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1 Introduction

Dynamics arise in many systems

• Mechanics: vibrations, coupled structural elements

driven by external force ⇒ complex behavior even in simple driven pendulum

planetary motion: n-body problem
planetary system stable?

• Fluids: Rayleigh-Bénard convection → WWW
transitions between different spatially periodic or disordered states
transition to turbulence in pipe flow: sudden change from laminar to turbulent flow

• Chemical systems: Belousov-Zhabotinsky reaction: spiral waves → WWW
flames → WWW

• Economics:
pig cycle, delay between price and investment
job market: delay by education
increase demand: more freshmen
→ 4 years later too many job applicants, reduced chances
→ fewer freshmen

demand       freshman

graduating

demand

t

• Dynamics in the heart:

contraction = excitation of muscle (wave at ball game, excitable)
propagates like a wave
defects in waves: spirals, diseases
fibrillations

WWW: rabbit heart picture
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Nonlinear Systems:

• changes in qualitative behavior

non-smooth dependence on parameters:

WWW: Taylor vortex flow: torque & flow pictures

• multiplicity of solutions: hysteresis

rolls vs. spiral-defect chaos convection

• chaotic dynamics
many frequencies, coexisting (unstable) periodic solutions

Simple illustration: linear vs. nonlinear

Consider

f(x, µ) = 0

µ increases 

                        

non linearlinear

µ increases 

                        

..(essentially) always
1 unique solution
quantitative but
no qualitative change

..# of solutions can change with µ.
solutions appear and disappear
quantitative and qualitative changes

Example: TVF, torque & flow pictures, multiplicity, phase diagram (WWW)

Mathematical Description of Dynamics:

Differential Equations & Maps
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ordinary differential equations (ODE): coupled oscillators
partial differential equations (PDE): heat eqn., reaction diffusion eqn. Navier-Stokes
Maps: stroboscopic description of (near) oscillatory behavior

Linear:
ü = Au

Superposition of solutions to get general solution for all initial conditions

Notation: u̇ ≡ du
dt

, temporal derivative, u = (u1, u2, ..., un)

Example: 2 masses with springs, u = longitudinal motion of masses
parallel and anti-parallel mode (lower and higher frequency)
any motion = parallel + anti-parallel

parallel

antiparallel

PDE for continuous string:

ü = u′′ 0 < x < L

Fourier expansion

u(x, t) =
∞∑

n=−∞
un(t) e

i 2π
L
nx

Notation: u′ = du
dx

, spatial derivative

Eigenmodes: each un satisfies:

ün = −(
2πn

L
)2un → un(t) = un(0)e

i 2rn
L
t

Different modes do not interact

Nonlinear: no superposition, different modes do interact!

ü = u′′ + u2
︸︷︷︸

∑
unume

i 2π
L

(n+m)x
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u2 generates new wave numbers: couples n & m to n+m and to n−m

Any interaction between different objects (A and B) implies nonlinearity:
evolution of A depends on state of A and that of B

→ Cannot build general solution from a set of basic solutions by simply adding them

→ in general: cannot find exact solutions: HARD.

Numerical Solution:

• confirms the model/basic equations:
of great interest if model has not been established, e.g., chemical oscillations, heart
muscle

• gives quantitative details for specific values of system parameters:
these details may not be accessible in experiments: 3d fluid flow, turbulent, chemical
concentrations of each species

We will also use numerical methods

Overview and Insight: Qualitative Analysis

• change in behavior as system parameters are changed

transitions between qualitatively different states

• analytical techniques for transitions

approximations near transition points

• visualization: geometry of dynamics, phase space

• overview of all possible behaviors

Example: mass-spring-system

d2x

dt2
= − k

m
x

we will write all differential equations as first-order systems:

ẋ = v

v̇ = − k

m
x

m x

k
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without friction with friction

v

x

x

v

for any initial condition periodic motion with friction relaxation to fixed point

complete overview of all possible solutions
(here linear → not much going on.)

Conservative Systems

• almost all different initial condition lead to different states

Dissipative Systems

• range of initial conditions leads to same state: attractors

• transitions: qualitative change in attractors

We will mostly focus on dissipative systems.
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2 1-d Flow

2.1 Flow on the Line

Any first-order differential equation with constant coefficients,

ẋ = f(x),

can be solved exactly for any f(x) (by separation of variables).

∫ x

x0

dx

f(x)
= t− t0

Example: ẋ = sinx

t =
∫ dx

sin x
=
∫

cscxdx

t = − ln | csc x+ cotx| + C

Now what? What have we learned?

Even if we could solve for x, would we have an overview of the behavior of system for
arbitrary initial conditions?

Geometrical picture: phase space (or phase line in 1 dimension)

x

ẋ = f(x) defines a flow in phase space or a vector field

For 1d: plot in addition f(x)

f(x)
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Conclude: any i.c. ends up in one of the fixed points at xn = (2n+ 1)π.
Fixed points are stagnation point of the flow

Stability:

• flow into xn = (2n+ 1)π: stable

• flow out of xn = 2nπ: unstable

Of course: for quantitative results (‘numbers’) we need the detailed solution

Example: Population Growth with Limited Resources

N = # of animals

Ṅ = g(N)N

g(N) = net birth/death rate

Limited food/space:
births decrease, deaths increase with increasing N

g = α− βN

Logistic growth model

Ṅ = αN − βN 2

Make dimensionless:

[α] = 1
s

[β] =
1

s

1

#
1
α

characteristic growth time
α

β
characteristic population site

Introduce

t =
1

α
τ N =

α

β
n

Question: If population goes to some equilibrium, what size would you expect?

α
β

is the only characteristic size after initial condition is forgotten ⇒ expect N → α
β

∂τn = n− n2
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Could solve by partial fraction

Instead, consider phase space:

n

saturation

exp growth

t

1 n

dn
dt

fixed points: n = 0, n = 1

flow indicates: n = 0 unstable, n = 1 stable

indeed: all i.c. go to N = α
β
.

Linear Stability:

Study effect of small perturbation away from fixed point

Linearize around fixed points:

n = n0 + εn1(τ) ε� 1

O(ε0) : 0 = n0 − n2
0

⇒ n0 = 1 or n0 = 0

O(ε1) : ∂τn1 = n1 − 2n0n1 = (1 − 2n0)n1

⇒ n1 ∝ e−(1−2n0)τ

n0 = 1 ⇒ 1 − 2n0 < 0 stable

n0 = 0 ⇒ 1 − 2n0 > 0 unstable

more generally

ẋ = f(x)
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stability:

x = x0 + εx1

ẋ1 = f ′(x0)x1

stable: f ′(x0) < 0
unstable: f ′(x0) > 0

Note: for coupled systems f ′(x) is replaced by Jacobian matrix:
eigenvalues determine stability.

Discussion of Logistic Growth Model

Examples:
(cf. figures on WWW)

growth of yeast: model seems quite good

beetles: early times O.K., no stable saturation

Assumptions made:

• N and birth/death processes are continuous

⇒ o.k. for population with large N

smaller N : expect jumps, fluctuations

• density not too large: ignored N 3 etc.

– if all neglected terms are saturating: no qualitative change if terms are included

– if low-order terms are destabilizing:
need to include higher-order terms to avoid blow-up
could get bistability between 2 populations if terms are included

• growth rate depends only on N at the same time: no delay

not satisfied for animals with more complex life cycle

eggs: hatching and laying new eggs (‘new births’) much later

⇒ overshoot possible:
although little food/space many births resulting from earlier high-supply times

expect oscillations? (HW)

• stable age distribution
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Effect of age distribution:

increased birthrate increases number of young animals
→ peak in distribution travels through age distribution

age

N

only mature animals 

contribute to births

⇒

with

time

N

age

2.1.1 Impossibility of Oscillations:

Can the solution approach fixed point via oscillations?

t

No!

graphically:

to get to other side need to cross fixed point
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→ system evolves monotonically between fixed points

More general concept: potential

ẋ = f(x) = −dV
dx

with V = −
∫

f(x)dx

Consider:

dV

dt
=
dV

dx
ẋ = −(

dV

dx
)2 ≤ 0

V is non-increasing ⇒ V cannot return to previous value

dV

dt
= 0 ⇒ dV

dx
= 0 ⇒ ẋ = 0 fixed point

x either goes to fixed point or diverges to −∞ (if V is not bounded from below).

Compare: mechanical system is overdamped limit

mẍ = −βẋ+ F (x)

for very small mass (no inertia)

ẋ =
1

β
F (x)

Overshoot requires inertia, 2nd derivative.

Note: The concept of the potential can be extended to higher-dimensional systems

2.2 Existence and Uniqueness

So far we assumed we always get a unique solution for all times:

• at any time ‘we know where to go’

• we can continue this forever

Solutions to

ẋ = f(x)
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1. do not have to exist for all times:
for given initial condition solution may cease to exist beyond some time

2. do not have to be unique:
same initial condition can lead to different states later.

1. Existence

solution can disappear by becoming infinite

if this happens in finite time then there is no solution beyond that time

Example:

ẋ = +xα with x(0) = x0 > 0

∫

x−α dx =
∫ dx

xα
= t+ C

1

1 − α
x1−α = t+ C

initial conditions:

C =
1

1 − α
x1−α

0

x =
(

(1 − α)t+ x1−α
0

) 1
1−α

Solution diverges at

t∗ =
x1−α

0

α− 1
if α > 1

i.e. for α > 1 divergence in finite time.

Note: divergence in infinite time no problem: x(t) = et

2. Uniqueness

Consider previous example for 0 < α < 1

⇒ x = 0 for t∗ =
x1−α

0

α− 1
< 0

Solution can start at t∗ with x(t∗) = 0 and grow from there.

But: x̃(t) ≡ 0 is a solution for all times
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⇒ can start with x̃(t) = 0 for t < t∗ and ’switch’ to x(t) > 0 beyond t∗. The combined
solution is continuous and satisfies the differential equation.

Thus: two different solutions satisfy the same initial condition (at t∗).

2 solutions for 

same initial

condition             

solution "splits"

Worse: t∗ depends on x0

⇒ can pick any t∗ and patch the solutions at that t∗

⇒ infinitely many solutions with identical i.c. x = 0.

Note: in order to get “across the splitting” need to reach 0 in finite time
(splitting has to be crossed in finite time)

Theorem1:
If for

ẋ = f(x, t)

• f(x, t) is continuous in |t− t0| < ∆t in |x− x0| ≤ ∆x and has maximum M there,
and

• f(x, t) satisfies Lipschitz condition within ∆x and ∆t:

|f(x1, t) − f(x2, t)| ≤ K |x1 − x2| ∀x1, x2 ∈ |x− x0| ≤ ∆x

with some constant K

then the solution exists for a finite time interval |t− t0| ≤ ∆T and is unique. The interval
is given by

∆T = min
(

∆t,
∆x

M

)

Discussion:
1see, e.g., Lin & Segel, Mathematics applied to deterministic problems in the natural sciences, p.57
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f(x) = |x|α does not satisfy Lipschitz condition at x = 0 for 0 < α < 1:
would need

|x|α ≤ Kx ∀x near x = 0

i.e. K ≥ |x|α−1 → ∞ for x→ 0 and α < 1

Thus: uniqueness of solution is not guaranteed.

Note: If f ′(x) is continuous then f(x) satisfies the Lipschitz condition and the solution
is unique.

2.3 Bifurcations in 1 Dimension

We had: in 1d final state always fixed point (if dynamics are bounded)

How many fixed points? How can number of fixed points change?

⇒ Introduce parameter µ

f(x, µ) = 0

Creation of fixed point: small change in µ

⇒ analysis in neighborhood of some special value of µ

Question: Does the solution persist when the parameter is changed? Is it unique?

µ  

                        

x

2.3.1 Implicit Function Theorem

Local analysis near fixed point for small changes in µ:

Taylor expansion

f(x, µ) = f(x0, µ0)
︸ ︷︷ ︸

=0

+
∂f

∂x
(x− x0) +

∂f

∂µ
(µ− µ0) +

1

2

∂2f

∂x2
(x− x0)

2 + · · ·

17



(All derivatives evaluated at x0, µ0)

fixed point: f(x0, µ0) = 0

If ∂f
∂x
|x0,µ0 6= 0 ⇒ solve uniquely for x

x− x0 = −(µ− µ0)
∂f
∂u
∂f
∂x

+O(µ2)

Thus, in this case there is a branch of solutions.

More generally for higher dimensions: Implicit function theorem

Consider Solutions of

f(x, µ) = 0 x ∈ Rn f smooth in x and µ

If

f(x = x0, µ = µ0) = 0 and det

(

∂fi
∂xj

)

6= 0 at µ = µ0 and x = x0,

then there is a unique differentiable X(µ) that satisfies

f(X(µ), µ) = 0 and X(µ = µ0) = x0.

Thus: if det
(
∂fi

∂xj

)

6= 0 there is a branch of solutions going through x = x0 as µ is varied.

µ  

                        

x

branch of solutions
x

µ  

                        

0

0

Notes:

• In 1d: det ∂fi

∂xj
→ df

dx
= f ′(x)

⇒ as seen in explicit calculation: if f ′(x) 6= 0 branch persists uniquely

• We have: stability changes if f ′(x) = 0
⇒ change in number of fixed points requires change in (linear) stability of
fixed point.

• generic properties are those properties that do not require any tuning of the
parameters

When picking parameters randomly one expects ∂f
∂x
|x0,µ0 6= 0,

i.e. need to tune µ to get ∂f
∂x
|x0,µ0 = 0

⇒ generically there is a smooth branch
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• change in x is smooth in µ if ∂f
∂x

6= 0

∆x ∼ ∆µ

x

+0

0

0

x x

x

µ µ µ µ
0 +

∆

∆

2.3.2 Saddle-Node Bifurcation

What happens when ∂f
∂x

= 0?

