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1 Introduction

Many systems have unpredictable components:

• weather

• stock market

• spreading of diseases

• motion of gas molecules

• molecular conformations: opening and closing of ion channels

• emission and absortion of photons: photo multipliers, photo receptors

• ...

Causes of unpredictability:

• many interacting agents (particles)

• chaotic dynamics, even in systems with few degrees of freedom

• quantum mechanics: only probabilities for transitions can be given

Probabilistical description of such systems:

as example, consider Brownian motion of a large particle in a thermal bath of smaller
particles. We are interested in

• the evolution of the mean, variance, or higher moments of the position or velocity of

the large particle

• possibly even the evolution of full probability distributions for the position or the
velocity

• sample trajectories of the large particle

Approaches:

• (evolution) equations for the probability distributions:

Chapman-Kolmogorov equation, master equation, Fokker-Planck equation

• differential equations with stochastic quantities: Langevin equation
we will need to make sense of the stochastic differential equation (Ito vs. Stratonovich)

Recommended books:
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• N. G. van Kampen. Stochastic processes in physics and chemistry. North-Holland,
1992 (on reserve in the library)

• C. W. Gardiner. Handbook of stochastic methods. Springer, 1990 (on reserve in the

library)

• D. Henderson and P. Plaschko. Stochastic differential equations in science and engi-
neering.

• N.G. van Kampen. Fluctuation in unstable systems. In E. Tirapegui and Villarroel D.,

editors, Instabilities and Nonequilibrium Structures. Reidel, 1987 (a scanned version
of this paper is on the class web site
https://courses.northwestern.edu/webapps/login
under 2009FALL ES APPM 442-1 Stochastic Differential Equations

• Other useful references: [25, 1, 17, 8]

2 Probabilities and Probability Distributions

We consider stochastic events:

• tossing a coin: event ω is head or tail

• throwing a die

• position of molecule in a fluid

• emission of an electron in a (old-fashioned) TV-tube

• absorption of a photon

• ...

Consider sets Ai ⊆ Ω of events, Ω being all possible events.

Define a probability P (Ai)

1. P (Ai) ≥ 0 for all Ai

2. P (Ω) = 1

3. The probability of mutually exclusive events is additive:
if the Ai, i = 1, 2, 3, . . ., form a countable (but possibly infinite) collection of sets with

Ai ∩ Aj = Ø for i 6= j then

P (Ai ∪ Ai ∪ . . . ∪ Ak) = P (Ai) + P (Aj) + . . . + P (Ak)

e.g. for a die A1 = {1} and A2 = {2, 3} are mutually exclusive and the probability to
get 1 or 2 or 3 is P (A1) + P (A2). However, for Ai = {even numbers } and A2 = {2} one

has P (A1 ∪ A2) = P (A1) ≤ P (A1) + P (A2).

8



Note:

• from the definitions one obtains directly

P (Ω\A) = 1 − P (A) P (Ø) = 0.

• to make the connection with experiments one needs to measure probabilities: use the
relative frequency of events as an approximation for the probability

For continuous variables x one has to define events a bit more carefully;

• if the event is defined that x has a specific value x = x0, then the probability of this

event is always 0

• need to define the event has x being in some interval:
P (x ∈ (x0, x0 + ∆x)) is a meaningful quantity and can be non-zero
typically P (x ∈ (x0, x0 + ∆x)) = p(x0)∆x + O(∆x2)

Notation:

• A random variable is a function X(ω) of the event ω

• Often we need not explicitly denote the event and can simply write for the random
variable X.
In a given realization X has the value x.

Define

• Joint probability
P (A ∩ B) = P (ω ∈ A and ω ∈ B)

• Conditional probability

P (A|B) =
P (A ∩ B)

P (B)

or

P (A ∩ B) = P (A|B) P (B)

• Statistical independence:

Two events or sets of events are independent of each other if P (A|B) does not depend
on B: P (A|B) = P (A) and analogously P (B|A) = P (B)
this implies

P (A ∩ B) = P (A) P (B)

For multiple events Ai statistical independence requires that for all possible combina-

tions Aj ∩ Ak ∩ ... ∩ Am the joint probability factorizes

P (Aj ∩ Ak ∩ ... ∩ Am) = P (Aj)P (Ak) . . . P (Am)

• Mean of a random variable X
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– X takes on only the discrete values Xi, i = 1..N

µ(X) ≡ 〈X〉 ≡
N∑

i=1

xiP (xi)

– X ∈ R

µ(X) ≡ 〈X〉 =

∫

xP (x) dx

• Higher moments

〈Xn〉 =

∫

xn P (x)dx

• Variance of X is the mean of the square of the deviation from the mean

σ(X)2 = 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2

σ(X) is the standard deviation of X.

• Covariance between different random variables Xi and Xj

Cij = 〈(Xi − 〈Xi〉) (Xj − 〈Xj〉)〉 = 〈XiXj〉 − 〈Xi〉〈Xj〉

measures how correlated the two variables are (in terms of their deviations from their
respective means:

– For Cij > 0 the random variables Xi and Xj are mostly on the same side of their

means: correlated

– For Cij < 0 the random variables Xi and Xj are mostly on opposite sides of their
means: anti-correlated

– For Cij ∼ 0 the random variables Xi and Xj are just as often on opposite sides of
their means as on the same side: uncorrelated

Moment Generating Function1

To get mean and variance make use of a generating function.

In general the moment generating function or characteristic function is defined as

φ(s, t) = 〈eis·X〉 =

∫

dx1 . . . dxnp(x, t)eis·x

The generating function amounts to a Fourier transform of the probability distribution.

The moments can then be expressed elegantly as

〈
n∏

i=1

Xmi

i 〉 =

[
n∏

i=1

(

−i
∂

∂si

)mi

φ(s, t)

]∣
∣
∣
∣
∣
s=0

1[15, Chapter 2.6 and 2.7]

10



Conversely, using the Taylor expansion of the exponential eis·X =
∏n

j=1 eisjXj the generating
function can be expressed in terms of the moments

φ(s, t) =

∞∑

m1=0

. . .

∞∑

mn=0

(is1)
m1

m1!
. . .

(isn)mn

mn!
〈Xm1

1 . . .Xmn

n 〉

The probability distribution can be obtained by an inverse Fourier transformation

P (x, t) =
1

(2π)n

∫

ds1 . . . dsne
−is·xφ(s, t)

For independent distributions P (x1, x2, . . . , xn) =
∏n

i=1 P (xi) one gets

φ(s1, s2, . . . , sn) =
n∏

i=1

φ(si)

It is sometimes also useful to introduce the cumulants 〈〈Xm1
1 . . .Xmn

n 〉〉, which are defined

via

ln (φ(s, t)) =
∞∑

m1=0

. . .
∞∑

mn=0

(is1)
m1

m1!
. . .

(isn)mn

mn!
〈〈Xm1

1 . . .Xmn

n 〉〉 (1)

Example:

n = 2 :

φ(s1, s2, t) = 1 + is1 〈X1〉 + is2 〈X2〉 −
1

2
s2
1

〈
X2

1

〉
− 1

2
s2
2

〈
X2

2

〉
− s1s2 〈X1X2〉 + O(s3)

ln (φ(s1, s2, t)) = is1 〈X1〉 + is2 〈X2〉 −
1

2
s2
1

〈
X2

1

〉
− 1

2
s2
2

〈
X2

2

〉
− s1s2 〈X1X2〉 + O(s3) +

+

(

−1

2

)(

is1 〈X1〉 + is2 〈X2〉 −
1

2
s2
1

〈
X2

1

〉
− 1

2
s2
2

〈
X2

2

〉
− s1s2 〈X1X2〉 + O(s3)

)2

+ . . .

= is1 〈X1〉 + is2 〈X2〉
−1

2

(
s2
1

〈
X2

1

〉
+ s2

2

〈
X2

2

〉
+ 2s1s2 〈X1X2〉 − s2

1 〈X1〉2 − s2
2 〈X2〉2 − 2s1s2 〈X1〉 〈X2〉

)

= is1 〈X1〉 + is2 〈X2〉
−1

2

(
s2
1

(〈
X2

1

〉
− 〈X1〉2

)
+ s2

2

(〈
X2

2

〉
− 〈X2〉2 + 2s1s2 (〈X1X2〉 − 〈X1〉 〈X2〉)

))

Thus

〈〈Xi〉〉 = 〈Xi〉
〈〈

X2
i

〉〉
=

〈
X2

i

〉
− 〈Xi〉2

〈〈X1X2〉〉 = 〈X1X2〉 − 〈X1〉 〈X2〉

Notes:
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• Considering two random variables (n = 2):
statistical independence is equivalent with

– φ(s1, s2, t) = φ1(s1, t)φ2(s2, t)

– all moments factorize:
〈Xm1

1 Xm2
2 〉 = 〈Xm1

1 〉 〈Xm2
2 〉

– all cumulants 〈〈Xm1
1 Xm2

2 〉〉 vanish when both m1 and m2 are nonzero:
the expansion of ln (φ(s1, s2, t)) = ln (φ1(s1, t)) + ln (φ2(s2, t)) has no terms in which

s1 and s2 appear at the same time.

• Expressions for general cumulants is cumbersome to obtain[15, Chapter 2.7].
For example

〈〈X1X2X3〉〉 = 〈X1X2X3〉 − 〈X1X2〉 〈X3〉 − 〈X2X3〉 〈X1〉 − 〈X1X3〉 〈X2〉 + 2 〈X1〉 〈X2〉 〈X3〉

2.1 Examples of Probability Distributions

2.1.1 Binomial Distribution

Consider an urn with N balls, m of which are red and N − m are white. What is the
probability P (k; n) to retrieve exactly k red balls in n draws if each ball is placed back into
the urn before the next is drawn? Assume that the probability is the same for all balls.

• probability to draw any read ball is given by the fraction of red balls among the balls:

m

N

• probability to draw k red balls in k specific draws

(m

N

)k

since successive drawings are independent of each other

• analogously: probability to draw n − k white balls

(
N − m

N

)n−k

• it does not matter in which draws the red or white balls are actually drawn: in how
many ways can the k red draws be distributed over the total number of n draws?

Think of picking k integers from 1 . . . n without replacing them,

n · (n − 1) · . . . · (n − k + 1)

possibilities. It does not matter in which order the integers are picked: do not distin-
guish those k! possibilities

(
n
k

)

=
n!

(n − k)! k!

12



• thus

P (k; n) =

(
n
k

)(m

N

)k
(

N − m

N

)n−k

=

(
n
k

)

pkqn−k

with p = m
N

probability for red ball and q = 1 − p probability for white ball.

Normalization
n∑

k=0

(
n
k

)

pkqn−k =
︸︷︷︸

binomial theorem

(p + q)n = 1

Mean value

〈k〉 =

n∑

k=0

k

(
n
k

)

pkqn−k = p
∂

∂p

n∑

k=0

(
n
k

)

pkqn−k = p
∂

∂p
(p + q)n = pn

Variance

σ2 = 〈k2〉 − 〈k〉2 = p
∂

∂p

(

p
∂

∂p

n∑

k=0

(
n
k

)

pkqn−k

)

− (pn)2 =

= p
∂

∂p

(

p
∂

∂p
(p + q)n

)

− (pn)2 =

= p
∂

∂p

(
np(p + q)n−1

)
− (pn)2 =

= pn(p + q)n−1 + np2(n − 1)(p + q)n−2 − (pn)2 =

= pn − p2n = npq

2.1.2 Poisson Distribution

Consider

• current in a cathode tube (old TV screen): consists of individual electrons that are
emitted from the cathode at arbitrary, uncorrelated times

• customers approaching a bank teller, their arrival times are presumably also uncor-
related

What is the distribution P (n, t) of the number n of electrons/customers that have arrived
up to a time t?

The probability that the number increases from n to n + 1 during a time interval ∆t is
proportional to ∆t

P (n → n + 1 during ∆t) = λ∆t

Then we have

P (n, t+∆t) = λ∆t
︸︷︷︸

probability for n to increase

P (n− 1, t)+ (1 − λ∆t)
︸ ︷︷ ︸

probbility for n not to increase

P (n, t)
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For small ∆t
d

dt
P (n, t) = λ (P (n − 1, t) − P (n, t)) (2)

For this differential-difference equation we need initial conditions in t and in n (first order
in time and in n). Assume that initially no electrons have arrived:

P (−1, t) = 0 P (n, 0) = δn,0

How to solve this equation?

