t dt

So it seems, that I(x) ∼ x−2. But the integral still depends on x and therefore this scaling

holds only if the integral does not grow with x.

But: the integral in the remainder diverges for x→ ∞:

∫ ∞

0

[(1 + xt) ln (1 + xt)− (1 + xt)] e−t dt >

∫ ∞

0

[xt ln (xt)− (1 + xt)] e−t dt

= x ln x

∫ ∞

0

te−tdt+ x

{∫ ∞

0

t ln te−t − te−tdt

}

−
∫ ∞

0

e−tdt

Thus, the remainder goes like x−1 ln x≫ x−2.

One can show by other methods that

I(x) ∼ ln x

x
x→ ∞

Note:

• Integration by parts can only generate series in integer powers of x.

Whenever the asymptotic series is not a power series integration by parts must fail.

Therefore, no kind of integration by parts can work for the Stieltjes integral for large x: we

need to learn more advanced methods yet.

Important:

• Always check whether the integral in the remainder can really be neglected.
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1.3 Laplace Integrals2

Laplace integrals have the form

I(x) =

∫ b

a

f(t)exφ(t)dt

Central Idea: For large x the contributions to the integral for t near the maximal value(s)

of φ(t) dominate exponentially. Therefore it is sufficient to restrict the integral to a vicinity

of the maximum (maxima).

If φ(t) has a maximum at c ∈ (a, b) consider the approximation

I(x; ǫ) =

∫ c+ǫ

c−ǫ
f(t)exφ(t)dt

If the maximum of φ(t) occurs at a consider the approximation

I(x; ǫ) =

∫ a+ǫ

a

f(t)exφ(t)dt

and analogously if the maximum is at b.

To evaluate I(x; ǫ) it is then sufficient to use an approximation for f(t) that is valid in the

vicinity of the maximum.

Figure 5: The maximum becomes much

larger than all other points for x → ∞ with

ǫ fixed.

For this to work one needs that

• the final approximation does not depend on ǫ

• the asymptotic expansions of I(x) and I(x; ǫ) are

identical

I(x) ∼ I(x; ǫ)

This is actually the case:

Typically I(x) and I(x; ǫ) differ only by terms that are

exponentially small in x, because for a < t < c−ǫ and

c + ǫ < t < b the term exφ(t) is exponentially small

compared to exφ(c) when x→ ∞ with ǫ fixed.

To show explicitly I(x) ∼ I(x; ǫ) estimate

I(x)− I(x; ǫ)

I(x; ǫ)

For simplicity assume the maximum occurs at c = 0, which could be inside the interval or

at its boundary.

First consider maximum at the lower boundary, c = 0 = a, i.e. φ(t) is decreasing from a to b

2This method was first presented by Laplace (1774).
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a=c b

Figure 6: Sketch for the estimates for the ex-

ponential.

We need an upper bound for the numerator

|I(x)− I(x; ǫ)| =
∣
∣
∣
∣

∫ b

ǫ

f(t)exφ(t)dt

∣
∣
∣
∣
< exφ(ǫ)

∣
∣
∣
∣

∫ b

ǫ

f(t)dt

∣
∣
∣
∣

and a lower bound for the denominator

I(x; ǫ) =

∫ ǫ

0

f(t)exφ(t)dt

We are assuming that f(t) is sufficiently

smooth. If f(0) 6= 0 we can therefore as-

sume that f(t) does not change sign in [0, ǫ]
and has a minimal value fmin > 0 in [0, ǫ].

We can find γ > 0 such that

φ(t) ≥ φ(0)− γt for t ∈ [0, ǫ]

Then

I(x; ǫ) > exφ(0)
∫ ǫ

0

fmine
−xγtdt

= exφ(0)
fmin
γx

(
1− e−γxǫ

)

and one has

I(x, ; ǫ) > C x−1exφ(0) x→ ∞
with some x-independent constant C.

Thus

|I(x)− I(x; ǫ)|
|I(x; ǫ| <

∣
∣
∣

∫ b

ǫ
f(t)dt

∣
∣
∣

C
xρe−x(φ(0)−φ(ǫ)) →

︸︷︷︸

exponentially

0 for x→ ∞ (6)

Note:

• since I(x) and I(x; ǫ) differ only by terms that are exponentially small in x for x → ∞
their expansions in powers of x are equal to all orders:

I(x; ǫ) ∼ I(x)

Example 1: I(x) =
∫ a

0
(1− t)−1 e−xtdt for a < 1.

Here φ(t) = −t. It is maximal at t = 0. Expand therefore f(t) around t = 0.

I(x; ǫ) ∼
∫ ǫ

0

(1 + . . .) e−xtdt =
1

x

(
1− e−ǫx

)

The term containing ǫ is exponentially smaller than the other term (it is subdominant):

I(x) ∼ 1

x
x→ ∞
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Go to higher orders in the expansion und use that the series converges uniformly for t ∈
[0, ǫ],

I(x; ǫ) ∼
∫ ǫ

0

∞∑

n=0

tne−xtdt =

∞∑

n=0

∫ ǫ

0

tne−xtdt =

∞∑

n=0

∫ ǫx

0

( s

x

)n 1

x
e−sds.

We are keeping ǫ fixed as x → ∞. The upper limit of that integral goes therefore to ∞ for

x → ∞. Although all these integrals can be done easily directly, it is yet easier to replace

ǫx by ∞,

I(x) ∼
∞∑

n=0

∫ ∞

0

tne−xtdt =
∞∑

n=0

(−1)n
dn

dxn

∫ ∞

0

e−xtdt =
∞∑

n=0

(−1)n
dn

dxn
1

x
x→ ∞.

Why can we replace ǫx by ∞? The approximation for (1 + t)−1
is only valid for small t,

0 ≤ t < 1, but the difference is subdominant relative to I(x) since x→ ∞ for ǫ fixed,

∞∑

n=0

∫ ∞

ǫ

tne−xtdt =

∞∑

n=0

(−1)n
dn

dxn

{
1

x
e−xǫ

}

.

Note:

• The contributions to I(x) all come from inside the interval [c− ǫ, c+ ǫ]. There we need

to approximate f(t) systematically to make the integrals doable.

• The contributions from outside of [c − ǫ, c + ǫ] are only subdominant with respect to

I(x); therefore it does not matter how we approximate f(t) outside that interval. In

particular, we can replace ǫx by ∞, even if the approximation of f(t) is not valid there.

1.3.1 Watson’s Lemma

For the less general integral

I(x) =

∫ b

0

f(t)e−xtdt

one can give a general expression if f(t) is given by an asymptotic series

f(t) ∼ tα
∞∑

n=0

ant
βn t→ 0

For the integral to converge we need α > −1 and β > 0.

The asymptotic series for f(t) satisfies

∣
∣
∣
∣
∣
f(t)− tα

N∑

n=0

ant
βn

∣
∣
∣
∣
∣
≪ Ktα+βN , t→ 0 for all N

For given N we can therefore choose ǫ > 0 such that

∣
∣
∣
∣
∣
f(t)− tα

N∑

n=0

ant
βn

∣
∣
∣
∣
∣
≤ Ktα+βN tβ = Ktα+β(N+1), t ∈ [0, ǫ]
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Now consider

I(x; ǫ) =

∫ ǫ

0

f(t)e−xtdt

Compared to I(x) we make only an exponentially small error by replacing I(x) by I(x; ǫ).

∣
∣
∣
∣
∣
I(x; ǫ)−

∫ ǫ

0

tα
N∑

n=0

ant
βne−xtdt

∣
∣
∣
∣
∣

≤
∫ ǫ

0

∣
∣
∣
∣
∣
f(t) e−xt − tα

N∑

n=0

ant
βne−xt

∣
∣
∣
∣
∣
dt

≤ K

∫ ǫ

0

tα+β(N+1)e−xtdt

< K

∫ ∞

0

tα+β(N+1)e−xtdt

= K
Γ (α + β(N + 1) + 1)

xα+β(N+1)+1

Now replace again ǫ by ∞ in the integral on the left hand side and obtain

∣
∣
∣
∣
∣
I(x; ǫ)−

N∑

n=0

an
Γ (α + βN + 1)

xα+βN+1

∣
∣
∣
∣
∣
≤ K

Γ (α + β(N + 1) + 1)

xα+β(N+1)+1
≪ Γ (α + βN + 1)

xα+βN+1
x→ ∞.

Thus for all N the error is small compared to the last term in the series and we have

established the asymptotic series

I(x) ∼
∞∑

n=0

an
Γ (α+ βn+ 1)

xα+βn+1
x→ ∞

Note:

• Watson’s lemma will always generate a power series in an algebraic power of x be-

cause the maximum of φ(t) ≡ −xt is at t = 0.

Example 2: Bessel function K0(x) =
∫∞
1

(s2 − 1)
−1/2

e−xsds

To bring K0(x) in the correct form shift the limit t = s− 1

K0(x) = e−x
∫ ∞

0

(
t2 + 2t

)− 1
2 e−xtdt

To expand around t = 0 rewrite

(
t2 + 2t

)− 1
2 = (2t)−

1
2

(

1 +
1

2
t

)− 1
2

For small u Taylor series leads to the binomial theorem in the form

1

(1− u)s
= 1 +

s

(1− u)s+1

∣
∣
∣
∣
u=0

u+
s (s+ 1)

(1− u)s+2

∣
∣
∣
∣
u=0

1

2!
u2 + . . . =

∞∑

n=0

1

n!
un

Γ (s+ n)

Γ (s)
(7)
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Insert to get

K0(x) = e−x
∫ ∞

0

(
t2 + 2t

)− 1
2 e−xtdt ∼ e−x

∫ ǫ

0

(
t2 + 2t

)− 1
2 e−xtdt

= e−x
∫ ǫ

0

(2t)−
1
2

∞∑

n=0

(

−1

2
t

)n Γ
(
1
2
+ n
)

n!Γ
(
1
2

) e−xtdt

=
︸︷︷︸

uniform convergence in [0,ǫ]

e−x
∞∑

n=0

∫ ǫ

0

(2t)−
1
2

(

−1

2
t

)n Γ
(
1
2
+ n
)

n!Γ
(
1
2

) e−xtdt

∼ e−x
∞∑

n=0

∫ ∞

0

(2t)−
1
2

(

−1

2
t

)n Γ
(
1
2
+ n
)

n!Γ
(
1
2

) e−xtdt

Note:

• Although the series coming from the binomial theorem only converges for |1
2
t| < 1,

it can be used in the integral over [0,∞) because all dominant contributions to the

integral come from t ∈ [0, ǫ].

We have rederived Watson’s lemma with α = −1
2
, β = 1, and

an =
(−1)n

2n+1/2

Γ
(
1
2
+ n
)

n!Γ
(
1
2

)

and get

K0(x) = e−x
∞∑

n=0

(−1)n

2n+1/2

Γ
(
1
2
+ n
)
Γ
(
−1

2
+ n+ 1

)

n!Γ
(
1
2

)
x−

1
2
+n+1

= e−x
∞∑

n=0

(−1)n

2n+1/2

[
Γ
(
1
2
+ n
)]2

n!Γ
(
1
2

)
1

xn+
1
2

for x→ ∞

Note:

• In this case the series for f(t) is not only asymptotic but converges.

1.3.2 General Laplace Integrals

Obtain the leading-order behavior of the general Laplace integral

I(x) =

∫ b

a

f(t)exφ(t)dt

As indicated before one has to distinguish the cases when φ(t) has local maxima and when

the maxima are attained at the boundaries of the interval. In each case φ(t) and f(t) are

expanded around the maximum t = c.
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i) Maximum at endpoint, c = a

Expand

φ(t) = φ(a) + (t− a)φ′(a) with φ′(a) < 0

I(x; ǫ) ≈
∫ a+ǫ

a

[f(a) + f ′(a) (t− a)] exφ(a)+xφ
′(a)(t−a) dt

= f(a)exφ(a)
∫ a+ǫ

a

exφ
′(a)(t−a)dt+ f ′(a)exφ(a)

∫ a+ǫ

a

(t− a) exφ
′(a)(t−a)dt

= f(a)exφ(a)
−1

xφ′(a)

{

1− exφ
′(a)ǫ
}

+ f ′(a)exφ(a)
1

φ′(a)

d

dx

[ −1

xφ′(a)

{

1− exφ
′(a)ǫ
}]

= −f(a) e
xφ(a)

xφ′(a)
+ f ′(a)exφ(a)

1

x2φ′(a)2
+ exponentially small terms

Thus

I(x) ∼ −f(a) e
xφ(a)

xφ′(a)
x → ∞ (8)

Note:

• the leading-order term depends on the value of f at x = a, but on the value and the

derivative of φ at x = a: changes in φ are amplified by φ being in the exponential and

x→ ∞

• since we kept only the first non-trivial term in the expansion of φ(t) only the leading-

order term in the result can be trusted. For higher-order terms see Sec.1.3.3.

• obviously, this result is not valid at a local maximum where φ′(a) = 0.

ii) Maximum inside the interval

Now the maximum is a local maximum

φ(t) = φ(c) +
1

p!
φ(p)(c) (t− c)p p even and φ(p)(c) < 0 (9)

I(x; ǫ) =

∫ c+ǫ

c−ǫ
[f(c) + . . .] exφ(c)ex

1
p!
φ(p)(c)(t−c)pdt

Use

s =

(
x

p!
φ(p)(c)

)

(t− c)

to get

∼ exφ(c)f(c)

[−xφ(p)(c)

p!

]− 1
p
∫ ∞

−∞
e−s

p

ds

Note:
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• the limits of the integral go to ±∞ for x→ ∞ and fixed ǫ.

Using
∫ ∞

−∞
e−s

p

ds = 2
Γ
(

1
p

)

p

we get

I(x) ∼ 2
Γ
(

1
p

)

p

[

− p!

xφ(p)

] 1
p

f(c) exφ(c) (10)

In the generic case of a quadratic maximum, p = 2, this reduces (using Γ(1
2
) =

√
π) to

I(x) ∼
√

2π

−xφ′′(c)
f(c)exφ(c) (11)

Note:

• this derivation is a bit careless in the treatment of the expansion of φ(t). A more

careful analysis is done in the next example.

Example I(x) =
∫ π/2

0
e−x sin

2 tdt

Here φ(t) has its maximum at t = 0. Expect that sin2 t can be replaced by t2 since only small

t contribute. If that is the case one gets

I(x; ǫ) ∼
∫ ǫ

0

e−xt
2

dt

Can again extend the integral to +∞

I(x; ǫ) ∼
∫ ∞

0

e−xt
2

dt =
1

2

√
π

x

Is the replacement sin2 t→ t2 justified? We need to show for small ǫ that

∫ ǫ

0

e−x sin
2 tdt ∼

∫ ǫ

0

e−xt
2

dt

Clearly, e−x sin
2 t ≈ e−xt

2
for sufficiently small t at fixed x.

But we need to look at x→ ∞ for fixed ǫ: for x→ ∞ the absolute (not the relative) error that

we make with this approximation is magnified. Because the error is in the exponential, this

error leads to a vastly wrong magnitude: we have at small, but fixed t

e−x sin
2 t

e−xt2
→ ∞ exponentially large for x→ ∞

Thus, for the two exponentials to be close to each other, the acceptable values of t go to 0 as

x → ∞. How small does t need to be?
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Expand sin t to higher order

x sin2 t = x

{

t− 1

6
t3 +O(t5)

}2

= xt2 − 1

3
xt4 +O(xt5)

Then we get for the integral

∫ ǫ

0

e−x sin
2 tdt =

∫ ǫ

0

e−xt
2+ 1

3
xt4+O(xt5)dt

Divide the integration domain into two parts

∫ ǫ

0

e−xt
2− 1

3
xt4+O(xt5)dt =

∫ tmax

0

e−xt
2− 1

3
xt4+O(xt5)dt+

∫ ǫ

tmax

e−x sin
2 tdt

such that

• in [0, tmax] the replacement of x sin2 t is valid, we want to expand e−
1
3
xt4

need xt4max → 0 for x → ∞

• the integral over [tmax, ǫ] is negligible:

need xt2max → ∞ for x→ ∞

Therefore, for tmax = x−α we need

1− 4α < 0 1− 2α > 0

i.e.
1

4
< α <

1

2

Then in the first integral the integrand can be expanded3

∫ x−α

0

e−x sin
2 tdt =

∫ x−α

0

e−xt
2

e+
1
3
xt4+...dt→

∫ x−α

0

e−xt
2

{

1 +
1

3
xt4 + . . .

}

dt for x→ ∞

With s = x
1
2 t we get

∫ x−α

0

e−x sin
2 tdt → x−

1
2

∫ x
1
2−α

0

e−s
2

ds+
1

3
x−

1
2

∫ x
1
2−α

0

x

(
s

x
1
2

)4

e−s
2

ds

→ 1

x
1
2

1

2

√
π +O

(

x−
3
2

)

Note, that again the limit of the integral in terms of s goes to ∞.

3An error in the exponential that cannot be expanded, i.e. a small relative but large absolute error, leads

to a multiplicative rather than an additive error in the result.
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What about the integral from x−α to ǫ? It is exponentially small compared to I(x):
∫ ǫ

x−α

e−x sin
2 tdt < e−x sin

2 x−α

ǫ

since sin2 t is increasing for small t.

For α < 1
2

we have x sin2 x−α → x1−2α → ∞ with x→ ∞.

Thus, the expansion of the function in the exponent is justified.

Example: Modified Bessel function In(x) =
1
π

∫ π

0
ex cos t cosnt dt

φ(t) has its maximum at t = 0. Try to approximate both cosines by lowest order terms and

consider ∫ ǫ

0

ex 1dt = ǫex (12)

Why does this result depend on the artificial parameter ǫ?

We need to keep the first non-constant term in the expansion for φ because limiting the

integration domain to [0, ǫ] is only allowed if φ and its approximation truly decrease and

damp contributions from x > ǫ exponentially fast (cf. (6)).

The maximum at the boundary is at the same time a local maximum: we need to keep the

quadratic terms of φ(t), otherwise there is no damping of the contributions away from the

maximum (cf. (9))4.

In(x; ǫ) =
1

π

∫ ǫ

0

ex−
1
2
xt2dt

∼ 1

π
ex
1

2

√

2π

x
=

1√
2πx

ex

Now there is no ǫ-dependence any more, as required, since the rapid decay with increasing

t allowed us to extend the upper limit of the integral to +∞.

Example: I(x) =
∫∞
0
e−

1
t e−xtdt

It looks like a case for Watson’s lemma with f(t) = e−
1
t .

However: e−
1
t and all its derivatives vanish at t = 0 ⇒ Watson’s lemma would yield

I(x) = 0

The dominant contribution to the integral comes from the maximum of the integrand. This

maximum is not at t = 0 as Watson’s lemma assumes. In fact, in this case the maximum

depends on x,

tmax =
1√
x

Note:

4Note, the expression (8) has φ′(c) in the denominator.
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• a maximum that depends on x is called a moveable maximum.

• to apply Laplace’s method to a moveable maximum it is best to transform t into a

coordinate in which the maximum is fixed, independent of x.

We could introduce a shift of the coordinate

s = t− tmax.

This would lead to complicated expressions in e−
1
t .

Instead, the maximum can be fixed by a rescaling

s =
√
xt smax = 1

I(x) =
1√
x

∫ ∞

0

e−
√
x( 1

s
+s)ds

Expand now φ(s) ≡ 1
s
+ s around its maximum at s = 1 using s = 1 + u

φ(u) =
1

1 + u
+ 1 + u = 1− u+ u2 + . . .+ 1 + u = 2 + u2 +O(u3)

Thus, we get

I(x) ∼ 1√
x

∫ ǫ

−ǫ
e−

√
x(2+u2+O(u3))du

=
︸︷︷︸

v=x
1
4 u

1√
x
e−2

√
x 1

x
1
4

∫ ǫx
1
4

−ǫx
1
4

e−v
2

dv

∼ 1√
x
e−2

√
x 1

x
1
4

∫ ∞

−∞
e−v

2

dv

=
1√
x
e−2

√
x 1

x
1
4

√
π

This is consistent with our previous derivation of (11), noting that
√
x plays the role of x in

(11) and φ′′(1) = −2.

Notes:

• I(x) decreases faster than any power. Watson’s lemma can only generate results that

depend on x as a power series and can therefore not be applicable.

• This approach does not work for all integrals in which the location of the maximum

scales with x. E.g., it does not work for
∫ a

0
tαe−xt

β

dt. Why not?

When the φ is expanded around the maximum the quadratic term must have a pref-

actor that goes to ∞ as x goes to ∞, i.e. the width of the maximum must go to 0 for

x → ∞ and it must do so faster than the moveable maximum goes to 0. In the calcu-

lation above this implied that the limits in v go to ±∞. Otherwise the integral would

depend on ǫ. In this example this is the case because e−
1
t goes to 0 very fast for t→ 0.
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1.3.3 Higher-order Terms with Laplace’s Method

Consider the case of a maximum of φ(t) at c ∈ (a, b) with φ′(c) = 0, φ′′(c) < 0, and f(c) 6= 0.

To get higher-order terms expand φ(t) and f(t) to higher orders. How far do we need to go?

Without loss of generality assume c = 0 to simplify the algebra.

I(x) ∼
∫ +ǫ

−ǫ

[

f(0) + f ′(0)t+
1

2
f ′′(0)t2 + . . .

]

ex[φ(0)+
1
2
φ′′(0)t2+ 1

6
φ′′′(0)t3+ 1

4!
φ(4)t4+...]dt

The integral extends only over small values of |t|: expand the exponential in t:

• In order to be able to extend the integral to (−∞,+∞) we need to keep the quadratic

term up in the exponential and cannot include it in the expansion of the exponential

• If we did not extend the domain of integration we may be tempted to include the

quadratic term in the expansion of the exponential. As illustrated in the example

above (cf. (12)), the resulting integrals would, however, depend on ǫ.

• The cubic and quartic terms must not be kept in the exponential:

– without expanding the exponential in the cubic and quartic term the extension

to (−∞,+∞) would not be possible if φ′′′(c) 6= 0 or φ(iv)(c) > 0: the integral would

diverge.

– the polynomial expansion in the exponent is likely to have maxima outside the

interval (−ǫ, ǫ). These maxima are only a result of the approximation of φ(t)
⇒ if we were not to expand the exponential these spurious maxima may con-

tribute to the integral once the domain of integration is extended to (−∞,+∞)
although we know that the contributions from outside (−ǫ, ǫ) are exponentially

smaller for the full, non-expanded φ.

+ε−ε

φ(t)

Figure 7: Possible divergence and spurious maxima of Taylor expansion of φ(t).
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Rescale integration variable to extract the x-dependence from the integrals, s =
√
xt, and

extend the integration from [−ǫ√x, ǫ√x] to (−∞,+∞) and

I(x) ∼ 1√
x

∫ +∞

−∞

[

f(0) + f ′ s√
x
+

1

2
f ′′ s

2

x
+

1

6
f ′′′ s

3

x
3
2

+ . . .

]

e

[

xφ(0)+ 1
2
φ′′s2+ 1

6
φ′′′ s3

x
1
2
+ 1

4!
φ(4) s4

x
+ 1

5!
φ(5) s5

x
3
2
...

]

ds

where all derivatives are evaluated at s = c = 0.

In the integration odd terms in s cancel

⇒ the first non-trivial term beyond the leading-order term will involve the terms of O( 1
x
)

⇒ we need to keep two additional terms in the expansion of φ(t) and f(t) to get one addi-

tional order in the expansion for I(x)

I(x) ∼ 1√
x
exφ(0)

∫ +∞

−∞
e

1
2
φ′′s2

[

f(0) +
1

x

{

f(0)

(

1

4!
φ(4)s4 +

1

2

(
1

6
φ′′′
)2

s6

)

+
1

6
f ′φ′′′s4 +

1

2
f ′′s2

}

+O
(

1

x2

)]

ds

Using
∫ +∞

−∞
s2ne−αs

2

ds = (−1)n
dn

dαn

∫ +∞

−∞
e−αs

2

ds = (−1)n
dn

dαn

√
π

α

we get (reinstating again c)

I(x) ∼
√

2π

−xφ′′(c)
exφ(c)

{

f(c) +
1

x

[

− f ′′(c)

2φ′′(c)
+
f(c)φ(iv)(c)

8φ′′2(c)
+
f ′(c)φ′′′(c)

2φ′′2(c)
− 5φ′′′2(c)f(c)

24φ′′3(c)

]

+O
(

1

x2

)}

Note:

• since odd powers in s cancel the higher-order corrections are an expansion in 1
x

rather

than in 1√
x
.

Note:

• Important: It is better to think in terms of an expansion in 1/x than in t − c and to

rewrite the integral extracting the quadratic term explicitly using t− c =
√

− 2
x φ′′(c)s

I(x) =

∫

f(t)e
1
2
xφ′′(c)(t−c)2exφ(t)−

1
2
xφ′′(c)(t−c)2dt =

=

√

− 2

xφ′′(c)

∫

f

(

c+

√

− 2

xφ′′(c)
s

)

e
xφ

(

c+
√

− 2
xφ′′(c) s

)

+s2

︸ ︷︷ ︸

expand in 1/x

e−s
2

ds

Example: Again I(x) =
∫ π

2
0
e−x sin

2 tdt
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To get a higher-order approximation expand

I(x) ∼
∫ ǫ

0

e−x(t−
1
6
t3+...)