Need to go to higher order in Taylor expansion (choose x0 = 0, µ0 = 0)

f(x, µ) = f(0, 0)
︸ ︷︷ ︸

=0

+
∂f

∂x
︸︷︷︸

=0

x+
∂f

∂µ
µ+

1

2

∂2f

∂x2
x2 +

∂2f

∂x∂µ
xµ+

1

2

∂2f

∂µ2
µ2 + . . .

Solve again:

x2 = − 2
∂2f
∂x2







∂f

∂µ
µ

︸ ︷︷ ︸

x=O(µ1/2)

+
∂2f

∂x∂µ
xµ
︸︷︷︸

O(µ3/2)

+
1

2

∂2f

∂µ2
µ2 + · · ·







Try different balances of x and µ

x ∼ µ ⇒ contradiction

x ∼ µ1/2 ⇒ consistent

Thus

x1,2 = ±

√
√
√
√
√−2

∂f
∂µ

∂2f
∂x2

µ + O(µ)

Notes:

• If implicit function theorem fails one gets higher-order equation with multiple solu-
tions (depending on parameters)
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• change in x is not smooth in µ

Dynamics:

ẋ = f(x, µ) = aµ+ bx2 + h.o.t.

with

a =
∂f

∂µ
≡ ∂µf b =

∂2f

∂x2
≡ ∂2

xf

Note:

• this is the universal form of equation near saddle-node bifurcation

Bifurcation diagrams: plot all solution branches as function of µ

Relevant parameters:

a

b
=
∂µf

∂2
xf

≡
∂f
∂µ

∂2f
∂x2

a
b
< 0 and a > 0 a

b
> 0 and a > 0

µ  

                        

x

x-direction ∼ phase line. Arrows indicate flow on phase line
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x

f

f

x

marginally

stable

f

x                                                               

Minimum of f generically quadratic ⇒ universal form of equation

Notes:

• 2 fixed points are created/destroyed. Single solutions cannot simply pop up or
disappear: merging and annihilation of 2 solutions

• coinciding fixed points at µ = 0 are marginally stable:
∂xf changes sign going along solution branch: change in stability

• flow changes direction only locally:
only when µ goes through 0 and only near bifurcation point x = 0 flow changes
direction.
Away from bifurcation point flow qualitatively unchanged when µ changes (arrows
far away remain the same).

• in higher dimensions: saddle-node bifurcation

stable ∼ node unstable ∼ saddle

21



• saddle-node bifurcation is the generic bifurcation when a real eigenvalue goes
through 0.
The only condition is ∂xf = 0: this is the condition for any bifurcation to occur.
‘Expect’ saddle-node bifurcation, if any.

Example:
Convection of a layer heated from below (Nu measures heat transport):

Nu

T∆

Here saddle-node bifurcation part of a larger bifurcation scenario

Saddle-node bifurcation sometimes also called “blue-sky bifurcation”

2.3.3 Transcritical Bifurcation

Consider system for which 1 solution (x = 0) exists for all µ (special condition):

f(0, µ) = 0 for all µ

Taylor expansion:

⇒ f(x, µ) = f(0, 0)
︸ ︷︷ ︸

=0

+ ∂xf
︸︷︷︸

=0

x+ ∂µf
︸︷︷︸

=0

µ+
1

2
∂2
xf x

2 + ∂2
xµf xµ+

1

2
∂2
µf

︸ ︷︷ ︸

=0

µ2 + . . .

First three terms and last term vanish because:
x = 0 fixed point, a bifurcation occurs, symmetry of f(x, u)

Universal evolution equation

ẋ = x (a µ+ b x) + · · ·

with
a = ∂2

xµf b =
1

2
∂2
xf

Fixed points:

x1 = 0 x2 = −a
b
µ ≡ − ∂2

xµf
1
2
∂2
xf

µ

22



Two cases:
a

b
< 0 a > 0

µ  

                        

x

a

b
> 0 a > 0

Notes:

• “exchange of stability”

• subcritical branch:

Sufficiently large perturbation can lead away from (linearly) stable fixed point.

Examples:

a) Hexagon convection
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• large perturbation kicks solution above unstable branch of transcritical bifurcation.

• For µ > 0 the lower branch is unstable in a different way (instability not contained
in the single equation)

b) Logistic equation

Ṅ = µN −N 2

N

µ

for µ < 0 lower branch unphysical since N > 0 required

c) Simple Model for Laser

Optical cavity with excitable atoms

pump

laser output

Dynamics of atoms:

• atoms are excited by pump2

• atoms emit photons and go to ground state

– spontaneously: spontaneous emission

– due to other photon: stimulated emission
a photon triggers the emission of a photon from excited atom

Ṅ = P − fN − gnN

N : excited atoms, P : pump, f : decay through spontaneous emission,
g: “collision” with photon takes atom to ground state (stimulated emission)

Dynamics of photons:
2Atoms are also excited by photons already present; effect much smaller than pump (n is small near

onset of lasing)
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• photons generated by stimulated emission

• photons leave through end mirrors

ṅ = GNn− κn

n: photons, G: gain, κ: output/loss

Note: n counts only photons with correct phase (only those generated by spontaneous
emission)

Now: we have 2 equations: too difficult

model the N -equation: steady state # of excited atoms will be reduced by photons

N = N0 − αn

⇒ ṅ = G(N0 − αn)n− κn

again same equation as for logistic growth

g

n            

Note:

• we will learn under what conditions the model for N is justified:
reduction from many ode’s to few/single ode by center-manifold reduction.

2.3.4 Pitchfork Bifurcation

Systems with reflection symmetry x→ −x

ẋ = f(x, µ) with f(x, µ) odd in x

⇒ x = 0 solution for all µ.

Taylor expansion:

f(x, µ) = a
︸︷︷︸

∂2
xµf

xµ+ b
︸︷︷︸

1
6
∂3

xf

x3 + . . .

x0 = 0

x2,3 = ±
√

−a
b
µ

25



a

b
< 0 a > 0

a

b
> 0 a > 0

supercritial subcritical

Notes:

• supercritical ⇒ saturation of instability

• subcritical ⇒ no saturation to cubic order
⇒ need higher-order terms

• system has reflection symmetry x→ −x
x0 = 0 solution has that symmetry as well

x2,3 = ±√
. . . do not have reflection symmetry:

instead two symmetrically related solutions

⇒ pitchform bifurcation = symmetry-breaking bifurcation

Examples:

a) buckling of a beam

or

reflection symmetric symmetry related

b) Rayleigh-Bénard roll convection:
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up-flow down-flow

Note:

• up ⇒ down corresponds to translations by half a wavelength
intermediate positions also possible ⇒ larger symmetry

c) Ferromagnets

Phase transition as temperature T increased beyond Tc: ferromagnetic ⇒ paramagnetic

Each atom carries a magnetic moment (spin): si = ±1

Overall magnetization if the spins align on average: spontaneous symmetry breaking

Interactions:

• energy of spins in external magnetic field:

EH = −Hsi want to be parallel to field

• energy of spin - spin interaction:

ES = −
∑

i,j

Jijsisj Jij > 0, want to be parallel to each other

∑
is sum over neighbors

Total energy:

E(s1 . . . , sN) = −
∑

i

Hsi −
∑

i,j

Jij sisj

= −
∑

i



H +
∑

j

Jijsj





︸ ︷︷ ︸

Heff
i

si
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each spin si feels a field that depends on neighbors

Heff
i = H +

∑

j

Jijsj

Probability of spin i with energy Ei to have value si

P (si) ∝ e−Ei/kT = eH
eff
i si/kT Boltzmann factor

k Boltzmann constant

Average value of si

s̄i =
∑

si=±1

siP (si) = P (1) − P (−1)

However: Heff
i still contains configuration of all the other spins
⇒ P (si) very difficult to calculate

Mean field approximation: replace local spin value by average

Heff
i → H̄ = H +

∑

j

Jij s̄j

= H + s̄j
︸︷︷︸

independent of j

∑

j

Jij

︸ ︷︷ ︸

J̄

Then
P (si) =

1

N eH̄si/kT with H̄ = H + s̄J̄

Normalization of probability:

1 = P (+1) + P (−1) ⇒ N = eH̄/kT + e−H̄/kT

Average magnetization satisfies:

s̄ =
(+1) eH̄/kT + (−1) e−H̄/kT

eH̄/kT + e−H̄/kT
= tanh

{

(H + s̄J̄)

kT

}

Consider H = 0:

s̄ = tanh(
s̄J̄

kT
)
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s
_

s
_

y =
y

y = tanh( j s / K T )
__

B

Bifurcation at kT = s̄J̄ .

Notes:

• pitchfork bifurcation since symmetry s̄→ −s̄

• supercritical pitchfork bifurcation ⇔ phase transition of 2nd order.

• H 6= 0 breaks reflection symmetry ⇒ pitchfork bifurcation perturbed ⇒ later.

Subcritical Pitchfork Bifurcation:

For b > 0 need to include quintic term:

ẋ = µx+ bx2
︸︷︷︸

destabilizing

− cx5
︸︷︷︸

stabilizing

Assume c > 0. In general need not saturate at quintic order

To get bifurcation diagram: plot µ = µ(x)

µ  

                        

x µ  

                        

x

⇒

plot of µ(x) is upside down flip plot for bifurcation diagram

Note:

• 2 saddle-node bifurcations for µ < 0
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• hysteresis loop & bistability

• we performed an expansion in x: analysis strictly only valid if “x small” on upper
branch: b→ 0, weakly subcritical

• b = 0: ‘tricritical’ point

2.4 Imperfect Bifurcations

For transcritical and for pitch-fork bifurcation to occur we needed 2 conditions

• bifurcation occurs: ∂xf |x0,µ0 = 0

• additional coefficients “happen to vanish,” e.g., because of some symmetry

Only the saddle-node bifurcation requires only 1 condition

Saddle-node bifurcation is a codimension-1 bifurcation

Question: What happens when the additional conditions are weakly broken in the
other cases?

Consider perturbed pitchfork bifurcation

ẋ = µx− x3 + h

Example: Ferromagnet with external field

we had:

s̄ = tanh(β(H + J̄ s̄)}
with tanh θ = θ − 1

3
θ3 +O(θ5)

one gets s̄ = 1 + bs̄+ cs̄2 − ds̄3 + O(s̄4)

To get the equation above for x:

introduce shift: x̃ = s̄− s̄0
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choose s̄0 to eliminate quadratic term cx̃2

rescale x = x̃/x̃0 to set cubic coefficient to -1.

Solving directly for fixed point is cumbersome (although possible).

Graphic solution:

µ < 0 µ > 0

x

y = - h

µ x - x 

                        

y =
3

y 

y = - h

y = - h

y = - h

1

2

3

x

y 

Creation/annihilation of 2 fixed points;

Saddle-node bifurcation at extrema of µx− x3

xSN = ±
√

1

3
µ hSN = ±

√

1

3
µ ,

2

3
µ

Bifurcation diagrams: 2 parameters

Vary h:
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x

h

µ < 0

h

x                     

SN

SN

µ > 0

Note:

• vary h up and down beyond saddle-node bifurcations: hysteresis loop

Vary µ:

SN

µ  

                        

To make the pitchfork bifurcation generic:
break symmetry x→ −x ⇒ transcritical bifurcation
break transcritical ⇒ only saddle-node bifurcation

shift

break

Note:

• to get original unperturbed pitch-fork bifurcation have to tune 2 parameters

µ = 0 & h = 0
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codimension-2 bifurcation

• symmetries of the system may render pitch-fork bifurcation a codimension-1 pheomenon
(here reflection symmetry)

Solution surface:

µ  

                        

x

µ  

                        

h

h

1 3 1 solution

cusp

µ  

                        

h

3

1

1

surface of cusp catastrophe:

• catastrophes occur as saddle-node bifurcations are crossed:
jump to other branch
minute changes lead to large results.

Notes:

• A system is called structurally stable if small perturbations of the equations do
not qualitatively change its behavior

i) ẋ = µ+ x structurally stable

fixed point x = −µ
ii) ẋ = −µ+ x2 not structurally stable

x = ±√
µ for µ > 0

x = 0 for µ < 0

• A bifurcation is called degenerate if additional conditions “happen” to be satisfied

• Unfolding of degenerate bifurcation:
introduce sufficiently many parameters that no degeneracy is left.
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2.5 Flow on a Circle

For oscillations need return: two dimensions needed

v

x t

θ

v

If oscillatory motion (circle) is sufficiently attractive consider only motion along closed
orbit:

Flow on a circle

θ̇ = f(θ) θ ∈ [0, 2π]

Notes:

• f(θ) cannot be arbitrary: has to be single-valued, i.e. 2π-periodic

• f(θ) gives the instantaneous frequency

Example: Overdamped Pendulum with Torque

θ

Γ

m`2θ̈ + βθ̇ = −mg` sin θ + Γ̃
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consider large damping

θ̇ = Γ − a sin θ

i) a = 0 (no gravity)

θ = θ0 + Γt whirling motion

oscillation in horizontal coordinate:

x = ` sin θ = ` sin(θ0 + Γt)

t

x

ii) α > 0 (with gravity)

a < a = a >

0 slow 2π
2π

θ

Γ Γ Γ

fast

bottle neck

slow
fast

θ
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t t t

a < a = a >Γ Γ Γ
θ θ θ

‘ghost’ of saddle-node bifurcation
⇒ extremely slow motion

Note:

• quite generally: near a steady bifurcation the dynamics become slow:
growth/decay rates go to 0 (‘critical slowing down’).