Introduce the generating function for P (n, t)

G(u, t) =

∞∑

n=0

unP (n, t)

using (2) one gets

d

dt
G(u, t) = λ

∞∑

n=0

(unP (n − 1, t) − unP (n, t)) =

= λ

{

u

∞∑

n=1

un−1P (n − 1, t) −
∞∑

n=0

unP (n, t)

}

=
︸︷︷︸

relabel m=n−1

λ (u − 1)
∞∑

n=0

unP (n, t) = λ(u − 1)G(u, t)

Thus
G(u, t) = G(u, 0)eλ(u−1)t

Using P (n, 0) = 0 for n ≥ 1 we get k

G(u, 0) = P (0, 0) = 1

and

G(u, t) = eλute−λt = e−λt
∞∑

n=0

1

n!
(λt)n un

Therefore by comparing powers in u we get the Poisson distribution

P (n, t) =
(λt)n

n!
e−λt

For the Poisson distribution we had the generating function in terms of u ≡ eis

φ(s, t) = G(eis, t) = eλute−λt = eλteis

e−λt

• mean value

〈n〉 =

[

−i
∂

∂s
φ(s, t)

]∣
∣
∣
∣
s=0

= −ie−λteλteis

iλteis
∣
∣
∣
s=0

= λt

as expected, λ is the mean rate at which electrons/customers arrive.
The mean can also easily be calculated directly from P (n, t)

∞∑

n=0

nP (n, t) = e−λt

∞∑

n=1

(λt)n

(n − 1)!
= (λt) e−λt

∞∑

n=0

(λt)n

n!
= λt
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• variance

〈n2〉 =

[(

−i
∂

∂s

)2

φ(s, t)

]∣
∣
∣
∣
∣
s=0

= −i
∂

∂s

(

−ie−λteλteis

iλteis
)
∣
∣
∣
∣
s=0

=

= −iλte−λt eλteis

eis
(
iλteis + i

)
∣
∣
∣
s=0

= λt (λt + 1)

thus
σ2 = λt

Determining the variance by evaluating the sum is more difficult.

• The variability of a distribution can be characterized by the Fano factor

F =
σ2

µ

The Poisson distribution has F = 1, i.e. the variance is equal to the mean, correspond-

ing to quite high variability.

Rare Events: Poisson Distribution from Binomial Distribution

The Poisson distribution arises, e.g., from the binomial distribution for events with low
probability.

Consider the binomial distribution for p ≪ 1 and many draws n, np = µ = O(1),

P (k; n) =

(
n
k

)

pk(1 − p)n−k =

=
n!

k!(n − k)!

(µ

n

)k (

1 − µ

n

)n−k

=

=
1

k!

n(n − 1) . . . (n − k + 1)

nk
︸ ︷︷ ︸

→1

µk
(

1 − µ

n

)n

︸ ︷︷ ︸

→e−µ

(

1 − µ

n

)−k

︸ ︷︷ ︸

→1

Letting n → ∞ with µ and k fixed one gets

P (k; n) → 1

k!
µke−µ

2.1.3 Gaussian Distribution

The Gaussian or normal distribution is given by

p(x) =
1

√

2πdet(Σ)
e−

1
2
(x−x̄)tΣ−1(x−x̄)

where the mean is given by
〈X〉 = x̄

15



and the correlation matrix by

〈(Xi − x̄i) (Xj − x̄j)〉 = Σij

The Gaussian distribution appears very widely because of the Central Limit Theorem: the
sum of many independent, (almost) arbitrarily distributed random variables is Gaussian

distributed.

More specifically2:

Consider many independent random variables Xi, i = 1 . . . n, with distributions pi(x). For
simplicity assume vanishing mean. Their sum

SN =

N∑

i=1

Xi

is also a random variable.

The distributions of Xi can be almost arbitrary as long as their variances are finite

var{Xi} = 〈(Xi − 〈Xi〉)2〉 = σ2
i

and they satisfy the Lindeberg condition

lim
N→∞

[

1

σ2
N

N∑

i=1

∫

|x|>τσn

x2pi(x)dx

]

→ 0

for any τ > 0, where

σ2
N =

N∑

i=1

σ2
i

Then in the limit N → ∞
P (

SN

σN
) → 1√

2π
e
− 1

2

S2
N

σ2
N

i.e. is Gaussian (normal) distributed and its variance is σ2
n.

Note:

• The Lindeberg condition requires that large values |x| are sufficiently rare: the distri-

butions pi(x) need to decay sufficiently fast for |x| → ∞.
If the σi are larger than some constant for all i (e.g. if all distributions pi(x) are equal)
one has σN → ∞ for N → ∞.

For τ = 0 the fraction in the Lindeberg condition would always be 1.
For τ > 0 increasingy larger portions of the integral are omitted as N → ∞, since σN

increases with N . For the fraction to go to 0 for arbitrarily small τ > 0 requires that

the contributions to σ2
i are not dominated by large values of |x|.

2one could formulate this statement also in terms of the rescaled sum as in the simple proof below.
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• The Cauchy or Lorentzian distribution

P (x) =
a

π

1

a2 + x2

has diverging variance and it does not satisfy the Lindeberg condition.

For identically distributed variables the proof for the central limit theorem is relatively
easy:

For simplicity assume all Yi have zero mean and variance 1. For the generating function
φY (s) we have

〈Y 〉 = −i
d

ds
φY (s)

∣
∣
∣
∣
s=0

= 0

〈Y 2〉 = − d2

ds2
φY (s)

∣
∣
∣
∣
s=0

= 1

This gives the Taylor expansion for small s

φY (s) = 1 − 1

2
s2 + O(s3)

Consider the rescaled sum of the Yi

SN =
N∑

i=1

1√
N

Yi

The generating function φSN
is then

φSN
(s) = 〈eisSN 〉 = 〈eis

PN
i=1

1√
N

Yi〉 =

= 〈
N∏

i=1

e
i s√

N
Yi〉 =

N∏

i=1

φY (
s√
N

) =

=

(

1 − 1

2

s2

N
+ O(

s3

N
3
2

)

)N

→ e−
1
2
s2

for N → ∞

which is the generating function of the Gaussian (normal) distribution with vanishing

mean and unit variance, N(0, 1).

Gaussian Distribution as the Limit of Poisson Distribution

For large mean values the Poisson distribution approaches a Gaussian distribution.

The Poisson distribution (omit the t from our previous result)

P (k) =
λk

k!
e−λ

has mean µ = λ and variance σ2 = λ.

Expand k around the mean and scale the deviation with the standard deviation

k = µ + σx = λ +
√

λx = λ

(

1 +
x√
λ

)

with x = O(1)
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Use Stirling’s formula for k! for large k, keeping more terms than usually,

ln k! = k ln k − k +
1

2
ln k +

1

2
ln 2π + O(

1

k
)

insert in Poisson distribution

ln P (k) = k ln λ − λ −
(

k ln k − k +
1

2
ln k +

1

2
ln 2π + O(

1

k
)

)

=

= −λ

(

1 +
x√
λ

)

ln

(

1 +
x√
λ

)

+ λ
x√
λ
− 1

2
ln λ − 1

2
ln

(

1 +
x√
λ

)

− 1

2
ln 2π + O(

1

λ
)

Use

ln

(

1 +
x√
λ

)

=
x√
λ
− 1

2

x2

λ
+ O(

1

λ
3
2

)

get

ln P (k) = −λ

(
x√
λ
− 1

2

x2

λ
+

x2

λ
− 1

2

x3

λ
3
2

+ O(
1

λ
3
2

)

)

+ λ
x√
λ
− 1

2
lnλ −O(

1

λ
‘1
2

) − 1

2
ln 2π + O(

1

λ
) =

= −1

2
x2 − 1

2
ln λ − 1

2
ln 2π

P (k) → 1√
2πλ

e−
1
2
x2

=
1√

2πσ2
e−

1
2

(k−µ)2

σ2 with µ = λ σ2 = λ

Similarly: close to the mean the binomial distribution is well approximated by the Gaussian
distribution.

Using
k = np +

√
nx = µ +

√
nx

for large n with p and q fixed one gets

P (k; n) =

(
n
k

)

pkqn−k → 1√
2πnpq

e
− 1

2
(k−np)2

(npq)2 for n → ∞

2.2 Bayes’ Formula

Write the joint probability in two different ways

P (A ∩ B) = P (A|B) P (B) = P (B|A) P (A)

Then one gets

P (B|A) =
P (A|B) P (B)

P (A)
∝ P (A|B) P (B)

This simple formula is useful in many applications.
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2.2.1 Data Assimilation

Consider weather forecasting. Need to combine various uncertain pieces of information

• data from measurements

• the computational model itself is not certain since the physical model for the ‘weather’

is quite incomplete

• parameters in the model used for the prediction are uncertain

• initial data for the model: not all initial values are actually known, e.g., the algorithm

needs the temperature at many more locations than can be measured

Three steps are iteratively performed

1. predict data at a later time tn+1, e.g. temperature at a given location, using the model

that is based on data at an earlier time tn.

2. measure the values of the data at time tn+1.

3. combine the two pieces of information to obtain better estimates for the model param-

eters and the initial conditions.

4. repeat

An essential question is: how to combine the various pieces of information?

In this simple discussion we lump the uncertainties in the model parameters together with
the uncertainty of the initial conditions.

We would like to know the true temperature x given a set of measured values yi making

use of a predictive model. We won’t be able to get a single value, instead we will aim for
the distribution P (x|y). Due to the measurement errors we obtain from the measurements
at best the distribution P (yi|x).

To get the distribution P (x|y) of interest we can use Bayes formula

P (x|y)
︸ ︷︷ ︸

posterior distribution

=
1

P (y)
P (x|y)
︸ ︷︷ ︸

likelihood

P (x)
︸ ︷︷ ︸

prior distribution

Note:

• The prior distribution is the distribution for the true value that we assume (know)
before the measurement is done (‘a priori’)

• The likelihood is the probability for a given true value given the measurements.

• The posterior distribution is the distribution we obtain after we incorporate the mea-
surement into our expectations (‘a posteriori’)
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Specifically, assume that the measurements yi all have normally distributed measurement
errors, which may have different degrees of precision,

P (yi|x) = N(x, σi) ≡
1

√

2πσ2
i

e
−

(yi−x)2

2σ2
i

Assuming all n measurements are independent of each other we get

P (y|x) =
n∏

i=1

P (yi|x)

For simplicity assume all measurements have the same error, σi = σy.

P (y|x) =
1

√
2πσ2

y

n e
− 1

2σ2
y

P

(yi−x)2

For the prior distribution we take the distribution P (x) we obtain from the model - based
on previous data - before the new measurements are incorporated. P (x) expresses the

uncertainties in the previous data and model parameters. Assume for simplicity also a
normal distribution

P (x) =
1

√

2πσ2
x

e
−

(x−µprior)2

2σ2
x

Thus

P (x|y) =
1

P (y)

1
√

2πσ2
y

n e
− 1

2σ2
y

P

i(yi−x)2 1
√

2πσ2
x

e
−

(x−µprior)2

2σ2
x =

=
1

P (y)

1
√

2πσ2
y

n

1
√

2πσ2
x

e
− 1

2

"

„

n

σ2
y
+ 1

σ2
x

«

x2−2

„

P

i
yi

σ2
y
+

µprior

σ2
x

«

x+

"

P

i

y2
i

σ2
y
+

µ2
prior

σ2
x

##

which is a normal distribution

N(µpost, σpost) =
1

√

2πσ2
post

e
− 1

2

(x−µpost)
2

σ2
post

with variance

σ2
post =

1
n
σ2

y
+ 1

σ2
x

≡ (1 − K) σ2
x

and mean value

µpost =
σ2

xσ
2
y

σ2
x + nσ2

y

(

n
µy

σ2
y

+
µprior

σ2
x

)

≡ µprior + K (µy − µprior)

where µy = 1
n

∑

i yi and the gain K is given by

K =
nσ2

x

σ2
y + nσ2

x

Notes:
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• the measurements shift the mean of the posterior towards the mean of the measure-
ments

– the shift is proportional to the gain K, which increases with

* the number n of measurements

* the precision of the measurements relative to the uncertainty in the prior
distribution (model uncertainty)

• including the measurements always reduces the uncertainty of the posterior distribu-
tion relative to that of the prior distribution

• depending on the amount (n) and the quality (σ2
y) of the data the measurements or the

model result dominate the result from this assimilation

• in human sensory processing, a similar approach is often also used to understand

the perception that results from integrating different types of sensory information,
like touch+vision [13], auditory+vision (e.g. localization of a sound source), or vi-

sion+vision [30, see homework], weighing each information with its reliability/precision.