2

dt =

∫ ǫ

0

e−x(t
2− 1

3
t4+...)dt

=

∫ ∞

0

e−xt
2

{

1 +
1

3
xt4 + . . .

}

dt

=
1

2

√
π

x

(

1 +
1

4x
+ . . .

)

x → ∞

Note:

• If the exponential had not been expanded in the quartic term the integral over (0,∞)
would have (erroneously) diverged.

1.4 Generalized Fourier Integral

In general the Laplace integral could involve a complex φ(t).

Consider here the case of purely imaginary φ

φ(t) = iψ(t) I(x) =

∫ b

a

f(t)eixψ(t)dt

Note:

• I(x) is a generalized Fourier integral

Often one can use integration by parts, which results in

I(x) =
f(t)

ixψ′(t)
eixψ(t)

∣
∣
∣
∣

b

a

− 1

ix

∫ b

a

d

dt

(
f(t)

ψ′(t)

)

eixψ(t)dt (13)

For ψ(t) = t the integral term can be neglected under quite general conditions:

Riemann-Lebesgue Lemma:

∫ b

a

f(t)eixtdt→ 0 for x→ ∞ if

∫ b

a

|f(t)| dt exists

Notes:

• in the context of Fourier transformations the Riemann-Lebesgue lemma states that

under very general conditions the amplitudes of the highest Fourier modes of a func-

tion go to 0.

• the integral vanishes since the high-frequency oscillations lead to a cancellation of the

smooth parts of f(t)
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• if ψ′(t) 6= 0 in the whole integration interval the Riemann-Lebesgue lemma can also be

applied to
∫
f(t)eixψ(t)dt using a variable transformation u = ψ(t), which is invertible

and leads to ∫

f(t)eixψ(t)dt =

∫
1

ψ′(t(u))
f(t(u))eixudu

• if ψ′(t0) = 0 the point t0 is a point of stationary phase (see Sec.1.4.1)

Example: I(x) =
∫ 1

0
eixt

1+t
dt

Using integration by parts we get

I(x) =
1

1 + t

1

ix
eixt
∣
∣
∣
∣

1

0
︸ ︷︷ ︸

i
x
− i

2x
eix

− 1

ix

∫ 1

0

−1

(1 + t)2
eixtdt

︸ ︷︷ ︸

Riemann-Lebesgue →0

According to Riemann-Lebesgue the integral term is small, but it does not tell us what

order it is. To confirm the Riemann-Lebesgue explicitly and to get an estimate for the order

of the error perform an additional integration by parts

∫ 1

0

−1

(1 + t)2
eixtdt =

−1

ix (1 + t)2
eixt
∣
∣
∣
∣

1

0
︸ ︷︷ ︸

→0 x→∞

− 1

ix

∫ 1

0

2

(1 + t)3
eixtdt

Bound the integral term

∣
∣
∣
∣

1

ix

∫ 1

0

2

(1 + t)3
eixtdt

∣
∣
∣
∣
≤ 1

x

2

1
1 → 0 x→ ∞

To get higher-order approximations one could repeat the integration by parts.

Example: I(x) =
∫ 1

0

√
teixt

Again integration by parts

I(x) =

√
t

ix
eixt
∣
∣
∣
∣

1

0
︸ ︷︷ ︸

− i
x
eix

− 1

ix

∫ 1

0

1

2
√
t
eixtdt

By Riemann-Lebesgue the integral remainder term can be neglected.

If we want to get the orderof that error term we could not use an additional integration by

parts:

the boundary term

1

(ix)2
1

2
√
t
eixt
∣
∣
∣
∣

1

0
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does not exist at t = 0, nor does the integral

∫ 1

0

1

t
3
2

eixtdt

because of the divergence at t = 0. What is going on at that next order?

To extract the x-dependence rescale using s = xt

∫ 1

0

1√
t
eixtdt =

1√
x

∫ x

0

1√
s
eisds

Deform the integration contour and separate it into two contours:

C1, s ≡ iu, 0 ≤ u < x, and CR, s = Reiθ, 0 ≤ θ ≤ π
2
, with R = x,

1√
x

∫ x

0

1√
s
eisds =

1√
x

∫

C1

1√
s
eisds+

1√
x

∫

CR

1√
s
eisds (14)

Estimate the C1-integral

∫

C1

1√
s
eisds =

∫ x

0

1

(iu)
1
2

e−uidu = e−i
π
4 e+i

π
2

∫ x

0

u−
1
2 e−udu

→ Γ(
1

2
)− e−x√

x
for x→ ∞ according to (4)

The CR-integral vanishes by Jordan’s lemma:

∣
∣
∣
∣

∫

CR

1√
s
eisds

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

CR

1√
Re

i
2
θ
eiR(cos θ+i sin θ)Rieiθdθ

∣
∣
∣
∣

≤
√
R

∫ π
2

0

e−R sin θdθ

≤
√
R

∫ δ

0

e−Rθdθ +
√
R

∫ π
2

δ

e−R sin δdθ

≤
√
R
1

R

(
1− e−Rδ

)
+
√
Re−R sin δ π

2

= O
(

1√
x

)

Thus,
1√
x

∫ x

0

1√
s
eisds ∼ e

iπ
4

√
π

x

and

I(x) +
i

x
eix ∼ ei

3π
4

2

√
π
1

x
3
2

Note:

• since the remainder is O(x−
3
2 ) it is clear that it could not have been obtained by inte-

gration by parts.
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1.4.1 Method of Stationary Phase

As mentioned above, if ψ′(t) = 0 somewhere in the interval [a, b], integration by parts may

not work (cf. (13))

⇒ use the method of stationary phase:

• Near the stationary point the oscillations of eixψ(t) are less rapid leading to less can-

cellation

⇒ the dominant contributions to the integral come from the stationary point.

⇒ we can restrict the integral to the vicinity of the stationary points

Show the dominance of the contributions from the stationary point:

One can always divide the integration domain into sections such that the stationary point

x = c ends up at an endpoint a of a subintegral. It is therefore sufficient to consider

c ≡ a, ψ′(c) = 0, ψ′(t) 6= 0 for t ∈ (a, b]

I(x) =

∫ a+ǫ

a

f(t)eixψ(t)dt+

∫ b

a+ǫ

f(t)eixψ(t)dt

Note:

• the second integral is of O(x−1) since ψ′(t) 6= 0 (cf. (13))

To get the leading behavior of the first integral expand f(t) = f(a) + . . ., and

ψ(t) = ψ(a) +
1

p!
ψ(p)(a) (t− a)p

where ψ(p)(a) is the first non-vanishing derivative of ψ(t) at t = a and p > 1,

I(x) ∼
∫ a+ǫ

a

[f(a) + . . .] eix[ψ(a)+
1
p!
ψ(p)(a)(t−a)p]dt

Extending the integral to ∞ introduces errors of O( 1
x
) since there are no stationary points

in the added interval (integration by parts and Riemann-Lebesgue )

I(x) ∼ f(a)eixψ(a)
∫ ∞

0

eix
1
p!
ψ(p)(a) (t−a)pdt

As before, the integral can be obtained by deforming the contour to go out to infinity along

a ray e±i
π
2p (cf. (14)):

We want

iψ(p)(a)
x

p!
(t− a)p = −u u ≥ 0

to ensure decay of the exponential along that ray.

Need to choose t− a ∈ ei
π
2pR for ψ(p) > 0 and t− a ∈ ei

π
−2pR for ψ(p) < 0

ψ(p)(a) > 0 : t− a = ei
π
2p

(
p!

xψ(p)(a)

) 1
p

u
1
p

ψ(p)(a) < 0 : t− a = e−i
π
2p

(

− p!

xψ(p)(a)

) 1
p

u
1
p
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I(x) ∼ f(a)eixψ(a)e±i
π
2p

(

± p!

xψ(p)(a)

) 1
p
∫ ∞

0

1

p
u

1
p
−1e−udu

Thus: the method of stationary phase yields the leading-order term of I(x) as

I(x) ∼ f(a)eixψ(a)e±i
π
2p

(

± p!

xψ(p)(a)

) 1
p Γ
(

1
p

)

p
x→ ∞ (15)

where the sign in ± has to agree with that of ψ(p)(a) and the endpoint a is the point of

stationary phase.

Note:

• p > 1, therefore I(x) ≫ O
(
1
x

)
which is the size of the contributions away from the

stationary point.

Example: I(x) =
∫∞
0

cos (xt2 − t) dt

To use the method of stationary phase rewrite the integral5

I(x) = ℜ
[∫ ∞

0

ei(xt
2−t)dt

]

and identify

f(t) = e−it ψ(t) = t2

Stationary point is at t = 0 with ψ′′(0) = 2 > 0

I(x) ∼ ℜ
[

ei
π
4

√
π

x

1

2

]

=
1

2

√
π

2x
x→ ∞

Notes:

• (15) gives the leading-order behavior x−
1
p

• Terms omitted include terms O( 1
x
) arising from the integration away from the station-

ary point ⇒ to obtain higher-order approximations is not so easy, since contributions

may arise from the whole integration interval [a, b].
This is to be compared with the Laplace’s method, where the contributions from the

domain away from the maximum are exponentially rather than algebraically small ⇒
use method of steepest descend (Sec.1.5).

• If f(a) = 0 it is not clear whether the integral is still dominated by the point of sta-

tionary phase

5In the derivation we used the exponential decay in the imaginary direction t = iu.
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1.5 Method of Steepest Descent6

Consider now Laplace integrals with fully complex exponent

I(x) =

∫ b

a

h(t)exρ(t)dt

with h(t) and ρ(t) analytic functions.

Approach: deform the integration contour such that the imaginary part ψ of ρ ≡ φ + iψ is

constant

I(x) = eixψ
∫

C
h(t)exφ(t)dt

For the resulting integral one can then use Laplace’s method.

Note:

• one could use also contours of constant real part φ and then use the method of sta-

tionary phase for the resulting integral. However, only the leading-order contribution

is given by the vicinity of the point of stationary phase, while with Laplace’s method

the whole asymptotic expansion is determined by the neighborhood of the maximum.

Example: Compute the full asymptotic series for I(x) =
∫ 1

0
ln t eixtdt

Integration by parts does not work since ln t diverges at t = 0

Method of stationary phase does not work because there is no point of stationary phase.

Deform the integration path to make the resulting integrals suitable for Laplace’s method:

need to keep the imaginary part of ixt constant:

ℑ (ixt) = const⇔ ℜ (t) = const

Figure 8: Contours for I(x) =
∫ 1

0
ln t eixtdt

Use three contours

C1 : t = is, 0 ≤ s < T C2: t = iT + s, 0 ≤ s ≤ 1,

C3: t = 1 + is, T ≥ s ≥ 0 and let T → ∞

I(x) = i

∫

C1
ln (is) e−xsds+

∫

C2
ln (iT + s) e−xT+ixsds+

i

∫

C3
ln (1 + is) eix−xsds

i) Integral
∫

C2 :

This integral vanishes for T → ∞ because of the factor e−xT .

6First published by Debye (1909) who pointed to an unpublished note by Riemann (1863).
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ii) Integral
∫

C1 :
Exponential has maximum at s = 0, but the ln (is) cannot be expanded at s = 0
try to extract the x-dependence:

i

∫ ∞

0

ln (is) e−xsds =
i

x

∫ ∞

0

(ln i+ ln u− ln x) e−udu

= −1

x

π

2
− i

ln x

x
+
i

x

∫ ∞

0

ln u e−udu

= −1

x

{π

2
+ iγ

}

− i
ln x

x

using
∫∞
0
e−u ln u du = −γ ≈ 0.572 . . . (Euler’s constant).

iii) Integral
∫

C3 :
Expand

ln (1 + is) = −
∞∑

n=1

(−is)n
n

now use Watson’s lemma with global maximum at s = 0, α = 0, β = 1,

ieix
∫

C3
ln (1 + is) e−xsds = ieix

∞∑

n=1

(−1) (−i)n Γ(n+ 1)

xn+1n
x→ ∞

Combined we get

I(x) = −1

x

(π

2
+ iγ

)

− i
ln x

x
+ ieix

∞∑

n=1

(−i)n (n− 1)!

xn+1
x→ ∞

Notes:

• in this example ρ = it
⇒ ℑ(ρ(t = 0)) and ℑ (ρ(t = 1)) differ from each other

⇒ there is no constant-phase contour that connects ρ(t = 0) and ρ(t = 1)
⇒ we needed three contours, to be chosen such that two lead to Laplace integrals and

one gives a vanishing contribution.

Example: Determine the full asymptotic behavior of I(x) =
∫ 1

0
eixt

2
dt

To get the leading-order behavior the method of stationary phase is sufficient:

ψ = t2 with stationary point t = 0 and ψ′′(a) = 2 > 0.

I(x) ∼ 1

2
ei

π
4

√

2π

x 2

To get the full asymptotic behavior is difficult with this method. Use steepest descent

instead.

Deform contour into contours along which the imaginary part of ρ ≡ it2 is constant.
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Figure 9: Contours for I(x) =
∫ 1

0
eixt

2
dt

Note:

• t is to be considered a complex variable t ≡ u+ iv: ℑ (ρ) = u2 − v2, ℜ (ρ) = −2uv

Identify suitable contours:

• At t = 0: ℑ (ρ) = 0 ⇒ u = ±v
ℜ (ρ) = −2uv = ∓2v2

u = −v:

exρ = ex(ℜ(ρ)+iℑ(ρ)) = ex(−2uv+i0) = e+2xv2 ascent, diverges for u→ ∞

u = +v:

exρ = e−2xv2 descent

⇒ to get steepest descent path choose C1 : t = v + iv, 0 ≤ v ≤ vmax with vmax → ∞
eventually

• At t = 1 : ℑ (ρ) = 1 ⇒ u = ±
√
1 + v2 and t = ±

√
1 + v2 + iv

ℜ (ρ) = −2uv = ∓v
√
1 + v2. To get descent for v → +∞ choose C3 using u = +

√
1 + v2,

0 ≤ v ≤ vmax

ρ = ℜ(ρ) + iℑ(ρ) = −2v
√
1 + v2 + i

• Connecting path C2: t = vmax (1 + i) + u, 0 ≤ u ≤ umax ≡
√

1 + v2max − vmax

Evaluate integrals

C2 : t2 = (vmax + u+ ivmax)
2 = (vmax + u)2 − v2max + 2ivmax (vmax + u)

∫

C2
eixt

2

dt =

∫ umax

0

eix{(vmax+u)
2−v2max}e−2xvmax(vmax+u)du→ 0 x→ ∞
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C1 : ∫

C1
eixt

2

dt = (1 + i)

∫ ∞

0

e−2xv2dv = (1 + i)
1

2

√
π

2x
=

1

2

√
π

x
ei

π
4

This is the same result as the leading-order result obtained with method of stationary

phase

C3 : ∫

C3
eixt

2

dt = −
∫ ∞

0

eix−2xv
√
1+v2

(
v√

1 + v2
+ i

)

dv

where the minus sign reflects that C3 starts at infinity rather than 0.

If we only wanted to get the leading-order term we could expand in small v. But to get

the full asymptotic expansion we need to avoid the higher derivatives of φ that generate all

those additional terms in the expansion (see Sec.1.3.3). Instead we want to use Watson’s

lemma to get the full asymptotic expansion. Therefore we want to have

2v
√
1 + v2 = s

Instead of doing a second variable tansformation from v to s make transformation directly

from t to s. Along contour C3

it2 = i− 2v
√
1 + v2

!
︷︸︸︷
= i− s

therefore

t = (1 + is)
1
2 dt =

i

2 (1 + is)
1
2

ds

∫

C3
eixt

2

dt = −eix
∫ ∞

0

e−xs
i

2 (1 + is)
1
2

ds

= −eix i
2

∞∑

n=0

∫ ∞

0

e−xs (−is)n Γ
(
n + 1

2

)

n!Γ
(
1
2

) ds

= −eix i
2

∞∑

n=0

(−i)n Γ
(
n + 1

2

)

n!Γ
(
1
2

)
Γ (n + 1)

xn+1

using the series expansion from the binomial theorem (7).

Thus, we have
∫ ∞

0

eixt
2

dt =
1

2

√
π

x
ei

π
4 − eix

i

2

∞∑

n=0

(−i)n Γ
(
n+ 1

2

)

Γ
(
1
2

)
1

xn+1

Note:

• Since the integrand is analytic everywhere the return contour can also be deformed

away from the steepest-descent contout C3 without affecting the value of the integral.

This can be exploited to make the integration simpler.
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• The integral over the deformed contour has to be amenable to an asymptotic method

like Laplace’s method.

Deform the steepest-descent contour C3 into a contour C4 that simplifies the calculation

C4 : choose the contour t = 1 + iv, 0 ≤ v ≤ vm from tm = 1 + ivm to contour C3, which is

tangential to C3 at t = 1.

Since the contour C4 is tangential to C3 at t = 1 the contributions to the integral will be

exponentially small for v > ǫ. It is therefore sufficient to integrate only over the interval

[0, ǫ]. In this interval v2 ≪ v and eixv
2

can be expanded,

∫

C3
eixt

2

dt =

∫

C4
eixt

2

dt ∼ i

∫ ǫ

0

eix(1+iv)
2

dv = i

∫ ǫ

0

eix(1−v
2)−2xvdv

= ieix
∫ ǫ

0

∞∑

n=0

1

n!
(−ix)n v2ne−2xvdv

Using Laplace’s method and extending the integration again to ∞ one gets (cf. treatment

of higher order-terms in φ in Sec. 1.3.3)

∫

C4
eixt

2

dt = ieix
∞∑

n=0

∫ ǫ

0

1

n!
(−ix)n v2ne−2xvdv

= ieix
∞∑

n=0

1

n!

(−ix)n

(2x)2n+1

∫ ∞

0

u2ne−udu

= ieix
∞∑

n=0

(−i)n (2n)!
n! 22n+1

1

xn+1
x→ ∞

Compare with the result using C3:
(2n)!

n!22n
=

1

n!

2n

2

2n− 1

2

2n− 2

2
. . .

2

2

1

2
=

=
2n− 1

2

2n− 3

2
. . .

3

2

1

2
=

(

n− 1

2

)(

n− 3

2

)

. . .

(
1

2

)

=
Γ
(
n+ 1

2

)

Γ
(
1
2

)

since Γ (x) = (x− 1) Γ(x− 1).

Thus, both contours give exactly the same result.

Note:

• the path of steepest descend avoids the oscillations in the integral arising from the

non-constant imaginary part ψ and therefore allows Laplace’s method; but any other

path that allows Laplace’s method works as well. A path that is tangential to the

contour with constant ψ will have only slow oscillations near the saddle, which can be

captured as higher-order corrections.
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1.5.1 Steepest Descent and Saddle Points

Why is this method called ‘Steepest Descent’?

ρ(t) = φ(t) + iψ(t) is an analytic function of t ≡ u + iv. It therefore satisfies the Cauchy-

Riemann conditions
∂φ

∂u
=
∂ψ

∂v

∂φ

∂v
= −∂ψ

∂u

Consider (u, v) as a two-dimensional vector. One can then write

(
∂f

∂u
,
∂f

∂v

)

= ∇f

One then gets

∇φ · ∇ψ =
∂φ

∂u

∂ψ

∂u
+
∂φ

∂v

∂ψ

∂v
=
∂φ

∂u

∂ψ

∂u
+

(

−∂ψ
∂u

)
∂φ

∂u
= 0

Lines of constant ψ are orthogonal to ∇ψ

∇φ is orthogonal to ∇ψ






⇒ ψ = const. ‖ ∇φ

Since ∇φ gives the direction of steepest ascent, going away from a maximum along lines

ψ = const. amounts to going in the direction of steepest descent.

So far the maxima were at the end of the contours. Consider now local maxima of φ in the

interior of the integration interval.

For analytic ρ = φ+ iψ the functions φ and ψ are harmonic

∆φ = 0 ∆ψ = 0

They cannot take on maxima or minima in the interior of a bounded domain.

At the maxima of φ along the lines of constant ψ one has for the directional derivatives

dψ

ds
= 0 and

dφ

ds
= 0 ⇒ dρ

ds
= 0

By Cauchy-Riemann the directional derivatives of ψ and φ vanish in all directions:

ρ′ = 0

• the maxima of φ along the lines of constant ψ are saddles in the complex plane: at

least two orientations for steepest ascent/descent

• each line of steepest ascent/descent corresponds to a line of constant ψ:

at a saddle multiple lines of constant ψ intersect.

Example: Saddle point of ext
2

ρ(t) = t2 = (u+ iv)2 = u2 − v2 + 2iuv and ρ′(t) = 2t = 2u+ i2v
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The only saddle point is

ρ′ = 0 u = 0 = v

The steepest paths are given by uv = 0:

u = 0 ρ = −v2 steepest descent

v = 0 ρ = +u2 steepest ascent

Example: Behavior near the saddle point of ex(sinh t−t) near t = 0

At t = 0 we have

ρ = sinh t− t = 0 ρ′ = cosh t− 1 = 0 ρ′′ = sinh t = 0 ρ′′′ = cosh t = 1

Thus, also the second derivative vanishes, but not third one (third-order saddle point).

Steepest paths

ρ = sinh (u+ iv)− u− iv = sinh u cos v + i cosh u sin v − u− iv

cosh u sin v − v = 0 ⇔ v = 0 or u = cosh−1
( v

sin v

)

The second condition defines two lines because cosh−1 is double-valued.

Down

Up 

Down 

Up

Down 

Up

u

v

π

Figure 10: Saddle of ex(sinh t−t).

Example: I(x) =
∫ 1

0
e−4xt2 cos (5xt− xt3) dt for large x

This is not a Laplace integral because x appears also in the cosine.

i) Try nevertheless to argue that integral dominated by small values of t because of the

exponential.

One would get

I(x) ∼
∫ ∞

0

e−4xt2dt =
1

2

√
π

4x
wrong
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But: exponential has decayed only for t > x−
1
2 ⇒ for t = O(x−

1
2 ) we have xt ∼ x

1
2 → ∞

and the argument of cos is large and the rapid oscillations of the cos lead to substantial

cancellation.

ii) For t ≤ O(x−
1
2 ) the second term in the cos is small: xt3 ≤ O(x−

1
2 ) ⇒ tempting to ignore

that term.

Then

I(x) ∼
∫ 1

0

e−4xt2 cos (5xt) dt =
1

2

∫ 1

−1

e−4xt2 cos (5xt) dt

∼
︸︷︷︸

’as usually’

1

2

∫ ∞

−∞
e−4xt2 cos (5xt) dt =

=
1

2
ℜ
{∫ +∞

−∞
e−4xt2+5ixtdt

}

=
1

2
ℜ
{∫ +∞

−∞
e−4x(t− 5

8
i)

2− 25
16
xdt

}

=

=
︸︷︷︸

can translate contour

1

2

√
π

4x
e−

25
16
x wrong

Integral now exponentially small, but still wrong (can be checked by expanding the cos and

comparing the order of the omitted term with the retained term (see below)).

iii) Use method of steepest descent. Rewrite

I(x) =
1

2

∫ +1

−1

e−4xt2+5ixt−ixt3dt =
1

2

∫ +1

−1

exρ(t)dt

with

ρ(t) = −it3 − 4t2 + 5it

Phases at the end points differ from each other

ℑ (ρ(t = ±1) = ±4

Identify contours C1,2 of constant ℑ (ρ) using t = u+ iv

ρ = −i
(
u3 + 3iu2v − 3uv2 − iv3

)
− 4

(
u2 − v2 + 2iuv

)
+ 5iu− 5v

= −v3 + 3u2v − 4u2 + 4v2 − 5v
︸ ︷︷ ︸

φ

+i
{
−u3 + 3uv2 − 8uv + 5u

}

︸ ︷︷ ︸

ψ

Thus

φ = −v3 + 3u2v − 4u2 + 4v2 − 5v ψ = −u3 + 3uv2 − 8uv + 5u

Note:

• φ is even in u and ψ is odd in u.

ψ = 4σ at t = σ with σ = ±1:

3uv2 − 8uv + 5u− u3 − 4σ = 0
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v =
1

6u

(

8u±
√

64u2 − 12u (5u− u3 − 4σ)
)

=
1

3u

(

4u±
√
u2 + 3u4 + 12σu

)

We need the contours passing through t = σ, i.e. u = σ and v = 0

σ = +1 : v2 =
1

3u

(

4u−
√
u2 + 3u4 + 12u

)

σ = −1 : v1 =
1

3u

(

4u+
√
u2 + 3u4 − 12u

)

u

Up

Down Down
Up

Down
Down

v

Up
Down

Down
UpUp

Saddles

Figure 11: Contours with ψ = const and saddle points for e−4xt2+5ixt−ixt3 .