Estimate period near bifurcation point:

T =
∫

dt =
∫ 2π

0

dθ

θ̇
=
∫ 2π

0

dθ

ω − a sin θ

θε ε+-

f(  )θ

Consider general case near saddle-node bifurcation

θ̇ = f(θ)

with

f(0) = µ, f ′(0) = 0

⇒ f(θ) = µ+
1

2
f ′′(0)

︸ ︷︷ ︸

a

θ2 + O(θ3)
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T =
∫ 2π

0

dθ

f(θ)
=

∫ +ε

−ε

dθ

µ+ aθ2 + O(θ3)
︸ ︷︷ ︸

diverges as µ→ 0

+
∫ 2π−ε

ε

dθ

f(θ)
︸ ︷︷ ︸

finite as µ→ 0

→
∫ +ε

−ε

dθ

µ+ aθ2
+ T0 for µ→ 0

extract µ-dependence for µ→ 0 (at fixed ε) using ψ = θ√
µ

1

µ

∫ ∈

µ1/2

− ∈

µ1/2

µ1/2 dψ

1 + aψ2
+ T0 → 1

µ1/2

∫ ∞

−∞

dψ

1 + aψ2
+ T0 ∝ µ−1/2

Notes:

• Saddle-node bifurcation on a circle is one way to generate oscillations.
Generically one has then

T ∝ µ−1/2

• other types of bifurcations to oscillatory behavior lead to different T (µ),
e.g. Hopf bifurcation

T (µ = 0) = T0 finite.

• the fact that the saddle-node bifurcation leads to oscillations is a global feature of
the system:
need global connection between the generated fixed points

Examples:

i) Synchronization of fireflies
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• light up periodically

• respond to neighboring fire flies

Consider single firefly with periodic light source

Light source: ψ̇ = Ω

Firefly: φ̇ = ω + a sin(ψ − φ)

a > 0 : ψ > θ ⇒ firefly speeds up

rewrite: θ = φ− ψ

θ̇ = ω − Ω
︸ ︷︷ ︸

Γ

−a sin(θ)

Γ: frequency mismatch = detuning

• Fixed point: fly flashes entrained by light source

|ω − Ω|
︸ ︷︷ ︸

range of entrainment

< a and θ0 = arcsin
ω − Ω

a
6= 0

Fly flashes lag behind/pull ahead, but phase difference fixed: phase-locked state

• “Whirling” motion: |ω − Ω| > a

flashes not synchronized with light source.

Notes:

• entrainment is a common feature of coupled oscillators

• in general coupling bidirectional.

ii) Excitability in neurons

Vm

Na
+ +

K

fast slow

voltage dependent channels              
outside positive potential 

pumps for Na
+ +
K, ...

inside negative potential  

dV

dt
=

1

C
(Ik+ + ICa2+ + +Ileak + · · ·)

dIj
dt

= Fj(V, Ij) voltage gated channels
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• sufficiently large depolarization (V less negative) ⇒ Na+ channels open, V becomes
positive rapidly

• positive V ⇒ K+ channels open, V becomes negative again

Response:
V

V = 0

t

no spikerest potential

spike

Very simple model

θ̇ = Γ − a sin θ Γ ≤ a

large perturbation      spike

small perturbations      no spike

⇒ 

⇒ 

Note:

• for Γ close to a even small perturbations can be sufficient to excite a spike

∆θlarge ≈ θ0,a − θ0,s ∝ |Γ − a|1/2

}

}

Γ

√Γ

- a

- a
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3 Two-dimensional Systems

New aspects:

• ‘true’ oscillations without periodic “boundary” conditions

• reduction of dynamics to lower dimension

3.1 Classification of Linear Systems

General linear system

ẋ = Ax x(0) = x0

Formal solution

x(t) = eAtx0

with

eAt = 1 + A t+
1

2
A 2t2 + . . .

Simplify A by similarity transformation:

In general can find S such that

S −1AS =

(

λ1 0
0 λ2

)

or

S −1AS =

(

λ 1
0 λ

)

Jordan normal form

Notes:

• λ1,2 are the eigenvalues of A :

Av1,2 = λ1,2 v1,2

S −1AS

(

1
0

)

= λ1

(

1
0

)

⇒ A S

(

1
0

)

︸ ︷︷ ︸

v1

= λ1 S

(

1
0

)

︸ ︷︷ ︸

v1
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• all eigenvalues different

⇒ S −1AS diagonal

• dynamics in eigendirections simple

eAt vi = {1 + A t+
1

2
(A t)2 + · · ·} vi =

= {1 + λit+
1

2
λ2
i t

2 + · · ·} vi =

= eλit vi

along eigendirections simple exponential time dependence

• general solution

x(t) = eλ1tv1A1 + eλ2tv2A2

with x0 = A1v1 + A2v2

• eigenvalues can be complex

λ1,2 = σ ± iω

x(t) = eσt(A1e
iωtv1 + A2e

−iωtv2)

• degenerate eigenvalues → modifications, see later

Orbits in phase space (plane):

(

ẋ
ẏ

)

=

(

λ1 0
0 λ2

)(

x
y

)

⇒ x = eλ1tx0

y = eλ2ty0

⇒ et = (
x

x0

)1/λ1

y(t) =

((
x

x0

)1/λ1
)λ2

y0 = y0

(
x

x0

)λ2
λ1

Thus y(t) = C x(t)
λ2
λ1
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stable node

x

slow

fast

y

λ1 < 0,2

2 | |1|λ λ|>

stable node

2 | |1|λ λ|<

λ1 < 0,2

slow

y

xfast

λ1 λ2 < 0

hyperbola

unstable manifold 

saddle     

stable manifold  

λ1 < 0,2

error in labeling: the λi have opposite signs in this graph

Definition: Stable/unstable manifold of fixed point x0:

{x |x(0) = x⇒ x(t) → x0 for t→ ±∞}

Note: · in general eigenvectors need not be orthogonal

Example
(

ẋ
ẏ

)

=

(

3 −2
−1 2

)(

x
y

)

eigenvalues

det

∣
∣
∣
∣
∣

+3 − λ −2
−1 2 − λ

∣
∣
∣
∣
∣
= 6 − 5λ+ λ2 − 2 = 0

λ2 − 5λ+ 4 = 0
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λ =
5 ±

√
25 − 16

2
=

{

+4
+1

eigenvectors:

λ1 = 4 : 3x− 2y = 4x ⇒ y = −1

2
x v1 =

(

1
−1

2

)

λ2 = 1 : 3x− 2y = x ⇒ y = x v1 =

(

1
1

)

fast

slow

v
2

v1

in this graph the (straight) outgoing manifolds should not be orthogonal

Possible Phase Portraits:

i) generic cases:

( stable or unstable )             Re(  ) < 0λ                

spiral ( stable )
                 saddle                                node                                 complex eigenvalue                                                                                                                     

ii) special cases:
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Re(  ) < 0λ Im(  )    0λ ≠λ2 = 0

center has wrong labeling of eigenvalues: Re(λ) = 0

Last phase plane diagram shows degenerate node: only a single eigenvector

A =

(

λ 1
0 λ

)

λ < 0

the system is almost oscillating

• Calculation of eigenvalues in 2d:

detA = det(S −1AS ) = λ1λ2 trS −1AS = λ1 + λ2

quadratic formula

λ1,2 =
+trA ±

√

(trA )2 − 4 detA

2

Change in stability: Re (λi) = 0

i) trA = 0 and detA > 0 ⇒ λ = ±iω complex pair crossing imaginary axis

ii) trA < 0 and detA = 0 ⇒ λ1 = 0 λ2 < 0 single zero eigenvalue

Change in character:

real ↔ complex
(

trA
)2

= 4 detA
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+ +

- -

 + -

+ -

thick: change
of stability

stable node

unstable node

saddle                  

stable
spiral

det A           

tr A = 2                                            tr A √      det A
____

λ      λ1 2= > 0

λ      λ1 2= < 0
degenerate node

λ = ±   ωi

non-isolated

fixed point 

i.e. bifurcation (steady)

Notes:

• degenerate node ⇒ border between nodes and spirals, does not quite oscillate

• non-isolated fixed points: steady bifurcation, one or more fixed points are cre-
ated/annihilated (details depend on nonlinearities)

3.2 Stability

So far we had linear stability. In higher dimensions new aspects arise.

Linear Stability

• with respect to infinitesimal perturbations

• determined by linearization

Example:
Damped-driven pendulum

m`2 θ̈ + β θ̇ = −mg` sin θ + Γ
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write as first-order system:

ẋ = y ≡ Fx(x1y)

ẏ = − β

m`2
y − mg`

m`2
sinx+ Γ ≡ Fy(x1y)

Fixed points:

y0 = 0 & mg` sinx0 = Γ

Expand:

x = x0 + εx1(t) ε� 1

y = y0 + εy1(t)

Insert:

εẋ1 = Fx (x0 + εx1(t), y0 + εy1(t)) =

= Fx(x0, y0)
︸ ︷︷ ︸

0

+εx1 ∂xFx|(x0,y0) + εy1∂yFx|(x0,y0) + O(ε2)

In matrix form:
(

ẋ1

ẏ1

)

=

(

∂xFx ∂yFx
∂xFy ∂yFy

)

︸ ︷︷ ︸

Jacobian A

(

x1

y1

)

⇒ linear stability determined by eigenvalues of Jacobian

For pendulum

A =

(

0 1

−g
`
cos x0 − β

m`2

)

eigenvalues:

(−λ)(−λ− β

m`2
) +

g

`
cosx0 = 0

λ2 + λ
β

m`2
+
g

`
cos x0 = 0

λ1,2 =
β

m`2
± 1

2

√
√
√
√

(

β

m`2

)2

− 4
g

`
cos x0 = 0
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Eigenvalues in complex plane:

linearly stable marginally stable unstable

λ ∈C

Attractor:
A set of points (e.g. a fixed point) is attracting if all trajectories that start close to it
converge to it, i.e.

for all x(0) near xFP : x(t) → xFP for t→ ∞

or 

Notes: system need not approach attractor right away

Lyapunov Stability:
A set is (Lyapunov) stable if all orbits that start close to it remain close to it for all times.
Technically, for any neighborhood V of xFP one can find a U ⊆ V such that if x(0) ∈ U
then x(t) ∈ V for all times.

     
V

U

Notes:

• Lyapunov stability of a set does not imply it is an attractor.
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• attractor does not have to be Lyapunov stable

This fixed point is attracting but not Lyapunov stable (cannot find neighborhood that
limits excursion)

Asymptotic Stability:
A set is asymptotically stable if it is attracting and Lyapunov stable, i.e. if all orbits that
start sufficiently close to a fixed point converge to it as t→ ∞.

x(0)

�����
punov stable assymptotically stable                                                                          

U

V
U

xFP
xFP

Notes:

• asymptotically stable ⇒ fixed point is attracting, it is an attractor.

• linear stability ⇒ asymptotic stability ⇒ Lyapunov stability

• linear instability ⇒ instability

• But: asymptotic or Lyapunov stability do not imply linear stability

Examples:

• Center is Lyapunov stable, but linearly neither stable nor unstable (marginally sta-
ble)
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• Stability can be determined purely by nonlinear terms

ẋ = αx3

x = 0 linearly marginally stable

x(t) = ±
√
√
√
√

x2
0

1 − 2x2
0αt

⇒ α > 0 (nonlinearly) unstable
α < 0 (nonlinearly) asymptotically stable

3.3 General Properties of the Phase Plane

3.3.1 Hartman-Grobman theorem

Linear systems: can be completely understood

How much of that can be transferred to nonlinear systems?

Definition: A fixed point x0 of ẋ = f(x) is called hyperbolic if all eigenvalues of ∂fi

∂xj
have

non-zero real parts.

Thus: in all directions a hyperbolic fixed point is either linearly attractive or repulsive.
No marginal direction.

Hartman-Grobman Theorem:

If x0 is a hyperbolic fixed point of ẋ = f(x) then there exists a continuous invertible func-
tion h(x) that is defined on some neighborhood of x0 and maps all orbits of the nonlinear
flow into those of the linear flow. The map can be chosen so that the parameterization of
orbits by time is preserved.
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h

(x',y') = h (x,y)

-1

_

y'

x'

y

x

Thus:

• For hyperbolic fixed point x0 the linearization of the flow gives the topology of the
nonlinear flow in a neighborhood of x0.

Note:

• If fixed point is not hyperbolic, linearization does not give sufficient information:

ẋ = αx3

? ?

linearly marginally

stable different topology of flow

α α < 0> 0

• At any bifurcation the fixed point is not hyperbolic.

ẋ = µx+ αx3

at µ = 0 linear systems equal for all α.
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subcritical pitchfork      supercritical pitchfork 

µ

α α < 0> 0

Note:

• the flow in the vicinity of a hyperbolic fixed point is structurally stable. This is not
the case without hyperbolicity, e.g. for centers, fixed points undergoing bifurcations.

3.3.2 Ruling out Persistent Dynamics

For what kind of systems can one rule out persistent dynamics like periodic orbits?

i) Gradient Systems, Potential Systems

If

ẋ = −∇V (x) i.e. ẋi = −∂V
∂xi

with V ≥ V0 for all x (bounded from below)
then

dV

dt
=
∑

i

∂V

∂xi
ẋi = −

∑

i

(
∂V

∂xi
)2 ≤ 0

Thus V eventually reaches a (local) minimum.

Then:

dV

dt
= 0 ⇔ ∂V

∂xi
= 0 ⇔ ẋi = 0 for all i

Thus, system goes to a fixed point.

Example: Mechanical overdamped particle in potential
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ii) Lyapunov Functional

Need not ẋ = −∇V

Sufficient for ruling out periodic orbits:

Assume V (x) > V0 for all x 6= x0 with x0 fixed point

• if dV
dt

≤ 0 for all x 6= x0 in neighborhood U
then x0 Lyapunov stable

• if dV
dt
< 0 for all x 6= x0 in U

then x0 asymptotically stable

Note: Such a V is called a Lyapunov functional.