3 Stochastic Processes

Given a set of random variables {Xn|n = 1 . . .N} with probability distribution P (X1, X2, . . . , Xn}
we can define a stochastic process

Y (t) = f(X1, . . . , Xn, t)

For each fixed realization of the random variables, Xi = xi, we get a function

y(t) = f(x1, . . . , xn, t)

called sample function or realization of the process.

Examples:

1. Consider
Y (t) = X1 cos t + X2 sin t

with 〈Xi〉 = 0 and 〈XiXj〉 = δijσ
2. Then

〈Y (t)〉 = 〈X1 cos t + X2 sin t〉 = 0

〈Y (t1)Y (t2)〉 = 〈(X1 cos t1 + X2 sin t1) (X1 cos t2 + X2 sin t2)〉 =

= 〈X2
1 〉 cos t1 cos t2 + 〈X2

2 〉 sin t1 sin t2 + 〈X1X2〉 (cos t1 sin t2 + sin t1 cos t2) =

= σ2 cos (t2 − t1)

2. A discontinuous stochastic process (cf. HW 1)

Y (t) = Xn for ξ + n < t < ξ + n + 1

where {Xn|n = 1, 2, 3 . . .} is an infinite set of identically distributed independent
stochastic variables and ξ is another independent stochastic variable that is uniformly

distributed in 0 < ξ < 1.
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At each fixed time Y (t) is a random variable with a certain probability distribution.

We can characterize a random process using the probability distributions

P1(y1, t1) probability for Y to have value y1 at t1

P1(y1, t1; y2, t2) probability for Y to have value y1 at t1 and y2 at t2

...

Pn(y1, t1, ; . . . ; y, tn)

Note:

• the process can be discrete or continuous in time

• if y are continuous variables the probabilities are given by Pn(y1, t1; . . . ; yntn)
∏n

i=1 dyi.

The probabilities need to satisfy the conditions

1. Pn ≥ 0

2. Pn(y1, t1; . . . ; yn, tn) is symmetric under interchange of any indices (they are simply
joint probabilities), e.g. P (y1, t1; y2, t2) = P (y2, t2; y1, t1)

3. ∫

Pn(y1, t1; . . . ; yn−1, tn−1; yn, tn)dyn = Pn−1(y1, t1; . . . ; yn−1, tn−1)

since yn has to take on some value. If that value does not matter then it also does not
matter when one would measure that value ⇒ no dependence on tn.

4.
∫

P1(y1, t1)dy1 = 1

Notes:

• any set of functions that satisfy these conditions define a stochastic process (proof by
Kolmogorov, see [28] p.62)

• One need not specify all Pn: Pn contains all the information about all Pm with m < n
⇒ any finite number of Pn need not be specified

• for a stationary process Pn depends only on the time differences tn − tm, but not on the
times ti themselves.

Means, correlations, etc. are defined as for random variables

• mean

〈Y (t)〉 =

∫

y P (y, t)dy
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• correlation
Cij(t1, t2) = 〈(Yi(t1) − 〈Yi(t1)〉) (Yj(t2) − 〈Yj(t2)〉)〉

Of particular importance is typically how fast (if at all) the correlation decays for

|t1 − t2| → ∞.
The diagonal elements Cii(t1, t2) give the respective autocorrelations.
The off-diagonal elements of Cij(t1, t2) give cross-correlations between Yi and Yj

Examples

1. Sequence of independent coin tosses: y = ±1

P1(y, t) = P (y)

P2(y1, t1; y2, t2) =
︸︷︷︸

independence

P (y1) P (y2) for t1 6= t2

all joint probabilities factorize in this way.

〈Y 〉 = −P (−1) + P (1)

C(t1, t2) =
∑

y1=±1 y2=±1

y1y2 P2(y1, t1; y2, t2)
︸ ︷︷ ︸

P (y1)P (y2)

−
(
∑

y1

y1P1(y1)

)(
∑

y2

y2P1(y2)

)

=

= 0 for t1 6= t2

C(t, t) =
∑

y1=±1 y2=±1

y1y2 P2(y1, t; y2, t)
︸ ︷︷ ︸

P (y1)δy1y2

−
(
∑

y1

y1P1(y1)

)(
∑

y2

y2P1(y2)

)

=

= 〈Y 2〉 − 〈Y 〉2 = P (+1) + P (−1) − (P (+1) − P (−1))2

since the coin tosses are independent only at different times.

2. Markov process
different events are not independent, but the probability of an event depends only on

the immediately previous event
Introduce conditional probability to obtain yn at tn given that y = yi at all previous
times:

P1|n−1(yntn|yn−1, tn−1; . . . ; y1, t1)

For a Markov process one has

P1|n−1(yntn|yn−1, tn−1; . . . ; y1, t1) = P1|n−1(yntn|yn−1, tn−1)

independent of earlier events.
To characterize a Markov process completely we therefore need only P1(y, t) and P2(y1, t1; y2, t2)
or P1|1(y2, t2|y1, t1).
For example:

P3(y1,t1; y2, t2; y3, t3) = P1|2(y3, t3|y2, t2; y1, t1) P2(y1, t1; y2, t2) =

=
︸︷︷︸

Markov process

P1|1(y3, t3|y, t2) P1|1(y2, t2|y1, t1)P1(y1, t1)
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since - as for random variables - we have the connection between joint and conditional
probabilities

P2(y1, t1; y2, t2) = P1|1(y2, t2|y1, t1) P1(y1, t1)

Note:

• Markov processes are somewhat similar to 1st-order differential equations (one

can actually write a 1st−order ODE as a Markov process).

3. Gambler tossing coins: capital Y

gambler wins with probability p+ ≡ p: y → y + 1
gambler looses with probability p− = 1 − p: y → y − 1
The capital at step n depends only on the capital at step n− 1: Markov process for the

capital
Consider one such step

P1(y, n) = P1(y − 1, n − 1) p + P1(y + 1, n − 1) (1 − p)

Thus
P1|1(yn, n|yn−1, n − 1) = pδyn,yn−1+1 + (1 − p)δyn,yn−1−1

and
P2(yn, n; yn−1, n − 1) = P1(yn−1, n − 1)

[
pδyn,yn−1+1 + (1 − p) δyn,yn−1−1

]

Note:

• yn could also be considered the position of a one-dimensional random walker that
takes only discrete steps of a fixed width.

4. Brownian motion on a short time scale
The Brownian particle is hit by small particles with a random force at random time:

• because of inertia vn+1 depends on vn

Moreover, the impact of the collision depends on the velocity of the Brownian
particle:
the probability that it is hit by small particles is somewhat higher ahead of it

than behind it ⇒ the particle slows down. No random walk in velocity space.
But the impact depends only the current velocity, not previous velocities:

V (t) is a Markov process

• the process for the position of the particle is not Markovian:

xn+1 depends on xn and on vn ≈ 1
∆t

(xn − xn−1)

P (x3, t3|x2, t2; x1, t1) 6= P (x3, t3|x2, t2).

Intuitively, the particle is more likely to continue in its direction of motion before
the collision than to change the direction significantly.

• Notes:

– in the deterministic case the position satisfies 2nd-order ODE
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– over larger time scales and many collisions the particle ‘forgets’ its velocity
and with it the information about the position before the current one.

Moment Generating Functional

Analogous to the generating functional for a random variable one has

φ{s(t)} = 〈ei
R +∞
−∞ s(t)Y (t)dt〉

which can be thought of as the extension of a vector-valued random variable Yi to infinitely
many components,

φ(si) = 〈ei
P

i siYi〉
Again, it generates all moments of Y (t) using Taylor expansion

φ{s(t)} = 〈1 + i

∫

s(t)Y (t)dt +
1

2

(∫

s(t)Y (t)dt

)2

+ . . .〉 =

=

∞∑

i=0

in

n!

∫

s(t1) . . . s(tn)〈Y (t1) . . . Y (tn)〉dt1 . . . dtn

thus

〈Y (t1) . . . Y (tm)〉 = (−i)m δmφ{s(t)}
δs(t1) . . . δs(tm)

∣
∣
∣
∣
s(t)=0

analogously to

〈Y1 . . . Ym〉 = (−i)m ∂mφ(s1, . . . , sn)

δs1 . . . δsm

∣
∣
∣
∣
si=0

3.1 Wiener-Khinchin Theorem3

For stationary stochastic processes there is a connection between the Fourier spectrum of
the process and its autocorrelation. Often it is easier to determine the Fourier spectrum
than to measure correlations directly. Then the Wiener-Khinchin theorem is useful.

Consider a stationary stochastic process Y (t). Without loss of generality assume Y (t) has
vanishing mean.

For each realization of the underlying random variables the function y(t) = f(X; t) can be

Fourier transformed

y(t) =
∞∑

n=−∞

Ane
i 2π

T
nt

with

An =
1

T

∫ T

0

e−
2π
T

nty(t)dt

Replacing y(t) by the stochastic process Y (t) the coefficients An become random variables.

3cf. chapter III.3 in [28] ([28]III.3)
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Using the Parseval identity

∞∑

n=−∞

|An|2 =
1

T

∫ T

0

(Y (t))2 dt

one gets for the averages

∞∑

n=−∞

〈|An|2〉 =
1

T

∫ T

0

〈(Y (t))2〉dt =
︸︷︷︸

stationary process

〈Y 2〉

One can think of 〈Y 2〉 as the total ‘energy’ in the random process.

The coefficient 〈|An|2〉 gives the ‘energy’ for the corresponding frequencies ω = 2π
T

n.
For very long averaging interval T the frequencies lie densely, ∆ω = 2π/T , and one can
introduce a spectral density

S(ω)∆ω = 2
︸︷︷︸

Y ∈R: A−n=A∗
n

T
2π

(ω+ 1
2
∆ω)

∑

n= T
2π

(ω− 1
2
∆ω)

|An|2

Evaluate 〈|An|2〉 ≡ 〈AnA
∗
n〉

〈|An|2〉 =
1

T 2

∫ T

0

dt

∫ T

0

dt′ e−i 2π
T

nt′+ 2π
T

t〈Y (t′)Y (t)〉

Since 〈Y (t)〉 = 0 we have

〈Y (t′)Y (t)〉 = C(t′, t) =
︸︷︷︸

stationary

C(t′ − t)

〈|An|2〉 =
︸︷︷︸

τ=t′−t

1

T 2

∫ T

0

dt

∫ T−t

−t

dτ e−i 2π
T

nτC(τ)

Assume the autocorrelation decays on a time scale τc.

T−t

τC( )

−t
0

The τ -integration interval (−t, T − t) is shifted across C(τ) by the t-integration. Except for
−t & −τc and T − t . τc the whole support of C(τ) is covered by the τ -integral. For T ≫ τc

those contributions become negligible and the τ -integral can be extended to (−∞,∞)

〈|An|2〉 =
1

T 2

∫ T

0

dt

∫ ∞

−∞

dτ e−i 2π
T

nτC(τ) =
1

T

∫ ∞

−∞

dτ e−i 2π
T

nτC(τ)
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If C(τ) is smooth (no characteristic delay time at which something happens) then 〈|An|2〉
depends smoothly on n and n can be replaced by the frequency ω

〈|An|2〉 =
1

T

∫ ∞

−∞

dτ e−iωτC(τ) with ω =
2π

T
n

To get to the spectral density need to count the number of modes in the frequency interval

∆ω

∆n =
∆ω
2π
T

Therefore

2

T
2π

(ω+ 1
2
∆ω)

∑

n= T
2π

(ω− 1
2
∆ω)

〈|An|2〉 = 2
∆ω
2π
T

1

T

∫ ∞

−∞

dτ e−iωτC(τ)

and we have the Wiener-Khinchin theorem

S(ω) =
1

π

∫ ∞

−∞

dτ e−iωτC(τ) = 2C(ω)

The Fourier transform of the autocorrelation function is essentially given by the spectral

density.