Limiting behavior of the contours v±1,2

σ = +1 : v2 → − u√
3

for u→ +∞ v2 → − 2√
3

1√
u

for u→ 0+

σ = −1 : v1 → +
u√
3

for u→ −∞ v1 → − 2√
3

1√−u for u→ 0−

Limiting behavior of real part φ along the contours v±1,2 for u→ ±∞ and v → −∞.

Using u2 → 3v2

σ = ±1 : φ → −v3 + 3u2v → −v3 + 9v3 = 8v3 → −∞ for v → −∞

Identify all saddle points of ρ(t)

dρ

dt
= −3it2 − 8t+ 5i = 0

t
(s)
1,2 = −8 ±

√
64− 60

6i

{

t
(s)
1 = 5

3
i

t
(s)
2 = i

Along the contours with ψ = const. the real part φ can only have a local maximum at one of

the two saddle points
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⇒ φ does not have a local maximum along the contours v1,2

⇒ φ is going up along C1,2 for u→ 0.

Thus

• If we deformed the integration contour to include the singularity at u = 0 the main

contribution to the integral would arise at the singularity. Poor choice

• Integrate from t = ±1 outward to u → ±∞

– the main contribution to this contour integral arises near t = ±1

– we need to connect the end points with an additional contour C3

Identify contours with ψ = const. through the saddle point t = i

ψ(t = i) = 0 ⇒ u = 0 or 3v2 − 8v + 5− u2 = 0 ⇒ v3,4 =
4±

√
1 + 3u2

3

The contour v4 is asymptotic to the contours v1,2.

The integral along C4 does not vanish: φ reaches a maximum at the saddle at t = i.

Therefore the dominant contribution to that integral arises near that saddle.

2I(x) ∼
∫

C1
exρdt+

∫

C4
exρdt+

∫

C2
exρdt+

∫

Cconnect

exρdt

︸ ︷︷ ︸

→0 for umax→−∞

∼
∫ t=−1−O(ǫ)

t=−1

exρdt+

∫ t=i+O(ǫ)

t=i−O(ǫ)

exρdt+

∫ t=1

t=1+O(ǫ)

exρdt

C4 : use contour that is tangential to the steepest descent contour

t = i+ s − ǫ ≤ s ≤ ǫ v = 1 u = s

∫

C4
∼

∫ +ǫ

−ǫ
ex{−s2−2}eix{−s3}ds

∼ 1√
x
e−2x

∫ +
√
xǫ

−
√
xǫ

e−u
2

e
− i√

x
u3
du

∼ 1√
x
e−2x

∫ +∞

−∞
e−u

2

(

1− i√
x
u3
)

du

∼
√
π

x
e−2x

C1 :
t = −1− (1 + iα) s 0 ≤ s ≤ ǫ

with α ∈ R chosen so that the contour is tangential to the contour ψ = const.
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Thus

u = −1− s v = −αs
and

φ = −4 +O(s) ψ = −4 +O(s)

Therefore we can estimate
∣
∣
∣
∣

∫

C1

∣
∣
∣
∣

∼
∣
∣
∣
∣

∫ +ǫ

0

e−4x+O(ǫ)e−4ix+O(s)ds

∣
∣
∣
∣

≤ e−4x

∫ ǫ

0

1ds

= O(e−4x)

analogously for C2.
Thus the integrals over contours C1,2 are exponentially smaller than that over contour C3
and we have

I(x) ∼ 1

2

√
π

x
e−2x (16)

Note:

• the leading contribution to the integral is given by a saddle that is not even close to

the original integration contour.

How do we know that ignoring ixt3 was incorrect? Reconsider the expansion carefully:

I(x) =
1

2

∫ 1

−1

e−4xt2 cos
(
5xt− xt3

)
dt ∼ 1

2

∫ ∞

−∞
e−4xt2 cos

(
5xt− xt3

)
dt

Can the integration limits be pushed to ±∞?

∣
∣
∣
∣

1

2

∫ ∞

1

e−4xt2 cos
(
5xt− xt3

)
dt

∣
∣
∣
∣
<

1

2

∫ ∞

1

e−4xt2dt =
1

2
e−4x

∫ ∞

0

e−4xu2−8xudu

<
1

2
e−4x1

2

√
π

4x
≪ |I(x)|

The error term is exponentially small. But if the integral I(x) itself is also exponentially

small (as is the case here), we need to compare them explicitly: in this case the integral can

be extended to ±∞ (cf. (16)).

We therefore consider again

I(x) =
1

2

∫ 1

t=−1

e−4x(t− 5
8
i)

2− 25
16
x−ixt3dt ∼ 1

2

∫ +∞

t=−∞
e−4x(t− 5

8
i)

2− 25
16
x−ixt3dt (17)

To evaluate the Gaussian integral we need to shift the contour to 5
8
i−∞ < t < 5

8
i+∞. We

had not done this carefully enough before.

The contours t = ±R + is, 0 ≤ s ≤ 5
8
i, do not contribute for R → ∞.
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Therefore we go ahead and use

s = 2
√
x

(

t− 5

8
i

)

t =
s

2
√
x
+

5

8
i

and

t3 =
1

8

s3

x
3
2

+ i
15

32

s2

x
+

75

128

s

x
1
2

− 125

83
i

Thus

e−ixt
3

= 1− ixt3 + . . . = 1 + x
15

32

s2

x
− x

125

83
− i

{
1

8

s3

x
1
2

+
75

128
sx

1
2

}

+ . . .

Note:

• The ‘correction’ from expanding e−ixt
3

contributes terms that are large (O(x, ix
1
2 )) com-

pared to the term we kept: we cannot expand the exponential!

What happens if we do not expand the exponential?

The term ixt3 contributes to the real Gaussian term ∼ s2 and also a term ∼ ix
1
2s. The latter

term needs to be absorbed again into the completed square, which induces another shift in

the integration variable, which induces further corrections through the −ixt3 term

→ we need to determine the correct shift of the contour simultaneously with completing

the square. Make the ansatz

s = (t− iα) 2
√
x t =

1

2
√
x
s+ iα

with α to be determined.

Then

t3 =
1

8x
3
2

s3 +
3

4
iαs2 − 3

2

α2

x
1
2

s− iα3

Thus

−4t2 + 5it− it3 =
s2

x

[

−1 +
3

4
α

]

+ i
s

x
1
2

[

−4α +
3

2
α2 +

5

2

]

+ 4α2 − 5α− α3 − is3

8x
3
2

We need to shift the contour such that the leading term is a pure Gaussian (no term linear

in s) and decaying

−4α +
3

2
α2 +

5

2
= 0 → α1,2 =

4± 1

3
Consider the quadratic term

−1 +
3

4
α =

{
1
4

for α = 5
3

−1
4

for α = 1

Since the quadratic term has to lead to exponential decay away from s = 0, only α = 1 is

acceptable. Then we get

I(x) ∼ 1

2

∫ +∞

s=−∞
e
− 1

4
s2−2x−i s3

8x
1
2

1

2
√
x
ds

=
1

4
√
x
2
√
πe−2x +

1

4
√
x
e−2x

∫ ∞

−∞
e−

1
4
s2

{

−i s
3

8x
1
2

+
1

2

(

i
s3

8x
1
2

)2

+ . . .

}

ds
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in agreement with the result from the saddle-point calculation.

Note:

• the correct shift α = 1 moved the contour exactly through the saddle point.

Notes:

• when shifting contours omitted terms can become significant

• if the final result is exponentially small, one needs to check whether the integration

limits could indeed be extended to ∞.

1.5.2 Complex x and the Stokes Phenomenon

Generalize the integral further to allow x to be complex

• now the asymptotic expansion can depend on the argument of x
depending on the argument of x different terms can be dominant and subdominant

• the interchange of dominance and subdominance when the argument of the expansion

variable x is varied is called Stokes Phenomenon

Example: Again I(x) =
∫ 1

0
e−4xt2 cos (5xt− xt3) dt for large complex x = X + iY

Saddle points do not depend on x
⇒ dominant contributions will still come from the endpoints at t = ±1 or from the saddle

point, t = i.

We need to consider steepest descent contours near the end points. For x ∈ R we found

that those contributions are subdominant (negligible compared to the contribution from the

saddle), but as the argument of x varies these contributions can interchange their roles.

t = −1 + U + iV with |U |, |V | ≪ 1:

ρ = −V 3 + 3 (−1 + U)2 V − 4 (−1 + U)2 + 4V 2 − 5V +

+i
{
− (−1 + U)3 + 3 (−1 + U) V 2 − 8 (−1 + U) V + 5 (−1 + U)

}

= −4 + 3V + 8U − 5V + h.o.t.+ i {1− 5− 3U + 5U + 8V }
= −4 + 8U − 2V + i {−4 + 2U + 8V }+ h.o.t.

Write

xρ = (X + iY ) ρ ≡ Φ+ iΨ

We need contour with Ψ = const. to leading non-trivial order in U and V ,

Ψ = X {−4 + 2U + 8V }+ Y {−4 + 8U − 2V }
= −4 (X + Y )

︸ ︷︷ ︸

value of ψ at endpoint

+U (2X + 8Y ) + V (8X − 2Y )
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Thus,

V = −X + 4Y

4X − Y
U + h.o.t.

Then to leading non-trivial order in U and V

Φ = X (−4 + 8U − 2V )− Y (−4 + 2U + 8V )

= 4 (Y −X) + U (8X − 2Y ) + V (−2X − 8Y )

= 4 (Y −X) + U

{

8X − 2Y + 2
(X + 4Y )2

4X − Y

}

= 4 (Y −X) + U
32X2 − 8XY − 8XY + 2Y 2 + 2X2 + 16XY + 32Y 2

4X − Y

Φ = 4 (Y −X) + U
34 (X2 + Y 2)

4X − Y

and

dt =

(

1− i
X + 4Y

4X − Y

)

dU

Φ is decreasing with decreasing U for 4X > Y ; it is increasing otherwise.

Thus we need to integrate

U ∈ [0,−ǫ] for 4X − Y > 0

U ∈ [0, ǫ] for 4X − Y < 0

At 4X − Y = 0 the contour becomes vertical (cf. Fig.12).

For |x| → ∞ the prefactor of U in Φ goes to ∞ as well. Thus, we get for the contribution

from the end point t = −1

∫

C1
=

1

2

(

1− i
X + 4Y

4X − Y

)∫ −ǫ

0

e4(Y−X)e−4i(X+Y )+iO(U2)e
34(X2+Y 2)

4X−Y
UdU

∼ −1

2

(

1− i
X + 4Y

4X − Y

)

e4(Y−X)e−4i(X+Y ) 4X − Y

34 (X2 + Y 2)

= −1

2
e−4x(1+i) 4X − Y − iX − 4iY

34 (X + iY ) (X − iY )

= −1

2
e−4x(1+i) 1

34x

(

4− Y + iX

X − iY

)

=
1

2

i− 4

34x
e−4x(1+i)

Analogously, one obtains ∫

C2
= −1

2

i+ 4

34x
e−4x(1−i)

For the contribution from the saddle point we had previously for x ∈ R

∫

C3
∼
√
π

x
e−2x
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Since the integral I(x) is analytic in x, this expression must also be valid for x ∈ C.

Check this:

Contour tangent to C4 at t = i

t = i+ U (1 + iα) |U | ≪ 1

For x complex the tangent to contour C4 is not necessarily horizontal any more: α not

known.

Insert into xρ

xρ = −2X +
(
Xα2 + 2Y α−X

)

︸ ︷︷ ︸

−β

U2 + i
{
−2Y +

(
Y α2 − 2Xα− Y

)
U2
}
+O(U3)

Need Ψ = const to O(U2)

α1,2 =
X ±

√
X2 + Y 2

Y

To go in the descending direction of Φ,

Φ1,2 = −2X +
2

Y 2

(
X2 + Y 2

) (

X ±
√
X2 + Y 2

)

U2

need to choose α = α2. ∫

C4
∼
√
π

β
e−2(X+iY ) (1 + iα2)

Consider

β

(1 + iα2)
2 = . . . = −2 (X2 + Y 2)

(
X −

√
X2 + Y 2

)

Y + i
(
X −

√
X2 + Y 2

) = . . . = X + iY = x.

Thus, as before for x ∈ R
∫

C4
∼
√
π

x
e−2x

Compare the exponential growth/decay of the three integrals
∫

C1 dominates
∫

C4 for

4ℜ ((X + iY ) (1 + i)) = 4 (X − Y ) < 2X ⇔ Y >
1

2
X

∫

C2 dominates
∫

C4 for

4ℜ ((X + iY ) (1− i)) = 4 (X + Y ) < 2X ⇔ Y < −1

2
X

∫

C2 dominates
∫

C1 for

4ℜ ((X + iY ) (1− i)) = 4 (X + Y ) < 4 (X − Y ) = 4ℜ ((X + iY ) (1 + i)) ⇔ Y < 0

Thus

51



420-2 Asymptotics H. Riecke, Northwestern University

• for |arg (x)| < arctan 1
2
: X > 0 and −1

2
X < Y < 1

2
X

I(x) ∼
∫

C4
=

1

2

√
π

x
e−2x

• for arctan 1
2
< arg (x) < π: Y > 0

I(x) ∼
∫

C1
=

1

2

i− 4

34x
e−4x(1+i)

• for − arctan 1
2
> arg(x) > −π> Y < 0

I(x) ∼
∫

C2
= −1

2

i+ 4

34x
e−4x(1−i)

Note:

• At the Stokes lines

arg(x) =
1

2
and arg(x) = −1

2
and arg(x) = ±π

dominant and subdominant terms interchange their roles

Compare the imaginary parts of the exponents at the Stokes lines
∫

C4 :

−2Y =

{
−X for Y = 1

2
X

+X for Y = −1
2
X

∫

C1 :

−4 (Y +X) = −6X for Y =
1

2
X

∫

C2 :

−4 (Y −X) = +6X for Y = −1

2
X

Notes:

• The dominant character of the integral changes across the Stokes lines:

– while the exponential decay of the two integrals is the same, their oscillatory

character is different (different ’frequencies’)

– the prefactors in front of the exponential is also different

• With varying arg x the contours of steepest descent can also switch suddenly and omit

a saddle point

• If we had tried the ‘naive method’ (17):
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– we would not know when the contributions from the endpoints are dominant

– we would have to deform the contour through the saddle to avoid oscillations

⇒ to take care of these issues we would end up doing the same work as in the system-

atic approach.
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Figure 12: Dependence of contour of steepest descent on ϕ = arg x. ϕ =
0, 1, 1.08, 1.15, 1.3, 1.7, 2.01, 2.05, 2.5.

For |φ| < arctan 1
2 ≈ 0.46 the saddle point dominates the integral. Otherwise the end points.

While for ϕ < arctan4 ≈ 1.32 the descent is towards more negative U it is towards more positive U for

ϕ > arctan 4. At ϕ = π − arctan2 ≈ 2.03 the two contours reconnect and the contour of steepest descent is

asymptotic to that emerging from t = +1 and no connecting contour crossing the saddle point arises any more.

In this example this reconnection does not affect the leading-order behavior of the integral, though, since the

saddle point contributes only a subdominant term for ϕ > arctan 1
2 . Note that in the computer-generated

contour plots the blue lines do not cross at the saddle point, although they do intersect in reality.54
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2 Forced Oscillators

Resonances in forced oscillations are important in many areas

• dangerous resonances: stability of structures

– Tacoma Narrows bridge collapse (http://www.youtube.com/watch?v=j-zczJXSxnw

or http://www.youtube.com/watch?v=xox9BVSu7Ok)

– Millenium Bridge swaying (http://www.youtube.com/watch?v=eAXVa__XWZ8)

– Tae Bo class listening to http://www.youtube.com/watch?v=z33tH-JdPDg makes

skyscraper sway

–
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Figure 13: Seoul skyscraper resonance.

http://www.deathandtaxesmag.com/123255/tae-bo-shakes-the-foundation-of-a-korean-

skyscraper/

http://www.youtube.com/watch?v=z33tH-JdPDg

• useful resonances: amplification of signals, e.g.

– electronic circuits

– double amplification in the ear: two staged oscillators.

Otoacoustic emissions

* evoked by sound indicate processing in the inner ear (used as non-invasive

test for hearing defects)

* spontaneous emissions.
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Understanding how externally forced oscillators can phase-lock to the forcing and essen-

tially synchronize with it provides also insight into resonantly coupled oscillators, e.g.,

• laser arrays

• heart cells: efficient pumping vs fibrillations

• neurons

– synchrony can carry additional information

– too much synchrony may amount to epileptic seizures or Parkinsonian tremor

Types of forcing

• non-parametric forcing: the forcing introduces an additional term in the equation

Simple example: Pushing on a swing

mlθ̈ +mg sin θ = F (t) ⇒ ü+
g

l
sin θ =

1

m
F (t)

• parametric forcing: a parameter of the system is modified in time

Simple example: Pumping on a swing

ml(t)θ̈ +mg sin θ = 0 ⇒ ü+
g

l(t)
sin θ = 0

with l being the distance of the center of mass to the pivot.

By shifting his/her center of mass the person changes the effective length l of the pen-

dulum

Useful asymptotic expansions can be obtained for weak forcing near and away from reso-

nances. The expansions and results depend on the type of resonance and the type of forcing,

which often reflect the symmetries of the overall system.

This system provides a good example to illustrate

• the important role symmetries can play in the reduction of complex systems

• how important qualitative features of a complex nonlinear system can be extracted by

expanding around special (singular) points, i.e.considering distinguished limits.

2.1 Parametrically Forced Oscillators

Consider second-order differential equations with periodically varying coefficients: para-

metrically forced oscillators.

56



420-2 Asymptotics H. Riecke, Northwestern University

2.1.1 The Mathieu Equation

Consider the linear differential equation describing a parametrically forced harmonic os-

cillator (Mathieu equation)

ü+ (δ + ǫ cos 2t) u = 0 ü = −dU
du

U =
1

2
(δ + ǫ cos 2t) u2

which would model the swing for small angle θ. Even though it is linear it cannot be solved

exactly.

Instead of varying the forcing frequency with fixed natural frequency of the unforced os-

cillator we keep here the forcing frequency fixed, ω = 2, and vary the natural frequency√
δ.

The Mathieu equation is at the core of the description of a wide range of forced oscilla-

tions. Nonlinear treatments are often based on expansions around the Mathieu equation

or variants of it (e.g. Faraday waves on the free surface of vertically vibrated fluid)

Expect: the resonant forcing drives the amplitude of the oscillator to large values.

Goal:

• for weak forcing find the curves δ(ǫ), 0 ≤ ǫ ≪ 1, for which the Mathieu equation has a

periodic solution with period 2π, i.e. twice the period of the forcing.

• the periodic solution is easier to compute than growing or modulated (quasi-periodic)

solutions.

• we will find that the periodic solution separates parameter regimes in which the forc-

ing leads to growing rather than quasi-periodic solutions.

Expand:

δ = δ0 + ǫδ1 + ǫ2δ2 + . . .

u = u0 + ǫu1 + ǫ2u2 + . . .

Collect

O(1) :
ü0 + δ0u0 = 0

O(ǫ):
ü1 + δ0u1 = −u0 (δ1 + cos 2t)

O(ǫ2):
ü2 + δ0u2 = −δ2u0 − u1 (δ1 + cos 2t)

For the solution to have period 2π we need

δ0 = n2 n = 0, 1, 2, . . .

Note:
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• for n = 0 the unforced solution does not represent an oscillator; it is constant and its

value is arbitrary.

• for n ≥ 1 the minimal period of the unforced solution is 2π/n.

i) Case n = 0, i.e. δ0 = 0
δ = ǫδ1 + ǫ2δ2 + . . .

O(1):

u0 = c0 ≡ 1

we can choose the constant amplitude arbitrarily. Since the equation is linear the overall

amplitude depends on the initial conditions and is in that sense arbitrary.

O(ǫ):
ü1 = −δ1 − cos 2t

to eliminate secular terms we need to choose δ1 = 0

u1(t) = c1 +
1

4
cos 2t

The constant c1 modifies the arbitrarily chosen constant amplitude c0 and can also be cho-

sen arbitrarily. Set c1 = 0.

We want to have the first term in δ that actually depends on ǫ: need to go to next order yet.

O(ǫ2):

ü2 = −δ2 −
(

c1 +
1

4
cos 2t

)

cos 2t

= −δ2 −
1

8
− c1 cos 2t−

1

8
cos 4t

to eliminate secular terms we need to choose δ2 = −1
8
.

Thus

δ = −1

8
ǫ2 +O(ǫ3)

Notes:

• δ < 0: to get a periodic solution in the presence of forcing the potential U(u, t) is

modulated around a maximum rather than a minimum.

• ǫ≫ |δ|: during the forcing the potential switches periodically from having a maximum

to having a minimum and back.
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• the periodic orbit corresponds to balancing a stick on its end (upside-down pendulum)

not in vertical position, but at an angle (u0 6= 0).

ii) Case n = 1, i.e. δ0 = 1

O(1):
u0 = c1 cos t + c2 sin t

O(ǫ) :

ü1 + u1 = − (c1 cos t+ c2 sin t) (δ1 + cos 2t)

= c1 cos t

(

−δ1 −
1

2

)

+ c2 sin t

(

−δ1 +
1

2

)

− c1
1

2
cos 3t− c2

1

2
sin 3t

using

cosα cos β =
1

2
{cos (α + β) + cos (α− β)} sinα cos β =

1

2
{sin (α + β) + sin (α− β)}

To eliminate secular terms one of two cases need to be satisfied

• δ1 =
1
2

and c1 = 0
u0 = c2 sin t, u1 = c3 cos t+ c4 sin t+ c2

1
16
sin 3t

• δ1 = −1
2

and c2 = 0
u0 = c1 cos t, u1 = c5 cos t+ c6 sin t+ c1

1
16
cos 3t

O(ǫ2):

• case δ1 = +1
2

ü2 + u2 = −δ2c2 sin t−
(

c3 cos t + c4 sin t+ c2
1

16
sin 3t

)

(δ1 + cos 2t)

= − sin t

(

δ2c2 + c4δ1 −
1

2
c4 +

1

2
c2

1

16

)

− cos t

(

c3δ1 +
1

2
c3

)

− cos 3t

(
1

2
c3

)

− sin 3t

(
1

2
c4 +

1

16
c2δ1

)

− sin 5t

(
1

2

1

16
c2

)

to avoid secular terms need

c3 = 0 δ2 = − 1

32
Thus

δodd = 1 +
1

2
ǫ− 1

32
ǫ2 +O(ǫ3)

u = c2 sin t+ ǫ

(

c4 sin t+ c2
1

16
sin 3t

)

+ . . .

Notes:
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– As in a nonlinear equation, each additional order of the expansion introduces

higher-order harmonics.

– can again set c4 = 0 since it merely adds to the undetermined amplitude c2

• case δ1 = −1
2

ü2 + u2 = −δ2c1 cos t−
(

c5 cos t + c6 sin t+ c1
1

16
cos 3t

)

(δ1 + cos 2t)

= − cos t

(

δ2c1 + c5δ1 +
1

2
c5 +

1

2
c1

1

16

)

− sin t

(

c6δ1 −
1

2
c6

)

− cos 3t

(
1

16
c1δ1 +

1

2
c5

)

− sin 3t

(
1

2
c6

)

− cos 5t

(
1

2

1

16
c1

)

now we need

c6 = 0 δ2 = − 1

32

Thus

δeven = 1− 1

2
ǫ− 1

32
ǫ2 +O(ǫ3)

u = c1 cos t+ ǫ

(

c5 cos t+ c1
1

16
cos 3t

)

+ . . .

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Forcing
Subharmonic response (odd)
Subharmonic response (even)

Figure 14: Even and odd solutions for the subharmonic response.

Notes:

• in both cases the solutions have a period that is twice as long as that of the forcing:

subharmonic response.

• δ − δ0 = ǫδ1 + ǫ2δ2 + . . . characterizes the detuning between the forcing frequency and

the natural frequency of the unforced oscillator
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• for δ1 = +1
2

the solution contains only sinnt to the order considered, i.e. it is odd, and

for δ1 = −1
2

the solution is even.

• for the forcing the transformation ǫ→ −ǫ is equivalent to t→ t + π
2
. Shifting the time

by π
2

interchanges the even and the odd solution: sin t→ cos t and cos t→ − sin t⇒

δeven(ǫ) = δodd(−ǫ)

The two solutions arise for different values of δ given ǫ.

• Is there something special about the Mathieu equation that the solutions seem to be

either even or odd in t?