Example:

a) damped particle in bounded potential

ẍ+ βẋ = −dU
dx

i.e.

ẋ = v

v̇ = −βv − dU
dx

Try total energy
V =

1

2
ẋ2 + U =

1

2
v2 + U

dV

dt
= vv̇ +

dU
dx
ẋ = v(−βv − dU

dx
) +

dU
dx
v = −βv2 < 0

⇒ fixed points asymptotically stable, no periodic orbits.

b)

ẋ = −x+ 4y

ẏ = −x− y3
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Simplest attempt: try quadratic function that is bounded from below:

V = x2 + ay2 with a > 0.

dV

dt
= 2x(−x+ 4y) + 2αy(−x− y3)

= −2x2

︸ ︷︷ ︸

≤0

+ xy(8 − 2a)
︸ ︷︷ ︸

undetermined

− 2ay4

︸ ︷︷ ︸

≤0

⇒ choose a = 4 ⇒ dV
dt
< 0 for x 6= 0 6= y

⇒ (0, 0) asymptotically stable and no periodic orbits

Note: potentials rule out persistent dynamics in arbitrary dimensions.

3.3.3 Poincaré-Bendixson Theorem

• How complex can the dynamics be in 2 dimensions?

• Can we guarantee a periodic orbit without explicitly calculating it?

Poincaré-Bendixson Theorem:

Assume

• R is a closed bounded subset of the plane

• ẋ = f(x) with f(x) continuously differentiable on an open set containing R

then

any orbit that remains in R for all t either converges to a fixed point or to a
periodic orbit.

Simple Illustration:

• in one dimension we had: no periodic orbits
fixed point divides phase line into left and right

⇒ cannot go back and forth
⇒ no oscillatory approach to fixed point
⇒ no persistent oscillations
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• in two dimensions:
what is more “complicated” than periodic orbit?
periodic orbit has single fundamental frequency ω

x(t) = A cosωt+B cos 2ωt+ C cos 3ωt+ . . .

Can we have 2 incommensurate frequencies? I.e.

ω1

ω2

6= m

n
irrational

Consider approach to periodic orbit in two dimensions:

not possible

Periodic orbit separates phase plane into inside and outside.
Oscillatory approach to periodic orbit not possible ⇒ No second frequency.
System has to go to fixed point or periodic orbit.

Consequence of Poincaré-Bendixson:

• The only attractors of 2d-flows are fixed points or periodic orbits

• No chaos in 2 dimensions.

3.3.4 Phase Portraits

A phase portrait captures all relevant features of the phase plane:

• fixed points with their stable/unstable manifolds

• periodic orbits

• separatrices and other additional orbits that visualize the flow
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Example 1:

ẋ = f(x, y) = y

ẏ = g(x, y) = x(1 + y) − 1

Nullclines:

f(x, y) = 0 ⇒ y = 0

g(x, y) = 0 = x(1 + y) − 1 ⇒ y =
1

x
− 1

Fixed Points:

y = 0 x = 1

Stability of Fixed Point:

x = 1 + ε x1 y = εy1

(

ẋ1

ẏ1

)

=

(

0 1
1 1

) (

x1

y1

)

λ1,2 =
1 ±

√
5

2
saddle point

Eigenvectors: (

x
(1,2)
0

y
(1,2)
0

)

=

(

2

1 ±
√

5

)

Note:

• Fixed point is hyperbolic ⇒ linear eigenvectors give directions of nonlinear stable
and unstable manifolds

stable manifold

unstable manifold
nullclines 

x

y

Notes:
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• For ẋ = f(x) solution unique if all ∂fi

∂xj
are continuous

⇒ orbits do not intersect.

intersection would imply non-unique solution

• more complicated phase portraits can contain

– separatrix: separates basins of attraction of different attractors

– heteroclinic orbit: unstable manifold of one fixed point is the stable manifold
of another, orbit connects the two fixed points

– homoclinic orbits: orbit that returns to the same fixed point

separatrix =

homoclinic orbit

periodic

orbit

Example 2: Glycolysis Oscillations

Yeast cells break down sugar by glycolysis: simple model

ADP adenosine diphosphate ẋ = −x+ ay + x2y = f(x, y)

F6P fructose-6-phosphate ẏ = b− ay − x2y = g(x, y)

For which parameter ranges can one guarantee the existence of a stable periodic orbit?

Phase portrait:

study nullclines: ẋ = 0 or ẏ = 0

f = 0 ⇒ y =
x

a+ x2

g = 0 ⇒ y =
b

a+ x2
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⇒ fixed point at

y =
x

a+ x2
=

b

a+ x2

⇒ x = b and y =
b

a+ b2

exists for all b > 0, a > 0

f = 0                                              

g = 0+
-

-+

y

x

Null clines show: spiraling motion

• to fixed point?

• to periodic orbit? which?

• to infinity?

To use Poincaré-Bendixson:

1. need trapping region R

2. exclude fixed points from trapping region
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1) Trapping Region:

x

y

need to exclude 

escape

Can we find line that 

does not get crossed?

Consider large x and y (check possibility of escape)

ẋ ∼ x2y
ẏ ∼ −x2y

}

along orbit one has:
dy

dx
=

dy
dt
dx
dt

∼ −1

Show that slope is steeper than -1
compare |ẋ| with |ẏ| more precisely

ẋ− (−ẏ) = −x+ ay + x2 y + b− ay − x2 y

= b− x

⇒ for x > b |ẋ| < |ẏ|
⇒ flow inward along y = −x+ C for x > b and C large enough

for y > b
a

we have g < 0
⇒ flow inward for y > b/a

f  

+
-

-+g

b

for y > b/a   g<0
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2) Fixed Points:

only a single fixed point
(

b, b
a+b2

)

Stability analysis shows fixed point unstable for

1 − 2a−
√

1 − 8a < 2b2 < 1 − 2a+
√

1 − 8a

⇒ limit cycle guaranteed for this range of b (if a ≤ 1
8
)

Instability at 2(b
(1,2)
H )2 = 1−2a±

√
1 − 8a is Hopf bifurcation. Oscillations occur for b

(1)
H < b < b

(2)
H . No steady bifurcation

possible.

Formally: trapping region needs to exclude (small domain around fixed point)
outside this range expect convergence to fixed point.

3.4 Relaxation Oscillations

Class of systems for which one can see the periodic orbit relatively easily:
N -shaped nullcline

Consider for µ� 1:

ẋ = µ (y − F (x))

ẏ = x

with, e.g., F (x) = −x+ x3.

nullclines x = 0

                y = F (x)    ⇒ 

⇒ 

x = 0

y = 0
.

.

For µ � 1 horizontal motion much faster than vertical motion, except near the nullcline
y = F (x)
⇒ slow branch and fast branch on the periodic orbit
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x

t

rapid switching 

between slow 

branches

Period of periodic orbit determined mostly by time spent on slow branch.

On slow branch

y ∼ F (x) ⇒ ẏ ∼ dF

dx
ẋ

use ẏ = x ⇒ ẋ =
x
dF
dx

≡ G(x)

T =
∫

dt ∼
∫ dt

dx
dx =

∫ 1

ẋ
dx =

∫ 1

G(x)
dx

3.5 Weakly Nonlinear Oscillators

Exact nonlinear solutions usually impossible to get.
Develop techniques to calculate analytically

- systematic approximation to periodic orbits and
- systematic approximation to transients approaching periodic orbits.

3.5.1 Failure of Regular Perturbation Theory

Consider simple linear example to demonstrate problem

ẍ+ 2εβẋ+ (1 + εΩ)2x = 0

with some initial condition like x(0) = 0, ẋ(0) = 1.

Exact solution:

x ∼ eλt ⇒ λ2 + 2εβλ+ (1 + εΩ)2 = 0
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λ1,2 =
−2εβ ±

√

4ε2β2 − 4(1 + εΩ)2

2

= ±i
√

(1 + εΩ)2 − ε2β2 − εβ

⇒
xexact = e−εβt

(

Aeiωt + A∗e−iωt
)

with

ω =
√

(1 + εΩ)2 − ε2β2

Attempt perturbation solution using

x = x0 + εx1 + h.o.t

Insert

d2

dt2
(x0 + εx1 + . . .) + 2εβ

d

dt
(x0 + εx1 + . . .)

+ (1 + εΩ)2(x0 + εx1 + . . .) = 0

Collect orders in ε:
O(ε0):

d2

dt2
x0 + x0 = 0

x0 = Aeit + A∗e−it = 2Ar cos t− 2Ai sin t

O(ε1):

d2

dt2
x1 + 2β

d

dt
x0 + 2Ωx0 + x1 = 0

d2

dt2
x1 + x1 = −2

(

−2iβAeit − 2ΩAeit
)

︸ ︷︷ ︸

∼ resonant forcing

+c.c.

This is a second-order constant-coefficient inhomogeneous differential equation:
General solution:

x1(t) = xhomo(t) + xparticular(t)

with

d2

dt2
xhomo + xhomo = 0 ⇒ xhomo = A1e

it + c.c.
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Guess (‘ansatz’) for particular solution (since inhomogeneity is simple exponential func-
tion):

xparticular = Beit + c.c.

However:

d2

dt2
Beit +Beit = 0 ⇒ cannot balance inhomogeneity on r.h.s.

Could use method of variation of constants xparticular = B(t)eit and reduce the order of
the equation and solve the resulting first-order equation by integration.

Here try ansatz:

xparticular = B t eit + c.c.

Insert:

d2

dt2
xparticular + xparticular =

B
(

0 eit + 2ieit + (i)2 t eit + t eit
)

+ c.c. = −2
(

−2iβAeit − 2ΩAeit
)

+ c.c.

⇒ B =
1

2i
(−2iβ − 2Ω)A

Notes:

• resonant forcing leads to (linear) growth without bounds: secular terms

• solution breaks down for t = O(ε−1)

Compare with exact solution

Approximation (solid line) grows (instead of decay) and has wrong frequency.
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But: approximation is expansion of exact solution in ε:

xexact = e−εβt
︸ ︷︷ ︸

1−εβt+O(ε2)

(

Aeiωt + c.c.
)

with

ω =
√

(1 + εΩ)2 − ε2β2

︸ ︷︷ ︸

1+εΩ+O(ε2)

xexact = Aeit + ε (−βt+ iΩt) + O(ε2) + c.c.

Thus:

• Straightforward perturbation expansion misses

– slow growth/decay

– small change in frequency

• secular terms suggest what true solution is doing.

3.5.2 Multiple Scales

Exact solution suggests that there are multiple time scales

t and T1 = εt and T2 = ε2t . . .

xexact = A sin(t+ ΩT1 + . . .)e−βT1

⇒ try x = x0(t̂, T1, T2 . . .) + εx1(t̂, T1, T2 . . .) + . . .

Note:

• in this approach the two (or more times) are treated as essentially independent
variables (T ≡ T1):

d

dt
x = ∂t̂x

dt̂

dt
+ ∂Tx

dT

dt
+ · · · =

(

∂t̂ + ε∂T + O(ε2)
)

x

Redo same linear problem:

(∂t̂ + ε∂T + · · ·)2 (x0 + εx1 + · · ·) + 2ε (∂t + ε∂T + · · ·) (x0 + εx1 + · · ·)
+ (1 + Ωε)(x0 + εx1 + · · ·) = 0
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O(ε0):

d2

dt2
x0 + x0 = 0

x0 = Aeit + A∗e−it = 2Ar cos t− 2Ai sin t

Note:

• now A is not constant: A = A(T, T2, . . .)

O(ε1):

2∂t̂∂Tx0 + ∂2
t̂ x1 + 2β∂t̂x0 + 2Ωx0 + x1 = 0

∂2
t̂ x1 + x1 = −2

(

i
d

dT
Aeit − 2iβA− 2ΩAeit

)

+ c.c.

Need to avoid secular terms ⇒ require

d

dT
A = −βA+ iΩA

then no secular terms arise that grow linearly in time.

Solution

A = Ae−βT+iΩT

x0 = Ae−βT eit̂+iΩT + c.c. = Ae−εβtei(1+εΩ)t + c.c.

Thus:

• Two-timing (multiple scales) avoids secular terms and gets frequency shift and slow
damping correct to the order considered

• calculation easier in complex exponentials

Example: Duffing oscillator

ẍ+ x+ εx3 = 0

Ansatz:

x = x0(t, T ) + εx1(t, T ) + · · ·
(

d

dt

)2

→ ∂2
t + 2ε∂t∂T +O(ε2)
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O(ε0) :

∂2
xx0 + x0 = 0 x0 = Aeit + A∗e−it

O(ε1) :

∂2
t x1 + x1 + 2∂t∂Tx0

︸ ︷︷ ︸

2i dA
dT
eit+c.c.

+ x3
0

︸︷︷︸

A3e3it+3|A|2Aeit+3|A|2A∗e−it+A∗3e−3it

= 0

thus

d2

dt2
x1 + x1 = eit

︸︷︷︸

secular resonance term

{

2i
dA

dT
+ 3|A|2A

}

+ e3itA3 + c.c.

require:

dA

dT
= +

3

2
i|A|2A ⇒ A = Ae 3

2
iA2t

x0 = A exp
(

i(1 +
3

2
εA2)t

)

+ c.c.

Notes:

• nonlinearity induces frequency shift

→ soft and hard spring (ε
<
>

0)

ẍ+ (1 + εx2)x = 0

• at higher orders in ε additional frequency shifts

⇒ approximate and exact solution get out of sync for t ∼ O(ε−2):

cos ((ω + εω1+ ε2ω2)t
︸ ︷︷ ︸

ε2ω2t∼2π ⇒ t=O( 1
ε2

)

)

• two-timing also very useful near bifurcation, where one time scale becomes very
slow.
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More general formulation:

At O(ε) one obtains

Lx1 = I(x0)

with linear operator L singular: Lx0 = 0

Operators correspond to matrices:

if M x0 = 0 then

• det(M) = 0 and
• M x = b has only a solution for special values of b:

Solvability condition to remove secular terms (‘Fredholm alternative’ see later).