3.2 Markov Processes. Chapman-Kolmogorov Equation4

A Markov process is completely determined by P1(y, t) and P1|1(y2, t2|y1, t1). Are there any
conditions on these probabilities?

For any probability distributions one has to require

P1(y2, t2) =

∫

dy1P2(y1, t1; y2, t2) = (3)

=

∫

dy1P1|1(y2, t2|y1, t1)P1(y1, t1)

and

P1|1(y3, t2|y1, t1) =

∫

dy2P2|1(y3, t3; y2, t2|y1, t1) =

=

∫

dy2P1|2(y3, t3|y2, t2; y1, t1)P1|1(y2, t2|y1, t1)

For Markov processes the second condition becomes for t1 < t2 < t3

P1|1(y3, t2|y1, t1) =

∫

dy2P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1) (4)

For stationary Markov processes only time differences matter

P1|1(y2, t2|y1, t1) = Tt2−t1(y2,|y1)

4[28]IV.2
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with Tτ (y2|y1) giving the transition probability of the process. It satisfies

Tτ+τ ′(y3|y1) =

∫

Tτ (y3|y2)Tτ ′(y2|y1)dy2 (5)

y
y

1

y
2

3

t t t
1 2 3

Notes:

• Equation (3) determines in a straightforward manner the unconditional probability

P1 at the later time t2 from P1 at the earlier time t1. Thus, we need to specify only
P1(y, t0) for some t0.

• Equation (4) is the Chapman-Kolmogorov equation.

• The Chapman-Kolmogovor equation is a nonlinear integral equation for the condi-
tional probability P1|1. It is difficult to solve. It is easier to deal with in the form of a

differential equation (see later (14) below).

• A Markov process is completely determined by solutions to (3,4) and any such solution

defines a Markov process.

Examples

1. Wiener process

is defined by

P1|1(y2, t2|y1, t1) =
1

√

2π (t2 − t1)
e
− 1

2
(y2−y1)2

t2−t1 (6)

P1(y, 0) = δ(y)

which yields with (3)

P1(y, t) =
1√
2πt

e−
1
2

y2

t (7)

• The Wiener process is non-stationary (P1 depends explicitly on t).

• It satisfies the Chapman-Kolmogorov equation (check!).
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• It was introduced to model the position of a particle undergoing Brownian mo-
tion or a random walker for long times (when the particle ‘forgets’ its previous

velocity):
P1(y, t, ) exhibits the diffusive spread expected from a random walker:

distance that the walker can move during a given time interval:

y2 − y1 ∝
√

t2 − t1

– path is continuous

– for short times distance can be large, no maximal velocity
path need not be differentiable

y2 − y1

∆t
= O(∆t−

1
2 ) → ∞ for ∆t → 0

– for large times it grows sublinearly: no ballistic motion

2. Poisson process

Consider Y (t) taking on only integer values n = 0, 1, 2, . . ..
Define a Markov process via

P1(n, 0) = δn,0

P1|1(n2, t2|n1, t1) =
(t2 − t1)

n2−n1

(n2 − n1)!
e−(t2−t1) for n2 > n1

• Each sample function y(t) consists of unit steps which occur at random times.
The number of steps (increments n2 − n1) between times t2 and t1 are Poisson-

distributed.

• The process is not stationary.

3. Ornstein-Uhlenbeck process

It is a stationary Markov process given by

P1(y1) =
1√
2π

e−
1
2
y2
1

Tτ (y2|y1) =
1

√

2π (1 − e−2τ )
e
− 1

2

(y2−y1e−τ)
2

(1−e−2τ )

Notes:

• The Ornstein-Uhlenbeck process was introduced to model the velocity of a Brow-

nian particle (v = y)

• Gaussian distribution

• Vanishing mean

• In contrast to the position of the Brownian particle, the velocity does not spread

to large values, damping pushes it back to 0. That makes the process stationary.
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• Correlation function decays exponentially

C(τ) =

∫

y3y1P2(y3, y1) dy3dy1 =

=

∫

y3y1Tτ (y3|y1)P1(y1) dy3dy1

= . . . complete the square etc. . . .

= e−τ

Over time the particle is hit so often that it ‘forgets’ its previous velocity: the

correlation vanishes for τ ≫ 1

4. Doob’s theorem:

i) The Ornstein-Uhlenbeck process is the only stationary, Gaussian Markov process.

Consider first a general stationary Gaussian process Y (t) (possibly non-Markovian)
after shifting the mean and rescaling Y the distribution P1(y) can be written as

P1(y) =
1√
2π

e−
1
2
y2

The process is stationary

P1|1(y2, t2|y1, t1) ≡ Tτ (y2|y1) = de−
1
2(ay2

1+2by1y2+cy2
2)

Tτ (y2|y1) must be normalized (the particle has to end up somewhere)
∫

Tτ (y2|y1)dy2 = 1

∫

d e−
1
2(ay2

1+2by1y2+cy2
2)dy2 = d e−

1
2
ay2

1

∫

e−
1
2
c(y2+

b
c
y1)

2

dy2 e
1
2

b2

c
y2
1

requiring

a =
b2

c
d =

√
c

2π

Also, the consistency condition (3) requires

1√
2π

e−
1
2
y2
2 =

∫

Tτ (y2|y1)
1√
2π

e−
1
2
y2
1dy1 =

1 = d e
1
2
cy2

2

∫

e−
1
2(ay2

1+2by1y2−y2
1)e−

1
2
y2
1dy1

which leads to
b2 = c(c − 1)

Express remaining unknown c in terms of the correlation function C(τ)

C(τ) =

∫

y2y1Tτ (y2|y1)P1(y1) dy2dy1 =

=
d√
2π

∫

y2y1 e−
1
2(ay2

1+2by1y2−y2
1)e−

1
2
cy2

1dy1dy2
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yielding

c =
1

1 − C(τ)2

This results in

Tτ (y2|y1) =
1

√

2π (1 − C(τ)2)
e
− 1

2
(y2−C(τ)y1)2

1−C(τ)2 (8)

Note:

• Any stationary Gaussian process can be written in the form (8). Different stationary
Gaussian processes differ only in their correlation functions and their means.

Now consider a Markovian stationary Gaussian process.
To make use of the Markov property introduce t3 > t2

C(t3 − t1) =

∫

y3y1Tt3−t1(y3|y1)P1(y1) dy3dy1

and use

Tt3−t1(y3|y1) =

∫

Tt3−t2(y3|y2)Tt2−t1(y2|y1)dy2

C(t3 − t1) =

∫

y3dy3

∫

Tτ ′(y3|y2)Tτ (y2|y1)dy2

∫

y1P1(y1)dy1

Evaluating the triple integral yields (done in maple or mathematica) gives

C(t3 − t1) = C(t3 − t2) · C(t2 − t1)

To solve this functional relation take derivative with respect to t2 which is an arbitrary
intermediate time

0 = −C ′(t3 − t2) · C(t2 − t1) + C(t3 − t2) · C ′(t2 − t1)

implying
C ′(t3 − t2)

C(t3 − t2)
=

C ′(t2 − t1)

C(t2 − t1)

For fixed t2 the left-hand side depends on t3 while the right-hand side depends on t1
⇒ both sides have to be constant,

C ′(τ)

C(τ)
= const.

C(τ) = e−γτ

with γ the correlation time. Thus the process is the Ornstein-Uhlenbeck process.

ii) Any stationary Gaussian process with exponential correlation function is Markovian.

Show first that a Gaussian process is completely determined by its mean 〈Y (t)〉 and its

correlation C(t1, t2).
Consider the generating function of the process, which completely determines the process,

φ{s(t)} = 〈ei
R +∞
−∞ s(t)Y (t)dt〉.
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Allowing t to be a continuous variable the expectation value is given by a path integral,

〈ei
R +∞
−∞ s(t)Y (t)dt〉 =

∫

P{Y (t)}ei
R +∞
−∞ s(t)Y (t)dtdY (t).

Consider first discrete times tj, j = 1..N and consider then the limit N → ∞.
The process is Gaussian

PN(yN , tN ; . . . ; y1, t1) =
1

N e−
1
2

PN
ij=1(yi−ȳi)Aij(yj−ȳj)

where ȳ is the mean, A is the inverse of the correlation matrix, and N is a normalization.
Generating function

φ(s1, . . . , sN) =
1

N

∫

dy1 . . . dyne
i

P

j sjyje−
1
2

PN
ij=1(yi−ȳi)Aij(yj−ȳj)

The multiple Gaussian integrals will give again Gaussians with the mean appearing in the

imaginary term: as illustration, consider the scalar case N = 1
∫

eisy− 1
2
A(y−ȳ)2dy =

∫

e−
1
2
A(y−ȳ− 1

A
is)

2

dy · e+ 1
2
Aȳ 1

A
is+ 1

2
A( is

A )
2

Thus
φ(s1, . . . , sN) ∝ ei

P

j sjαj−
1
2

P

ij siβijsj

In the limit N → ∞ the sums turn into integrals

φ{s(t)} =
1

N ′
ei

R

s(t)α(t)dt− 1
2

R

s(t)β(t,t′)s(t′)dtdt′

where β(t, t′) can be assumed to be symmetric, β(t, t′) = β(t′, t), since the anti-symmetric

part does not contribute to the integral.
Also, since φ{s(t) = 0} = 1 we have N ′=1.

Thus, the Gaussian process is determined completely by the functions α(t) and β(t, t′).

We know

δφ{s(t)}
δs(ta)

∣
∣
∣
∣
s(t)=0

= −i〈Y (ta)〉

δ2φ{s(t)}
δs(ta)δs(tb)

∣
∣
∣
∣
s(t)=0

= −〈Y (ta)Y (tb)〉 = −C(ta, tb) − 〈Y (ta)〉〈Y (tb)〉

Evaluating the derivatives we get

(

iα(ta) −
1

2

(∫

β(ta, t
′)s(t′)dt′ +

∫

s(t)β(t, ta)dt

))

φ{s(t)}
∣
∣
∣
∣
s(t)=0

= −i〈Y (t)〉

iα(t) = −i〈Y (t)〉 (9)

and
(

−α(ta)α(tb) −
1

2
[β(ta, tb) + β(tb, ta)]

)

φ{s(t)}
∣
∣
∣
∣
s(t)=0

= −α(ta)α(tb) − β(ta, tb)
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leading to

β(ta, tb) = −〈Y (ta)〉〈Y (tb)〉 − (−C(ta, tb) − 〈Y (ta)〉〈Y (tb)〉) = C(ta, tb) (10)

Thus, for a Gaussian process the mean and the correlation function are sufficient to de-
termine φ{s(t)} completely. Since φ{s(t)} generates all probability distributions, such a

process is completely determined by its mean and correlation function.

Now: if the process is stationary and the correlation function of the process is exponential,
C(ta − tb) = e−(ta−tb), it has the same correlations as the Ornstein-Uhlenbeck process and
therefore must be identical to the Ornstein-Uhlenbeck process, which is Markovian.

Consequence:

• For a Gaussian stationary process exponential correlations imply that the process is

Markovian.

Note:

• Inserting the exponentially decaying correlation function into (8) is not sufficient to

show that the process is the Ornstein-Uhlenbeck process; we need to show that the
process does not differ from the Ornstein-Uhlenbeck process in higher probability dis-
tribution functions like P1|2(y3, t3|y2, t2; y1, t1). We did this by showing that a Gaussian

process is completely determined by its mean and its correlation.