Time Reversal Symmetry:

• For any n (or δ0) the Mathieu equation is even under time reversal, i.e. the equation

does not change form under the replacement

t→ −t ≡ t̄

since only even derivatives arise and the coefficients are even in t.
I.e. if u(t) is a solution, so is u(−t)

d2

dt2
u(−t) + (δ + ǫ cos (2t))u(−t) =

d2

d(−t)2u(−t) + (δ + ǫ cos (−2t))u(−t)

=
d2

d(t̄)2
u(t̄) + (δ + ǫ cos (2t̄)) u(t̄) = 0

• If we were to find a solution u(t) that is of mixed parity (neither even nor odd) then

– ue ≡ u(t) + u(−t) is even

– uo ≡ u(t)− u(−t) is odd

and since the Mathieu equation is linear, ue and uo are also solutions

Any solution can be written in terms of ue and uo

u(t) =
1

2
(ue + uo)

Thus:

• Because of the time-reversal symmetry we can assume from the start that u(t) is

either even or odd and include only sin-functions or cos-functions

Note:

• the Mathieu equation is linear, therefore the amplitude of the solution is undeter-

mined (in the absence of initial conditions)
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– we do not need to keep the higher-order homogenous solution since they only

change the overall amplitude of the solution.

– fix the amplitude of the leading-order solution by a suitable normalization condi-

tion {∫ 2π

0
u0(t) cos t dt = π for δ = +1

2∫ 2π

0
u0(t) sin t dt = π for δ = −1

2

iii) Case n = 2, δ0 = 4

Note:

• the oscillation period is the same as that of the forcing: harmonic response

We can assume the solution is either even or odd.

Use the normalization conditions

{∫ 2π

0
u0(t) sin 2t dt = π

∫ 2π

0
uk≥1(t) sin 2t dt = 0 odd

∫ 2π

0
u0(t) cos 2t dt = π

∫ 2π

0
uk≥1(t) cos 2t dt = 0 even

i.e. choose amplitude of u0 such that the higher-order terms uk≥1 do not contribute to the

amplitude of the fundamental mode.

O(1):

u0(t) =

{

sin 2t odd solution, out of phase with respect to the forcing

cos 2t even solution, in phase with respect to the forcing

with amplitudes fixed by the normalization

Odd solution:

O(ǫ):

ü1 + 4u1 = −δ1 sin 2t− cos 2t sin 2t

= −δ1 sin 2t−
1

2
sin 4t

thus

δ1 = 0 u1 =
1

24
sin 4t

Note:

• because of the normalization we do not keep the homogeneous solution

O(ǫ2):

ü2 + 4u2 = −δ2 sin 2t− cos 2t
1

24
sin 4t

= − sin 2t

(

+δ2 +
1

2

1

24

)

− 1

2

1

24
sin 6t
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avoid secular terms

δ2 = − 1

48
Thus

δ = 4− 1

48
ǫ2 + . . .

u = sin 2t+ ǫ
1

24
sin 4t+ . . .

Even solution:

O(ǫ):

ü1 + 4u1 = −δ1 cos 2t− cos2 2t

= −δ1 cos 2tδ1 −
1

2
− 1

2
cos 4t

leading to

δ1 = 0 u1 = −1

8
+

1

24
cos 4t

O(ǫ2):

ü2 + 4u2 = −δ2 cos 2t− cos 2t

(

−1

8
+

1

24
cos 4t

)

= cos 2t

(

−δ2 +
1

8
− 1

48

)

− 1

48
cos 6t

leading to

δ = 4 +
5

48
ǫ2 + . . .

u = cos 2t+ ǫ

(

−1

8
+

1

24
cos 4t

)

+ . . .

0 1 2 3 4
Frequency δ
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Figure 15: Periodic solutions of the Mathieu equation. The growth and decay of solutions

away from the lines is discussed later.

Notes:
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• the even harmonic solution is in phase with the forcing, the odd one is out of phase.

• the even harmonic solution has also a non-zero mean.

2.1.2 Floquet Theory

In the discussion of the Mathieu equation we only obtained period solutions, which in turn

required a specific combination of the forcing and the frequency, δ = δ(ǫ).

We would like to have information about the solutions also away from these lines in pa-

rameter space. Can we write them in some specific form?

Consider more generally

ü+Q(t)u = 0 (18)

with Q(t) a T -periodic function

Q(t+ T ) = Q(t)

Notes:

• the solutions to (18) need not be periodic:

– for Q = c < 0 the solutions would be growing and decaying

⇒ expect that this character can persist even with Q time-dependent

– for Q = c > 0 the solutions would be periodic with a period that need not be re-

lated to the period T of Q(t)
⇒ expect that the underlying period persists to some extent withQ time-dependent

⇒ expect that quasi-periodic solutions are possible with two incommensurate fre-

quencies

Symmetries:

• for Q = const.

– (18) is invariant for translations in time by any amount:

for any ∆t the function u(t+∆t) is a solution if u(t) is a solution

the two solutions u(t) and u(t+∆t) are not the same.

– the solution is given by a complex exponential, u ∝ eiαt, α ∈ C.

For arbitrary ∆t one has then

u(t+∆t) = eiα∆tu(t) (19)

• for T -periodic Q(t)

– eq.(18) is invariant only under translations by an integer multiple of T
⇒ with u(t) also u(t+∆t) is a solution if ∆t = nT , n integer

again, u(t) and u(t+ n∆t) are not the same solutions.

– If one considers the discrete temporal evolution u(t = n∆t) of eq.(18) with ∆t = T
the coefficient is constant, Q(t + nT ).
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– does one have a relation like (19) if Q(t) is T -periodic and one considers only shifts

∆t = T ?

We show now:

The discrete time translation symmetry together with the linearity of the equation allows

solutions u(t) that satisfy a simple relationship between u(t) and u(t+ T )

u(t+ T ) = ρ u(t), ρ ∈ C (20)

We want to calculate u(t).

Note:

• not all solutions have the Floquet form (20), but they can be written as superpositions

of Floquet solutions

The basic idea is to use the general solution u(t) = c1u1(t)+c2u2(t) to express also the shifted

solution u(t+ T ) in terms of u1(t) and u2(t).

Consider the two linearly independent solutions

u1(t) with

{

u1(0) = 1

u̇1(0) = 0
u2(t) with

{

u2(0) = 0

u̇2(0) = 1

Since u1,2 are linearly independent their Wronskian is non-zero:

W (u1(t), u2(t)) =

∣
∣
∣
∣

u1(t) u2(t)
u̇1(t) u̇2(t)

∣
∣
∣
∣

and has the same sign as

W (u1(0), u2(0)) =

∣
∣
∣
∣

u1(0) u2(0)
u̇1(0) u̇2(0)

∣
∣
∣
∣
= 1

In fact, here
d

dt
W (u1(t), u2(t)) = u1ü2 − u2ü1 = −Q (u1u2 − u2u1) = 0

i.e. W (u1(t), u2(t)) = 1.

Any solution u(t) of eq.(18) can be written in terms of u1(t) and u2(t)

u(t) = c1u1(t) + c2u2(t)

where the c1,2 are given by the initial conditions

c1 = u(0) c2 = u̇(0) (21)

We are looking for a specific solution, i.e. we need to determine c1,2.
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Now consider u(t+ T ) = c1u1(t+ T ) + c2u2(t+ T ). Can we express this as a multiple of u(t)

u(t+ T ) = c1u1(t+ T ) + c2u2(t+ T )
?
︷︸︸︷
= ρ (c1u1(t) + c2u2(t))

To investigate this equation we need to write uj(t + T ) in terms of u1(t) and u2(t). Because

of the discrete time-translation symmetry t → t + nT , the shifted functions u1,2(t + T ) are

also solutions of (18) and can therefore be expanded in terms of u1,2(t)

uj(T + t) = uj(T )u1(t) + u̇j(T )u2(t) j = 1, 2

using (21).

Note: For arbitrarily shifted functions this would not be possible.

This gives

u(t+ T ) = c1u1(t + T ) + c2u2(t+ T )

= c1 [u1(T )u1(t) + u̇1(T )u2(t)] + c2 [u2(T )u1(t) + u̇2(T )u2(t)]

Try to write this as u(t+ T ) = ρu(t)

c1 [u1(T )u1(t) + u̇1(T )u2(t)] + c2 [u2(T )u1(t) + u̇2(T )u2(t)] = ρ [c1u1(t) + c2u2(t)]

Recall: we are seeking coefficients ci such that u(t) satisfies this condition. Since u1(t) and

u2(t) are linearly independent we get by collecting coefficients of u1(t) and of u2(t)

c1u1(T ) + c2u2(T ) = ρc1

c1u̇1(T ) + c2u̇2(T ) = ρc2

To solve for c1 and c2 this requires

∣
∣
∣
∣

u1(T )− ρ u2(T )
u̇1(T ) u̇2(T )− ρ

∣
∣
∣
∣
= 0

ρ2 − ρ (u1(T ) + u̇2(T ))
︸ ︷︷ ︸

≡2K

+ u1(T )u̇2(T )− u̇1(T )u2(T )
︸ ︷︷ ︸

W=1

= 0

ρ2 − 2Kρ+ 1 = 0

ρ1,2 = K ±
√
K2 − 1 (22)

Notes:

• Shifting the solution by a period amounts indeed to the multiplication with a complex

number.

• ρ is called the Floquet multipler

• since K ∈ R both Floquet multipliers are either real or complex conjugates of each

other
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• it is also convenient to introduce α via ρ1 = eiαT which characterizes the Floquet

exponent iαT . Because W = 1 one has ρ1ρ2 = 1 implying ρ2 = e−iαT .

• For each ρ satisfying (22) we found a solution satisfying u(t+ T ) = ρu(t).

The evolution of u(t) during one period of Q(t) is therefore determined by K

1. K = 1: ρ1,2 = 1 ⇒ one has a T -periodic solution.

2. K = −1: ρ1,2 = −1 ⇒ one has a 2T -periodic (subharmonic) solution

u(t+ 2T ) = −u(t+ T ) = u(T )

3. |K| < 1: ρ1,2 are complex with |ρ1,2| = 1, α ∈ R

4. |K| > 1: |ρ1| > 1 and |ρ2| < 1 are real and α ∈ iR

ρ

ρ

i

r

−1<K<1

K=−1 K=+1

K<−1 K>1

−1<K<1

Figure 16: Dependence of real and imaginary parts of ρ1,2 on K. As K is increased from

K < −1 to K > +1 the two real and negative ρ1,2 split into a complex pair and then merge

again to form two real and positive values.

Linear Independence for |K| 6= 1.

For |K| 6= 1 we found two solutions u(1,2)(t) satisfying the Floquet condition (20) with differ-

ent values of ρ,

u(1)(t + T ) = ρ1u
(t)(t) = eiαTu(1)(t)

u(2)(t + T ) = ρ2u
(2)(t) = e−iαTu(2)(t)

Factoring out the Floquet multiplier eiαT via

u(1)(t) = eiαtU (1)(t)

we get

U (1)(t+ T ) = u(1)(t+ T )e−iα(t+T ) = eiαTu(1)(t)e−iα(t+T ) = U (1)(t)
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i.e. U (1)(t) is T -periodic. Analogously

u(2)(t) = e−iαtU (2)(t)

U (1)(t) and U (2)(t) are T -periodic.

The u(1,2)(t) are independent linear combinations of the two linearly independent solutions

u1(t) and u2(t) ⇒ u(1,2)(t) are also linearly independent.

More formally:

assume there are k1 6= 0 6= k2 with

k1u
(1)(t) + k2u

(2)(t) = 0 for all t

k1e
iαtU (1)(t) + k2e

−iαtU (2)(t) = 0

k1e
iα(t+T )U (1)(t+ T ) + k2e

−iα(t+T )U (2)(t+ T ) = 0

Using U (1,2)(t+ T ) = U (1.2)(t) non-zero ki requires the determinant to vanish

eiαtU (1)(t)e−iα(t+T )U (2)(t)− e−iαtU (2)(t)eiα(t+T )U (1)(t) = 0

i.e.

e−iαT − e+iαT = 0 ρ1 = ρ2

which is a contradiction. Therefore k1 = 0 = k2, showing the linear independence.

Thus we have:

For |K| 6= 1 the general solution u(t) to (18) can be written in the form

u(t) = c1e
iαtU (1)(t) + c2e

−iαtU (2)(t)

with U (1,2)(t) being T -periodic.

1. for |K| < 1 the solutions are quasi-periodic since α ∈ R

Since u(t) is real

2u(t) = c1e
iαtU (1)(t) + c2e

−iαtU (2)(t) + c.c.

= eiαt
{
c1U

(1) + c∗2U
(2)∗}+ e−iαt

{
c∗1U

(1)∗ + c2U
(2)
}

= eiαt
{
c1U

(1) + c∗2U
(2)∗}+ c.c.

Therefore we can write in general

u(t) = c eiαtU(t) + c.c.

with U(t+ T ) = U(t).

2. for |K| > 1 we have α ∈ iR and there are two linearly independent real solutions:

one solution grows exponentially, while the other decays exponentially.

The growing solution renders the state u(t) = 0 linearly unstable.
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2.1.3 Stability and Instability in the Mathieu Equation

Use the result from Floquet theory to determine the stability properties of u(t) = 0 in the

Mathieu equation with respect to a subharmonic instability, ρ ≈ −1.

Consider

ü+ (δ + ǫ cos 2t)u = 0 (23)

The general solution can be written as

u(t) = c1e
iαtψ1(t) + c2e

−iαtψ2(t) ψi(t + π) = ψi(t)

because the forcing period is T = π.

Equation is linear: can determine the two components cie
±iαtψi separately. .

Note:

• for any values of δ and ǫ (23) has the base solution u(t) = 0. If (23) has also exponen-

tially growing solutions the base solution is linearly unstable.

Goal: determine α(δ, ǫ).

For a response that is subharmonic with respect to the period of the forcing one has ρ =
eiαπ = −1, i.e. α = 1. We therefore expand

α = 1 + ǫα1 + ǫ2α2 + . . .

u = eiαtψ(t) = ei(ǫα1+ǫ2α2t+...)t eitψ(t)
︸ ︷︷ ︸

φ(t)

with

φ(t) = φ0(t) + ǫφ1(t) + . . .

δ = 1 + ǫδ1 + . . .

ü = −
(
ǫα1 + ǫ2α2 + . . .

)2
ei(ǫα1+ǫ2α2+...)tφ+ 2i

(
ǫα1 + ǫ2α2 + . . .

)
ei(ǫα1+ǫ2α2+...)tφ̇+

+ei(ǫα1+ǫ2α2+...)tφ̈

Insert

O(1):
φ̈0 + φ0 = 0 ⇒ φ0(t) = c1 cos t + c2 sin t

O(ǫ):
φ̈1 + φ1 = −2iα1φ̇0 − δ1φ0 − cos 2t φ0 ≡ F1(t)
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F1(t) = −2iα1 (−c1 sin t+ c2 cos t)− δ1 (c1 cos t+ c2 sin t)− cos 2t (c1 cos t+ c2 sin t)

= cos t

(

−2iα1c2 − δ1c1 −
1

2
c1

)

+ sin t

(

2iα1c1 − δ1c2 +
1

2
c2

)

−1

2
c1 cos 3t−

1

2
c2 sin 3t

To avoid secular terms we need

−2iα1c2 − δ1c1 −
1

2
c1 = 0

2iα1c1 − δ1c2 +
1

2
c2 = 0

∣
∣
∣
∣

δ1 +
1
2

2iα1

2iα1 −δ1 + 1
2

∣
∣
∣
∣
= 0

−δ21 +
1

4
+ 4α2

1 = 0

α
(±)
1 = ±1

2

√

δ21 −
1

4
= ±i1

2

√

1

4
− δ21

Insert
(

δ1 +
1

2

)

c1 ∓
√

1

4
− δ21 c2 = 0

√

1

2
+ δ1 c1 ∓

√

1

2
− δ1 c2 = 0

c1 = A±

√

1

2
− δ1 c2 = ±A±

√

1

2
+ δ1

Thus

u±(t) = A± e
iǫα

(±)
1 t

(√

1

2
− δ1 cos t ±

√

1

2
+ δ1 sin t

)

= A± e
∓ 1

2

√
1
4
−δ21 ǫt

(√

1

2
− δ1 cos t ±

√

1

2
+ δ1 sin t

)

The general solution is given by

u(t) = A+u+(t) + A−u−(t)

with the amplitude A± determined by initial conditions.

Notes:

• for δ1 = ±1
2

the solution reduces to the periodic solution obtained in Sec.2.1.1.

• for δ21 >
1
4

the solutions remain bounded. The solutions are quasiperiodic, i.e. they

exhibit two unrelated frequencies ω = 1 and Ω =
√

δ21 − 1
4
.
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• for δ21 <
1
4

one solution blows up exponentially: the state u(t) = 0 is unstable.

• the Mathieu equation is linear ⇒ the exponential growth does not saturate

• recall: δ1 characterizes the leading-order detuning between the forcing and the sub-

harmonic resonance

– weak detuning (δ21 <
1
4
) ⇒ resonant driving leads to exponential growth of one

mode

– strong detuning (δ21 >
1
4
) ⇒ driving is out of resonance and is not able to pump in

energy to generate growth

– at the border between these two regimes the solution is periodic
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-1

-0.5

0

0.5

1

F
or

ci
ng

 S
tr

en
gt

h 
ε unstable

unstable

n=1
stable stable

Figure 17: Stability and instability regions of Mathieu equation at the 2:1 resonance (sub-

harmonic response).

2.2 Nonlinear Oscillators: Forced Duffing Oscillator

Nonlinearity can saturate the growth of the oscillations and can affect the resonance fre-

quency

As an example of a forced, weakly nonlinear oscillator consider the Duffing equation

¨̂y + β̂ ˙̂y
︸︷︷︸

damping

+ ω2
0

︸︷︷︸

natural frequency

ŷ + α̂ŷ3
︸︷︷︸

nonlinearity

= f̂ cosωt
︸ ︷︷ ︸

forcing

(24)

Note:

• here the forcing is taken to be non-parametric; in the swing picture it would corre-

spond to a person pushing ⇒ with forcing the solution ŷ = 0 does not exist any more
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2.2.1 Linear Case

i) linear, undamped case: β̂ = 0, α̂ = 0

in this case one can easily consider the general case of O(1)-forcing

ÿ + ω2
0y = f̂ cosωt y(0) = yi, ẏ(0) = 0

For ω 6= ω0

y(t) = c1 cosω0t + c2 sinω0t +
f̂

ω2
0 − ω2

cosωt

using initial conditions

y(0) = c1 +
f̂

ω2
0 − ω2

!
︷︸︸︷
= yi ẏ(0) = c2ω0

!
︷︸︸︷
= 0

we get

y(t) = yi cosω0t+
f̂

ω2
0 − ω2

(cosωt− cosω0t)

= yi cosω0t+
f̂

ω0 + ω

2

ω0 − ω
sin

ω0 − ω

2
t

︸ ︷︷ ︸

A(t)

sin
ω0 + ω

2
t

For ω0 − ω ≪ ω0 the amplitude A(t) varies much more slowly than sin 1
2
(ω0 + ω) t: beating.

For ω → ω0 one gets

y(t) → yi cosω0t+
f̂

2ω
t sinωt

Notes:

• at the resonance ω = ω0 the forcing leads to a linear, unbounded growth of the oscilla-

tions

ii) linear case with damping: α̂ = 0

ÿ + β̂ẏ + ω2
0y = f̂ cosωt y(0) = yi, u̇(0) = 0

General solution

y(t) = yh(t)
︸︷︷︸

→0 for t→ ∞
+f̂

(ω2
0 − ω2) cosωt+ β̂ω sinωt

(ω2
0 − ω2)

2
+ β̂2ω2

(25)

Notes:
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• the homogeneous solution consists of a damped oscillation

yh(t) = e−σt (a cosωβt+ b sinωβt) with σ =
1

2
β̂ ωβ =

√

ω2
0 −

1

4
β̂2

with a and b determined by the initial conditions.

• the damping leads to a lag of the phase of the oscillation relative to the forcing

• for large times the initial condition becomes irrelevant since yh → 0 for t→ ∞

• the approach to the steady state is oscillatory in the amplitude of oscillation, reflecting

the beating obtained without damping

150
0

1000

−10

5

10

t

50 200

−5

Figure 18: Solution of the linear case with damping for β = 0.05, ω0 = 1, ω = 1.1, δ = 0.1,

f = 1, α = 0.

In the steady state reached for t→ ∞ the amplitude of the oscillation is given by

R∞ =
f̂

(ω2
0 − ω2)

2
+ β̂2ω2

√

(ω2
0 − ω2)

2
+ β̂2ω2 =

f̂
√

(ω2
0 − ω2)

2
+ β̂2ω2

Frequency of maximal amplitude

−4ωmax
(
ω2
0 − ω2

max

)
+ 2β̂2ωmax = 0 ω2

max = ω2
0 −

1

2
β̂2

Rmax =
f̂

β̂
√

ω2
0 − 1

4
β̂2
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Figure 19: Response curve R∞(ω) for ω0 = 1.

Notes:

• for non-zero damping

– the oscillation amplitude does not diverge at the resonance ω0 = ω

– the maximal amplitude is attained at a frequency below the natural frequency
√

ω2
0 − 1

4
β̂2

• with decreasing damping the resonance peak of the response curve becomes sharper

and taller

• the maximum in the response disappears for β̂2 > 2ω2
0

2.2.2 Nonlinear Case: 1:1 Forcing

For the Mathieu equation we managed to get an approximate solution for

• weak forcing

• weak detuning

As expected from Floquet theory the solution had the form

u±(t) = A± e
iα

(±)
1 T (c1 cos t ± c2 sin t)

and exhibited

• slow growth or slow oscillation depending on the detuning δ
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The slow growth and slow oscillations can be captured by using multiple time scales

t ⇒ t̂ = t and T = ǫt

We want to extend this approach to include damping and the nonlinearity.

Perturbation approach:

• multiple time scales:

– eliminate the fast evolution

– derive equation on a slow time scale

Under what conditions can the damping and the nonlinearity be captured in the slow evo-

lution?

How are they related to time scales?

Time scales in the problem:

• natural frequency of the oscillator

• forcing frequency

• decay time due to damping

• change in frequency due to a change in amplitude through the nonlinearity

Under what conditions can we capture forcing, damping, and nonlinearity with a single

equation for the slow evolution?

Consider slow time scales

• weak damping: slow decay

• forcing is close to 1:1 resonance ω ≈ ω0: small frequency difference

• small amplitude: small change in frequency

We want to capture all three aspects in a single expansion ⇒ consider all of them small.

How do we have to choose the scaling of the various small quantitites? At this point we

just use trial and error. Later we will develop a systematic method to obtain the optimal

scaling.

Introducing an explicit ǫ≪ 1 we try

O(ω − ω0) ≡ ǫΩ = O(β̂) O(ŷ2) = ǫ O(f̂) = O(y3)

and rewrite

β̂ = ǫβ ŷ = ǫ
1
2y f̂ = ǫ

3
2f

ÿ + ǫβẏ
︸︷︷︸

damping

+ ω2
0

︸︷︷︸

natural frequency

y + ǫαy3
︸︷︷︸

nonlinearity

= ǫf cosωt
︸ ︷︷ ︸

forcing

(26)

with initial conditions

y(0) = yi ẏ(0) = 0

Note:
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• in general the balancing of the terms is more subtle. It is not done directly in the orig-

inal equation that is to be expanded. We will see that symmetries play an important

role.

Without loss of generality assume ω0 = 1

ω = ω0 + ǫΩ = 1 + ǫΩ

The slow damping, the small frequency difference, and the small change in frequency due

to the nonlinearity can be captured with a second, slow time scale using the method of

multiple scales

y = y(t̃, T ) with T = ǫt t̃ = t

Now we simply expand y(t)

y(t) = y0(t̃, T ) + ǫy1(t̃, T ) + . . .

and insert into

ÿ + ǫβẏ + y + ǫαy3 = ǫf cosωt

O(1):
∂2y0

∂t̃2
+ y0 = 0 y0(0, 0) = yi,

∂y0(0, 0)

∂t
= 0

y0(t̃, T ) = A(T )eit̃ + A∗(T )e−it̃

Note:

• The complex amplitude can depend slowly on time: this allows slow growth and decay

as well as small changes in the frequency of the oscillator

A(T ) = ReiΩT ⇒ y0 = Rei(1+ǫΩ)t + c.c. = R cos ((1 + ǫΩ) t)

Expand the operators using multiple times:

Using
d

dt
y(t̃, T ) = ∂t̃y

dt̃

dt
+ ∂T y

dT

dt
= ∂t̃y + ǫ∂T y

We simply write

∂

∂t
= ∂t̃ + ǫ∂T

∂2

∂t2
= (∂t̃ + ǫ∂T )

2 = ∂2t̃ + 2ǫ∂2t̃T +O(ǫ2)

O(1) :
∂2t̃ y0 + y0 ≡ Ly0 = 0

O(ǫ):
∂2t̃ y1 + y1 = −2∂t̃∂Ty0 − β∂t̃y0 − αy30 + f cos

(
(1 + ǫΩ) t̃

)
≡ f1(t̃, T )

Write as

Ly1 = f1(t̃, T )
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We need

y30 =
(

A(T )eit̃ + A∗(T )e−it̃
)3

= A3e3it̃ + 3|A|2Aeĩ + 3|A|2A∗e−it̃ + A∗3e−3it̃

cos
(
(1 + ǫΩ) t̃

)
=

1

2

(

eit̃eiΩT + e−it̃e−iΩT
)

Note:

• the linear operator L ≡ ∂2
t̃
+1 is singular with zero-modes eit̃ and e−it̃ ⇒ secular terms

arise from terms ∝ e±it̃ in f1(t̃, T ).