3.5.3 Hopf Bifurcation

Consider example

ẋ = µx− ωy + γx(x2 + y2) − δy(x2 + y2)

ẏ = ωx+ µy + δx(x2 + y2) + γy(x2 + y2)

Linear stability of (0, 0):

Eigenvalues of
(

µ −ω
ω µ

)

⇒ λ1,2 = µ± iω

Cλ ∈

Rewrite in terms of complex amplitude

A = x+ iy

⇒ Ȧ = (µ+ iω)A+ (γ + iδ)|A|2A
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rewrite again

A = ReiΘ

⇒ Ṙ = µR + γR3 Θ̇ = ω + δR2

⇒ steady solution

R0 =

√

−µ
γ

Θ = (ω + δR2
0)t+ Θ0

(

x
y

)

= R0

(

cos [(ω + δR2
0)t+ Θ0]

sin [(ω + δR2
0)t+ Θ0]

)

periodic orbit

Bifurcation diagrams:

A

Ai

r
Ar

Ai

µ µ

γγ < 0 > 0

"circles worth of solutions"

  

Note:

• Solutions exist for any phase Θ0: continuous family of solutions

• Although this example looks very special, it is the normal form for the Hopf
bifurcation and also for weakly nonlinear oscillators.
cf. Duffing result

dA

dT
=

3

2
|A|2A

corresponds to µ = 0, γ = 0, δ = 3
2
,

• determinant of linearization does not vanish
⇒ via implicit function theorem the number of fixed points does not change.
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Example:

u̇ = µu− v + u2

v̇ = u+ µv + u2

Linear stability of (0, 0) again
(

µ −1
1 µ

)

⇒ λ = µ± i

Eigenvectors at the bifurcation point
(

0 −1
1 0

)(

u0

v0

)

= ±i
(

u0

v0

)

Compare Duffing oscillator: ẍ+ x = −εx3

There we expanded in ε: assumed nonlinear term weak

Here: assume u and v small

Based on previous example guess u, v ∼ µ1/2

Expansion

µ = µ2ε2 T = ε2t

(

u
v

)

= ε

(

u1(t, T )
v1(t, T )

)

+ ε2
(

u2(t, T )
v2(t, T )

)

+ ε3
(

u3(t, T )
v3(t, T )

)

+ c.c.

insert:

O(ε):

d
dt
u1 = −v1

d
dt
v1 = u1

} (

u1

v1

)

= A
︸︷︷︸

A=A(T )

eit
(

1
−i

)

+ A∗e−it
(

1
+i

)

︸ ︷︷ ︸

c.c.

O(ε2):

d

dt
u2 = −v2 + u2

1

d

dt
v2 = +u2 + u2

1

need u2
1

u2
1 = e2itA2

1 + 2|A|2 + e−2itA∗2
1
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Ansatz
u2 = B1e

2it +B∗
1e

−2it + C1

v2 = B2e
2it +B∗

2e
−2it + C2

∝ e2it:

2iB1 = −B2 + A2
1

2iB2 = B1 + A2
1 ⇒ B1 = 2iB2 − A2

1

−4B2 − 2iA2
1 = −B2 + A2

1

B2 =
1

3
(−2i− 1)A2

1

B1 = A2
1(

2

3
(+2 − i) − 1) = A2

1(+
1

3
− 2

3
i) = +

1

3
(1 − 2i)A2

1

∝ e0it:

0 = −C2 + 2|A1|2 C2 = 2|A1|2
0 = C1 + a|A|2 C1 = −2|A1|2

O(ε3):

∂Tu1 + ∂tu3 = µ2u1 − v3 + 2u1u2

∂Tv1 + ∂tv3 = u3 + µ2v1 + 2u1u2

u1u2 generates e±3it and e±it.

reorder:

∂tu3 + v3 = −∂Tu1 + µ2u1 + 2u1u2 ≡ I1e
it + J1e

3it + c.c.

∂tv3 + u3 = −∂Tv1 + µ2v1 + 2u1u2 ≡ I2e
it + J2e

3it + c.c.

⇒
(

u3

v3

)

=

(

D1

D2

)

eit +

(

E1

E2

)

e3it + c.c.

need to solve
(

i 1
−1 i

)

︸ ︷︷ ︸

M
1

(

D1

D2

)

=

(

I1
I2

)

and

(

3i 1
−1 3i

)

︸ ︷︷ ︸

M
3

(

E1

E2

)

=

(

J1

J2

)

Now:
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• detM
3
6= 0 ⇒ M

3
can be inverted ⇒

(

E1

E2

)

• detM
1

= 0 ⇒ M
1
cannot be inverted!

Solutions exist only if

(

I1
I2

)

in range of M
1

Determine eigenvectors associated with 0-eigenvalue of M
1

:

(

i 1
−1 i

)(

1
−1

)

=

(

0
0

)

⇒ look for left-eigenvector:

(u+
0 , v

+
0 )

(

i 1
−1 i

)

= (0, 0)

⇒ (u+
0 , v

+
0 ) = (1,+i)

Multiply equation from the left with (u+
0 , v

+
0 )

(u+
0 , v

+
x )M

1
︸ ︷︷ ︸

= 0 for any

(

D1

D2

)

(

D1

D2

)

= (u+
0 , v

+
0 )

(

I1
I2

)

⇒ Fredholm Alternative: there is only a solution if

u+
0 I1 + v+

0 I2 = 0 Solvability Condition

Specifically:

I1 = − d

dT
A1 + µ2A1 + 2{−2Ai|A1|2 + A∗

1(+
1

3
(1 − 2i)A2

1)}

I2 = − d

dT
A1(−i) + µ2(−i) + 2{−2A1|A1|2 + A∗

1(+
1

3
(1 − 2i)A2

1)}

Amplitude equation:

d

dT
A1 = µ2A1 − |A1|2A1

{

+1 +
7

3
i
}

Notes:

• The solvability condition arises because linearization around fixed point is singular:
always the case for bifurcation problems (steady bifurcation see later)
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• Fredholm alternative: either

(

I1
I2

)

satisfies solvability condition or there is no

solution.

Note: For the more general equation

u̇ = µu− v + auv + b1u
2

v̇ = u+ µv − auv + b2u
2

one obtains for the cubic coefficient g

g =
1

2
a(b1 + b2) − b1b2 + i

1

6

(

−4b21 + ab2 − 5b1a− 10b22 − 2a2
)

Thus:
for a = 0 = b1 the cubic coefficient is purely imaginary: vertical bifurcation ⇒ have to go
to higher order

Origin of normal form: time-translation symmetry

look at periodic solution

u(t) = εeitA(T ) + . . . = εeitR0e
i 7
3
R2

0T+iΘ0 + . . .

coefficients in system are time-independent

⇒ ũ(t) ≡ ei(t−t0)R0e
i 7
3
R2

0T+iΘ0

is also a solution

ũ(t) can also be written as

ũ(t) = eitR0e
i 7
3
R0T+i(Θ0−t0)

Time translation by t0 can be absorbed into a shift Θ0 ⇒ Θ0 − t0

⇒ A(T )eiΘ0 must be a solution for any Θ0.

⇒ the only nonlinear terms that are allowed are |A1|2nA1, n integer.

3.6 1d-Bifurcations in 2d: Reduction of Dynamics

Higher-dimensional systems can undergo the same bifurcations as 1-dimensional systems.

⇒ can reduce dynamics to 1 dimension near the bifurcation.
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3.6.1 Center-Manifold Theorem

Consider first linear example of stable node

ẋ = µx

ẏ = −y







y = y0

(
x

x0

)+ 1
|µ|

µ < 0

y

x

(x � y )00

__
(x � y )00

For small |µ| y → 0 extremely rapidly as x→ 0

⇒ after short time any initial condition approaches x-axis

Thus:

• dynamics effectively one-dimensional

Goal:

• obtain description of higher-dimensional system in terms of these one-dimensional
dynamics

Note:

• description will be valid at most after decay of transients: forget certain details of
initial conditions

To get mathematically justified description need µ→ 0: separation of time scales.

For µ = 0 there are 3 types of eigenvectors/eigenspaces:

– stable eigenspace E(s) = {x |x =
∑
αiv

(s)
i }

v
(s)
i are the eigenvectors of linear system with Re(λsi ) < 0
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– center eigenspace E(c) = {x |x =
∑
αiv

(c)
i }, Re(λ(c)

i ) = 0

– unstable eigenspace E(u) = {x |x =
∑
αiv

(u)
i }, Re(λ(u)

i ) > 0

Thus:

• Need to be at bifurcation point to have center eigenspace

Extension to nonlinear systems:

Center Manifold Theorem:

For a fixed point x0 with eigenspaces E(s,u,c) there exist stable, unstable, and center
manifolds W (s,u,c) such that W (s) and W (u) are tangent to E(s) and E(u) at x0 and W (c)

is tangent to E(c) at x0.

W (s,u,c) are invariant under the flow. W (s) and W (u) are unique. W (c) need not be unique.

EE
(s)

(s)

(c)

EE
(c)

0_xx

Example:

ẋ = µx+ xy − γx3

ẏ = −y + x2

µ < 0 : E(s) = R2 E(c) empty E(u) empty
µ = 0 : E(s) = y-axis E(c) = x-axis E(u) empty
µ > 0 : E(s) = y-axis E(c) empty E(u) = x-axis
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(s)

(c)

xx

yy

µµ = 0 = 0

Expect:

• for |µ| � 1 still fast contraction onto a manifold close to W (c)(µ = 0)

• evolution on that manifold may depend strongly on µ since linear growth rate goes
through 0.

3.6.2 Reduction to Dynamics on W (c)

Want description of dynamics on W (c):

x = (x(c), x(s))

with x(s) = h(x(c)) and x(c) ∈ E(c)

(c)

xx

xx(s)

(c) EE
(c)

Note:

• description locally (near the fixed point) possible since W (c) tangent to E(c) at fixed
point

• further away correspondence may become multivalued.

Example:

ẋ = µx+ xy − γx3

ẏ = −y + x2
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For W (c) to exist need to be at bifurcation point: µ = 0

E(c) = {(x, 0)}, E(s) = {(0, y)}

⇒ write x = (x, y) with y = h(x)

insert into o.d.e.:

ẏ =
dh

dx
ẋ =

dh

dx
(xy − γx3)

!
︷︸︸︷
= −y + x2 = −h(x) + x2

Thus:

• obtain nonlinear differential equation for h(x)

• W (c) tangent to E(c) ⇒ h(x) is strictly nonlinear

• local analysis ⇒ expand h(x) for small x

Expansion

h = h2x
2 + h3x

3 + h4x
4 + · · ·

inserted

(2h2x+ 3h3x
2 + · · ·){x(h2x

2 + h3x
3) − γx3} =

!
︷︸︸︷
= −h2x

2 − h3x
3 − h4x

4 + x2

collect:

O(x2) : 0 = −h2 + 1 ⇒ h2 = 1

O(x3) : 0 = h3 ⇒ h3 = 0

O(x4) : 2h2(h2 − γ) = −h4

h4 = 2(γ − 1)

Thus:

y = h(x) = x2 + 2(γ − 1)x4 + O(x5)

ẋ = x(x2 + 2(γ − 1)x4 + · · ·) − γx3

Evolution equation on center manifold:

ẋ = (1 − γ)x3 + 2(γ − 1)x5 + · · ·

More generally: we want also description for 0 6= |µ| � 1
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To use center manifold theorem consider suspended system

µ̇ = 0

ẋ = µx+ xy − γx3

ẏ = −y + x2

Thus:

• µx is now a nonlinear term

• dynamics in µ-direction is trivial:
value of µ is simply given by initial condiiton

Now:

E(c) = {(µ, x, 0)} E(s) = {(0, 0, y)}

⇒ y = h(µ, x) for (µ, x, y) ∈W (c)

Expand h(µ, x) in µ and x:
to keep relevant terms in expansion guess relationship x⇔ µ from expected equation on
W (c)

Symmetries:
Reflections: (µ, x, y) → (µ,−x, y)

⇒ expect
ẋ = f(µ, x) with f odd in x

= aµx+ bx3 + · · ·
⇒ expect µ ∼ O(x2), h even in x

Expand h(µ, x) = h20µ
2

︸ ︷︷ ︸

higher order

+ h11µx
︸ ︷︷ ︸

wrong symmetry

+h02x
2 + [h12µx

2 + h04x
4] + . . .

Inserted:

ẏ =
dh

dx
ẋ+

dh

dµ
µ̇
︸︷︷︸

0

= (h11µ+ 2h02x+ 2h12µx+ 4h04x
3 + . . .)(µx+ x(h02x

2 + . . .) − γx3)

= −(h20µ
2 + h11µx+ h02x

2 + h12µx
2 + · · ·) + x2

O(µ2x0) : −h20 = 0

O(µ1x1) : −h11 = 0

O(µ0x2) : 0 = −h02 + 1 ⇒ h02 = 1

O(µ1x2) : 2h02(1 + h10) = −h12

⇒ h12 = −2

O(x4) : −2h02γ + 2h2
02 = −h04

h04 = 2(1 − γ)
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y = x2 − 2µx2 + 2(1 − γ)x4

ẋ = µx+ x(x2 − 2µx2 + 2(1 − γ)x4) − γx3

Evolution on center manifold

ẋ = µx− (γ − 1 + 2µ)x3 +
[

2(1 − γ)x5 + . . .
]

Thus:

• For γ > 1 supercritical pitchfork bifurcation
For γ < 1 subcritical pitchfork bifurcation

Equivalent result by multiple-scale analysis

Consider

u̇ = Lu+N(u, u)

Analogous to Hopf: expand for small amplitudes A in the ‘direction’ of the critical eigen-
vector of the linearized operator

L = L
0
+ εL

1
,

u = εβA(T ) v1 + ε2βu2(T ) + . . .

with
L

0
v1 = 0

control parameter µ = µ1ε

T = εαt

L
0

singular ⇒ solvability condition for

L
0
u2 = N(Av1, Av1)

L
0
u3 = N(Av1, u2)

Pick scaling such that ∂TA is determined through a solvability condition that also contains
µ1.