3.3 Master Equation5

The Chapman-Kolmogorov equation is a nonlinear integral equation for the transition
probability and difficult to solve even in the stationary case

Tτ+τ ′(y3|y1) =

∫

Tτ (y3|y2)Tτ ′(y2|y1)dy2

One can simplify it if the transition probability has a simple form for small durations τ

Tτ (y2|y1) = τ W (y2|y1)
︸ ︷︷ ︸

transition rate

+ (1 − a0(y1) τ)
︸ ︷︷ ︸

probability that y stays at y1

δ(y2 − y1) + o(τ) (11)

(o(τ) are terms that are smaller than O(τ), they could in principle be bigger than O(τ 2), e.g.
O(τ ln τ) )

Note:

• W (y2|y1) is the probability to jump from y1 to y2 during time τ : it is a transition rate

5[28]V.1
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Total probability is conserved

1 =

∫

Tτ (y2|y1)dy2 = 1 − a0(y1)τ + τ

∫

W (y2|y1)dy2

a0(y1) =

∫

W (y2|y1)dy2 (12)

Note:

• the higher the probability to jump away to any location y2 the lower the probability to
stay at y1

• the ansatz (11) implies discontinuous solutions y(t):
even for arbitrarily small time intervals τ the rate W (y2|y1) with which the particle
jumps a finite distance y2 − y1 is finite (and independent of the duration)

• to get a continuous Markov process one needs in general (another Lindeberg condi-

tion)

lim
τ→0

1

τ

∫

|y2−y1|>ǫ

Tτ (y2|y1)dy2 = 0 for any ǫ > 0

here one gets
∫

|y2−y1|>ǫ

W (y2|y1)dy2 = 0 for any ǫ > 0

implying
W (y2|y1) = 0

Now use this expansion in the Chapman-Kolmogorov equation for small τ ′

Tτ+τ ′(y3|y1) =

∫

δ(y3 − y2) (1 − a0(y2)τ
′) Tτ (y2|y1) + τ ′W (y3|y2)Tτ (y2|y1)dy2 =

= (1 − a0(y3)τ
′) Tτ (y3|y1) + τ ′

∫

W (y3|y2)Tτ (y2|y1)dy2

for τ ′ → 0
d

dτ
Tτ (y3|y1) = −a0(y3)Tτ (y3|y1) +

∫

W (y3|y2)Tτ (y2|y1)dy2

replacing a0(y3) by using the conservation of probability (12) we get the master equation

d

dτ
Tτ (y3|y1) =

∫

W (y3|y2)Tτ (y2|y1)
︸ ︷︷ ︸

rate of jumps into y3

− W (y2|y3)Tτ (y3|y1)
︸ ︷︷ ︸

rate of jumps out of y3

dy2 (13)

Notes:

• the master equation describes the increase and decrease of the probability of a state

due to ‘fluxes’ into and out of that state (somewhat similar to a continuity equation)

• a similar master equation can also be derived for the non-stationary case
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• for many systems the transition rates W (y2|y1) can be determined (measured, mod-
eled) more easily than the full transition probabilities Tτ (y2|y1). One can then use the

master equation to determine Tτ (y2|y1).

For systems with discrete states one gets the analogous master equation

d

dτ
Tτ (n3|n1) =

∑

n2

W (n3|n2)Tτ (n2|n1)
︸ ︷︷ ︸

rate of jumps into y3

− W (n2|n3)Tτ (n3|n1)
︸ ︷︷ ︸

rate of jumps out of y3

3.4 Differential Chapman-Kolmogorov Equation6

Consider different limit to include also continuous processes. Focus again on stationary
case.

Assume for all ǫ > 0:

1. jumps: for |y2 − y1| ≥ ǫ

lim
τ→0

1

τ
Tτ (y2|y1) = W (y2|y1)

︸ ︷︷ ︸

jump rate

2. continous component: mean distance moved during small time intervals

lim
τ→0

1

τ

∫

|y2−y1|<ǫ

(y2 − y1) Tτ (y2|y1)dy2 = A(y1) + O(ǫ)

3. continous component: mean spread during small time intervals

lim
τ→0

1

τ

∫

|y2−y1|<ǫ

(y2 − y1)
2 Tτ (y2|y1)dy2 = B(y1) + O(ǫ)

Calculate the evolution of 〈f(y)〉 for a smooth f(y). Since f(y) is arbitrary that expecation
value will generate equation for Tτ (y2|y1)

〈f(y)〉 =

∫

f(y)Tt(y|y1)dy

This average depends on t through Tt(y|y1) and it also depends on the initial value y1

d

dt
〈f(y〉 = lim

∆t→0

1

∆t

∫

f(y3) [Tt+∆t(y3|y1) − Tt(y3|y1)] dy3.

Using the Chapman-Kolmogorov equation we get

d

dt
〈f(y〉 = lim

∆t→0

1

∆t

∫

f(y3)

[∫

T∆t(y3|y2)Tt(y2|y1)dy2 − Tt(y3|y1)

]

dy3.

Make now use of the assumptions for small ∆t:

6[15]3.4
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• there is a contribution from jumps via W (y3|y1)

• smooth part of T∆t(y3|y2) is peaked near |y3 − y2| ≪ 1

Expand f(y3)

f(y3) = f(y2) + (y3 − y2) f ′(y2) +
1

2
(y3 − y2) f ′′(y2) + . . .

Separate integral to use the expansion only in the domain |y3 − y2| < ǫ,

∫

dy3

∫

dy2 . . . =

∫ ∫

|y3−y2|<ǫ

dy3dy2f(y2)T∆t(y3|y2)Tt(y2|y1) +

+

∫ ∫

|y3−y2|<ǫ

dy3dy2

(

(y3 − y2) f ′(y2) +
1

2
(y3 − y2) f ′′(y2)

)

T∆t(y3|y2)Tt(y2|y1) +

+

∫ ∫

|y3−y2|≥ǫ

dy3dy2f(y3)T∆t(y3|y2)Tt(y2|y1) −

−
∫

dy3f(y3)Tt(y3|y1) ·
∫

dy2T∆t(y2|y3)
︸ ︷︷ ︸

=1 inserted

In 2nd integral perform integration over y3 using the definitions for A and B.
In 3rd and 4th integral exchange the dummy integration variables y2 and y3.

The 1st integral removes the range |y3 − y2| < ǫ from the 4th integral

d

dt
〈f(y〉 =

∫ [

f ′(y2)A(y2) +
1

2
f ′′(y2)B(y2)

]

Tt(y2|y1)dy2 +

+ lim
∆t→0

1

∆t

[∫ ∫

|y3−y2|>ǫ

f(y2) (T∆t(y2|y3)Tt(y3|y1) − T∆t(y3|y2)Tt(y2|y1)) dy2dy3

]

Integrate 1st integral by parts

d

dt

∫

f(y2)Tt(y2|y1)dy2 =

∫

f(y2)

[

− ∂

∂y2

(A(y2)Tt(y2|y1)) +
1

2

∂2

∂y2
2

(B(y2)Tt(y2|y1))

]

dy2 +

+

∫

dy2f(y2)

∫

|y3−y2|>ǫ

dy3 (W (y2|y3)Tt(y3|y1) − W (y3|y2)Tt(y2|y1))

Since f(y) is arbitrary the integrands have to be equal and one gets the differential Chapman-

Kolmogorov equation

∂

∂t
Tt(y2|y1) = − ∂

∂y2
(A(y2)Tt(y2|y1)) +

1

2

∂2

∂y2
2

(B(y2)Tt(y2|y1)) + (14)

+

∫

|y3−y2|>ǫ

dy3 (W (y2|y3)Tt(y3|y1) − W (y3|y2)Tt(y2|y1))

Note:

36



• Strictly speaking, the integral is actually the Cauchy principal value, i.e. in the limit
ǫ → 0. The Cauchy principal value need not exist if W (y2|y3) diverges for y2 → y3. We

will assume in the following that there is no such problem and will write simply the
usual integral sign instead.

• For boundary terms to vanish restrict f(y) such that it vanishes outside the domain
of interest.

The differential Chapman-Kolmogorov equation can also be derived in the non-stationary

case,

∂

∂t
P1|1(y2, t2|y1, t1) = − ∂

∂y2

(
A(y2, t2)P1|1(y2, t2|y1, t1)

)
+ (15)

+
1

2

∂2

∂y2
2

(
B(y2, t2)P1|1(y2, t2|y1, t1)

)
+

+

∫

|y3−y2|>ǫ

dy3

(
W (y2|y3, t3)P1|1(y3, t3|y1, t1) − W (y3|y2, t2)P1|1(y2, t2|y1, t1)

)

The integral term corresponds to the master equation (13) and describes jumps. We will
discuss the meaning of the other two terms below.

From this equation for the transition probability one can also obtain an equation for the

probability P (y, t) ≡ P1(y, t) =
∫

P1|1(y, t|y1, 0)P (y1, 0) dy1 by multiplying (14) or (15) by
P (y1, 0) and integrating over y1

∂

∂t
P (y, t) = − ∂

∂y
(A(y, t)P (y, t)) + +

1

2

∂2

∂y2
(B(y, t)P (y, t)) + (16)

+

∫

|y−y3|>ǫ

W (y|y3, t3)P (y3, t3) − W (y3|y, t)P (y, t) dy3

3.4.1 Drift Term

Consider

∂

∂t
Tt(y|y1) = − ∂

∂y
(A(y)Tt(y|y1)) (17)

Introduce y0(t) satisfying

d

dt
y0 = A(y0, t) with y0(0) = y1 (18)

Show that
Tt(y|y1) = δ(y − y0(t))

satisfies the drift equation (17).

Left-hand side

∂

∂t
Tt(y|y1) = − d

dy
δ(y − y0(t)) ·

d

dt
y0 = − d

dy
δ(y − y0(t)) · A(y0, t)
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To evaluate the right-hand-side of (17) use the definition of distributions like the δ-function
or its derivative via integrals over smooth functions7,

∫

f(y)

[
∂

∂y
(A(y)δ(y − y0(t)))

]

dy = −
∫

f ′(y)A(y)δ(y − y0(t))dy =

= −f ′(y0(t))A(y0) =

= −
∫

A(y0)f
′(y)δ(y − y0(t))dy =

=

∫

f(y)

[

A(y0)
d

dy
δ(y − y0(t))

]

dy

Thus

∂

∂y
(A(y)Tt(y|y1)) =

d

dy
(A(y0(t))δ(y − y0(t)))

= A(y0(t))
d

dy
δ(y − y0(t))

Notes:

• the drift equation describes the deterministic motion of a particle with velocity A(y0):
if it initially has the well-defined position y1 it stays on the trajectory given by (18)

• using

P1(y, t) = Tt(y|y1)P1(y1, 0)

(17) yields
∂

∂t
P1(y, t) = − ∂

∂y
(A(y)P1(y, t))

which is the Liouville equation of statistical mechanics for the evolution of the proba-
bility distribution of an ensemble of particles evolving deterministically under (18).

Example: for the spring-mass system (harmonic oscillator) the motion in phase space
(x, v) is given by an ellipse. The motion of the individual harmonic oscillator (marked

by circles) is described by P1(y, t) = δ(y − y0(t)). The evolution of an ensemble of har-
monic oscillators is given by the motion of the marked region.

7use integration by parts with vanishing boundary terms.
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∆t+    t

v

t

x

3.4.2 Diffusion Term

Consider
∂

∂t
Tt(y|y1) =

1

2

∂2

∂y2
(B(y)Tt(y|y1))

Determine evolution of a δ-peak for short times

T0(y|y1) = δ(y − y1)

Initially Tt(y|y1) is so sharply peaked that the derivative of B(y) can be ignored

∂

∂t
Tt(y|y1) =

1

2
B(y)

∂2

∂y2
Tt(y|y1)

Since Tt(y|y1) is sharply peaked at y1 one can initially also ignore the y-dependence of B(y)
and gets then

T∆t(y|y1) =
1√

2πB∆t
e−

1
2

(y−y1)2

B∆t

Again for P1(y, 0) = δ(y − y1) one gets

P1(y, ∆t) =
1√

2πB∆t
e−

1
2

(y−y1)2

B∆t

Notes:

• This term describes diffusion-like spreading of the probability distribution

• the sample paths are continuous:

only transitions with y − y1 = O(∆t
1
2 ) are likely, i.e. y − y1 → 0 for ∆t → 0
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• the sample paths need not be differentiable:

y − y1

∆t
= O(∆t−

1
2 ) → ∞

• Together, the drift term and the diffusion term constitute the Fokker-Planck equation

for Tt(y2|y1)

∂

∂t
Tt(y2|y1) = − ∂

∂y2

(A(y2)Tt(y2|y1)) +
1

2

∂2

∂y2
2

(B(y2)Tt(y2|y1)) (19)

or for P (y, t)

∂

∂t
P (y, t) = − ∂

∂y
(A(y, t)P (y, t)) + +

1

2

∂2

∂y2
(B(y, t)P (y, t)) (20)

4 Fokker-Planck Equation

4.1 The Rayleigh Particle8

Consider a Brownian particle on time scales that may be shorter than the correlation time
for the velocity, but still much longer than the time between individual collisions:

• the velocity v should be Markovian

• the position x need not be Markovian: for short enough times the particle ‘remembers’

its previous position

Describe the velocity of the particle: forces of the collisions are finite therefore the velocity
is continuous → only Fokker-Planck terms contribute.
How do we get the coefficients for the drift and the diffusion?