Focus only on the terms ∝ eit̃ in f1

f1(t̃, T ) =

{

−2i∂TA− βiA− 3α|A|2A +
1

2
feiΩT

}

eit̃ + {. . .} e3it̃ + c.c.

The solvability conditions requires

−2i∂TA− βiA− 3α|A|2A+
1

2
feiΩT = 0

i.e.

∂TA = −1

2
βA+

3

2
iα|A|2A− i

4
feiΩT

Note:

• The solvability condition arising from the secular term e−it̃ is the complex conjugate

of the solvability condition arising from eit̃. It is therefore equivalent and does not add

anything new.

It is convenient to absorb the slow oscillation of the forcing term into a redefined complex

oscillation amplitude

A(T ) = e−iΩTA(T )

∂TA =

(

−1

2
β − iΩ

)

A+
3

2
iα|A|2A− i

4
f (27)

It is often also useful to write the complex amplitude equation in terms of a real amplitude

and phase

A(T ) = R(T )eiφ(T )

Thus

∂TR + i∂TφR =

(

−1

2
β − iΩ

)

R +
3

2
iαR3 − i

4
fe−iφ(T )

Separating into real and imaginary parts

∂TR +
1

2
βR = −1

4
f sin φ (28)

R∂Tφ+

(

Ω− 3

2
αR2

)

R = −1

4
f cos φ (29)

Notes:
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• Eq.(27) and eqs.(28,29) for the amplitude and phase of the forced oscillator were de-

rived under the assumptions

– weak damping

– weak forcing

– small deviation of the forcing frequency from the natural frequency of the oscil-

lator

These conditions are satisfied for a system that undergoes a Hopf bifurcation for val-

ues of the bifurcation parameter just below the Hopf bifurcation, i.e. in the regime in

which the basic state is still linearly stable, but only weakly so (⇒ weak damping).

These equations should therefore arise more generally for any such Hopf bifurcation

(see later).

Note:

• Drawbacks of the formulation in terms of amplitude and phase.

– (28,29) are nonlinear even for α = 0, i.e. even when the original equations are

linear.

– (28,29) are even singular for R = 0 (coefficient of φ′ vanishes). This singularity is

only a coordinate singularity, nothing singular happens in the solution.

i) Compare first with previous result for the linear case α = 0

Steady state (fixed point of (28,29))

1

4
β2R2

∞ + Ω2R2
∞ =

1

16
f 2 ⇒ R∞ =

1

2

f
√

β2 + 4Ω2

tanφ∞ =
1
2
βR∞

ΩR∞
φ∞ = arctan

(
β

2Ω

)

The solution of (25) approaches the steady state in an oscillatory manner in the amplitude

R. That was not easily seen in our previous linear solution. Recover that aspect from

(28,29) by considering small perturbations around (R∞, φ∞)

R = R∞ + r(T ) φ = φ∞ + ϕ(T )

Insert

r′ +
1

2
β (R∞ + r) = −1

4
f (sin φ∞ + cos φ∞ ϕ)

R∞ϕ
′ + Ω(R∞ + r) = −1

4
f (cos φ∞ − sinφ∞ ϕ)

and rewrite
(
r′

ϕ′

)

=

( −1
2
β −1

4
f cosφ∞

− Ω
R∞

1
4R
f sin φ∞

)(
r
ϕ

)

=

( −1
2
β +ΩR∞

− Ω
R∞

−1
2
β

)(
r
ϕ

)
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Using an ansatz
(
r
ϕ

)

=

(
r0
ϕ0

)

eσT

yields ∣
∣
∣
∣

σ − 1
2
β −ΩR∞

− Ω
R∞

σ − 1
2
β

∣
∣
∣
∣
= 0

σ2 − βσ +
1

4
β2 + Ω2 = 0 σ = −β ± iΩ

ii) Now the nonlinear problem:

Fixed points (critical points):

Start with the easier case without damping: β = 0

βR∞ = −1

2
f sinφ∞

2ΩR∞ − 3αR3
∞ = −1

2
f cosφ∞

This yields

sin φ∞ = 0 ⇒ φ∞ = 0 or φ∞ = π

and

2ΩR∞ − 3αR3
∞ = ∓1

2
f

Since y = Reiφeit̃ + c.c., for φ = 0 the oscillation is in phase with the forcing. For φ = π it is

out of phase.

To get an overview of the dependence on the detuning Ω it is easier to solve for Ω than for

R
(1,2)
∞

In-phase solution φ∞ = 0:

Ω =
3

2
αR2

∞ − f

4R∞

Out-of-phase solution φ∞ = π:

Ω =
3

2
αR2

∞ +
f

4R∞

Notes:

• In the absence of forcing both curves become identical and one recovers the amplitude-

dependence of the frequency of the Duffing oscillator

ω = ω0 +
3

2
αR2

∞

α > 0 corresponds to a hard spring: frequency increases with amplitude

α < 0 corresponds to a soft spring: frequency decreases with amplitude
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Figure 20: Dependence of the amplitude on the forcing frequency for α > 0 (a) and α < 0
(b).

Characterize Ω(R∞):
dΩ

dR∞
= 3αR∞ ± f

4R2
∞

” + ” ⇔ φ∞ = 0

For α > 0 the in-phase solution has a monotonic dependence Ω(R∞) and the out-of-phase

solution has a minimum at

R(min)
∞ =

(
f

12α

) 1
3

and vice versa for α < 0 (f ≥ 0).

Thus for α > 0 there are none or two out-of-phase solutions for a given value of Ω and for

α < 0 there are none or two in-phase solutions.

Linear stability of the various solutions:

R = R∞ + r(T ) φ = φ∞ + ϕ(T )

(
r′

ϕ′

)

=

( −1
2
β −1

4
f cosφ∞

− Ω
R∞

+ 9
2
αR∞

1
4R∞

f sinφ∞

)(
r
ϕ

)no damping
︷︸︸︷
=

(
0 ∓1

4
f

− Ω
R∞

+ 9
2
αR∞ 0

)(
r
ϕ

)

with the upper sign (here ”− ” ) corresponding to φ∞ = 0 and the lower sign (here ” + ”) to

φ∞ = π.

The eigenvalues are

σ2 = ±1

4
f

(
Ω

R∞
− 9

2
αR∞

)

= ±1

4
f

(
3

2
αR∞ ∓ 1

4

f

R2
∞

− 9

2
αR∞

)

= ∓1

4
f

(

3αR∞ ± 1

4

f

R2
∞

)

= ∓f dΩ

dR∞

Thus both eigenvalues are either real or purely imaginary. One of the real eigenvalues is

always positive.

Again, the upper sign (here ”− ”) corresponds to φ∞ = 0 and the other one to φ∞ = π.
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• α > 0:

– in-phase solution stable: σ ∈ iR (note dΩ
dR∞

> 0 on this branch)

– out-of-phase solution is

* stable for

R∞ <

(
f

12α

) 1
3

= R(min)
∞

* unstable for R∞ > R
(min)
∞

• α < 0:

– in-phase solution is

* stable for R∞ < R
(min)
∞

* unstable for R∞ > R
(min)
∞

– out-of-phase solution is stable

Notes:

• without damping ‘stability’ means actually purely oscillatory response to small per-

turbations, no asymptotic approach to the fixed point.

• expect that with damping the purely imaginary eigenvalues acquire a negative real

part and the fixed point becomes asymptotically stable.

Now with damping: β > 0

Fixed points:

βR∞ = −1

2
f sinφ∞

ΩR∞ − 3

2
αR3

∞ = −1

2
f cosφ∞

β2R2
∞ +

(

ΩR∞ − 3

2
αR3

∞

)2

=
1

4
f 2 (30)

Can solve again for Ω

Ω1,2 =
3

2
αR2

∞ ± 1

2R∞

√

f 2 − 4β2R2
∞ =

3

2
αR2

∞ ± 1

2

√

f 2

R2
∞

− β2

Now R∞ is bounded:

• no phase-locked solution for R∞ > f
β
.
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• For R∞ = f
β

both branches merge: turning point of Ω(R∞)

Turning points of R∞(Ω) correspond to dΩ
dR∞

= 0

dΩ1,2

dR∞
= 3αR∞ ± f 2

4
√

f2

R2∞
− β2

−2

R3
∞
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Figure 21: Dependence of the amplitude of the phase-locked solution on the forcing fre-

quency with damping. Strong hysteresis for strong forcing and weak damping (b).

Notes:

• To test the hysteresis need to scan the frequency in steps to be able to assess conver-

gence to a steady state. To make the phase of the forcing continuous across the jumps

solve the system

ϕ̇ = ω(t)

ÿ + ω2
0y + ǫẏ + ǫαy3 = ǫf cosϕ
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Figure 22: Numerical Results: α = 1, f = 3, β = 1, ǫ = 0.02. Hysteresis agrees quantita-

tively with perturbation result (to the extent tested in this short simulation). a) frequency

increased in 10 steps, b) frequency decreased in 10 steps.

Notes:

• A review of certain aspects of the dynamics of the Duffing oscillator with 2 : 1-forcing

is given in [9].

2.2.3 Duffing Oscillator as a System of Equations

For simplicity demonstrate the approach with the Duffing oscillator again near the 1:1-

resonance

ÿ + ω2
0y + ǫẏ + ǫαy3 = ǫf cosωt ω = ω0 + ǫΩ

Rewrite in terms of a system of first-order equations with

u = y v = ẏ

Thus

u̇− v = 0

v̇ + ω2
0u = −ǫ

{
βv + αu3 − f cosωt

}

Introducing slow and fast times, t̂ = t, T = ǫt we get

∂t̂u− v = −ǫ ∂Tu ≡ ǫI1

∂t̂v + ω2
0u = −ǫ

{
∂T v + βv + αu3 − f cosωt̂

}
≡ ǫI2

83



420-2 Asymptotics H. Riecke, Northwestern University

i.e.

L (∂t̂)

(
u
v

)

≡
(
∂t̂ −1
ω2
0 ∂t̂

)(
u
v

)

=

(
ǫI1
ǫI2

)

Looking for a harmonic response at frequency ω0, we expand as usually,
(
u
v

)

= A(T )

(
U0

V0

)

eiω0 t̂ + c.c.+ ǫ

(
u1(t̂, T )
v1(t̂, T )

)

+O(ǫ2).

We need to determine an evolution equation for the complex amplitude A(T ).

Inserting this ansatz will lead to other frequencies through the nonlinear term and the

forcing. Since Fourier modes with different frequencies are linearly independent we need

to consider only each Fourier mode separately.

For terms proportional to eiωt̂ the operator L (∂t̂) simply becomes a matrix L(ω)

L(ω) ≡
(
iω −1
ω2
0 iω

)

For the mode eiω0 t̂

(
U0

V0

)

we get

L(ω0)

(
U0

V0

)

≡
(
iω0 −1
ω2
0 iω0

)(
U0

V0

)

Consider now each order in ǫ:

O(ǫ0) :

L(ω0)

(
U0

V0

)

=

(
0
0

)

We need a non-trivial solution for this equation. Since L(ω0) will appear at each order of

the expansion we look at it in more detail. Consider the eigenvalues of L(ω0)

∣
∣
∣
∣

−σ + iω0 −1
ω2
0 −σ + iω0

∣
∣
∣
∣
= 0

σ1,2 = iω0 ± iω0 =

{
0

2iω0

with eigenvectors
(

U
(1)
0

V
(1)
0

)

=

(
1
iω0

)

for σ = 0

(

U
(2)
0

V
(2)
0

)

=

(
1

−iω0

)

for σ = 2iω0

To solve the equation at O(ǫ0) we need to take the eigenvector associated with σ1 = 0
(
U0

V0

)

=

(
1
iω0

)

O(ǫ1):

L (∂t̂)

(
u1
v1

)

=

(
I1
I2

)
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Again, we can consider each Fourier mode separately.

Since L is singular we expect that secular terms will arise, which will imply a solvability

condition. These terms are associated with the Fourier modes e±iω0 t̂. Thus, we first consider

only those terms,

eiω0 t̂ :

L(ω0)

(
U1

V1

)

=

(
I1(ω0)
I2(ω0)

)

(31)

where Ii(ω0) includes only the terms ∝ eiω0 t̂ in Ii.

Previously, the solvability condition simply amounted to setting the terms proportional to

cosω0t and to sinω0t to 0 (or equivalently eiω0t and e−iω0t). It seems at first glance as if this

implied that for each Fourier mode one obtains a solvability condition from each of the

equations in (31). This would imply two complex equations for a single complex amplitude:

that cannot be correct.

To invoke the Fredholm Alternative Theorem we need the left zero-eigenvector (U+(t), V +(t))
of L,7

(
U+
0 , V

+
0

)
L(ω0) =

(
U+
0 , V

+
0

)
(
iω0 −1
ω2
0 iω0

)

= 0

which yields
(
U+
0 , V

+
0

)
=

(

1,− i

ω0

)

7We could stay within the space of periodic functions and define a suitable scalar product for functions

yi(t) ≡ (ui(t), vi(t))

〈y1(t),y2(t)〉 ≡
∫ 2π

ω0

0

(u1(t)
∗, v1(t)

∗)

(
u2(t)
v2(t)

)

dt.

The left zero-eigenvector (U+(t), V +(t)) is then defined via the condition

∫ 2π

ω0

0

(
U+(t), V +(t)

)∗
(

∂t −1
ω2
0 ∂t

)(
u(t)
v(t)

)

= 0

for any

(
u(t)
v(t)

)

.

Use integration by parts

0 =

∫

U+∗ (∂t̂u− v) + V +∗
(
ω2
0u+ ∂t̂v

)
dt̂

=

∫

−u∂t̂U+∗ − U+∗v + V +∗ω2
0u− v∂t̂V

+∗dt̂

=

∫ [( −∂t̂ ω2
0

−1 −∂t̂

)(
U+

V +

)∗]t(
u(t̂)
v(t̂)

)

dt̂

Thus (
U+

V +

)

=

(
U+
0

V +
0

)

e±iω0 t̂ =

(
1

± i
ω0

)

e±iω0 t̂.

The solvability condition is then given by

∫ 2π

ω0

0

(

1,− i

ω0

)

e−iω0 t̂

(
I1
I2

)

dt̂ = 0.
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Equivalently, we can obtain the left eigenvectors using the adjoint of L(ω0) within the sub-

space of functions ∝ eiω0t

L∗t(ω0)

(
U+∗
0

V +∗
0

)

=

(
−iω0 ω2

0

−1 −iω0

)(
U+∗
0

V +∗
0

)

= 0

(
U+∗
0

V +∗
0

)

=

(
1
i
ω0

)

Note:

• There is only a single left zero-eigenvector for eiω0 t̂, reflecting the fact that there is

only a single 0 eigenvalue.

⇒ only one single solvability condition that combines the equation for u and that for

v.

• Important: one does not get a separate solvability condition for the u-component and

one for the v-component.

• L is not symmetric, therefore the left and the right 0-eigenvectors differ from each

other.

• There is a second left 0-eigenvectors, which is associated with the frequency −ω0. That

eigenvector is the complex conjugate of the eigenvector for +ω0 because the original

equation is real. No additional information is obtained from the Fredholm Alternative

Theorem using that eigenvector.

The solvability condition is now given by

(

1,− i

ω0

)(
I1(ω0)
I2(ω0)

)

= 0

where

I1(ω0) = −∂TA
I2(ω0) = −iω0∂TA− βiω0A− 3|A|2Aα +

1

2
feiΩT

The solvability therefore yields

−2∂TA− βA+ 3i
α

ω0
|A|2A− i

2ω0
feiΩT = 0

i.e.

∂TA = −1

2
βA+ i

3α

2ω0
|A|2A− i

4ω0
feiΩT

Note:

Again we can remove the explicit T -dependence in the equation by writing

A = AeiΩT
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yielding

∂TA =

(

−1

2
β − iΩ

)

A+ i
3α

2ω0
|A|2A− i

4ω0
f (32)

in agreement with our previous results (27) and (28,29).

Notes:

• using the other left 0-eigenvector would result in an equivalent solvability condition

leading to the complex conjugate of (32).

The complex amplitude equation (32) suggests that forcing a general oscillator one would

obtain a complex amplitude equation of the form

∂TA = µA− γ|A|2A+ νf (33)

where µ ≡ µr + iµi, γ ≡ γr + iγi, ν ≡ νr + iνi are complex coefficients.

Notes:

• Comparing (33) with (32) shows that the Duffing oscillator does not lead to the most

general amplitude equation for a forced oscillator:

– for the Duffing oscillator one has γr = 0:

no nonlinear dissipation of the oscillation amplitude, only linear damping

⇒ the saturation of the oscillation amplitude occurs through a change of the

natural frequency of the oscillator with increasing amplitude, which renders the

forcing less effective with increasing oscillation amplitude

• The fact that νr = 0 in (32) is of no significance:

for arbitrary ν ≡ ν̂eiδ with ν̂ ∈ R replacing A → Âeiδ leads to

∂T Â = µÂ − γ|Â|2Â+ ν̂f (34)

• Why does the nonlinearity of the amplitude equation (33) have this special form? Why

no term like A3, for instance? Would another nonlinearity in the oscillator equation,

e.g. ẏy2 or ˙y2y, generate a term like A3?

2.3 Symmetries

2.3.1 Motivation

How do we know how to scale the various quantities? Review the example in the homework:

quadratic oscillator

ü+ u+ βu̇+ u2 = 0 (35)
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The naive approach we have used for the Duffing oscillator, where we balanced the nonlin-

earity directly with the slow time derivative and the damping, suggests balancing

βu̇ ∼ u2 ∼ d

dT
u

suggesting

u = ǫu1(t̂, T ) + ǫ2u2(t̂, T ) + . . . T = ǫt, β = ǫβ1

Inserting this expansion yields

O(ǫ1) :
∂2u1

∂t̂2
+ u1 = 0

u1 = A(T )eit̂ + A∗(T )e−it̂

O(ǫ2):
∂2u2

∂t̂2
+ u2 = −2

∂2

∂t̂∂T
u1 − β1

∂u1

∂t̂
+ u21

∂2u2

∂t̂2
+ u2 = −2i

dA

dT
eit̂ + 2i

dA∗

dT
e−it̂ − β1iAe

it̂ + β1iAe
−it̂ + 2 |A|2 + A2e2it̂ + A∗2e−2it̂.

From the terms proportional to eit̂ this leads to the solvability condition

dA

dT
= −1

2
β1A.

This equation does not include any trace of the nonlinearity and is therefore not what we

are looking for.

Why is there no quadratic nonlinearity in this amplitude equation? Wouldn’t the quadratic

nonlinearity of the original equation suggest a quadratic nonlinearity in the amplitude

equation? But this quadratic nonlinearity did not generate any terms proportional to eit̂.

We can now try a different scaling in the hope that this will work better. Will the quadratic

nonlinearity ever generate secular terms, which then need to be included in the solvability

condition?

So, go to higher order in ǫ. To do so we need to solve first for u2. Inserting the ansatz

u2 = B0 +B2e
2it̂ +B∗

2e
−2it̂

into the equation at O(ǫ2) we get

B0 = 2 |A|2 B2 = −1

3
A2.

Since we are expecting to get a suitable solvability condition at an order beyond O(ǫ2), it

would be wise to change the scaling of the damping and the slow time as well, in order to

push those to higher order. Try

β = ǫ2β2 T = ǫ2t
d2

dt2
=

∂2

∂t̂2
+ 2ǫ2

∂2

∂t̂∂T
+O(ǫ4).
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Then on to cubic order

O(ǫ3):

∂2u3

∂t̂2
+ u3 = −2

∂2

∂t̂∂T
u1 − β2

∂u1

∂t̂
+ 2u1u2

= −2i
dA

dT
eit̂ − β2iAe

it̂ + c.c.+ 2
(

Aeit̂ + A∗e−it̂
)(

B0 +B2e
2it̂ +B∗

2e
−2it̂
)

= eit̂
{

−2i
dA

dT
− iβ2A+ AB0 +B2A

∗
}

+ non-secular terms

Thus, we get now as solvability condition

dA

dT
= −1

2
β2A +

1

2i

(

2− 1

3

)

|A|2A. (36)

So, it seems that the first nonlinear term that arises for this oscillator has the form |A|2A.

If we had known the form of the amplitude equation from the start, we could have chosen

the scaling accordingly and would not have had to guess.

In all generality, our expansion involves essentially a Taylor expansion. It will therefore

lead to an equation of the form
dA

dT
= F (A,A∗)

with F (A,A∗) being a general polynomial in its arguments. But apparently the solvability

condition does not lead to the most general polynomial: certain terms do not appear. Why

not?

Very often, terms in an equation do not appear because of special symmetries. For instance,

the Taylor expansion of sin x does not include any even terms because sin x is even in x. The

situation here is analogous: all oscillators have a specific symmetry that eliminates certain

terms in the amplitude expansion.

2.3.2 Symmetries, Selection Rule, and Scaling

In the absence of forcing (35) is invariant under arbitrary time translations

t→ t +∆t

i.e. if y(t) is a solution to (35) so is y(t+∆t).
This invariance must be reflected in the resulting amplitude equation (36). However, A
does not depend on the fast time t. How is it then affected by translations in the fast time

t?

Consider a solution y(t) and the time-shifted solution y(t + ∆t) and their expansions in

terms of the complex amplitude A,

y(t) = A(T ) eiωt + c.c.+ h.o.t.

y(t+∆t) = A(T )eiω(t+∆t) + c.c. + h.o.t.

= A(T )eiω∆t eiωt + c.c.+ h.o.t.

The expansion implies:

89



420-2 Asymptotics H. Riecke, Northwestern University

• If y(t) is a solution of the original equation then A(T ) is a solution of the amplitude

equation and vice versa.

• The time-shifted function y(t +∆t) is represented in terms of the complex amplitude

by A(T )eiω∆t, i.e. shifting the fast time by ∆t is equivalent to rotating the phase of A
by eiω∆t.

• If y(t + ∆t) is a solution of the original equation then A(T )eiω∆t is a solution of the

amplitude equation and vice versa8.

Using the fact that with y(t) also y(t +∆t) is a solution, one obtains the following commu-

tative diagram

y(t) solves the original equation ⇔ A(T ) solves the amplitude equation

m m
y(t+∆t) solves the original equation ⇔ A(T )eiω∆t solves the amplitude equation

Note:

• The implication that y(t) solves the original equation if A(T ) solves the amplitude

equation holds only in the limit of small amplitudes.

• This symmetry argument makes use of the multi-timing assumption that the slow

time T and the fast time t are independent variables. That is an approximation:

the two time variables are not independent and for solutions that are not strictly

periodic, e.g. with a non-periodic time dependence of A(T ), the symmetry argument

does not hold. In fact, in a center manifold reduction, which does not use multi-timing,

additional terms arise in the amplitude equations. They can, however, be removed by

near-identity transformations of the amplitude, which bring the amplitude equation

into what is called its ‘normal form’. The equations obtained with our symmetry

arguments generate that normal form (in a non-rigorous way).

One says:

• Translations ∆t in time induce an action on the amplitude:

t→ t+∆t ⇒ A(T ) → A(T )eiω∆t

In this case the action corresponds to a phase shift by an arbitrary amount ∆φ = ω∆t.

• The amplitude equation must be equivariant under that action:

all terms of the amplitude equation must transform the same way under that opera-

tion

8Using the ansatz for y(t + ∆t) in the expansion generates exactly the same expressions everywhere as

obtained for y(t) with A(T ) everywhere replaced by A(T )eiω∆t.
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Selection rule

Since the amplitude equation arises in an expansion in terms of the complex amplitude it

has the general form
d

dT
A = F(A,A∗) =

∑

m,n

amnA
mA∗n (37)

If A(T ) is a solution to (37) so must be A(T )ei∆φ for arbitrary ∆φ.

Thus
d

dT
Aei∆φ = F(Aei∆φ, A∗e−i∆φ) =

∑

m,n

amnA
mA∗nei(m−n)∆φ

Inserting dA/dT from (37) we get

∑

m,n

amnA
mA∗n ei∆φ =

∑

m,n

amnA
mA∗nei(m−n)∆φ

Equating like powers of A and A∗

amn = amne
i∆φ(m−n−1) for all ∆φ

Thus, we get the selection rule

either m = n + 1 or amn = 0

Alternatively, one can express this result also as:

The action induced by the time-translation symmetry transforms the terms in the expan-

sion as

AnA∗m → AnA∗meiϕ(n−m)

• Equivariance of the amplitude equation under this action requires that for all terms

in the amplitude equation the difference n−m must be the same:

thus

n−m = k for some k ∈ N.

• Since the amplitude equation has a term d
dT
A in it one has k = 1.