Symmetries suggest scaling: e.g. pitchfork:

A3 ∼ ∂TA ∼ µ1A

Solvability condition will arise at O(ε3/2)

Note:

• Center-Manifold reduction ∼ adiabatic elmination of damped modes ∼ slaving
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4 Pattern Formation. PDE’s

Bifurcation Theory and reduction of dynamics also applicable to high-dimensional sys-
tems, PDE’s.

Examples: Convection

T

T+   T∆

Taylor vortices

Ω

Patterns form through instability:

– growth rate passes through 0

– bifurcation

⇒ separation of time scales
⇒ reduction of dynamics to lower dimension

4.1 Amplitude Equations from PDE

Simple model system: Swift-Hohenberg equation

∂tψ = µψ − (∂2
x + 1)2ψ − ψ3

This model captures many aspects of realistic systems. Was originally derived semi-
quantitatively for the temperature at the mid-plane in Rayleigh-Bénard convection.
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• Control parameter: µ ∼ ∆T,Ω

• Basic state: ψ = 0 exists for all µ

• Linear stability:

∂tψ = µψ − (∂2
x + 1)2ψ

︸ ︷︷ ︸

∂4
xψ+2∂2

xψ+ψ

Constant coefficients: Fourier ansatz

ψ = ψ0e
iqx+σt

σ = µ− (−q2 + 1)2

Instability threshold: σ = 0 µ = (1 − q2)2

stable

unstable neutral curve             

q=1c

µ

q

Thus:

• Basic state stable for µ < 0

• Basic state first destabilized at µc = 0 with q = qc ≡ 1.

• Basic state unstable to modes eiqx for µ > 0 with qmin ≤ q ≤ qmax.

• Consider single wave number q = qc ≡ 1

ψ = Aeix +Be2ix + C +De3ix + Ee4ix + · · · + c.c.

Insert into Swift-Hohenberg equation and sort by Fourier modes

∂tA = µA−
(

3|A|2A+ 3DA∗2 + . . .
)

∂tB = (µ− 9)B −
(

6|A|2B + 3EA∗2 + 3A2C + . . .+
)

∂tC = (µ− 1)C −
(

6|A|2C + 3BA∗2 + 3B∗A2 + . . .
)

∂tD = (µ− 64)D −
(

6|A|2D + A3 + · · ·
)
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Thus:

• Coupled ODE’s: infinitely many

• Damping increases strongly for higher harmonics

⇒ weakly nonlinear approach should work
– center manifold ∼ eix

– eliminate harmonics adiabatically

Expect expansion

ψ = εAeix + ε3De3ix + ε5Fe5ix + · · · + c.c.

with
µ = ε2µ2

A = A(T ) T = ε2t slow time-dependence

Insert and get solvability condition at O(ε3).

Note:

• expansion could be done for q 6= qc if µ ≥ (1 − q2)2

4.2 Ginzburg-Landau Equation

So far ψ is strictly periodic, with qmin < q < qmax

qmin

µ

max
q q

Expect: also slight variations in wave number possible with qmin < q(x) < qmax

What is their dynamics?
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How can we describe them?

We had

ψ(x, t) = εA(T )eiqx + O(ε3) with qmin < q < qmax

= εA(T )ei(q−1)x

︸ ︷︷ ︸

A(X,T )

eix + O(ε3)

q − 1 = εQ small deviation from critical wavenumber X = εx slow space variable

Thus:

• Slow spatial variation allows different wavenumbers and solutions that are not quite
periodic

Expansion:

ψ = εA(X,T )eix + ε3D(X,T )e3ix + . . .+ c.c.

with T = ε2t,X = εx, µ = ε2µ2

Note:

• scaling can be “guessed” by using symmetry arguments.

Need some expressions:

∂t → ε2∂T

∂x → ∂x + ε∂X

∂2
x → ∂2

x + 2ε∂x∂X + ε2∂2
X

∂4
x → ∂4

x + 4ε∂3
x∂X + 6ε2∂2

x∂
2
X + O(ε3)

i) O(ε) :

0 = 0

formally we have L0 = −(∂2
x + 1)2 singular since L0e

ix = 0
⇒ expect solvability condition

ii) O(ε2)

0 = −(4(−i)∂xA+ 2 · 2i∂xA)

is already satisfied

Note:
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• Can check that this condition is automatically satisfied for expansion around min-
imum of neutral curve.

iii) O(ε3):

eix : ∂TA = µ2A− (6(−1)∂2
xA+ 2∂2

xA) − 3|A|2A

e3ix : 0 = 64D − A3 ⇒ D =
−A3

64

Thus: Ginzburg-Landau equation

∂TA = 4∂2
XA+ µ2A− 3|A|2A

Notes:

• Solvability condition through mode eix since L0 e
ix = 0

(could have kept term ε3A3e
ix in expansion; it would not have been able to balance

inhomogeneity)

• Special form of nonlinear term: spatial translation symmetry

ψ(x+ ∆x, t) = εA(X,T )ei∆x
︸ ︷︷ ︸

A(X,T )eiφ

eix + · · ·

Phase shift symmetry: x→ x+ ∆x ⇔ φ→ φ+ ∆x q
︸︷︷︸

1

Simple periodic solution:

A = ReiQX with R2 =
1

3
(µ2 − 4Q2)

then

ψ = εReiQXeix + · · ·

gives solutions with wavenumber q = 1 + εQ

wave number 

  band

q

µ
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4.3 Slow Dynamics Through Symmetry. Phase Dynamics

Consider pattern in large, translation-invariant system

Wave number can vary slowly in space:
– will pattern relax to constant wave number?
– can dynamics be described in simple terms?

Translation symmetry: can shift pattern by arbitrary amounts and no restoring force
mathematically: linearization has 0 eigenvalue

ansion compression

Expect: Dynamics only from gradients in translation
if expansion/compression occurs on longer and longer space scales, relaxation becomes
slower and slower.
Mathematically: for long-wave perturbations the 0-eigenvalue is only perturbated slightly:
small eigenvalue = slow dynamics

⇒ Long-wave dynamics slow
⇒ Separation of time scales
⇒ Reduction in dynamics possible

Consider Ginzburg-Landau equation:

∂tA = ∂2
xA+ µA− |A|2A

Note:

• rescaled space and amplitude

• write spatial variable in Ginzburg-Landau equation now as fast variables

Rewrite in magnitude and phase: A = Reiφ

∂tR = ∂2
xR− (∂xφ)2R + µR−R3
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∂tφ = ∂2
xφ+ 2∂xφ

∂xR

R

Note:

• ∂tφ→ 0 as ∂xφ→ 0: long-wave dynamics

Consider pattern with almost constant wavenumber:

φ = qx+ εΦ(X,T ), X = εx, T = ε2t
︸ ︷︷ ︸

superslow scales

R = R0 + ε2r(X,T )

need

∂xφ = q + ε2∂XΦ ∂2
xφ = ε3∂2

XΦ ∂xR = ε3∂Xr

inserted:

O(ε0) : 0 = (µ− q2)R0 −R3
0 ⇒ R0 =

√

µ− q2

O(ε2) : 0 = −2q∂XΦR0 − q2r + µr − 3 R2
0

︸︷︷︸

µ−q2

r

= −2q∂XΦR0 − 2(µ− q2)r

r = − qR0

µ− q2
∂XΦ

O(ε3) : ∂TΦ = ∂2
XΦ + 2

q

R0

∂Xr

= ∂2
XΦ +

2q

R0

(

qR0

µ− q2

)

∂2
XΦ

= ∂2
XΦ

{

1 − 2q2

µ− q2

}

Thus:

∂TΦ = D∂2
XΦ

D =
µ− 3q2

µ− q2

Notes:

• Relaxation of wavenumber gradients is diffusive
(symmetry arguments: reflection symmetry in space but not in time)
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• Diffusion coefficient can be negative, since neutral curve is given by µ = q2:
Eckhaus instability at µ = 3q2

µ
µ

⇒

SH

stable

q q

• Eckhaus instability is universal instability of steady one-dimensional patterns
→ e.g. experiments in Taylor vortex flow

Notes:

• Nonlinear evolution of Eckhaus instability:
– no saturation of instability
– phase slip ⇒ change in wave number

General Mechanism for Slow Dynamics:

Breaking of continuous symmetry

⇒ continuous family of solutions
⇒ slow long-wave dynamics when different members of the family are connected spatially

Further example: oscillation in system with time-translation symmetry

e.g. Hopf bifurcation: complex Ginzburg-Landau equation

∂tA = µA− (1 + ic3)|A|2A+ (1 + ic1)∂
2
xA

simple traveling-wave solutions:

A = Reiqx+iωt with ω = c3q
2 + c1R

2 R2 = µ− q2

continuous family of solutions A⇒ Aeiφ

allow slow variation of phase ⇒ φ = φ(x, t) again phase equation

∂Tφ = vg∂xφ+D∂2
xφ

Near stability limit D ∼ 0
⇒ in co-moving frame

∂Tφ = D∂2
xφ+ g∂4

xφ+ h(∂xφ)2
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Kuramoto-Sivashinsky equation

Note:

• Kuramoto-Sivashinsky-equation can display chaotic dynamics
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5 Chaos

in 2 dimensions: at most periodic orbits (Poicaré-Bendixson theorem)

⇒ Consider 3-dimensional systems

Visualization: reduce to maps instead of flows

5.1 Lorenz Model

Convection

Simple Model

T

T+   T∆

Stream function:

ψ = 2
√

6X(t) cosπz sin

(

π√
2
x

)

with (u,w) = (−∂tψ, ∂xψ)

Temperature:

T (x, z, t) = −rz
︸ ︷︷ ︸

basic profile

+ 9π3
√

3Y (t) cos πz cos

(

π√
2
x

)

︸ ︷︷ ︸

critical mode

+
27π3

4
Z(t) sin 2πz

︸ ︷︷ ︸

harmonic mode

Rayleigh number r control parameter

critical wave number qc = π√
2

Galerkin projection back on the same types of modes:

Ẋ = −σ(X − Y )

Ẏ = rX − Y − ZX

Ż = b(XY − Z)

Notes:

• model constitutes severe truncation of Galerkin expansion for free-slip boundary
conditions
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3

Demos: Excellent Java programs by M. Cross (Caltech) at
http://www.cmp.caltech.edu/%7emcc/Chaos Course/Lesson1/Demos.html

Demo 1: Lorenz Attractor

increase r (= a in Cross program): 0.5 1.2 1.8 10 24 24.4 24.5 25.
transitions occur at: r=1 r=24.45

Demo 8: Sensitive dependence on initial conditions
simulation with x0 = 2 y0 = 5 z0 = 20 and z0 = 20 + ∆z
r(= a) = 28 σ(= c) = 10 b = 8/3 ∆z = 10−3 10−5 10−7

x− z plot (top option on web page of demo 8) and
x− t plot (bottom option on web page of demo 8)

Question: Can one get a simpler representation?

Lorenz map:

z

t

z zn n+1

Zn+1

Zn

3picture of Lorenz attractor missing
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Demo: chemical oscillations (Swinney et al.) ⇒ WWW

Note:

• the reduction to a map is only approximate:
original ode’s can also be solved backward
map cannot be iterated backward: f−1(z) multiple valued

• the line is actually not a line, but has finite thickness
here thickness small ⇒ approximation should give a good idea of dynamics of system.

Poincare Section:

Dimension of system can be reduced by monitoring only locations where flow ‘pierces’ a
certain surface (e.g. x− y-plane):

• periodic orbit ⇒ fixed point

• quasi-periodic orbit (2 frequencies) ⇒ closed loop (not periodic)

• chaotic orbit ⇒ ??

5.2 One-Dimensional Maps

Consider maps as dynamical systems

xn+1 = f(xn)

Example: logistic map

xn+1 = axn(1 − xn)

Note:

• this map could be thought of a (very poor) numerical solution of logistic differential
equation

Graphical iteration
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0 x1 x2 1
Cobweb diagram

⇒

shortcut
x2

Vary a:

stable fixed point

a < 1 a > 1

unstable

stable

For a = 1 the fixed point x = 0 becomes unstable

x = ax− ax2 ⇒ 0 = x (a− 1 − ax)

x(1) =
a− 1

a

Transcritical bifurcation:

a > 1

stable 

a < 1

unstable 

Stability Analysis:

linearize around fixed point xf

xn = xf + εx̃n
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xf + εx̃n+1 = f(xf + εx̃n) = f(xf ) + εx̃nf
′(xf )

⇒ x̃n+1 = x̃nf
′(xf )

⇒ x̃n grows for |f ′(xf )| > 1 x̃n decays for |f ′(xf )| < 1

Stability of fixed point x1 = a−1
a

:

f ′(x1) = a− 2ax1 = a− 2(a− 1) = 2 − a

|f ′(x1)| < 1 for 1
︸︷︷︸

transcritical

< a < 3

Demo: what happens at the bifurcation at a = 3.0?