Macroscopically, averaging over all the collisions, the particle is exposed to drag

d

dt
v = −γv

From the Fokker-Planck equation we get

d

dt
〈V 〉 =

∫

dv v
∂

∂t
Tt(v|v1) =

=

∫

dv

{

−v
∂

∂v
(A(v)Tt(v|v1)) +

1

2

∂2

∂v2
(B(v)Tt(v|v1))

}

=

=
︸︷︷︸

integrate by parts

∫

dv A(v)Tt(v|v1) =

= 〈A(V )〉
8[28, VIII.4]
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Choose
A(v) = −γv

then
〈A(V )〉 = −〈γV 〉 = −γ 〈V 〉 (21)

and the mean satisfies the macroscopic equation.

Note:

• For nonlinear A(v) one has
〈A(v)〉 6= A(〈v〉)

and the mean 〈V 〉 would not necessarily satisfy the macroscopic equation.

This leads to corrections (see Sec.4.2).

The coefficient B(v) describes the diffusive spread of the velocity due to the randomness
of the collisions: ‘noise’. In the steady state one gets a stationary probability distribution

function for V .
In thermodynamic equilibrium the velocity is distributed according to the Maxwell distri-

bution,

Pe(v) =

√

M

2πkT
e−

1
2

Mv2

kT

where M is the mass of the particle, k is the Boltzmann constant, and T is the temperature.
Note the Boltzmann form of the distribution Pe ∝ e−E/kT .
Pe has to satisfy the Fokker-Planck equation (20)

0 = γ
∂

∂v
(vPe) +

1

2

∂2

∂v2
(B(v)Pe(v)) =

= γPe + γv

(

−Mv

kT

)

Pe +
1

2
B
︸︷︷︸

try constant B

[

−M

kT
+

(
Mv

kT

)2
]

Pe

Comparing coefficients generates two conditions

γ =
BM

2kT

Mγ

kT
=

1

2
B

M2

k2T 2

Since they are consistent with each other we have a solution and have determined the noise
term in the Fokker-Planck equation

∂

∂t
P (v, t) = γ

∂

∂v
(vP (v, t)) + γ

kT

M

∂2

∂v2
P (v, t) (22)

and in the analogous equation for Tt(y2|y1).

Notes:
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• B ≡
〈
(∆v)2〉 /∆t gives the strength of the fluctuations. It is related to the drag, which

represents the dissipation:9

〈
(∆v)2〉

2∆t
︸ ︷︷ ︸

fluctuations

= B = γ
kT

M
︸︷︷︸

dissipation

both Einstein-like relations combined

This illustrates that fluctuations and dissipation are due to the same mechanism: col-

lisions with other particles.
In statistical mechanics the fluctuation-dissipation theorem gives a quite general re-

lation between fluctuations (correlations) and dissipation (response functions) in the
linear regime near equilibrium [28, p.89].

To determine the moment 〈X(t)X(t′)〉 we need the transition probability Tt(v|v1) in addi-

tion to P (v, t). The Fokker-Planck equation for the transition probability is solved by the
transition probability of the Ornstein-Uhlenbeck process

Tt(v|v1) =

√

M

2πkT (1 − C(t)2)
e
− 1

2
M(v−v1C(t))2

kT(1−C(t)2)

with
C(t) = e−γt

and

P1(v) =

√

M

2πkT
e−

1
2

Mv2

kT

Consider now the position x(t) of the particle

X(t) =

∫ t

0

V (t′)dt′

where we assume X(0) = 0. V (t) is a Gaussian process. Since the sum of Gaussian pro-
cesses is again a Gaussian process, X(t) is also a Gaussian process.

We want 〈X(t)〉 and 〈X(t1)X(t2)〉 for a particle that starts at a fixed position x = 0. The aver-
age is over the different realizations of the random process V , i.e. over different trajectories
that all start at the same location.

Since 〈V (t)〉 = 0 we have also

〈X(t)〉 =

∫ t

0

〈V (t′)〉 dt′ = 0

and

〈X(t1)X(t2)〉 =

∫ t1

0

dt′
∫ t2

0

dt′′ 〈V (t′)V (t′′)〉

with 〈V (t)V (t + τ)〉 = 〈V (t)2〉 e−γτ = 〈V 2〉 e−γt.

9Einstein derived these relations for the position.
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Thus

〈X(t1)X(t2)〉 =
〈
V 2
〉
∫ t1

0

dt′
∫ t2

0

dt′′e−γ|t′−t′′|

Without loss of generality assume t2 ≥ t1

〈X(t1)X(t2)〉 = 〈V 2〉
∫ t1

0

dt′
∫ t′

0

dt′′e−γ(t′−t′′)

︸ ︷︷ ︸
1
γ (1−e−γt′)

+

∫ t1

0

dt′
∫ t2

t′
dt′′e−γ(t′′−t′)

︸ ︷︷ ︸

− 1
γ (e−γ(t2−t′)−1)

=

=
〈V 2〉

γ

{

t1 +
1

γ

(
e−γt1 − 1

)
+ t1 −

1

γ

(
e−γ(t2−t1) − e−γt2

)
}

=

=
〈V 2〉
γ2

{
2γt1 − 1 + e−γt1 + e−γt2 − e−γ(t2−t1)

}

Thus
〈
X(t)2

〉
=

2 〈V 2〉
γ2

{
γt + e−γt − 1

}
→
{ 〈V 2〉 t2 + . . . for γt ≪ 1

2
γ
〈V 2〉 t + . . . for γt ≫ 1

Notes:

• the process is not stationary: the initial condition was fixed at t = 0 and 〈X2(t)〉 gives
the spread of the particle after that time.

• for γt ≪ 1 the velocity is still correlated 〈V (0)V (t)〉 = O(1):

– inertia is relevant and particle moves almost ballistically: distance covered is
linear in the time

– 〈X(t)2〉 is independent of γ, it is only determined by the velocity scale 〈V 2〉
– X is non-Markovian

• for γt ≫ 1 the velocity is uncorrelated 〈V (0)V (t)〉 → 0:

– particle undergoes random walk, i.e. Wiener process

– for γt1, γt2, γ(t2 − t1) ≫ 1 one gets

〈X(t1)X(t2)〉 =
2

γ

〈
V 2
〉
min(t1, t2) (23)

(the min(t1, t2) arises because we assumed t1 < t2 in the derivation).

– Einstein relation for the position

〈
X(t)2

〉
=

2kT

γM
t
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4.2 The Macroscopic Equation10

In our discussion of the Rayleigh particle we had set in (21)

〈A(V )〉 = A(〈V 〉)

in order to relate the macroscopic equation to the Fokker-Planck equation.
In general this is not valid, instead one has for solutions of the Fokker-Planck equation

d

dt
〈V 〉 = 〈A(V )〉

Consider the corrections for weak fluctuations → only velocities close to 〈V 〉 are relevant.

Expand

A(V ) = A(〈V 〉) + (V − 〈V 〉) A′ (〈V 〉) +
1

2
(V − 〈V 〉)2 A′′ (〈V 〉) + . . .

then

〈A(V )〉 = A(〈V 〉) +
1

2

(〈
V 2
〉
− 〈V 〉2

)2
A′′ (〈V 〉) + . . .

d

dt
〈V 〉 = A(〈V 〉) +

1

2
σ2A′′ (〈V 〉) + . . .

This is not a closed equation for 〈V 〉, it depends on σ2 and higher moments of V
Need at least an evolution equation for σ2

d

dt

〈
V 2
〉

=

∫

−v2 ∂

∂v
(A(v)Tt(v|v1)) +

1

2
v2 ∂2

∂v2
(B(v)Tt(v|v1)) dv =

=
︸︷︷︸

i.b.p.

2 〈V A(V )〉 + 〈B(V )〉

Thus
d

dt
σ2 = 〈B(V )〉 + 2 〈V A(V )〉 − 2 〈V 〉 〈A(V )〉 = 〈B(V )〉 + 2 〈(V − 〈V 〉) A(V )〉

Expand again

〈(V − 〈V 〉) A(〈V 〉 + V − 〈V 〉)〉 = A′ (〈V 〉)
〈
(V − 〈V 〉)2〉

︸ ︷︷ ︸

σ2

+
1

2
A′′ (〈V 〉)

〈
(V − 〈V 〉)3〉+ . . .

︸ ︷︷ ︸

higher moments

Small fluctuations →B is small, no need to expand it.

Thus, ignoring contributions from higher moments one gets

d

dt
σ2 = B(〈V 〉) + 2σ2A′ (〈V 〉)

d

dt
〈V 〉 = A(〈V 〉) +

1

2
σ2A′′ (〈V 〉)

Notes:

10[28, V.8]
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• for the single macroscopic equation for 〈V 〉 to be valid one needs

∣
∣
∣
∣

σ2A′′

A

∣
∣
∣
∣
≪ 1

with σ2 = O(B/A’) one gets

B ≪
∣
∣
∣
∣

AA′

A′′

∣
∣
∣
∣

i.e. the curvature of A needs to be small, only small deviation from linear dependence

or equivalently, the noise strength should be small enough for v to remain in the linear
regime

• if the deterministic force A(V ) is nonlinear, fluctuations do modify the mean velocity

〈V 〉 through A′′: the change in the force for positive and for negative fluctuations away
from the mean do in general not compensate each other

• to this order the fluctuations are symmetric (V -dependence of B not important) and
the term (V − 〈V 〉)A′ is averaged away

V

A(V)

<V>

• for σ2 to saturate one needs A′(〈V 〉) < 0: positive dissipation (drag)
for A′(〈V 〉) > 0 the system is unstable for this mean value of V

• σ2 and 〈V 〉 relax on the same time scale A′ (〈V 〉) (linearize the 〈V 〉-equation) → no
separation of time scales and no decoupling of the two equations if the fluctuations
are to be kept at all.

4.3 Brownian Motion in an External Potential11

Consider the motion of a Brownian particle in potential wells and across potential barriers.

The particle need not be a true particle, it can be thought of as a variable characterizing
other random processes like chemical reactions (barrier = activation energy) etc.

11[29, can be downloaded from the class web site]
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U(x)

x
For a true Brownian particle one would have to consider a Rayleigh particle in an external
potential
Fokker-Planck equation for the velocity V alone is not sufficient, since the force depends on

the position X
the deterministic equations are given by

dx

dt
= v

dv

dt
=

1

M
F (x, t)

where M is the mass of the particle.

→ both X and V are random variables and one gets a bivariate Fokker-Planck equation for
Tt(X, V |X1, V1), which is a 3-dimensional PDE (Kramers’ equation).

We would like to simplify the situation to P (x, t): need A(x) and therefore we need

dx

dt
= f(x, t)

4.3.1 Markov Approximation for X(t) and Weak Noise

To simplify matters: consider sufficiently long time scales such that the Markov approxi-
mation for X is sufficient.
For constant force F the situation would be just like that for the free Rayleigh particle:

• γt . 1: inertia is relevant, X is not Markovian

• γt ≫ 1: inertia irrelevant, v = F/γ, and the deterministic equation for x contains only
x

dx

dt
= v =

F (x)

γ

X is Markovian

Non-constant force:
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• Time-dependent F (t):

for adiabatic approximation v(t) = F (t)
γ

to be valid need that the velocity relaxes faster

than the force changes

γ ≫ 1

F

dF

dt

• Space-dependent force F (x):
as the particle moves it experiences a time-dependent force

dF

dt
=

dF

dx
〈V 〉

v

F(x)

x

acceleration

thus need

γ ≫ 〈V 〉 1

F

dF

dx

Assume: F (x) varies slowly in space. Then can use adiabatic approximation

v(x) =
F (x)

γ
= −1

γ

dU(x)

dx

Macroscopic equation for the position

−A(x) =
dx

dt
= v = −1

γ

dU

dx
(24)

Assuming B(x) = b = const. we get then the Fokker-Planck equation for P (x, t)

∂P

∂t
=

1

γ

∂

∂x
(U ′(x)P ) +

1

2
b

∂2

∂x2
P

Notes:

• The macroscopic equation (24) is not restricted to describing a Brownian particle. It

describes many dissipative (overdamped) systems: x could represent the magnetiza-
tion of a magnet, the density of a liquid, the concentration of a mixture, a variable

characterizing a chemical reaction.