Thus, the only terms allowed are of the form

|A|2lA 0 ≤ l ∈ N

Scaling

In the weakly nonlinear regime y is small. Since we do not know the proper scaling yet

we do not introduce an explicit ǫ but rather assume that the amplitude A(T ) is small. To

leading order in the amplitudes one therefore gets

∂TA = µA− γ|A|2A
implying the scaling

d

dT
∼ µ ∼ |A|2

Notes:
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• the symmetry condition allows us to write down the form of the resulting amplitude

equation without performing the nonlinear expansion in detail.

• of course, to obtain the values of the coefficients one still has to do the algebra.

• but the algebra is simplified since the scaling of the various parameters can be deter-

mined before hand (no trial and error needed).

2.3.3 1:1 Forcing

We considered forcing near the 1:1-resonance: ω = ω0 + ǫΩ.

The small detuning Ω can be captured through the dependence of the complex amplitude A
on the slow time T . Therefore consider a system exactly at the 1:1-resonance.

With 1:1-resonance the system is not invariant for arbitrary time shifts any more, but still

for shifts

t→ t+
2π

ω

With the expansion

y(t, T ) = A(T )eiωt + A(T )∗e−iωt +O(ǫ)

time translations induce the action

t→ t+
2π

ω
⇒ A→ Aeiω

2π
ω = A

i.e. the amplitude is unchanged by such translations. One says, in this case the action of

the symmetry is trivial.

Thus

• with 1:1-forcing any polynomial in A and A∗ is allowed by symmetries

∂TA = a00 + a10A+ a01A
∗ + a20A

2 + . . .

Why did we not obtain terms like A∗ or A2 in our direct derivation of the amplitude equa-

tion?

Scaling

We also assumed weak forcing. The amplitude of the forcing has not entered our symmetry

consideration at all so far. To include this information it is useful to consider an extended

dynamical system in which the forcing is considered a dynamical variable rather than an

external force

¨̂y + β̂ ˙̂y + ω2
0 ŷ + αŷ3 − f̂ = 0 (38)

¨̂
f + ω2f̂ = 0 (39)

where we assume β̂, ŷ, and f̂ are small. At this point it is not clear how these quantities

scale with each other.
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Expand now

ŷ = A(T )eiω0t + A(T )∗e−iω0t + . . .

f̂ = F (T )eiωt + F (T )∗e−iωt

Note:

• the expansion for f̂ does not have any higher order terms since its evolution (39) is

linear and is not coupled to y.

Time translations act on the amplitude A(T ) and F (T ) as

t→ t +∆t ⇒ A→ Aeiω0∆t F → Feiω∆t

Note:

• since the forcing is now part of the dynamical system this extended dynamical system

is invariant under any time translations.

The expansion will lead to solvability conditions of the type

∂TA =
∑

klmn

aklmnA
kA∗lFmF ∗n ∂TF =

∑

klmn

fklmnA
kA∗lFmF ∗n

For the 1:1-resonance, ω = ω0, A and F transform the same way under time translations.

The selection rule is

k − l +m− n = 1

What are the lowest-order terms?

• a nonlinear saturating term needs to be retained. We want to retain a term that

is saturating also without forcing. Generically, the leading-order saturating9 term

without forcing is |A|2A

• the leading-order forcing term is F

• to balance these two essential terms we have

F ∼ A3

⇒ to leading order the only term containing the forcing is F

To leading order we then get

∂TA = a1000A+ a0010F + a2100|A|2A
in agreement with (34) with a1000 = µ, a0010 = ν, a2100 = γ.

Consistent scaling requires µ = O(A2), whereas ν, γ = O(1).

Summary:

9Whether this term is actually saturating will depend on the sign of its coefficient.
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• oscillation amplitude A and forcing amplitude F are each associated with their re-

spective frequencies ω0 and ω

• in terms of Fourier modes all terms in the resulting amplitude equation have to cor-

respond to the same frequency, which for the A-equation is ω0.

• no attention has to be paid to the equation for the forcing amplitude since the equation

(39) is not coupled to the oscillation amplitude

2.3.4 3:1 Forcing

Consider now ω = 3ω0 and use the expansion

y = A(T )eiω0t + A(T )∗e−iω0t + . . .

f̂ = F (T )e3iω0t + F (T )∗e−3iωt

It induces the action

t→ t+∆t ⇒ A→ Aeiϕ F → Fe3iϕ with ϕ = ω0∆t

AkA∗lFmF ∗n → AkA∗lFmF ∗neiϕ(k−l+3(m−n))

Selection Rule

for the equation for A

k − l + 3 (m− n) = 1 ⇒ k − l = 1− 3 (m− n)

Identify the lowest-order terms in the forcing

F :

m− n = 1 ⇒ k − l = −2 k = 0 l = 2 ⇒ FA∗2

F ∗:

m− n = −1 ⇒ k − l = 4 k = 4 l = 0 ⇒ F ∗A4

For any small A one has FA∗2 ≫ F ∗A4. Therefore use FA∗2 to balance saturation and

forcing

A3 ∼ FA2 ⇒ F ∼ A

Keeping only terms up to cubic order we get therefore the restriction

k + l +m+ n ≤ 3

We have already considered the case m+ n = 1.

Consider now m+ n = 2:

m = 2 n = 0 ⇒ k − l = −5 ⇒ F 2A∗5

m = 1 n = 1 ⇒ k − l = 1 ⇒ |F |2A
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m = 0 n = 2 ⇒ k − l = 7 ⇒ F ∗2A7

For m+ n = 3 we get the condition

k = 0 = l ⇒ 3(m− n) = 1 cannot be satisfied

To leading order symmetry and scaling show that the equation has to have the form

∂TA =
(
µ+ β|F |2

)
A− γ|A|2A+ δFA∗2 (40)

Notes:

• Through the term β|F |2 the forcing modifies the linear coefficient of the equation

– depending on the sign of βr the forcing can enhance or reduce the damping

– through βi|F |2 the frequency of small-amplitude oscillations are modified by the

forcing

• The forcing will lead to qualitatively new phenomena only through the term involving

A∗2 because only it breaks the symmetry A→ Aeiϕ for ϕ 6= 2π
3

.

• For consistent scaling we need again µ = O(A2)

• (40) captures the weakly nonlinear behavior of all generic, weakly forced oscillators

near the 1:3 resonance. Different oscillators only differ in the values of the coefficients.

2.3.5 Non-resonant Forcing

Consider ω = αω0 with α irrational.

Selection Rule

k − l + α (m− n) = 1 ⇒ m = n k = l + 1

lowest-order term

|F |2A
⇒ the forcing appears only through |F |2, i.e. the phase of the forcing does not play a role

and there is no resonance between the oscillator and the forcing

Balance saturation and forcing

A3 ∼ F 2A ⇒ F ∼ A

resulting in the amplitude equation

A′ =
(
µ+ |F |2

)
A− γ|A|2A

Notes:
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• Non-resonant forcing does not introduce new terms in the equation of the unforced

oscillator (at any order), it only modifies its coefficients. None of the terms are phase-

sensitive.

– in principle, all coefficients depend on |F |2

– the strongest effect of the forcing is on the bifurcation parameter µ because it is

small

– only for the linear term is the shift of the coefficient of the same order as the

coefficient itself and therefore relevant at leading order

• In the resonant cases - as those discussed before - all the coefficients depend also on

|F |2, but again most effects are of higher order. More relevant are, however, the new

terms that are phase-sensitive.

• Resonant forcing with higher resonances (m : 1 with m ≥ 4) does not lead to additional

terms in the lowest order amplitude equation (see homework)

– but it introduces new higher-order terms that are phase-sensitive

– to capture aspects of its impact on the system in a leading-order amplitude equa-

tion one may have to consider singular limits like |γ| ≪ 1 to make the higher-

order phase-sensitive terms of the same order as the formally lower-order non-

linear terms, i.e. consider higher singular points.

2.4 A Quadratic Oscillator with 3:1 Forcing

Consider the forced oscillator

∂2t̃ + β̂∂t̃y + ω2
0y + αy2 = f̂(t̃)

with f̂ ∼ cosωt̃ where ω is close to 3ω0.

We want to reduce this equation to an amplitude equation using multiple time scales.

For weak forcing and weak damping we expect for the oscillation amplitude A on symmetry

grounds the equation

∂TA =
(
µ+ β|F |2

)
A− γ|A|2A+ δFA∗2

All 5 terms will arise at the same order if the following scaling is satisfied

∂T = O(µ) = O(A2) F = O(A)

Notes:

• the oscillator equation has only a quadratic nonlinearity. How will the cubic nonlin-

earities be generated that the symmetry arguments predict?

• the forcing is non-parametric. Why is there no inhomogeneous term in the amplitude

equation?
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Introduce a small parameter ǫ explicitly via

y = ǫy1 + ǫ2y2 + . . .

and the rescaled variables

T = ǫ2t, β̂ = ǫ2β, f̂ = ǫF , ω = 3
(
ω0 + ǫ2Ω

)

The amplitude equation is then expected to arise at O(ǫ3).

We get then

∂t̃ = ∂t + ǫ2∂T ∂2t̃ = ∂2t + ǫ22∂t∂T +O(ǫ4)

O(ǫ):

∂2t y1 + ω2
0y1 = F cos

(
3
(
ω0 + ǫ2Ω

)
t
)
=

1

2
F
{
e3iω0t+3iΩT + e−3iω0t−3iΩT

}

thus the structure of the leading-order equation is

L(∂t) y1 = I1,

i.e. the equation is inhomogeneous.

In terms of Fourier modes: L(ω0) is singular, but L(3ω0) is not singular.

The general solution at this order is therefore given by

y1 = Aeiω0t +Be3iω0t + A∗e−iω0t +B∗e−3iω0t

with A undetermined at this order and

−8ω2
0B =

1

2
Fe3iΩT B = − 1

16ω2
0

Fe3iΩT

O(ǫ2):

∂2t y2 + ω2
0y2 = −αy21 = −α

{
Aeiω0t +Be3iω0t + A∗e−iω0t +B∗e−3iω0t

}2

The r.h.s. has no terms proportional eiω0t or e−iω0t ⇒ no secular terms arise and we can solve

for y2 without any solvability arising.

y2 = C +De2iω0t + Ee4iω0t + Fe6iω0t +D∗e−2iω0t + E∗e−4iω0t + F ∗e−6iω0t

with

F =
1

35

αB2

ω2
0

E =
2

15

αAB

ω2
0

D =
1

3

α

ω2
0

{
A2 + 2A∗B

}
C = −2α

ω2
0

{
|A|2 + |B|2

}

O(ǫ3):
∂2t y3 + ω2

0y3 = −2αy1y2 − β∂ty1 − 2∂t∂Ty1

From the term y1y2 secular terms arise

y1y2 ∼ . . . AC + . . . BD∗ + . . . A∗D + . . . B∗E
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Collecting these terms with Maple one gets

∂2t y3+ω
2
0y3 = eiω0t

{

−∂TA− 1

2
βA− i

6

5

α2

ω3
0

|B|2A− i
5

3

α2

ω3
0

|A|2A+ i
α2

ω3
0

BA∗2
}

+non-secular terms

Inserting B we get an equation of the form

∂TA =
(
µ+ µ2|F|2

)
A− γ|A|2A + δFA∗2e3iΩT

Eliminate again the time-dependence of the coefficent of the forcing via

A = AeiΩT

we get

∂TA =
(
µ+ µ2|F|2

)
A− γ|A|2A+ δFA∗2 (41)

with the coefficients

µ = −1

2
β − iΩ µ2 = − 3

640
i
α2

ω7
0

γ = −5

3
i
α2

ω3
0

δ = − 1

16
i
α2

ω5
0

Notes:

• The nonlinearities of the amplitude equation are not directly determined by the non-

linearities of the underlying differential equation from which it is derived. Higher-

order nonlinearities can always be generated by cycling through the lower-order non-

linearities.

• The determining factor for the form of the amplitude equation is the action on the

amplitude that is induced by the symmetries of the underlying equation

• The form of the nonlinearities of the underlying equation may determine aspects of

its symmetries. For instance, if the underlying equation is odd in y it induces the

additional action A → −A under which the amplitude equation must be equivariant

as well. For (41) this would imply that δ = 0.

• Symmetries can make coefficients zero but not non-zero.

To get steady-state solutions it is better to write (41) in terms of magnitude and phase

A = R(T )eiφ(T )eiθ

∂TR+ iR∂Tφ =
(
µ+ µ2|F |2

)
R − γ|R|2R + δ FR2e−3iφe−3iθ

One can always choose θ to cancel the argument of δ, i.e. effectively one can always choose

the phase θ such that the coefficient of the forcing is positive.

Introduce m = µ+ µ2 |F |2 ≡ mr + imi etc.

∂TR = mrR − γrR
3 + |δ|FR2 cos 3φ (42)

R∂Tφ = miR− γiR
3 + |δ|FR2 sin 3φ (43)
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Analyze the fixed points (critical points) of (42,43).

There is always a fixed point

R(1)
∞ = 0

i.e.

y = − f

8ω2
0

cos
(
3
(
ω0 + ǫ2Ω

)
t
)
+ h.o.t.

Its linear stability is determined by

∂TA =
(
µ+ µ2|F |2

)
A

it is linearly stable for

µr + µ2r |F |2 < 0

with µ2r = 0 and µr = −1
2
β this is always the case for this oscillator.

For R∞ 6= 0 one gets

|δ|2F 2R2 =
(
mr − γrR

2
)2

+
(
mi − γiR

2
)2

i.e.

|γ|2R4 −
{
2 (mrγr +miγi) + |δ|2F 2

}
R2 + |m|2 = 0 (44)

R2 =
{} ±

√
∆

2 |γ|2

We need positive solutions for R2.

Consider the discriminant ∆,

∆ =
{
2 (mrγr +miγi) + |δ|2F 2

}2 − 4|γ|2|m|2

Because |γ|2|m|2 > 0 both solutions have either the same sign or they are complex.

Note:

• In particular, R = 0 cannot be a solution of this equation. This is consistent with

the fact that the solution R
(1)
∞ = 0 is linearly stable for all F and therefore does not

undergo a (local) bifurcation.

We need R2 > 0. Consider F 2 → ∞:

{} → |δ|2F 2 > 0

Since the sign of the solution of the biquadratic equation (44) does not change, R2 > 0 for

all F for which R2 is real (i.e. R2 becomes complex before {} becomes negative).

To get any steady-state solutions we need the discriminant to be non-negative

∆ =
{
2 (mrγr +miγi) + |δ|2F 2

}2 − 4|γ|2|m|2

= |δ|4F 4 + 4|δ|2F 2 (mrγr +miγi)− 4 (mrγi −miγr)
2

!
︷︸︸︷

≥ 0
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In our case: γr = 0 and µ2r = 0

∆ = |δ|4F 4 + 4|δ|2F 2miγi − 4m2
rγ

2
i

=
(
|δ|4 + 4|δ|2µ2iγi

)
F 4 + 4|δ|2F 2µiγi − 4µ2

rγ
2
i

In addition, γi < 0, µ2i < 0. Therefore

∆ < 0 for F 2 → 0

∆ > 0 for F 2 → ∞

Thus,

F < Fc no solution

F > Fc 2 solutions

with Fc defined via

∆(Fc) = 0.

At F = Fc > 0 one has a saddle-node bifurcation. Solving ∆ = 0 for µi = −Ω the line of

bifurcations is given by

ΩSN = −µi =
|δ|2 + 4µ2iγi

4γi
F 2 − µ2

rγi
|δ|2

1

F 2

with two solutions appearing for Ω > ΩSN .

Ω

F 2

2 Solutions

No Solutions

Figure 23: Phase diagram for quadratic oscillator with γr = 0 = µ2r and γi < 0 and µ2i < 0.

The line denotes a line of saddle-node bifurcations. Note: for all parameter values there is

the additional solution R
(1)
∞ = 0.
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a) Ω

R2

b) F

R2

Figure 24: Bifurcation diagram for quadratic oscillator with γr = 0 = µ2r obtained by

cutting the phase diagram along a line of constant F . The circle denotes the saddle-node

bifurcations. Note: for all parameter values there is the additional solution R
(1)
∞ = 0.

Notes:

• for the 3:1-resonance the phase-locked forced solution does not arise in a bifurcation

off the basic solution y = − f
8ω2

0
cos (3 (ω0 + ǫ2Ω) t) + h.o.t.; instead it arises at finite

amplitude through a saddle-node bifurcation.

3 Nonlinear Schrödinger Equation

Consider oscillations in a nonlinear conservative system, i.e. a system without dissipation.

Classic example: pendulum of length L without damping:

∂2t ψ = −ω2
0 sinψ with ω2

0 =
g

L

More generally, the right-hand side could be any function f(ψ) (with f(0) = 0)

Consider nonlinear oscillations in a continuum (many coupled pendula)

∂2t ψ − c2∂2xψ + ω2
0 sinψ = 0 (45)

Note:

• this nonlinear equation is called the sine-Gordon equation in analogy to the linear

Klein-Gordon equation

∂2t ψ − c2∂2xψ + ω2
0ψ = 0

which is the linearization of the sine-Gordon equation

The Klein-Gordon equation allows simple traveling waves

ψ = Aeiqx−iωt + A∗e−iqx+iωt with ω2 = ω2
0 + c2q2
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Weakly nonlinear regime: seek traveling waves with slightly different frequency and slightly

different wave form.

Aim: weakly nonlinear theory for such waves that allows also spatially slow modulations

of the fast (carrier) waves, e.g. spatially varying wavenumbers or wave packets

Note:

• expect similarities between these traveling waves and the oscillations and waves aris-

ing from a Hopf bifurcation (e.g. in the Belousov-Zhabotinsky reaction in an unstirred

reactor)

To derive a weakly nonlinear description we use symmetry arguments:

Ansatz for right-traveling wave

ψ = ǫA(X, T, . . .)eiqx−iωt + ǫA∗(X, , T, . . .)e−iqx+iωt + ǫ2ψ2 + ǫ3ψ3 + . . . (46)

with T = ǫ2t, X = ǫx.

For a wave packet one would have A→ 0 for X → ±∞.

The sine-Gordon equation (45) is equivariant under

reflections in space: x→ −x

reflections in time: t→ −t
translations in space: x→ x+∆x

translations in time: t→ t +∆t

As in the forced oscillator case, the time translations imply that the evolution equation for

A is equivariant under A → Aeiφ for arbitrary φ . The spatial translations imply the same

equivariance ⇒ expect an evolution equation of the form

∂TA = aA+ c|A|2A+ v∂XA+ d∂2XA+ . . . (47)

Action of the reflections:

• under spatial reflections (and under reflections in time) a right-traveling wave is

transformed into a left-traveling wave

• (46) includes only a right-traveling wave: pure spatial reflections cannot be repre-

sented within the class of functions (46)

• combined reflections in time and space, however, map a right-traveling wave again

into a right-traveling wave ⇒ they have a simple action on the amplitude A in the

ansatz (46)

x→ −x combined with t→ −t induces T2 → −T2, X → −X, A→ A∗

102



420-2 Asymptotics H. Riecke, Northwestern University

Applied to the general evolution equation (47) the transformation yields

−∂TA∗ = aA∗ + c|A|2A∗ − v∂XA
∗ + d∂2XA

∗ + . . .

taking the complex conjugate implies

−∂TA = a∗A+ c∗|A|2A− v∗∂XA+ d∗∂2XA+ . . .

and

a = −a∗ d = −d∗ c = −c∗ v = v∗

Thus:

∂TA = v∂XA+ i
1

2

d2ω

dq2
∂2XA+ i

1

4

ω2
0

ω
|A|2A

Going into a moving frame X → X + vT one gets

∂TA = i
1

2

d2ω

dq2
∂2XA + i

1

4

ω2
0

ω
|A|2A

Notes:

• this equation is the nonlinear Schrödinger equation (NLS)

• the NLS is the generic description for small-amplitude waves in non-dissipative media

• in a multiple-scale analysis one has to introduce actually two slow times T1 = ǫt and

T2 = ǫ2t and gets two non-trivial solvability conditions:

at O(ǫ2) one gets

∂T1A = v∂XA

and O(ǫ3) one gets the NLS.

• systems undergoing a Hopf bifurcation to waves are dissipative: expect complex and

not purely imaginary coefficients. One obtains then the complex Ginzburg-Landau

equation (CGL).

3.1 Some Properties of the NLS

Consider the NLS in the form

∂tψ =
i

2
∂2xψ + is|ψ|2ψ with s = ±1

Note:

• the magnitude of the coefficients can be absorbed into the amplitude and the spatial

scale

• the overall sign of the r.h.s. can be absorbed by running time backward t→ −t
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• the relative sign s between ∂2xψ and |ψ|2ψ cannot be changed by scaling or coordinate

transformations

– s = +1: focusing case (spatially homogeneous oscillations linearly unstable, cf.

Benjamin-Feir instability of CGL).

– s = −1: defocusing case.

The NLS does not have a Lyapunov functional10, but is a Hamiltonian system with Hamil-

tonian (energy) functional

H{ψ} =
1

4

∫ +∞

−∞
|∂xψ|2 − s|ψ|4dx

i.e.

∂tψr =
δH{ψ)
δψi

(48)

∂tψi = −δH{ψ)
δψr

(49)

This is seen by employing the basic property of functional derivatives,

δψ(x)

δψ(x′)
= δ(x− x′),

which is analogous to the derivative of a vector function v with respect to one of its compo-

nents
∂vi
∂vj

= δij

with δ(x− x′) the Dirac δ−function and δij the Kronecker δ,

10A differential equation du/dt = f(u) arises from a Lyapunov function if it can be written as

du

dt
= −∂V (u)

∂u
with V ≥ V0

Then it cannot have any persistent dynamics

dV

dt
=
∂U

∂u

du

dt
= −

(
du

dt

)2

≤ 0

because the Lyapunov function, which is bounded from below, is monotonically decreasing as long as u evolves

in time.
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and using integration by parts

δH{ψ}
δψr(x)

=
1

4

∫
δ

δψr(x)

[

(∂xψr(x
′))

2
+ (∂xψi(x

′))
2 − s

(
ψ2
r (x

′) + ψ2
i (x

′)
)2
]

dx′

=
1

4

∫

2∂xψr(x
′)∂x (δ(x− x′))− 2s

(
ψ2
r (x

′) + ψ2
i (x

′)
)
2ψr(x

′)δ(x− x′)dx′

=
︸︷︷︸

i.b.p.

−1

2

∫

∂2xψr(x
′)δ(x− x′)dx′ − s |ψ(x)|2 ψr(x)

= −1

2
∂2xψr(x)− s |ψ(x)|2 ψr(x)

= −∂tψi(x)

and analogously for ∂tψr.

Note:

• the structure (48,49) is a continuum version of the Hamiltonian structure of Newto-

nian mechanics
d

dt
x =

∂H(x, p)

∂p

d

dt
p = −∂H(x, p)

∂x

where H(x, p) is the total energy of the system

H(x, p) = Ekin(x, p) + Epot(x, p)

• a characteristic, essential feature of (48,49) is its symplectic structure, i.e. the opposite

sign in (48) and (49)

Conserved Quantities:

• in any Hamiltonian system the total energy H is conserved:

d

dt
H =

∫
δH{ψr, ψi}
δψr(x′)

∂tψr(x
′) +

δH{ψr, ψi}
δψi(x′)

∂tψi(x
′) dx′

=

∫
δH{ψr, ψi}
δψr(x′)

δH{ψr, ψi}
δψi(x′)

+
δH{ψr, ψi}
δψi(x′)

(

−δH{ψr, ψi}
δψi(x′)

)

dx′

= 0

i.e. think of ψ(x, t) as a vector with components labeled by x, each of which depends

on t, i.e. ψ(x, t) ∼ ψx(t), and then use chain rule on H{ψ, ψ∗}.

• for the NLS there are additional conserved quantities:
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e.g. L2-norm of ψ: N =
∫
|ψ|2dx

d

dt
N = 2

∫

ψr(x
′)∂tψr(x

′) + ψi(x
′)∂tψi(x

′) dx′ = (50)

=

∫

ψr(x
′)

[

−1

2
∂2x′ψi(x

′)− s |ψ(x′)|2 ψi(x′)
]

+

+ψi(x
′)

[
1

2
∂2x′ψr(x

′) + s |ψ(x′)|2 ψr(x′)
]

dx′ (51)

=
︸︷︷︸

i.b.p.

1

2

∫

∂x′ψr(x
′)∂x′ψi(x

′)− ∂x′ψi(x
′)∂x′ψr(x

′) dx′ = 0

11

Notes:

11Alternative, more compact formulation of the Hamiltonian for the NLS using the Wirtinger calculus for

complex derivatives (not exactly the same as the usual complex derivative), in which ψ and ψ∗ are indepen-

dent of each other :

The NLS does not have a Lyapunov functional, but is a Hamiltonian system with Hamiltonian (energy) func-

tional

H{ψ, ψ∗} =
1

2

∫

|∂xψ|2 − |ψ|4dx

i.e.