⇒ converges to period-2 solution

n

odd n

even n

 1   2   3   4  

xn

Determine period-2 solution:
period 2: fixed point under second iterate of f(x)

xn+2 = f(xn+1) = f(f(xn)) ≡ f (2)(xn)

= axn+1(1 − xn+1) = a (a xn(1 − xn)) (1 − a xn(1 − xn))

Fixed point of f (2) : xn+2 = xn

x(2) = f (2)(x(2))

can be factored as

−x(xa+ 1 − a)
︸ ︷︷ ︸

known fixed points

(a2x2 − a(1 + a)x+ 1 + a) = 0

x
(2)
1,2 =

1

2a







1 + a±
√
a2 − 2a− 3

︸ ︷︷ ︸

x
(2)
1,2 exist for a>3






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Cross Demo 3
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Period-Doubling Cascade

d1

d2

d3
x = 

1

2X

a1 a2 a3 a4
a

Scaling of bifurcations:

lim
n→∞

an − an−1

an+1 − an
= δ = 4.669...

lim
n→∞

dn
dn+1

= α = −2.5029...
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n

xn

‘Chaotic’ regime, periodic windows:
a = 3.83 → 3.85 → 3.86
a = 3.83 → 3.82
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Tangent bifurcation (saddle-node bifurcation) at 1 +
√

8 = 3.8284
Cascade in periodic window

Intermittency near saddle-node bifurcation: a = 3.82837

Exact Solution for a = 4

xn+1 = 4xn(1 − xn)

let xn = sin2 θn xn+1 = sin2 θn+1

⇒ sin2 θn+1 = 4 sin2 θn (1 − sin2 θn
︸ ︷︷ ︸

cos2 θn

) =

= (2 sin θn cos θn)
2 = sin2(2θn)

⇒ dynamics in θ simple

θn+1 = 2θn

⇒ θn = 2nθ0

Perturb initial condition θ̃0 = θ0 + ε

xn − x̃n = sin2(2n(θ0)) − sin2(2n(θ0 + ε)) =

=
1

2

(

1 − cos(2n+1θ0) −
{

1 − cos(2n+1(θ0 + ε))
})

=
1

2

[

cos(2n+1(θ0 + ε)) − cos(2n+1θ0)
]
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The cosines differ substantially if

2n+1ε = π

⇒ (n+ 1) =
lnπ − ln ε

ln 2

Example:

ε 10−5 10−6 10−7

n+ 1 18 22 25

Thus:
The time over which the two solutions stay close to each other increases very slowly
(logarithmically) with ε:
Sensitive Dependence on Initial Condition.

Experiments in a convection cell by Libchaber, Fauve, Laroche (Physica D 7 (1983) 73)
(see WWW):

δ = 4.4 ± 0.1

5.3 Lyapunov Exponents

We had:
logistic map: irregular looking behavior
Lorenz model: qualitatively sensitive dependence on i.c.

Quantitative measure for sensitivity: Lyapunov exponent

Extension of linear stability
Consider first flows: For fixed points only relevant question:

How fast is fixed point approached (or left)
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For period orbits:

• attractivity transverse to orbit

• along orbit marginally stable: time-translation symmetry ⇒ 0 eigenvalue

Orbits with similar initial conditions do not diverge rapidly, at most they do not get closer
(if one is ‘ahead’ of the other along the orbit)

Measure distance between orbits with nearby i.c.
Focus on behavior of different trajectories on attractor (long-term behavior) rather than
on the approach towards attractor (transients).

Consider for simplicity 1-d map:

start with i.c.

x0 & x0 + δ0 ⇒ xn & xn + δn

∣
∣
∣
∣
∣

δn
δ0

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

f (n)(x0 + δ0) − f (n)(x0)

δ0

∣
∣
∣
∣
∣
→
∣
∣
∣f (n)′(x0)

∣
∣
∣ for δ0 → 0

f (n)′(x0) =
d

dx
f(f(. . . f(x)))|x−x0 = f ′(fn−1(x0)) · f ′((fn−2(x0)) · . . . · f ′(x0) (∗)

=
n−1∏

i=0

f ′(xi) with xi = f (i)(x0)

If f ′(xi) ∼ const. expect
∣
∣
∣
∣
∣

δn
δ0

∣
∣
∣
∣
∣
∼ µn = eλn for large n

Define Lyapunov exponent λ:

λ = lim
n→∞ lim

δ0→0

1

n
ln

∣
∣
∣
∣
∣

δn
δ0

∣
∣
∣
∣
∣
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Note:

• For each finite n, δ0 is taken infinitesimal and only then n→ ∞

For one-dimensional map:

λ = lim
n→∞

1

n

n−1∑

i=0

ln |f ′(xi)|

Note:

• In general Lyapunov depends on initial condition
⇒ average over different initial conditions

• In ergodic systems λ independent of initial conditions: any point on attractor is
visited.

Limitations on predictions for xn:

|δn| = δ0e
λn

To predict with an error ε and an initial precision δ

n =
1

λ
ln
ε

δ

As found in demo simulations of Lorenz model:
duration of prediction grows only logarithmically with precision of initial data:
each 10-fold increase in initial precision increases prediction interval only by a constant
duration n10:

n10 =
1

λ
ln 10

Example: λ for periodic orbit

Consider f at a parameter value with a stable p-cycle:

f (p)(xi) = xi for i = 0, . . . , p− 1

Thus f (p) has p fixed points, which are stable by assumption of a stable p-cycle of f(x)

⇒ |f (p)′(xi)| < 1
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λ = lim
n→∞

{

1

n

n−1∑

i=0

ln |f ′(xi)|
}

=
1

p

p−1
∑

i=0

ln |f ′(xi)| since the cycle repeats itself at xp = x0

=
︸︷︷︸

using (∗)

1

p
ln |f (p)′(xi)|
︸ ︷︷ ︸

<1

< 0

Note:

• As expected stable periodic orbit has negative Lyapunov exponents.

• 0 eigenvalue has disappeared because of transition from flow to map (the map would
formally be the same even if the underlying system was forced periodically in time
⇒ no time translation symmetry).

• Superstable orbits have f ′(xi) = 0 for at least one xi of the periodic orbit:
⇒ λ→ −∞

Example: Tent Map

f(x) =

{

rx for 0 ≤ x ≤ 1
2

r (1 − x) for 1
2
≤ x ≤ 1

r

Lyapunov exponent:

f ′(x) = ±r for any x ⇒ λ = ln r

Thus:

• expect sensitive dependence on i.c. for r > 1

Example: Logistic Map

Demo 4 by Cross
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Note:

• period doubling cascade
λ = 0 at period-doubling bifurcation: f (p)′ = 1 change of stability.

• superstable orbits: λ→ −∞
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• periodic windows

Thus:

• one defining feature of chaotic dynamic is a positive Lyapunov exponent

• in n-dimensional systems n exponents, some positive, some 0, some negative.

Note:

• Lyapunov exponent positive
⇒ on average trajectories diverge exponentially
intervals [xn, xn + δn] in phase space are stretched exponentially

n = 3

n = 2

n = 1

x1 x1 + δ1

But: all points x confined to [0, 1] ⇒ separation limited by 1

Resolution of paradox:
“Stretching and Folding”

Example: tent map

101



}}

intervals away 

from maximum 

are simply stretched            

intervals involving

maximum are also

folded

folded over

Thus:

• For bounded attractor positive Lyapunov exponent implies stretching and folding.

• For one-dimensional maps folding implies that the map is not invertible

5.4 Two-dimensional Maps

For flows

ẋ = I(x)

Each state has
– unique future
– unique past

���������
1 1

�	�
�����
22

y

x
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i.e., orbits do not intersect (except at fixed points)
⇒ in maps that are derived from such flows each state must have
– unique image: xn+1 = f(xn)

– unique pre-image: xn = f−1(xn+1)

⇒ in 1 dimension f(x) must be monotonic

xn+1

nx
in����� se unique

n+1x

nx
in����� se not unique

Chaotic dynamics require stretching and folding

⇒ chaotic 1-dimensional maps non-invertible

for pre-image need to know from which of the two layers to start from
in 2 dimensions this may be possible.

2-d maps can exhibit chaos:

Poincar’e section of 3-d flow (e.g., Lorenz system)

Flow can be run backward: ⇒ map invertible.

2-d maps more representative of chaotic flow than 1-d maps

Example: Dissipative Baker’s Map
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0

1

1
2

2

a

_

0

0

a

1

1 1

(xn+1, yn+1) =

{

(2xn, ayn) for 0 ≤ xn <
1
2

(2xn−1, ayn + 1
2
) for 1

2
≤ xn ≤ 1

Require 0 < a ≤ 1
2

Notes:

• map exhibits stretching in x-direction

Consider (xn + δn, yn) and (xn, yn)

δn+1 = 2δn except if xn <
1

2
and xn + δn >

1

2

for small δn this happens very rarely

⇒ λ1 = ln 2

• map discontinuous: folding replaced by cutting.

• in the y-direction contraction

• For a = 1
2

area is preserved by map: system is not dissipative.

Example: Conservative Baker’s Map
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(xn+1, yn+1) =

{

(2xn1 ,
1
2
yn) 0 ≤ xn <

1
2

(2xn−1,
1
2
yn + 1

2
) 1

2
≤ xn ≤ 1

Simple description of dynamics in ‘binary’ notation:

xn = a1
1

2
+ a2

1

4
+ a3

1

8
+ · · · yn = b1

1

2
+ b2

1

4
+ b3

1

8
+ · · ·

written as

(xn, yn) = . . . b3b2b1.a1a2a3 . . .

Calculate (xn+1, yn+1):

For 0 ≤ xn <
1
2

xn+1 = 2xn = a1
︸︷︷︸

0

+a2
1

2
+ a3

1

4
+ . . . = . a2a3a4 . . .

yn+1 =
1

2
yn = b1

1

4
+ b2

1

8
+ . . . = . . . b3b2b10 .

1
2
≤ xn ≤ 1

xn+1 = a1 + a2
1

2
a3

1

4
+ . . .− 1 = . a2a3a4 . . .

yn+1 = b1
1

4
+ b2

1

8
+ . . .+

1

2
= . . . b2b11 .

Thus:

(xn+1, yn+1) = . . . b3b2b1a1.a2a3a4 . . .

• The dynamics are given by a simple shift in the binary representation of the initial

conditions.

Conclusions:
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• Depending on initial conditions the map has

– periodic orbits of arbitrary period (“rational” initial conditions),
countably many

– aperiodic orbits, (“irrational” initial conditions)
uncountably many

• each iteration amplifies error in x-direction by factor of 2 (λ1 = ln 2)

Specific example:
monitor only whether x > 1

2
or x < 1

2
, i.e., monitor only first digit after binary point

if initial condition is known with resolution 2−m, i.e. am is the last known digit,
⇒ after m iterations am+1 determines “left” or “right”:
outcome completely unknown since only a1 . . . am are known:
deterministic system behaves like completely random coin toss.

Note:

• Long-term behavior strongly affected by dissipation
Even for weak dissipation (a ∼ 1

2
) only initial behavior similar to that of conservative

system. Thus chaotic behavior of dissipative system has to be studied separately.

5.5 Diagnostics

5.5.1 Power Spectrum

For periodic signals: frequency

extension: spectrum

x̃(ω) =
1

2π

∫ ∞

−∞
x(t) e−iωtdt

periodic signal: single oscillator

ωω0 ω0 ω02 3

ω                                                          x( )                                                          ~

���������
	���
��
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2 coupled oscillators

ωω1 ω0 ω02

+ω1ω0

���������
	���
�����	����
equencies

chaotic signal

chaotic signal

broadband with possible peaks

Realistic time series:

• finite duration T ⇒ lowest frequency ωmin = 2π
T

• finite sampling rate ∆t ⇒ highest resolved frequency ωmax = 2π
∆T

x̃k =
N−1∑

j=0

x(tj) e
−iωktj

with

tj = j∆t ωk =
2π

T
k T = N∆t

Only discrete frequencies in the spectrum

Demos: Cross 1

Why is there a broad “peak” even for the periodic signal?

Fourier series assumes signal periodic with period T
but
Time series in general not periodic with period T
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t

ideal time series

T
0

}

∆t

real time series

dotted line indicates values at discrete times

Real time series is not smooth at t = T

Express realistic time series in detail:

x̂(t) = {(x(t)H(t, T )) ⊗ S(t, T )} S(t,∆T )

with

S(t, τ) =
∞∑

n=−∞
δ(t− nτ)

t0
τ τ2

Window function

t0 T

H (t T)

Convolution:

f(t) ⊗ S(t, T ) =
∫ ∞

−∞
f(t′)S(t− t′, T ) dt′ =

=
∫

f(t′)
∞∑

n=−∞
δ(t− t′ − nT )dt′

=
∞∑

n=−∞
f(t− nT )
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Then:

x̂(t) = [(x(t)H(t, T ))

⊗S(t, T )]

S(t,∆t) sampled at discrete times

T

periodically repeated

Now we can take usual Fourier transform of x̂(t) to get idea of the transform of realistic
data

Fourier transformation and convolution:

∫ ∞

−∞
e−iωtf(t) ⊗ g(t) dt =

∫ ∞

−∞
e−iωt

∫ ∞

−∞
f(t′)g(t− t′) dt′ dt

=
∫ ∫

e−iω(t−t′)g(t− t′)
︸ ︷︷ ︸

g̃(ω)

e−iωt
′

f(t′)
︸ ︷︷ ︸

f̃(ω)

dt dt′

Thus:

• Fourier transform of a convolution is a product

• Fourier transform of a product is a convolution

x̂(t) →
[(

x̃(ω) ⊗ H̃(ω, T )
)

S̃(ω, T )
]

⊗ S̃(ω,∆t)

with

H̃(ω, T ) =
∫ T

0
e−iωtdt =

i

ω

[

e−iωT − 1
]

⇒ |H̃(ω, T )| ∼
∣
∣
∣
∣
∣

sin 1
2
ωT

1
2
ω

∣
∣
∣
∣
∣

S̃(ω,∆t) =
∫

e−iωt
∑

n

δ(t− n∆t) dt =
∑

n

e−iωn∆t

︸ ︷︷ ︸

sequence of spikes









(

x̃(ω) ⊗ H̃(ω, T )
)

︸ ︷︷ ︸

broadened peak

S̃(ω, T )









︸ ︷︷ ︸

sampled at discrete frequencies ωk = 2πk/T

⊗ S̃(ω,∆t)
︸ ︷︷ ︸

spectrum periodically repeated
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looks like 

broadened peak

aliasing

2
 t∆ t t
Π___

P(   )ω

ω

One cannot see the oscillations since only discrete frequencies are available: minima are
at |ωT | = 2πk except for k = 0 and frequencies are separated by 2πk/T .