• Fluctuations are in particular interesting near phase transitions (where a state be-
comes linearly unstable and fluctuations are amplified and in multi-stable systems

where fluctuations allow transitions between the different linearly stable states (see
Sec.4.3.3)
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Consider again weak noise: b ≪ 1

Expect: the particle follows mostly the macroscopic trajectory

dx

dt
= −1

γ

dU

dx

Go into a frame moving along with the macroscopic motion x = φ(t) and rewrite the proba-

bility
P (x, t) = P (ξ(x, t), t)

with

ξ(x, t) =
1√
b

(x − φ(t)) i.e. x = φ(t) +
√

b ξ

Note:

• ξ is a stretched variable, i.e. expect x − φ(t) = O(
√

b) and P is sharply peaked around
x = φ(t). With this scaling ξ = O(1).

∂

∂t
P → ∂

∂t
P − 1√

b

dφ

dt

∂

∂ξ
P

∂

∂x
P → 1√

b

∂

∂ξ
P

In this frame the potential becomes explicitly time-dependent:

U(x) = U(φ(t) +
√

bξ) =

= U(φ(t)) +
√

bξU ′(φ(t)) +
1

2
bξ2U ′′(φ(t)) + . . .

Insert into Fokker-Planck equation

∂

∂t
P − 1√

b

dφ

dt

∂

∂ξ
P = +

1

γ

1

b

∂

∂ξ

((
∂

∂ξ
U

)

P

)

+
1

2

∂2

∂ξ2
P

Expect that an equation for the fluctuations arises at O(1) because the diffusion term is of
that order.
Expand in the drift term

∂

∂ξ

((
∂

∂ξ
U

)

P

)

=
∂

∂ξ

(√
bU ′(φ)P + bξU ′′(φ)P + . . .

)

=

=
√

bU ′(φ)
∂

∂ξ
P + bU ′′(φ)

∂

∂ξ
(ξP ) + . . .

Collect orders in b

• O(b−1/2):
dφ

dt
= −1

γ
U ′(φ)

recovering the macroscopic equation of motion
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• O(b0):
∂

∂t
P =

1

γ
U ′′(φ)

∂

∂ξ
(ξP ) +

1

2

∂2

∂ξ2
P

Determine mean and variance (using P (ξ) → 0 for ξ → ±∞)

d

dt
〈ξ〉 =

1

γ
U ′′(φ)

∫

ξ
∂

∂ξ
(ξP )dξ +

1

2

∫

ξ
∂2

∂ξ2
Pdξ =

︸︷︷︸

i.b.p.

−1

γ
U ′′(φ) 〈ξ〉

Analogously for 〈ξ2〉, yielding

d

dt
〈ξ〉 = −1

γ
U ′′(φ) 〈ξ〉

d

dt

〈
ξ2
〉

= −2

γ
U ′′(φ)

〈
ξ2
〉

+ 1

Using integrating factors one obtains the solutions as

〈ξ〉t = 〈ξ〉t=0 e−
1
γ

R t

0
U ′′(φ(t′))dt′

〈
ξ2
〉

t
=

〈
ξ2
〉

t=0
e−

2
γ

R t
0 U ′′(φ(t′))dt′ +

∫ t

0

e−
2
γ

R t
t′ U ′′(φ(t′′))dt′′dt′

Notes:

• all along the macroscopic trajectory x = φ(t) to leading order in b (b0) the potential in
the Fokker-Planck equation is approximated by a quadratic (i.e. a linear force)

• since the drift term A(ξ) of the lowest order (b0) Fokker-Planck equation is linear, i.e.
A(ξ) = 1

γ
U ′′(φ)ξ, P is a Gaussian centered around the macroscopic path

P (x, t|x1, t1) =
1

√
2π 〈ξ2〉t

e
− 1

2
(x−φ(t))2

〈ξ2〉t

• for the full process P need not be Gaussian since in general the potential will not be
quadratic

• for U ′′(φ) > 0:

– the deviations from the macroscopic trajectory go to zero in the mean

〈ξ〉t → 0 for t → ∞

thus, deviations from the macroscopic trajectory decrease with time.
In particular, near a stable equilibrium the particle approaches the equilibrium

in the mean.
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– 〈ξ2〉t is bounded: the spreading by the fluctuations is balanced by the convergence
of the trajectories. In particular, near a stable equilibrium

〈
ξ2
〉

t
→ γ

2U ′′(φeq)

0φ( )+<ξ>t

ttφ( )+<ξ>
φ( )t

t

x

• For U ′′(φ) < 0: trajectory unstable, fluctuations grow without bound (until they reach

a stable regime), trajectories of different realizations of the fluctuations diverge from
each other.

t

x

4.3.2 Fluctuations in a Steady State

If the system approaches a stable steady state the distribution P can be given exactly
without assuming small deviations from the steady state.

Fokker-Planck equation
∂P

∂t
=

1

γ

∂

∂x
(U ′(x)P ) +

1

2
b

∂2

∂x2
P

For steady state ∂tP = 0 we can integrate once to get

1

2
γb

∂

∂x
P = −U ′(x)P + C

Assume the particle is confined to a finite domain:

U(x) → ∞ and P (x) → 0 for |x| → ∞
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If P (x) decreases fast enough so that U ′(x)P → 0 one gets C = 0.

P (x) =
1

N
e−

2U(x)
bγ with N =

∫

P (x)dx

Notes:

• the speed of the decay of P (x) for |x| → ∞ is consistent with the assumption.

• In thermal equilibrium

P (x) =
1

N
e−

U(x)
kT

therefore
1

2
bγ = kT (25)

U(x)
P(x)

x

4.3.3 Bistable Systems: Escape from a Metastable State

Consider a particle in a potential with 2 minima

xxcxa xm

U(x)

Among the situations such a potential can model are
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• Chemical reactions, e.g.
A + B ⇄ C

x is a reaction coordinate, it measures the progress of the reaction, it could be related
to the distance between the reacting molecules

x = xa → A and B are separate

x = xc → A and B are bound together forming C

In order to form the cound state AB ≡ C typically an energy barrier has to be over-

come
This model is very primitive:

– only single reaction coordinate (in addition to position, the molecule orientation,
conformation or even simply bending of the molecule could be relevant, etc.)

– molecule velocities are ignored

– ...

• 1st-order phase transition

x is given by an order parameter. E.g., in liquid-gas transition x related to density of
the fluid

x = xa → liquid state

x = xc → gaseous state

when the temperature changes the shape of the potential changes

γ

x

γ

x

γ

x

γ

x

U(x)

Notes:

• xa and xc are (linearly) stable states:

– in the absence of fluctuations they persist forever
e.g., liquid state can persist even above the boiling point

– with fluctuations the state with higher energy is only metastable: there is a finite
probability that fluctuations will push the system across that energy barrier
life-time of the metastable state depends on the strength of the fluctuations rela-

tive to the height of the barrier:
nucleation seeds (dust, boiling stones) lower the energy barrier and can trigger
the transition

Goal: determine the mean first passage time τ(xc|xa): average of the time tac the particle
takes to leave the metastable well.

Note:
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• tac depends also on the initial position x1 inside the first well and the final position x2

in the second well.

→ for the definition to make sense the average 〈tac〉 must be much longer than the
time for the particle to traverse either well

→ the barrier must be sufficiently high

Consider an intermediate position

x1 →
︸︷︷︸

∆t

x′ → x2

• in time interval ∆t system goes from x1 (which does not have to be inside the well

with minimum xa to some x′)

• from x′ it goes on to x2 somewhere in the well with minimum xb: this takes on average

τ(x2|x′)

• average time given by average over all allowed positions x′ weighted by the probability
to get their from x1

For x1 < x2 consider the mean first passage time from x1 to x2 (which will eventually be

assumed to be xa and xc, respectively)

τ(x2|x1) = ∆t
︸︷︷︸

time to get to x′

+

∫ x2

−∞
︸︷︷︸

first passage time

τ(x2|x′) T∆t(x
′|x1)dx′

Note:

• for first passage time the intermediate state x′ is not allowed to be beyond the final

state x2, that defines the upper limit for the x′-integral

T∆t(x
′|x1) satisfies the Fokker-Planck equation

∂

∂t
Tt(x

′|x1) = − ∂

∂x′
(A(x′)Tt(x

′|x1)) +
1

2

∂2

∂x′2
(B(x′)Tt(x

′|x1))

For small ∆t the solution T∆t(x
′|x1) that starts at x1, i.e. with initial condition δ(x′ − x1), is

given by

T (x′|x1) = δ(x′ − x1) + ∆t

{

− ∂

∂x′
(A(x′)δ(x′ − x1)) +

1

2

∂2

∂x′2
(B(x′)δ(x′ − x1))

}

Insert that into the integral

τ(x2|x1) = ∆t + τ(x2|x1) +

+∆t

∫ x2

−∞

τ(x2|x′)

[

− ∂

∂x′
(A(x′)δ(x′ − x1)) +

1

2

∂2

∂x′2
(B(x′)δ(x′ − x1))

]

dx′
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Integrate by parts (boundary terms vanish since τ(x2|x2) = 0 and δ-function localized at
x1 > −∞).

τ(x2|x1) = ∆t + τ(x2|x1) + ∆t

{

A(x1)
∂

∂x1
τ(x2|x1) +

1

2
B(x1)

∂2

∂x2
1

τ(x2|x1)

}

This yields the Dynkin equation

A(x1)
∂

∂x1
τ(x2|x1) +

1

2
B(x1)

∂2

∂x2
1

τ(x2|x1) = −1 (26)

with boundary condition

τ(x2|x2) = 0

Notes:

• The Dynkin equation involves the adjoint of the Fokker-Planck operator (cf. integra-
tion by parts): the derivatives are acting on the second argument of τ

• The second boundary condition has to be chosen such that the boundary terms in the
integration by parts vanish.

Solve using integrating factor for A(x) = −U ′(x)/γ and B(x) = b:
introduce v(x1) = ∂

∂x1
τ(x2|x1)

v′ − 2

bγ
U ′v = −2

b

d

dx1

(

e−
2
bγ

Uv
)

= −2

b
e−

2
bγ

U

Then

v(x1) = e
2
bγ

U(x1)

{∫ x1

−∞

−2

b
e−

2
bγ

U(x′)dx′ + C

}

Assume that for x → −∞ the potential diverges, U(x → −∞) → ∞, then for v(x1) to remain

finite for x1 → −∞ one needs to have C = 012.

Thus

τ(x2|x1) =

∫ x1

x̂

e
2

bγ
U(x′)

∫ x′

−∞

−2

b
e−

2
bγ

U(x′′)dx′′

With the choice x̂ = x2 the boundary condition τ(x2|x2) = 0 is satisfied13 and

τ(x2|x1) =
2

b

∫ x2

x1

e
2
bγ

U(x′)

{
∫ x′

−∞

e−
2

bγ
U(x′′)dx′′

}

dx′

For weak noise, b ≪ 1, the exponentials are sharply peaked:

12This amounts to a reflecting boundary condition for x → −∞
13This amounts to an absorbing boundary condition at x = x2.
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x xx’a b

exp(−2U(x’))/b )

exp(2U(x’))/b )γ

γ

The x′′-integral has sizeable contributions only for x′′ near xa and near xc.

The x′-integrand is the product of e
2
bγ

U(x′) and the area under the solid curve from x = −∞
to x′.

⇒ it has sizeable contributions only if x′ is close to the maximum xm of the barrier.