∂tψ = −i δH{ψ, ψ∗)

δψ∗
(52)

since using integration by parts and employing the basic property of functional derivatives,

δψ(x)

δψ(x′)
= δ(x− x′),

one gets
δH{ψ, ψ∗)

δψ∗
=

δ

δψ∗

1

2

∫

−∂2xψ ψ∗ − ψ2ψ∗2 dx = −1

2
∂2xψ − ψ2ψ∗

Conserved Quantities:

• L2-norm of ψ: N =
∫
|ψ|2dx

d

dt
N =

∫

∂tψ ψ
∗ + ψ ∂tψ

∗dx = (53)

=

∫ (
i

2
∂2xψ + i|ψ|2ψ

)

ψ∗ − ψ

(
i

2
∂2xψ

∗ + i|ψ|2ψ∗

)

dx

=
︸︷︷︸

integration by parts

∫
i

2
∂2xψ ψ

∗ −
(
i

2
∂2xψ

)

ψ∗dx = 0

• total energy H
to compute d

dt
H note that (53) can be written as

∫

∂tψ ψ
∗ + ψ∂tψ

∗dx =

∫

∂tψ
δN{ψ, ψ∗)

δψ(x)
+
δN{ψ, ψ∗)

δψ∗(x)
∂tψ

∗ dx

i.e. think of ψ(x, t) as a vector with components labeled by x, each of which depends on t, i.e. ψ(x, t) ∼
ψx(t), and then use chain rule on N{ψ, ψ∗}.
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• because of the factor i in (48) the energy of the system does not decrease with time as

it does in systems with a Lyapunov functional. Instead it is conserved.

• for a system with a Lyapunov functional (variational system) one would have

∂tψ = −δF{ψ}
δψ

with F ∈ R

resulting in a non-increasing dependence of F on t:

d

dt
F{ψ} =

δF
δψ

∂tψ = −
(
δF
δψ

)2

≤ 0

Significance of conserved quantities:

Example:

• Newton’s equation of motion conserves total energy

m
d2

dt2
x = F (x) = − d

dx
V (x)

multiply by the integrating factor d
dt
x

m
d

dt
x
d2

dt2
x = − d

dt
x
d

dx
V (x)

1

2
m
d

dt

((
d

dt
x

)2
)

= − d

dt
V (x)

i.e.
d

dt

(
1

2
mẋ2 + V (x)

)

= 0

1

2
mẋ2 + V (x) = E = const.

ẋ =

√

2

m
(E − V (x)) ⇒ t =

∫
dx

√
2
m
(E − V (x))

Thus:

– because of energy conservation the order of the differential equation can be re-

duced:

expresses ẋ as a function of x

Analogously,

d

dt
H =

∫
δH{ψ, ψ∗)

δψ
∂tψ +

δH{ψ, ψ∗)

δψ∗
∂tψ

∗ dx =

=

∫

−i∂tψ∗ ∂tψ + i∂tψ ∂tψ
∗ dx = 0
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– solution can be obtained by simple integration (quadrature): the system is called

integrable

– for two interacting particles x1(t) and x2(t) energy conservation alone leads to a

single relation between the two velocities

1

2
mẋ21 +

1

2
mẋ22 + V (x1, x2) = E = const.

to express each velocity ẋi in terms of the positions xi we would need a second

equation: a second conserved quantity

– in general: for Newton’s equations of motion with N degrees of freedom to be

integrable one needs N independent, conserved quantities.

Notes:

• Hamiltonian systems with N degress of freedom are integrable if they have N inde-

pendent conserved quantities.

• In an integrable system all dynamics are on N-dimensional tori.

• the NLS has infinitely many degrees of freedom and infinitely many conserved quan-

tities.

It can be shown to be integrable. Exact solutions can be obtained by the inverse scat-

tering transform (well beyond this class).

• the existence of completely integrable nonlinear systems like the NLS was found after

a lot of effort in the wake of the numerical simulations by Fermi, Pasta, and Ulam of

a nonlinear one-dimensional lattice model in which they were trying to identify the

approach of such a system to thermal equilibrium. They found, however, that the non-

linear system they investigated did not approach equilibrium, but instead the system

repeatedly returned to a state very close to the initial condition. This was quite sur-

prising since it often had been assumed that even a small nonlinearity would gener-

ically make systems non-integrable and have them approach states corresponding to

thermal equilibrium. For some more details and a historical overview have a look at

the overviews given in [12, 4].

3.2 Soliton Solutions of the NLS

For s = +1 the NLS has exact localized solution of the form

ψ(x, t) = λ
1

cosh ρx
eiωt

Inserting into NLS yields

∂tψ − i

2
∂2xψ − si|ψ|2ψ = λ

(

iω
1

cosh ρx
− i

2
ρ2

cosh2 ρx− 2

cosh3 ρx
− siλ2

1

cosh3 ρx

)

eiωt =

= λ
i

cosh3 ρx

(

cosh2 ρx

(

ω − 1

2
ρ2
)

+ ρ2 − sλ2
)

eiωt
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Thus we need s = +1 and

ρ = λ ω =
1

2
λ2 ⇒ ψ(x, t) = λ

1

coshλ (x− x0)
ei

1
2
λ2(t−t0) (54)

Note:

• the parameter λ is arbitrary: there is a one-parameter continuous family of solutions

with different amplitudes and associated different frequencies and width

• the soliton solution is not an attractor: small perturbations do not relax and the solu-

tion does not come back to the unperturbed solution

• in fact, due to translation symmetry in space and time, i.e. x0 and t0 are arbitrary,

(54) corresponds already to a three-parameter continuous family of solutions

NLS also allows transformations into moving frames of reference (boosts): u = x− ct

Consider

ψ̃(x, t) = ψ(t, x− ct)eiqx+iωt

where ψ(t, x) is a solution. For ψ̃ to be a solution, as well, q and ω have to satisfy certain

conditions. Insert ψ̃ into NLS

∂tψ̃ − i

2
∂2xψ̃ − si|ψ̃|ψ̃ =

(

∂tψ − c∂uψ + iωψ − i

2

(
∂2uψ + 2iq∂uψ − q2ψ

)
− si|ψ|2ψ

)

eiqx+iωt =

=

(

∂uψ (−c+ q) + iψ

(

ω +
1

2
q2
))

eiqx+iωt

using that ψ(t, u) satisfies NLS. Require

c = q ω = −1

2
q2

Note:

• the boost velocity c or the background wavenumber q is a free parameter generating

a continuous family of solutions

Thus:

The focusing Nonlinear Schrödinger equation has a four-parameter family of solutions of

solitons

ψ(x, t) = λ
1

cosh (λ(x− qt− x0))
eiqx+i

1
2
(λ2−q2)t+iφ0

After a perturbation (change) in any of the four parameter q, λ, x0, φ the solution does not

relax back to the unperturbed solution but gets shifted along the corresponding family of

solutions.

Note:
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• Surprising feature of solitons:

during collisions solutions become quite complicated, but after the collisions the soli-

tons emerge unperturbed except for a shift in position x0 and the phase φo. In par-

ticular, the other two parameters, λ and q, are unchanged, although there is also no

‘restoring force’ to push them back to the values before the collision.

• general solution can be described in terms of a nonlinear superposition of many inter-

acting solitons and periodic waves (captured by inverse scattering theory).

3.3 Perturbed Solitons

Real systems usually have some dissipation. A beautiful example of solitary waves in a

dissipative system that can be described as weakly perturbed NLS-solitons are waves ob-

served in convection of mixtures (Fig.25).
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Figure 25: Localized wave trains in convection of water-alcohol mixtures. Space-time plot

of the envelope of the left- (top panel) and the right-traveling wave component (bottom

panel). In this parameter regime the localized convection waves are not stable but evolve

chaotically (‘dispersive chaos’) [6, 7].

Consider soliton-like solutions of the (focusing) NLS with small dissipative perturbations

∂tΨ− i

2
∂2xΨ− i|Ψ|2Ψ = ǫP (Ψ, ∂xΨ, . . .)

For small perturbations expect slow evolution along the family of solutions:

T = ǫt λ = λ(T ) q = q(T ) x0 = x0(T ) φ0 = φ0(T )

For simplicity: focus on perturbations for which soliton remains stationary: c = 0 = q

Slow changes in the amplitude λ or the wavenumber q imply also slow changes in the

frequency ω = 1
2
(λ2 − q2): introduce a phase φ

φ =

∫ t

ω(ǫt′)dt′
d

dt
φ(t) = ω(T ).
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Ansatz for the expansion

Ψ(t, T ) = ψ(Θ, T ) eiφ = [ψ0(Θ, T ) + ǫψ1(Θ, T ) + . . .] eiφ(t,T )

where

ψ0(Θ) = λ(T )
1

cosh (Θ−Θ0)
eiφ0 , Θ = λ(T )x Θ0, φ0 = const.

and

λ(T ) = λ0(T ) + ǫλ1(T ) + . . . , ω(T ) = ω0(T ) + ǫω1(T ) + . . .

with the relation (from the unperturbed case)

ω0(T ) =
1

2
λ0(T )

2

Note:

• this is not a weakly nonlinear analysis: the amplitude λ is not assumed small, λ =
O(1)

• the phase φ evolves on the O(1) time scale, d
dt
φ = ω, but the frequency changes on the

slow time scale as the solution evolves along the family of solutions

• in the general case (q 6= 0) one would have to introduce a spatial phase θ(x, t) as well

Θ = λ(T )θ(x, t)

Rewrite NLS in terms of ψ rather than Ψ

iωψ − i

2
λ2∂2Θψ − i|ψ|2ψ = ǫ

(
−∂Tψ + e−iφP (Ψ, ∂xΨ, . . .

)

Insert expansion of ψ

O(ǫ0) :

i ω0
︸︷︷︸
1
2
λ20

ψ0 −
i

2
λ20∂

2
Θψ0 − i|ψ0|2ψ0 = 0

confirms

ω0 =
1

2
λ20

O(ǫ):

Lψ1 ≡ iω0ψ1 −
i

2
λ20∂

2
Θψ1 − i

(
2|ψ0|2ψ1 + ψ2

0ψ
∗
1

)

= −∂Tψ0 − iω1ψ0 + iλ0λ1∂
2
Θψ0 + e−iφP

Essential question for the perturbation expansion is whether the linearized operator L is

invertible or singular.
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The unperturbed soliton ψ0 is part of a four-parameter family of solutions (here we are

keeping the parameter q = 0 fixed) ,

ψ0 = ψ0(x, t; Θ0, φ0, λ, q).

The linear operator L is therefore singular:

Take derivatives of the O(1)-equation

i
1

2
λ20ψ0 −

i

2
λ20∂

2
Θψ0 − i|ψ0|2ψ0 = 0

with respect to the parameters Θ0, φ0:

∂Θ0

{

i
1

2
λ20ψ0 −

i

2
λ20∂

2
Θψ0 − i|ψ0|2ψ0

}

= i
1

2
λ20∂Θ0ψ0 −

i

2
λ20∂

2
Θ∂Θ0ψ0 − 2i|ψ0|2∂Θ0ψ0 − iψ2

0∂Θ0ψ
∗
0

= L (∂Θ0ψ0) = 0

and

∂φ0

{

i
1

2
λ20ψ0 −

i

2
λ20∂

2
Θψ0 − i|ψ0|2ψ0

}

= L (∂φ0ψ0) = Liψ0 = 0

Thus:

• L is singular and has two eigenvectors with vanishing eigenvalues.

Broken Continuous Symmetries and 0 Eigenvalues

• The unperturbed solution breaks a continuous symmetry ⇔ the unperturbed solution

depends continuously on a parameter that does not appear in the equation.

• Here: the solution ψ0 breaks two continuous symmetries of the original system:

Θ → Θ+∆θ translation symmetry in space

φ→ φ+∆φ translation symmetry in time

• General:

– If a solution breaks a continuous symmetry of a system, then the linear operator

obtained from linearizing around this solution has 0 eigenvalues.

– The associated eigenvectors (modes) are called translation modes or Goldstone

modes.

• The existence of a continuous symmetry φ→ φ+∆φ alone does not imply a vanishing

eigenvalue:

if the solution ψ0 does not break the continuous symmetry, then ∂φψ0 = 0 and ∂φψ0

does not represent an eigenvector.
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• Breaking a discrete symmetry leads to a discrete family of solutions. This does not

imply that the linearization around that solution has a vanishing eigenvalue since

one cannot go continuously from one of the solutions in the family to another and

therefore no derivative with respect to a continuous parameter can be taken.

Intuitively: in a discrete family of solutions each solution is generically either linearly

stable or linearly unstable ⇒ restoring or repelling ‘force’

Note:

• The full soliton solution of the NLS is part of a four-parameter familty because of

the continuous dependence on the amplitude and on the velocity of the solution →
additional vanishing eigenvalues.

it turns out that two of the 0-eigenvalues of iL are associated with proper eigenvectors,

whereas the other two have generalized eigenvectors.

Ψφ0 : iLiψ0 = 0 Ψx0 : iL∂Θψ0 = 0

Ψλ : iL (Θ∂Θψ0 + ψ0) = iλ20ψ0 Ψq : iLiΘψ0 = −λ20∂Θψ0

Since the linearized operator L is singular, the equation at O(ǫ) can again only be solved if

solvability conditions are satisfied (Fredholm alternative). To get the solvability conditions

we need to project the O(ǫ)-equation onto the relevant left eigenvectors.

Projections need a scalar product. For functions the scalar product typically involves some

integral over the domain. Here we can make iL (not L, though) self-adjoint12 by a suitable

choice of the scalar product. Choose

〈ψ1, ψ2〉 = ℜ
(∫ ∞

−∞
ψ∗
1ψ2dΘ

)

Then

〈ψ1, iLψ2〉 = ℜ
(∫ ∞

−∞
ψ∗
1iLψ2dΘ

)

=

= ℜ
(∫

ψ∗
1

(

−ω0ψ2 +
1

2
λ20∂

2
Θψ2 +

(
2|ψ0|2ψ2 + ψ2

0ψ
∗
2

)
)

dΘ

)

=

=
︸︷︷︸

i.b.p.

ℜ







∫

−ω0ψ
∗
1ψ2 +

1

2
λ20∂

2
Θψ

∗
1 ψ2 + 2|ψ2

0|ψ∗
1 ψ2 + ψ2

0ψ
∗
1 ψ

∗
2

︸ ︷︷ ︸

(ψ∗2
0 ψ1 ψ2)

∗

dΘ







=
︸︷︷︸

exploiting ℜ

ℜ
(∫

(iLψ1)
∗ ψ2 dΘ

)

= 〈iLψ1, ψ2〉

In the last step was used ℜ (ψ∗2
0 ψ1ψ2) = ℜ

(
(ψ∗2

0 ψ1ψ2)
∗)

.

Thus, with this scalar product the left eigenvectors are identical to the right eigenvectors.

Note:

12Note because of the terms iω0 and 1
2 iλ

2
0∂

2
Θ L is not self-adjoint, but suggest that iL may be self-adjoint.
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• of course Liψ0 = 0 as well. While iψ0 is a not left-eigenvector of L; it is one of iL

• (iL)2 iΘψ0 = 0 and (iL)2 (Θ∂Θψ0 + ψ0) = 0 as expected of generalized eigenvectors

Focus here on a simple, purely dissipative perturbation (µ, α, γ ∈ R),

P (Ψ) = µΨ+ α|Ψ|2Ψ+ γ|Ψ|4Ψ (55)

Then we need only the eigenvector Ψφ associated with the phase invariance φ → φ+∆φ

Ψφ0 = iψ0

Thus, using iL, i.e. after multiplying O(ǫ)-equation by i,

0 = 〈iψ0, iLψ1〉 = ℜ
∫

−iψ∗
0 i
(
−∂Tψ0 − iω1ψ0 − iλ0λ1∂

2
Θψ0 + e−iφP

)
dΘ =

=

∫

ψ∗
0

(
−∂Tψ0 + µψ0 + α |ψ0|2 ψ0 + γ |ψ0|4 ψ0

)
dΘ

Use ψ0 = λ 1
coshΘ

eiφ0 and

∫
1

cosh2Θ
dΘ = 2

∫
1

cosh4Θ
dΘ =

4

3

∫
1

cosh6Θ
dΘ =

16

15

to get
d

dT
λ = µλ+

2

3
αλ3 +

8

15
γλ5 (56)

Notes:

• the dissipative perturbations P lead to a slow evolution of the amplitude of the per-

turbed soliton close to the soliton family of solutions: slow manifold

• with increasing amplitude the perturbed soliton becomes narrower

• non-trivial fixed points

– α < 0:

supercritical pitch-fork bifurcation

λ2 =
3

2

µ

α
+ h.o.t. if µ > 0.

Within the amplitude equation (56) the fixed point is stable.

However: do not expect this localized soliton-like solution to be stable within the

full NLS since Ψ = 0 is unstable for µ > 0: perturbations will grow far away from

the soliton
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– α > 0:

subcritical pitch-fork bifurcation

λ21,2 = −5

8

α

γ
± 15

16γ

√

4

9
α2 − 32

15
µγ

two soliton-like solutions created in saddle-node bifurcation at α2 = 24
5
µγ

within (56) the one with larger amplitude is stable, the other unstable.

Background state Ψ = 0 is linearly stable for µ < 0.

• full solution consists of four coupled evolution equations for λ, q, x0, φ0:

– would have to check that for the perturbation (55) the equations for q, x0, and φ0

have stable fixed points with q = 0, x0 = const. and φ0 = const.

– a general perturbation can make the soliton travel, q 6= 0, d
dT
x0 6= 0.

Notes:

• experiments in convection of water-alcohol mixtures: onset of convection via a sub-

critical Hopf bifurcation

• quintic complex Ginzburg-Landau equation

– for strong dispersion, i.e. large α and β, the complex Ginzburg-Landau equation

can be considered as a perturbed NLS: expect localized solutions in the form of

perturbed solitons [10].

– for weak dispersion perturbation approach via interacting fronts [8]:

subcritical bifurcation (cf. Sec.4).

* bistability between conductive state (Ψ = 0) and convective state (Ψ = Ψ0 6= 0)

* front solutions Ψ±(x, t) → 0 for x→ ∓∞ and Ψ±(x, t) → Ψ0 for x→ ±∞
* fronts Ψ+ and Ψ− can interact and form a stable pair: wide localized wave

train .

x Rx L

A = 0

A = A c
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4 Fronts and Their Interaction

Consider nonlinear PDEs with spatial translation symmetry that have multiple stable spa-

tially homogeneous solutions

• ⇒ there must be also solutions that connect the stable states: fronts or kinks

• these fronts are heteroclinic in space: they connect two different fixed points for x →
±∞. They are topologically stable: they cannot disappear except at infinity or by

collision with ‘anti-fronts’.

• This is to be compared to homoclinic solutions which connect to the same fixed point

for x→ ±∞, i.e. localized ‘humps’ (like the solitons). They are not topologically stable

since they can disappear, e.g., due to a sufficiently large perturbation.

stable

stable

unstable

x

ψ

Figure 26: Fronts connecting two stable and one unstable spatially homogeneous state.

Questions:

• Do such fronts travel? What determines their speed?

• How do the fronts interact? Can they from stable bound states: localized domains?
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a)

b)

Figure 27: Localized wave trains in convection of water-alcohol mixtures. a) Top view of

annular convection cell. In this regime the localized waves are spatially more extended,

resembling bound states of fronts. Two slowly drifting, stable localized wave trains are

seen [5]. b) Numerical simulations of localized states and of extended traveling waves

[1, 2].

4.1 Single Fronts Connecting Stable States

Consider a simple nonlinear diffusion equation

∂tψ = ∂2xψ + f(ψ) ≡ ∂2xψ − ∂ψV (ψ;λ)

where λ is a control parameter of the system.

This equation can be written in variational form

∂tψ = −δV{ψ}
δψ

with V{ψ} =

∫
1

2
(∂xψ)

2 + V (ψ;λ)dx

Assume V (λ;ψ) has two minima at ψ = ψ1,2, corresponding to stable, spatially homogeneous

solutions.
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Look for ‘wave solution’, i.e. a steadily propagating front solution

ψ = ψ(ζ) with ζ = x− vt

which satisfies

∂2ζψ + v∂ζψ = +∂ψV (ψ) ≡ −∂ψV̂ (ψ) with V̂ (ψ;λ) = −V (ψ;λ).

Notes:

• this equation can be read as describing the position ψ of a particle in the potential

V̂ (ψ) and experiencing friction with coefficient v.

• we are interested in solutions that start at ψ1 and end at ψ2

ψ(ζ) → ψ1 for ζ → −∞ ψ(ζ) → ψ2 for ζ → +∞

• since in terms of V̂ (ψ) the ‘positions’ ψ1,2 are actually maxima, the ‘friction’ v must

be tuned exactly such that the particle, starting at one maximum, stops at the other

maximum:

⇒ the velocity is uniquely determined.

• depending on the relative heights of the maxima the ‘friction’ may be negative.

• for fronts connecting a stable state with an unstable state the velocity (‘friction’) is not

uniquely determined: the unstable state corresponds to the minimum of the potential

for the ‘particle’ and the ‘particle’ will end up in that minimum for a wide range of

friction values. The velocity selection in this situation is an interesting problem (e.g.

[11]).

a)

v>0
V

ψ
b)

v<0

ψ

V

Figure 28: Fronts correspond to a particle moving in a potential with friction. a) friction

positive. b) friction negative.
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4.1.1 Perturbation Calculation of the Front Velocity

Assume there is a parameter value, λ = λ0 ≡ 0, for which the front solution ψ(x;λ = 0) is

stationary. If one has access to that solution one can obtain the front velocity for close-by

parameter values perturbatively.

Expand

λ = ǫλ1 v = ǫv1 + ǫ2v2 + h.o.t. ψ = ψ0(x) + ǫψ1 + h.o.t.

O(ǫ0):
∂2xψ0 + ∂ψV̂ (0;ψ0) = 0

yields the equation for the stationary front

O(ǫ):

∂2xψ1 + ∂2ψV̂ (0;ψ0)
∣
∣
∣

︸ ︷︷ ︸

L

ψ1 = −v1∂xψ0 − λ1 ∂λ∂ψV̂ (λ;ψ)λ=0,ψ=ψ0 (57)

Can we invert the operator L and solve directly for ψ1?

The system is invariant under spatial translations: take the x-derivative of the equation at

O(ǫ0):

∂x

[

∂2xψ0 + ∂ψV̂ (0;ψ0)
]

= ∂2x∂xψ + ∂2ψV̂ (0;ψ)
∣
∣
∣
ψ=ψ0

∂xψ0 = L ∂xψ0

Since ψ0(x) breaks the continuous translation symmetry, ∂xψ0 6= 0 and is a proper eigenvec-

tor of L with eigenvalue 0.

Thus, L is singular and the eigenvector associated with the 0 eigenvalue is the translation

mode ∂xψ0.

Note:

• if ψ0 did not break the translation symmetry, ∂xψ0 would vanish and not represent

an eigenvector and there would be no 0 eigenvalue associated with the translation

symmetry and L could be invertible.

L is self-adjoint ⇒ ∂xψ0 is also its left 0-eigenvector.

Project (57) on ∂xψ0

0 =

∫ +∞

−∞
∂xψ0

[

−v1∂xψ0 − λ1∂λ∂ψ V̂ (λ;ψ)
∣
∣
∣
λ=0,ψ=ψ0

]

dx

v1

∫ ∞

−∞
(∂xψ0)

2 dx = −λ1∂λ
∫ +∞

−∞
∂ψV̂ (0, ψ0) ∂xψ0
︸ ︷︷ ︸

∂xV̂ (0;ψ0(x))

dx

Thus

v1

∫ ∞

−∞
(∂xψ0)

2 dx = −λ1 ∂λ [V (λ;ψ0(x))]|λ=0|+∞
x=−∞ ≈ − V (λ1;ψ0(x))|+∞

x=−∞

Notes:
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• The l.h.s of the equation can be read as the amount of work performed by the friction

∫ +∞

−∞

(

β
dx

dt

)
dx

dt
dt

︸ ︷︷ ︸

dx

• The r.h.s of the equation can be read as the difference in potential energy between

initial and final state

• Important: the perturbation method does not rely on the existence of a potential

⇒ it works also when there are multiple coupled components ψj(x, t) satisfying non-

linear PDEs that cannot be derived from a potential.

4.2 Interaction between Fronts

Consider fronts of the nonlinear diffusion equation

∂tψ = ∂2xψ − ψ + cψ3 − ψ5

Notes:

• the coefficients of ∂2xψ, ψ, and of ψ5 can be chosen to have magnitude 1 by rescaling of

space, time and ψ.

• the coefficient of ψ is chosen negative: ψ = 0 is linearly stable

• the coefficient of ψ5 is chosen negative: saturation at large values of ψ

ψ

V

Figure 29: Potential with minima at ψ0 and ±ψ0.