Thus:

• need sufficiently long time series:
T large ⇒ ωmin small

• need sufficiently fine sampling:
ωmax large to avoid aliasing

• ‘windowing’ to minimize broadening

5.5.2 Strange Attractors. Fractal Dimensions

Chaotic attractors have complex geometry: characterize it quantiatively

Example: Dissipative baker’s map
Question: to which set of points do random initial conditions convert?
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Any initial condition is mapped into the 2 stripes, which are then mapped into 4 separate
thinner stripes....

In the y-direction the attractor becomes extremely intricate: infinitely many lines:

• lines → 1 dimension

• finite number of iterations still stripes → 2 dimensions

• n→ ∞ infinitely many lines ⇒ 1 < d < 2

Compare to Cantor set

What is the dimension of the set for n→ ∞?

Box Dimension:
Count the minimal number N of boxes of size ε that are needed to cover the attractor.
Then

db = lim
ε→0

lnN

ln 1
ε

.

This would correspond to N ≈ (1/ε)db .

Examples:

i) Line
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N =
L

ε
⇒ db = lim

ε→0

lnL− ln ε

− ln ε
= 1

ii) Surface

N =
L2

ε2
⇒ db = lim

ε→0

lnL− ln ε

− ln ε
= 2

iii) Attractor of baker’s map

pick boxes of size (an)2:

}}

a
a

 in n-th iteration have 2   stripes

of width  a

n

n

n

2n stripes:

N = 2n
1

an
→ db = lim

ε→0

lnN

ln 1
ε

= lim
n→∞

ln
(
a
2

)−n

ln a−n
= lim

n→∞
ln a− ln 2

ln a

→ db = 1 +
ln 1

2

ln a

Thus:

• for a→ 1
2

d→ 2

• for a→ 0 d→ 1

• for general a: 1 < d < 2

Note:

• Box dimension does not depend on dynamics on attractor, only its geometry ⇒
define also other dimensions

112



Correlation Dimension:

For a fixed point x on the attractor determine the number Nx(ε) of other points on the
attractor that lie within a ball of radius ε. Then

Nx(ε) ∼ εdc

determines the pointwise dimension. Average over x on the attractor gives

C(ε) =< Nx(ε) >x∼ εdc

Note:

• Dynamics do enter correlation dimension: where are the points dense, where not,
i.e. where in phase space is the system more often?

• one can show dc ≤ db
but usually dc ∼ db

Note:

• there are further dimensions:
whole spectrum of dimensions generated by weighing the probability of finding
points in a small ball with different powers

Practically:

slope d

ln C(   )∈

∈ln

limitation from finite number

of points in sample

saturation trough

size of attraction

        
⇒ need sufficently many points to see power laws.

Lyapunov Dimension:

Include dynamics explicitly in the definition of the dimension

Consider dimension of a box that neither grows nor shrinks under the dynamics point
attractor
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any box with d ≥ 1 shrinks to a point: dL = 0

line attractor

line segments along the attractor are transported along orbit without volume change (on
average), but area covering the width of the attractor shrinks to a line: dL = 1

torus:

area transported along orbit, but three-dimensional volume would shrink: dL = 2

Growth of ν-dimensional volume in phase space is given by expansions in the ν directions

V (t) = L1e
λ1t L2e

λ2t L3e
λ3t . . . Lνe

λνt

for V = const. need

ν∑

i=1

λi = 0
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1 2

λ i

1 2

λ i

dimension

Σ

ν

ν

i=1

Linear interpolation of

f(n) =
n∑

i=1

λi

f(dL) = 0 ≈ f(ν) + [f(ν + 1) − f(ν)] (dL − ν) ⇒ dL = ν +
f(ν)

f(ν + 1) − f(ν)

Thus, for ν such satisfying
∑ν
i=1 λi > 0 but

∑ν+1
i=1 λi < 0 the Lyapunov dimension is given

by

dL = ν +
1

|λν+1|
ν∑

i=1

λi

Note:

• dL gives a measure of how many degrees of freedom are ”active”
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6 Summary

Dissipative Dynamical Systems:

• long-time behavior given by attractors:

fixed points

fixed point

periodic orbits

periodic orbit

quasiperiodic orbits

quasiperiodic orbit

strange attractors

• qualitative changes in behavior
- instabilities
- bifurcations ⇒ new solutions, sequence of bifurcations, period-doubling cascade

• reduction of dynamics:
separation of time scales ⇒ adiabatic elimination of fast degrees of freedom
- near bifurcations: center manifold reduction
- continuous symmetries: slow long-wave dynamics
- conservation laws: slow long-wave dynamics (e.g. Navier-Stokes equations)

• symmetries can play an important role:
establish form of equation for reduced dynamics ⇒ scaling
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7 Insertion: Numerical Methods for ODE

Discuss a few important methods and core issues for numerical solution of

ẋ = f(x, t)

Consider finite-difference methods for time stepping:
continuous analytical solution is replaced discrete sequence of values

Seek approximation for u(t+ ∆t) for small time step ∆t.

ui

ui+1

ti ti+1 ti+2

u

t

u = f(u,t)

Notation:

• Use u for numerical solution and x for exact solution

• tj = j · ∆t, uj = u(tj)

7.1 Forward Euler

There are two ways to look at this approximation

i) Taylor Expansion

uj+1 = uj + ∆t
duj
dt

∣
∣
∣
∣
∣
t=tj

+
1

2
∆t2

d2u

dt2

∣
∣
∣
∣
∣
t=t∗

︸ ︷︷ ︸

Error

Notes:

• the time t∗ is not known: this term constitutes the error term

Using ẋ = f(x, t):

uj+1 = uj + ∆t f(uj, tj) + O(∆t2)

Notes:
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• Local error O(∆t2)

• Global error: integrate from 0 to T = N∆t

⇒ E(global) ≈
N∑

j=1

E
(local)
j ∼ N E

(local)
j ∼ T

∆t
O(∆t2) = O(∆t)

First-order scheme.

⇒ expect scheme to approximate exact solution better and better as ∆t→ 0.

But: if unstable scheme will not converge → later.

Assessment of accuracy:

in practical situation error is not explicitly available (no exact solution)

compare u
(∆t)
N with u

(∆t/2)
N

u
(∆t)
N = u

(ex)
N + a∆t

u
(∆t/2)
N = u

(ex)
N + a

∆t

2

⇒ u
(∆t)
N − u

(∆t/2)
N = a

∆t

2

Thus: difference is of the order of the error

ii) Integral Representation

Solution of differential equation can be written as

uj+1 = uj +
∫ tj+1

tj
f(u, t)dt

need to approximate integral

Left-end-point rule:

∫ tj+1

tj
f(u, t)dt = f(uj, tj) ∆t

again

uj+1 = uj + ∆t f(uj, tj) + O(∆t2)

Note:

• more accurate (higher-order schemes) by
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– higher-order Taylor expansion

– higher-order approximation of integral:
Adams-Bashforth and predictor-corrector schemes ⇒ homework.

E.g. trapezoidal rule for integral

tt t

f(u(t)) 

FE

trapezoidal

j j+1

7.2 Crank-Nicholson

Approximate time derivative at mid-point

du

dt
=
uj+1 − uj

∆t
at tj +

1

2
∆t

Need to approximate right-hand-side of diff.eq. also at tj + ∆t/2

uj+1 − uj
∆t

=
1

2
{f(uj+1) + f(uj)}

Need to solve for uj+1:

⇒ implicit scheme difficult for nonlinear equation

Approximate uj+1

f(uj+1) = f(uj + ∆u
︸︷︷︸

uj+1−uj

) = f(uj) +
df

du
∆t

Insert in differential equation

∆u

∆t
− 1

2

df

du
|uj

∆u = f(uj)

yields the difference scheme

(uj+1 − uj)

[

1

∆t
− 1

2

df

du

]

= f(uj) + O(∆t3)

Notes:

• Crank-Nicholson is 2nd-order scheme

• Crank-Nicholson is very stable (⇒ below), very reliable
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7.3 Runge-Kutta

2nd-order:

K1 = ∆t f(tj, uj)

K2 = ∆t f(tj +
1

2
∆t, uj +

1

2
K1)

uj+1 = uj +K2

Note: uj +K1/2 is a better approximation fo u during [tj, tj+1]. Use it in f .

4th-order:

k1 = ∆t f(tj, uj)

k2 = ∆t f(tj +
1

2
∆t, uj +

1

2
k1)

k3 = ∆t f(tj +
1

2
∆t, uj +

1

2
k2)

k4 = ∆t f(tj + ∆t, uj + k3)

uj+1 = uj +
1

6
{k1 + 2k2 + 2k3 + k4} + O(∆t5)

Note:

• RK4 is very efficient scheme, and it is quite robust (stable).

7.4 Stability

In each time step errors are made

• truncation error (O(∆tp))

• round-off error

Question: do these errors grow/accumulate catastrophically?
If yes: scheme unstable and therefore useless.

Depending on the type of equations at hand more or less stringent stability requirements
may be useful.

For simplicity: discuss only linear equations.
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Definition: A difference scheme is stable for ∆t→ 0 if there are C and α such that

‖ y(t) ‖≤ Ceα(t−t0) ‖ y(t0) ‖

with C and α independent of initial condition y(t0) and ∆t.

Notes:

• for stability require growth to be bounded by an exponential with fixed growth rate

• if exact solutions are known not to grow at all it may be useful to require that
numerical solution does not grow either.

Fundamental Theorem:

If a scheme is stable and consistent then it converges

uj → x(tj) for ∆t→ 0

and if local error is O(∆tp+1) then global error is O(∆tp).

Thus:

• consistent: error in each time step can be made small (p > 0)

• interpretation: stability guarantees that local error does not grow too much (growth
rate is bounded)
⇒ total error goes to 0 as error in each step goes to 0

Sketch of Proof: need to track growth of error.

introduce time evolution operator S(t2, t1)

numerical uj+1 = S(tj+1, tj)uj

exact xj+1 = S(tj+1, tj)xj + ET (tj)
︸ ︷︷ ︸

truncation error

For linear differential equation: error evolves as

ej+1 ≡ xj+1 − yj+1 = S(tj+1, tj)ej + ET (tj)

ej+2 = S(tj+2, tj+1)ej+1 + ET (tj+1) =

= S(tj+2, tj+1) [S(tj+1, tj)ej + ET (tj)] + ET (tj+1)

= S(tj+2, tj)ej + S(tj+2, tj+1)ET (tj) + ET (tj+1)

⇒ en = S(n∆t, t0)e0
︸ ︷︷ ︸

propagation
of initial error

+
n∑

`=1

S(n∆t, `∆t)ET ((`− 1)∆t)
︸ ︷︷ ︸

propagation of
truncation error at

time t`−1 = (`− 1)∆t
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Scheme consistent: ET = O(∆tp+1)

Stability of scheme

‖ S(n∆t, `∆t) v(`∆t) ‖≤ Ceα(n−`)∆t ‖ v(`∆t) ‖

equation linear: same bound for error

en ≤ Ceαn∆te0 +
n∑

`=1

C eα(n−e)∆t
︸ ︷︷ ︸

≤eαn∆t

ET ((`− 1)∆t)
︸ ︷︷ ︸

K(t)∆tp+1=O(∆tp+1)

≤ Ceαn∆t{e0 + n · ∆tK(t)∆tp}
en ≤ Ceαtmax {e0 + tmaxK(t)}

︸ ︷︷ ︸

bounded for
fixed interval [0, tmax]

∆tp

7.4.1 Neumann analysis

Consider

ẋ = λx with solution x = eλ t x0

Allow λ to be complex for oscillations. For linear equation Fourier ansatz for numerical
solution

uj = zju0

zj corresponds to eλtj , λ and z complex.

Stability of forward Euler scheme:

uj+1 = uj + ∆t λuj = (1 + ∆t λ)uj

With Fourier ansatz

uj = zju0 ⇒ z = 1 + ∆t λ

check growth

|z| = |1 + ∆tλ| =

{

1 + ∆t λ for λ ∈ R and ∆t λ > −1
1 + ∆t2λ2

i for λ = iλi ∈ iR
use

1 + ξ ≤ eξ for ξ ∈ R

⇒ |z| ≤
{

e∆t λ

e∆t
2 λ2

i
⇒ |z|n ≤

{

en∆tλ = eλ tmax λ∆t > −1

en∆t2λ2
i = eλ

2
i ∆t tmax λ = iλi ∈ iR

Thus:
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• for λ∆t > −1 and for λ ∈ iR bounded by exponential
⇒ stable according to above definition

• oscillatory case: numerical growth (although exact solution does not grow),
growth rate → 0 for ∆t→ 0

• λ∆t < −1: scheme oscillates and oscillations grow (for λ∆t < −2) although exact
solution decays monotonically: unacceptable.

Note:

• in oscillatory case one may not accept any growth

⇒ forward Euler method considered unstable for λ ∈ iR

• Neumann-stable: |z| ≤ 1.
Forward Euler scheme only Neumann-stable for λ∆t > −1 and λ ∈ R
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