Homogeneous stationary states:

linearly stable

ψ = 0 or ψ2
0 =

c+
√
c2 − 4

2

121



420-2 Asymptotics H. Riecke, Northwestern University

linearly unstable

ψ2
u =

c−
√
c2 − 4

2

Consider two fronts that connect ψ = 0 with ψ = ψ0

L
x ψ

ψR L

RL
x

R

ψ

ψ
m

x

Figure 30: Front positions.

Goal:

Obtain evolution equations for the positions xL and xR. These equations would describe the

interaction between the two fronts and reduce the PDE to coupled ODEs.

For such a reduction we need a separation of time scales

• The relaxation of ψ to the equilibrium values ψ0 and ψ = 0 should be much faster the

motion of the individual fronts.

• For the motion to be slow in the presence of the interaction between the fronts the

interaction must be weak:

consider widely separated fronts, xR−xL large, then the fronts deform each other only

weakly.

Note:

• Since the fronts approach their asymptotic value exponentially fast, it turns out that

the interaction is exponentially weak in the distance between the fronts.

Ansatz:

ψ = ψL + ψR −ψ0
︸︷︷︸

subtract common part

+ǫψ1 + . . .

with

ψL = ψF (x− xL(T )) ψR = ψF (xR(T )− x)

T = ǫt c = c0 + ǫc1 c0 =
4√
3

ψF (ζ) = ψ0

√

1

2
(1 + tanh ζ) ψ0 = 3

1
4

Notes:
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• c0 can be determined as the point where the potential V (ψ) = +1
2
ψ2 − 1

4
cψ4 + 1

6
ψ6 has

the same value at the two minima ψ = 0 and ψ = ψ0 (cf. Sec.4.1.1).

Denote

ψ′
L ≡ dψF (ξL)

dξL

∣
∣
∣
∣
ξL=x−xL

ψ′
R ≡ dψF (ξR)

dξR

∣
∣
∣
∣
ξR=xR−x

Then

∂tψL = ψ′
L

dξL
dt

= −ǫψ′
L∂TxL ∂tψR = ψ′

R

dξR
dt

= +ǫψ′
R∂TxR

Note: dψL

dx
= ψ′

L, but dψR

dx
= −ψ′

R.

Insert expansion

0 = ǫ {ψ′
L ∂TxL − ψ′

R ∂TxR}+ ψ′′
L + ψ′′

R + ǫψ′′
1 − ψL − ψR + ψ0 − ǫψ1

+ (c0 + ǫc1) {ψL + ψR − ψ0 + ǫψ1}3 − {ψL + ψR − ψ0 + ǫψ1}5

For x < xm ≡ 1
2
(xL + xR) we have xR − x≫ 1:

ψR − ψ0 = ψ0

{√

1

2
(1 + tanh (xR − x))− 1

}

= ψ0

{√

1

2

exR−x + ex−xR + exR−x − ex−xR

exR−x + ex−xR
− 1

}

= ψ0

{
1√

1 + e−2(xR−x)
− 1

}

→ −1

2
ψ0e

−2(xR−x) for xR − x→ ∞

Analogously for x > xm we have x− xL ≫ 1:

ψL − ψ0 → −1

2
ψ0e

−2(x−xL)

Consider now the expansion separately for x < xm and x > xm.

For x < xm:

{ψL + (ψR − ψ0) + ǫψ1}3 = ψ3
L + 3ψ2

L (ψR − ψ0) + +3ǫψ1ψ
2
L +O

(
(ψR − ψ0)

2 , ǫ (ψR − ψ0) , ǫ
2
)

and

{ψL + (ψR − ψ0) + ǫψ1}5 = ψ5
L + 5ψ4

L (ψR − ψ0) + +5ǫψ1ψ
4
L +O

(
(ψR − ψ0)

2 , ǫ (ψR − ψ0) , ǫ
2
)

Using that ψL,R satisfy the O(ǫ0) equations

ψ′′
L − ψL + c0ψ

3
L − ψ5

L = 0 ψ′′
R − ψR + c0ψ

3
R − ψ5

R = 0

we get for x < xm

−ǫ
{
ψ′′
1 − ψ1 + 3c0ψ

2
Lψ1 − 5ψ4

Lψ1

}

︸ ︷︷ ︸

LLψ1

= ψ′′
R + (ψR − ψ0)

{
−1 + 3c0ψ

2
L − 5ψ4

L

}
+

+ǫ
{
c1ψ

3
L + ∂TxLψ

′
L − ∂TxRψ

′
R

}
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with

LL = ∂2x − 1 + 3c0ψ
2
L − 5ψ4

L

For x > xm

−ǫLRψ1 = ψ′′
L + (ψL − ψ0)

{
−1 + 3c0ψ

2
R − 5ψ4

R

}
+

+ǫ
{
c1ψ

3
R + ∂TxLψ

′
L − ∂TxRψ

′
R

}

with

LR = ∂2x − 1 + 3c0ψ
2
R − 5ψ4

R

To obtain evolution equations for xL and xR we need two solvability conditions

Translation symmetry:

• single front: ∂xψL,R is a 0-eigenvector

• two interacting fronts: there is only one exactly vanishing eigenvalue with the eigen-

vector arising from the double-front solution ∂xψLR, for which the xR − xL is not grow-

ing or shrinking

Note:

• the double-front solution is stationary for c slightly different than c0 due to the inter-

action between the two fronts.

How do we get a second solvability condition?

We want the perturbation expansion to remain well-ordered in the limit xR − xL → ∞,

i.e. even if the fronts are infinitely far apart, ψ1 has to remain small compared to ψL+ψR−ψ0

• for any finite L: only 1 translation mode, which is (approximately) ∂x (ψL + ψR − ψ0)

• for L = ∞: 2 independent fronts ⇒ expect 2 translation modes

LL∂xψL = 0 LR∂xψR = 0

Project in the two domains x < xm and x > xm separately onto the two translation modes

∂xψL,R, respectively.

x < xm:

−ǫ
∫ xm

−∞
ψ′
LLLψ1dx = ǫ∂TxL

∫ xm

−∞
ψ′2
Ldx− ǫ∂TxR

∫ xm

−∞
ψ′
Lψ

′
Rdx+

∫ xm

−∞
ψ′
Lψ

′′
Rdx+

+

∫ xm

−∞
ψ′
L

{
−1 + 3c0ψ

2
L − 5ψ4

L

}
(ψR − ψ0) dx+ ǫc1

∫ xm

−∞
ψ′
Lψ

3
Ldx

For xm → ∞ the operator LL is self-adjoint and we could roll it over to ψ′
L and the l.h.s.

would vanish. For finite xm boundary terms arise.

Integrate the l.h.s by parts
∫ xm

−∞
ψ′
LLLψ1dx = ψ′

Lψ
′
1|xm−∞ −

∫ xm

−∞
ψ′′
Lψ

′
1dx

︸ ︷︷ ︸

ψ′′
L
ψ1|xm∞ −

∫ xm
−∞ ∂2x(∂xψL)ψ1dx

+

∫ xm

−∞
ψ′
L

{
−ψ1 + 3c0ψ

2
Lψ1 − 5ψ4

Lψ1

}
dx
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ψ′
L and ψ′′

L are exponentially small at xm and for x → −∞ ⇒ boundary terms are expo-

nentially small and can be ignored at this order since they are already multiplied by ǫ.
The remainder of the lhs is ψ1LL∂xψL, which vanishes since LL∂xψL = 0 ⇒ we obtain a

solvability condition.

To estimate and evaluate the integrals rewrite in terms of

s = ex−xL and L = xR − xL

dx =
1

s
ds

∫ xm

−∞
. . . dx =

∫ e
L
2

0

. . .
1

s
ds

ψL = ψ0

√

1

2

(

1 +
s− 1

s

s+ 1
s

)

= ψ0

√

1

2

1 + s2 + s2 − 1

1 + s2
= ψ0

s√
1 + s2

ψR − ψ0 → −1

2
ψ0e

−2(xR−x) = −1

2
ψ0e

−2xRe2(x−xL)e2xL = −1

2
ψ0e

−2L s2

ψ′
R → −ψ0s

ds

dx
e−2L = −ψ0s

2e−2L ψ′′
R → −2ψ0s

2e−2L

∂sψL = ψ0

{

1√
1 + s2

− s2
√
1 + s2

3

}

= ψ0
1

√
1 + s2

3 ⇒ ψ′
L = ψ0

s
√
1 + s2

3

We get then

0 = ǫ∂TxLψ
2
0

∫ e
L
2

0

s2

(1 + s2)3
1

s
ds+ ǫ∂TxRψ

2
0

∫ e
L
2

0

s
√
1 + s2

3

(
−s2

)
e−2L 1

s
ds+

+ψ2
0

∫ e
L
2

0

s
√
1 + s2

3

(
−2s2

)
e−2L1

s
ds+ (58)

+ψ2
0

∫ e
L
2

0

s
√
1 + s2

3

{

−1 + 3c0ψ
2
0

s2

1 + s2
− 5ψ4

0

s4

(1 + s2)2

} −s2
2
e−2L1

s
ds

+ǫc1
1

4
ψ4
L

∣
∣
x=xm

x=−∞
︸ ︷︷ ︸

ψ4
0+h.o.t.

Analogously for x > xm:

0 = ǫ∂TxL

∫ ∞

xm

ψ′
Lψ

′
Rdx− ǫ∂TxR

∫ ∞

xm

ψ′2
Rdx+

∫ ∞

xm

ψ′
Rψ

′′
Ldx+ (59)

+

∫ ∞

xm

ψ′
R

{
−1 + 3c0ψ

2
R − 5ψ4

R

}
(ψL − ψ0) dx+ ǫc1

∫ ∞

xm

ψ′
Rψ

3
Rdx

Rewrite these integrals in terms of

u = exR−x

dx = −1

u
du

du

dx
= −u ψR = ψ0

u√
1 + u2

∂uψR = ψ0
1

√
1 + u2

3
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ψ′
R = −dψR

dx
= u

dψR
du

= ψ0
u

√
1 + u2

3

ψL − ψ0 → −1

2
ψ0u

2e−2L ψ′
L → ψ0u

2e−2L ψ′′
L → −2ψ0u

2e−2L

Since
∫ ∞

xm

. . . dx→
∫ 0

exR−xm

. . .

(

−1

u

)

du =

∫ e
L
2

0

. . .
1

u
du

each integral in the expression for x > xm has a corresponding integral for x < xm and their

magnitudes are the same.

Add (59) and (58)

0 = ǫ (∂TxL − ∂TxR)ψ
2
0







∫ e
L
2

0

s2

(1 + s2)3
1

s
ds−

∫ e
L
2

0

s
√
1 + s2

3

(
−s2

)
e−2L 1

s
ds






+

+2e−2Lψ2
0

∫ e
L
2

0

s
√
1 + s2

3

(
−2s2

) 1

s
ds+

+2e−2Lψ2
0

∫ e
L
2

0

s
√
1 + s2

3

{

−1 + 3c0ψ
2
0

s2

1 + s2
− 5ψ4

0

s4

(1 + s2)2

} −s2
2

1

s
ds+

+ǫc1
1

2
ψ4
0

For large s all integrands decay at least as 1
s
⇒ the integrals are at most O(ln s) = O(L):

• We can therefore ignore the second integral with respect to the first integral in the

first term

• ǫ must be exponentially small in L to balance the terms

Relevant integrals:

∫ e
L
2

0

s

(1 + s2)3
ds =

1

4

(

1− 1

(1 + eL)2

)

∫ e
L
2

0

s2
√
1 + s2

3ds =
1

2
L+ ln 2− 1 +O(e−L)

∫ e
L
2

0

s4
√
1 + s2

3ds =
1

2
L+ ln 2− 4

3
+O(e−L)

∫ e
L
2

0

s6
√
1 + s2

3ds =
1

2
L+ ln 2− 23

15
+O(e−L)

Thus

∂TL = −16
e−2L

ǫ
+ 2

√
3c1 (60)
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dL/dt

L

Figure 31: Dependence of growth rate of domain on domain size L.

Notes:

• Interaction

– attactive ⇒ fixed point L = L0 for c > c0, i.e. without interaction the fronts would

be drifting apart

– decays with distance

– ⇒ localized state is unstable:

for L > L0 the attraction is insufficient and the fronts drift apart

for L < L0 the attraction is too strong and the fronts annihilate each other.

• This localized state corresponds to a critical droplet in a first-order phase transition

– ψ = 0 corresponds to the gas phase, say, and ψ = ψ0 to the liquid phase

– L = 0 corresponds to a pure gas phase, L→ ∞ to a pure liquid phase.

– the localized state separates these two stable phases ⇒ if there is only one such

localized state it has to be unstable.

• the interaction between the fronts is exponential and monotonic

• in a more general system the interaction could be non-monotonic, e.g.,

dL

dt
= a cosκL e−αL + bc1

then there are multiple localized states, alternating stable and unstable
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dL/dt

L

Figure 32: Oscillatory interaction between fronts would allow multiple localized states,

stable and unstable.

• for oscillatory interaction fronts can ‘lock’ into each other at multiple positions, arrays

of fronts can be spatially chaotic [3].
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13

13Integration by parts of Laplace integrals I(x) =
∫ b

a
f(t)exφ(t)dt

If φ′(t) 6= 0 for all t ∈ [a, b] one can again employ integration by parts using exφ = 1
x

1
φ′

d
dt
exφ

I(x) = f(t)
1

x

1

φ′(t)
exφ(t)

∣
∣
∣
∣

b

a

− 1

x

∫ b

a

d

dt

(
f(t)

φ′(t)

)

exφ(t)dt

This is useful if the resulting integral is small compared to the boundary terms, because then

I(x) ∼ 1

x

f(b)

φ′(b)
exφ(b) − 1

x

f(a)

φ′(a)
exφ(a)

For instance:

For φ′(t) > 0 for t ∈ [a, b], f(b) 6= 0 (or φ′(t) < 0 for t ∈ [a, b], f(a) 6= 0), and f(t) and φ(t) sufficiently regular

one can estimate the integral as follows

∣
∣
∣
∣
∣

∫ b

a

d

dt

(
f(t)

φ′(t)

)

exφ(t)dt

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ b−∆

a

d

dt

(
f(t)

φ′(t)

)

exφ(t)dt

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ b

b−∆

d

dt

(
f(t)

φ′(t)

)

exφ(t)dt

∣
∣
∣
∣
∣

≤ ex(φ(b)−∆)

∣
∣
∣
∣
∣

∫ b−∆

a

d

dt

(
f(t)

φ′(t)

)

dt

∣
∣
∣
∣
∣
+∆ max

t∈[b−∆,b]

∣
∣
∣
∣

d

dt

(
f(t)

φ′(t)

)∣
∣
∣
∣
exφ(b)

Now choose ∆ sufficiently small to make the second integral small but not too small to make the first integral

small for large x, ∆ = x−α, with 0 < α < 1. Then

∣
∣
∣
∣
∣

∫ b

a

d

dt

(
f(t)

φ′(t)

)

exφ(t)dt

∣
∣
∣
∣
∣
≤ e−x1−α

exφ(b)

∣
∣
∣
∣
∣

∫ b−∆

a

d

dt

(
f(t)

φ′(t)

)

dt

∣
∣
∣
∣
∣
+ x−α max

t∈[b−∆,b]

∣
∣
∣
∣

d

dt

(
f(t)

φ′(t)

)∣
∣
∣
∣
exφ(b)

Both terms are small compared to the dominant boundary term.

More generally one can show the the boundary term at t = b dominates the integral for ℜ(φ(t)) < ℜ(φ(b))
for a ≤ t < b and ℜ(φ′(b)) 6= 0 and f(b) 6= 0.
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A Forced Duffing Oscillator II

Consider now explicitly the Duffing oscillator with forcing near 3ω0

ÿ + ǫβẏ + ω2
0y + ǫαy3 = f cosωt

with initial conditions y(0) = δ, ẏ(0) = 0.

To get an overview of possible resonances consider first general ω and O(1)-forcing.

O(1):
ÿ0 + ω2

0y0 = f cosωt

y0(t) = δ cosω0t+
f

ω2
0 − ω2

(cosωt− cosω0t)

O(ǫ):
ÿ1 + ω2

0y1 = −βẏ0 − y30 ≡ f1

Insert y0 into f1 using

K ≡ f

ω2
0 − ω2

f1 = β {ω0 sinω0t +K [ω sinωt− ω0 sinω0t]} − {K cosωt+ (1−K) cosω0t}3

= βω0 (1−K) sinω0t+ βω sinωt−
−
{
K3 cos3 ωt+ 3K2 (1−K) cos2 ωt cosω0t+ 3K (1−K)2 cosωt cos2 ω0t+ (1−K)3 cos3 ω0t

}

use

cos3 ωt =
3

4
cosωt+

1

4
cos 3ωt

cos2 ωt cosω0t =
1

4
cos ((2ω − ω0) t) +

1

4
cos ((2ω + ω0) t) +

1

2
cosω0t

cosωt cos2 ω0t =
1

4
cos ((ω − 2ω0) t) +

1

4
cos ((ω + 2ω0) t) +

1

2
cosωt

cos3 ω0t =
3

4
cosω0t+

1

4
cos 3ω0t

Note:

• if one uses complex exponentials one does not have to deal with trig identities

• the cubic nonlinearity generates all frequencies that can be obtained by adding the

frequencies of three of the four terms in

{
eiω0t + e−iω0t −

(
eiωt + e−iωt

)}3

Each term in f1 with frequency ω̃ drives a specific part of the particular solution for y1

cos ω̃t → 1

−ω̃2 + ω2
0
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i.e.

cos ((2ω − ω0) t) → 1

4ω2 − 4ωω0
=

1

4

1

ω (ω − ω0)

cos ((2ω + ω0) t) → 1

4ω2 + 4ωω0
=

1

4

1

ω (ω + ω)

cos ((2ω0 − ω) t) → 1

3ω2
0 − 4ω0ω + ω2

=
1

(ω − ω0) (ω − 3ω0)

cos ((2ω0 + ω) t) → 1

3ω2
0 + 4ω0ω + ω2

=
1

(ω + ω0) (ω + 3ω0)

cos 3ωt → 1

(ω0 − 3ω) (ω0 + 3ω)

With this forcing one can drive resonances at

ω = 0

ω = ω0

ω = 3ω0

ω =
1

3
ω0

As our symmetry analysis showed, depending on the ratio ω/ω0 the perturbation analysis

leads to different amplitude equations.

A.1 3:1 Forcing of Duffing Oscillator

Consider

ω0 = 1 ω = 3 (1 + Ω)

with O(1) forcing (cf. in Sec.2.2.2 where the forcing was O(ǫ)).

As in the case ω ≈ ω0 write14

y(t, T ) = y0(ψ, T ) + ǫy1(ψ, T ) + . . . ψ = t+ ΩT − φ(T )

with initial conditions

y(0, 0) = δ
dy

dt
= 0

Again the derivative ∂2t is expanded as

∂

∂t
= (1 + ǫ (Ω− ∂Tφ)) ∂ψ + ǫ∂T

∂2

∂t2
= ∂2ψ + ǫ

{
2 (Ω− ∂Tφ) ∂

2
ψ + 2∂2ψT

}
+O(ǫ2)

and one obtains

14It might be easier to use complex exponentials as in the symmetry analysis.
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O(1):
∂2ψy0 + y0 = f cos (3 (ψ + φ))

with

y0(0, 0) = δ ∂ty0(0, 0) = 0

yields

y0(ψ, T ) = R(T ) cosψ +K cos (3 (ψ + φ)) with K = −f
8

R(0) cosψ(0) = δ R(0) sinψ(0) = 0 ⇒ R(0) = δ ψ(0) = 0

O(ǫ):
∂2ψy1 + y1 = −β∂ψy0 −

{
2 (Ω− φ′) ∂2ψ + 2∂2ψT

}
y0 − y30 ≡ f1

f1 = β [R sinψ + 3K sin (3 (ψ + φ))] + 2 (Ω− φ′) [R cosψ + 9K cos (3 (ψ + φ))]

+2 [R′ sinψ + 9φ′K cos (3 (ψ + φ))]

−R3 cos3 ψ − 3R2K cos2 ψ cos (3 (ψ + φ))− 3RK2 cosψ cos2 (3 (ψ + φ))−K3 cos3 (3 (ψ + φ))

= β [R sinψ + 3K sin (3 (ψ + φ))] + 2 (Ω− φ′)R cosψ + 18ΩK cos (3 (ψ + φ)) + 2R′ sinψ

−3

4
R3 cosψ − 3

4
R2K cos (2ψ − 3 (ψ + φ))

︸ ︷︷ ︸

cosψ cos 3φ−sinψ sin 3φ

−3

2
RK2 cosψ + higher harmonics

The solvability condition results then in

2R′ + βR +
3

4
R2K sin 3φ = 0 (61)

2 (Ω− φ′)R− 3

4
R3 − 3

4
R2K cos 3φ− 3

2
RK2 = 0 (62)

Notes:

• the result agrees in its form with that obtained using symmetry and scaling argu-

ments (cf. (40))

• compared to the general equation not only the term R3 but also the term RK2 are

missing in the equation for the amplitude R:

the forcing is not modifying the linear damping of the amplitude

One fixed point is at R
(1)
∞ = 0. It corresponds to the solution

y(1) = K cos (3 (ψ + φ)) +O(ǫ)

which does not excite the resonance near ω0.

For R∞ 6= 0 one has

β = −3

4
R∞K sin 3φ∞

2Ω− 3

4
R2

∞ − 3

2
K2 =

3

4
R∞K cos 3φ∞
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Thus

β2 +

(

2Ω− 3

4
R2

∞ − 3

2
K2

)2

=
9

16
R2

∞K
2

9

16
R4

∞ +R2
∞

(

2
3

4

(
3

2
K2 − 2Ω

)

− 9

16
K2

)

+

(

2Ω− 3

2
K2

)2

+ β2 = 0

R4
∞ +R2

∞

(

3K2 − 16

3
Ω

)

+

(
8

3
Ω− 2K2

)2

+
16

9
β2 = 0

We need a real and positive solution of this bi-quadratic equation.

Discriminant

∆ =

(

3K2 − 16

3
Ω

)2

− 4

(
8

3
Ω− 2K2

)2

− 64

9
β2

= −7K4 +
32

3
ΩK2 − 64

9
β2

Solving for Ω we find that to have real solutions (∆ ≥ 0) we need

Ω ≥ 21

32
K2 +

2

3

β2

K2
≡ Ω0(K)

For Ω ≥ Ω0(K) we have

−
(

3K2 − 16

3
Ω

)

≥ 16

3

21

32
K2 − 3K2 +

32

9

β2

K2
=

(
21

6
− 3

)

K2 +
32

9

β2

K2
> 0

Moreover, ∆ ≤
(
3K2 − 16

3
Ω
)2

.

Thus, if ∆ > 0 both solutions R2
1,2 are positive and we conclude

Ω > Ω0(K) 2 positive solutions

Ω < Ω0(K) no positive solution

Ω

K2

No Solutions

2 Solutions

Figure 33: Phase diagram: existence of solutions as a function of Ω and K. The line marks

∆ = 0.
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For fixed Ω non-trivial solutions R > 0 exist only in a range Kmin ≤ K ≤ Kmax

K2
min,max =

16

21

{

Ω±
√

Ω2 − 7

4
β2

}

At Kmin and Kmax two solutions come into existence or disappear in a saddle-node bifurca-

tion. The amplitudes at these points are

R2
min,max =

1

2

{
16

3
Ω− 3K2

min,max

}

> 0

Note:

• These solutions come into existence at finite amplitude and do not bifurcate off the

trivial solution R(1) = 0.

a)

R2

K2 b) Ω

R2

Figure 34: Bifurcation diagrams arising from cuts at fixed Ω (a) and at fixed K (b) in the

phase diagram shown in Fig.33.

Note:

• in all the examples here the amplitude equation arose at O(ǫ), i.e. at the first order in

the perturbation. In general, the amplitude equation can also arise at higher order,

with the lower orders being solvable without implying any condition on the amplitude.
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Integrals:

Slightly different version for I(x) =
∫ π/2

0
e−x sin

2 tdt:
Since sin t = t− 1

6
t3 + 1

120
t5 . . . one might expect

t− 1

6
t3 < sin t < t

This can be shown to be true for all t > 0. Estimate now

∣
∣x sin2 t− xt2

∣
∣ = x |sin t + t| |sin t− t| < x 2t

1

6
t3 =

1

3
xt4

Thus, for t = x−α with α > 1
4

one has

∣
∣x sin2 t− xt2

∣
∣ <

1

3
x1−4α → 0 x→ ∞

To leading order one then has

e−x sin
2 t ≈ e−xt

2

t ≤ x−α, x→ ∞

and also
∫ x−α

0

e−x sin
2 tdt ∼

∫ x−α

0

e−xt
2

dt x→ ∞

What about the integrals from x−α to ǫ? They are both exponentially small compared to

I(x):
∫ ǫ

x−α

e−x sin
2 tdt < e−x sin

2 x−α

ǫ

∫ ǫ

x−α

e−xt
2

dt < e−x
1−2α

ǫ

For these estimates to be meaningful we need to choose α < 1
2
.
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