Approximate U(x) in the two exponentials

U(x′) = U(xm) +
1

2
U ′′(xm) (x′ − xm)

2
for x′ near xm

U(x′′) = U(xa) +
1

2
U ′′(xa) (x′′ − xa)

2
for x′′ near xa

Note:

• U ′′(xa) > 0 while U ′′(xm) < 0

For x1 close to xa one gets then

τ(x2|x1) =
2

b
e

2
bγ

(U(xm)−U(xa))

∫ x2

x1

e
1

bγ
U ′′(xm)(x′−xm)2

{
∫ x′

−∞

e−
1

bγ
U”(xa)(x′′−xa)2dx′′

}

dx′

Away from xm the Gaussian involving x′ decays very rapidly: can replace x1,2 by xm±δ with

δ = O(
√

b).

Since now x′ is restricted to x′ > xm − δ the x′′-integral can be extended to +∞ since
∫∞

xm−δ
e−

1
bγ

U ′(xa)(x′′−xa)2dx′′ is very small.

τ(x2|x1) =
2

b
e

2
bγ

(U(xm)−U(xa))

(∫ xm+δ

xm−δ

e
1
bγ

U ′′(xm)(x′−xm)2dx′

)( ∫ +∞

−∞

e−
1
bγ

U”(xa)(x′′−xa)2dx′′

)

Can extend now the limits of the x′-integral to ±∞ and evaluate the integrals

τ(x2|x1) =
2πbγ

b

1
√

−U ′′(xm)U ′′(xa)
e

2
bγ

(U(xm)−U(xa)) (27)

One often introduces

ω2
a = U ′′(xa) ω2

m = −U ′′(xm) W = U(xm) − U(xa)
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with the noise in thermal equilibrium given by 1
2
bγ = kT (cf. (25))

1

τ(x2|x1)
=

1

2πγ
ω1ωme−

W
kT (28)

Notes:

• 1
τ(x2|x1)

is an escape rate or a reaction rate

• e−
W
kT is the Arrhenius factor for activated reactions

• ωa characterizes the frequency of oscillations in the initial well (if there were no damp-

ing). It set the frequency with which the barrier crossing is ‘attempted’: ωa small (wide
potential well) ⇒ few attempts at crossing and small escape rate

• ωm characterizes the width of the barrier: ωm small ⇒flat top ⇒ hard to get across

barrier ⇒ small escape rate

4.3.4 First Passage Times: Second Approach14

To determine higher moments of the first-passage-time another approach is useful.

Consider the probability G(x, t) of a particle to be within the interval [a, b] at time t if it was
released at x ∈ [a, b] at time t = 0

G(x, t) =

∫ b

a

P1|1(x
′, t|x, 0) dx′

Assume the particle leaves the interval at a time T ,

Prob(T ≥ t) = G(x, t)

We seek to derive a differential equation for G(x, t): want to have t and x both on the

conditional side of P1|1. If the system is translation invariant in time we have

P1|1(x
′, t|x, 0) = P1|1(x

′, 0|x,−t)

and
∂

∂t
P1|1(x

′, t|x, 0) =
∂

∂t
P1|1(x

′, 0|x,−t) (29)

In terms of the initial conditions P1|1(x
′, 0|x, t) satisfies the backward Fokker-Planck equa-

tion
∂

∂t
P1|1(x

′, 0|x, t) = −A(x)
∂

∂x
P1|1(x

′, 0|x, t) − 1

2
B(x)

∂2

∂x2
P1|1(x

′, 0|x, t)

Thus, because of the minus-sign in (29) one gets

∂

∂t
P1|1(x

′, t|x, 0) = A(x)
∂

∂x
P1|1(x

′, 0|x, t) +
1

2
B(x)

∂2

∂x2
P1|1(x

′, 0|x, t)

14[15, 5.2.7]
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Integrating over the first argument of P1|1(x
′, t|x, 0) we get an equation for the survival

probability
∂

∂t
G(x, t) = A(x)

∂

∂x
G(x, t) +

1

2
B(x)

∂2

∂x2
G(x, t) (30)

Initially the particle is released at x

P1|1(x
′, 0|x, 0) = δ(x′ − x)

yielding the initial condition for G(x, t)

G(x, 0) =

{

1 x ∈ [a, b]

0 x /∈ [a, b]

Boundary conditions at x = xB with xB = a or xB = b:

• absorbing boundary

Prob(T ≥ t) = 0 for x = xB

G(xB, t) = 0

• reflecting boundary
it does not matter whether the particle is released at xB − δx or at xB + δx

∂

∂x
G(x, t) = 0 at x = xB

We would like to get moments of the mean first passage time. More generally

〈f(T )〉 =

∫ ∞

0

f(t)Pesc(t)dt

where Pesc(t)dt is the probability that the particle leaves the interval during the interval
[t, t + dt].
Pesc(t)dt is the amount by which the probability for the particle to be inside the interval
decreases during dt

P (t) dt = −dG(x, t) = − ∂

∂t
G(x, t) dt

Thus,

〈f(T )〉 = −
∫ ∞

0

f(t)
∂

∂t
G(x, t) dt

and

τn(x) ≡ 〈T n〉 = −
∫ ∞

0

tn
∂

∂t
G(x, t) dt =

= n

∫ ∞

0

tn−1G(x, t) dt

The boundary terms vanish since the particle is guaranteed to leave the interval eventually

(unless both boundaries are reflecting, of course).
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Obtain a differential equation for τn by multiplying (30) by tn−1 and integrating it over time

∫ ∞

0

tn−1 ∂

∂t
G(x, t)dt = A(x)

∂

∂x

∫ ∞

0

tn−1G(x, t)dt +
1

2
B(x)

∂2

∂x2

∫ ∞

0

tn−1G(x, t)dt

Using ∫ ∞

0

tn−1 ∂

∂t
G(x, t)dt = −τn−1(x)

we get

−nτn−1(x) = A(x)
∂

∂x
τn(x) +

1

2
B(x)

∂2

∂x2
τn(x, ) (31)

For n = 1 this reduces to

−1 = A(x)
∂

∂x
τ1(x) +

1

2
B(x)

∂2

∂x2
τ1(x) (32)

which is again the Dynkin equation (26).

Example:

A(x) = −U ′(x)/γ and B(x) = b with an absorbing boundary at x = 0 and a reflecting
boundary at x = −L

Introducing v(x) = ∂
∂x

τn(x) we get

v′ − 2

bγ
U ′v = −2

b
nτn−1

d

dx

(

e−
2

bγ
Uv
)

= −2

b
nτn−1e

− 2
bγ

U

Then

v(x) = e
2
bγ

U(x)

{∫ x

−L

−2

b
nτn−1e

− 2
bγ

U(x′)dx′ + C

}

The reflecting boundary condition requires that v′(x) = 0 for x = −L ⇒C = 0.

Thus

τn(x) =

∫ x

x̂

e
2
bγ

U(x′)

∫ x′

−L

−2

b
nτn−1e

− 2
bγ

U(x′′)dx′′

To satisfy the absorbing boundary condition at x = 0 we need x̂ = 0

τn(x) =
2

b
n

∫ 0

x

e
2

bγ
U(x′)

{
∫ x′

−L

τn−1e
− 2

bγ
U(x′′)dx′′

}

dx′

Note:

• for two absorbing boundaries the solution can also be given in terms of similar inte-
grals, but it is much more complicated [15, 5.2.7]
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4.4 The Backward Fokker-Planck Equation

The backward Fokker-Planck equation describes the dependence of P (y2, t2|y1, t1) on the
initial condition (y1,t1).

To invoke again the Chapman-Kolmogorov equation consider three times t1 −∆t, t1, and t2,
this time the small increment is in the initial time,

P (t2, y2|t1 − ∆t, y1) =

∫

P (t2, y2|t1, z) P (t1, z|t1 − ∆t, y1) dz

For simplicity assume this process does not include jump components, i.e. P (t2, y2|t1, y1) is
smooth. Therefore

during the small interval [t1 − ∆t, t1] the particle does not get very far and z is near y1:
expand in z − y1

P (t2, y2|t1, z) = P (t2, y2|t1, y1) + (z − y1)
∂

∂y1
P (t2, y2|t1, y1) +

+
1

2
(z − y1)

2 ∂2

∂y2
1

P (t2, y2|t1, y1) + O
(
(z − y1)

3)

Insert this expansion for small ∆t

P (t2, y2|t1 − ∆t, y1) = P (t2, y2|t1, y1)

∫

P (t1, z|t1 − ∆t, y1) dz
︸ ︷︷ ︸

=1

+

+
∂

∂y1
P (t2, y2|t1, y1)

∫

(z − y1)P (t1, z|t1 − ∆t, y1) dz
︸ ︷︷ ︸

→∆tA(y1,t1−∆t)

+
1

2

∂2

∂y2
1

P (t2, y2|t1, y1)

∫

(z − y1)
2 P (t1, z|t1 − ∆t, y1) dz

︸ ︷︷ ︸

→∆tB(y1,t1−∆t)

+

+O
(∫

(z − y1)
3 P (t1, z|t1 − ∆t, y1) dz

)

Thus, assuming P , A, and B are smooth in t we get

1

∆t
(P (t2, y2|t1, y1) − P (t2, y2|t1 − ∆t, y1)) →

∂

∂t1
P (t2, y2|t1, y1)

and
∂

∂t1
P (t2, y2|t1, y1) = −A(y1, t1)

∂

∂y1
P (t2, y2|t1, y1) −

1

2
B(y1, t1)

∂2

∂y2
1

P (t2, y2|t1, y1)

Notes:

• this backward Fokker-Planck equation describes the dependence of the transition
probability on the initial conditions
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• while in the forward Fokker-Planck equation the drift and diffusion terms are inside
the derivative, these terms are outside the derivative in the backward Fokker-Planck

equation

• to be well posed, the backward Fokker-Planck equation needs a final condition rather
than an initial condition.

• for processes that also exhibit jumps one can derive a backward derivative Chapman-

Kolmogorov equation (cf. ch.3.6 in [15])

5 Langevin Equation15

So far we dealt with equations for the probability distributions or transition probabilities
(Chapman-Kolmogorov, Fokker-Planck).

Consider now an equation directly for the stochastic variable itself

Approach:

1. start with the macroscopic equation of motion

2. add “suitable” noise term

3. adjust noise strength “suitably”

Consider the Langevin equation for Brownian motion

dV

dt
= −γV + L(t)

where L(t) represents the effect of the many molecules hitting the Brownian particle:

• the average is meant to be contained in the macroscopic equation

〈L(t)〉 = 0

• the kicks by the molecules are very brief and they are uncorrelated for different times

〈L(t)L(t′)〉 = Γδ(t − t′)

we expect that we can determine the noise strength Γ from a comparison with the

distribution in thermondynamic equilibrium

• higher moments of L(t):
Assume the process is Gaussian, i.e. all higher cumulants (cf. (1)) vanish.

For a Gaussian process we know (cf. (9,10))

φ({s(t)}) = exp

{

i

∫

s(t) 〈L(t)〉 dt − 1

2

∫ ∫

s(t) (〈L(t)L(t′)〉 − 〈L(t)〉 〈L(t′)〉) s(t′)dt dt
′

}

15[28], IX.1-3
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thus

ln (φ({s(t})) = i

∫

s(t) 〈L(t)〉 dt − 1

2

∫ ∫

s(t) 〈〈L(t)L(t′)〉〉 s(t′)dt dt′

which does not contain any contributions higher than quadratic in s(t). Thus, all

higher cumulants vanish.

To obtain 〈V (t)〉 and 〈V (t)V (t′)〉 determine explicit solution of the Langevin equation

V (t) = V0e
−γt +

∫ t

0

e−γ(t−t′)L(t′)dt′

Here V (t) is still a stochastic process. To obtain this equation one could consider a specific

realization of the noise term L(t) and determine the solution v(t) for that realization that
satisfies the initial condition v0 . That amounts to a realization of the stochastic process

V (t).

Mean:

〈V (t)〉 = v0e
−γt +

∫ t

0

e−γ(t−t′)〈L(t′)〉dt′ = v0e
−γt (33)

Second moment (assuming t2 ≥ t1):

〈V (t1)V (t2)〉 = v2
0e

−γ(t1+t2) + v0e
−γt1

∫ t2

0

e−γ(t−t′)〈L(t′)〉dt′ + v0e
−γt2

∫ t1

0

e−γ(t−t′)〈L(t′)〉dt′

+

∫ t1

0

∫ t2

0

e−γ(t1−t′)e−γ(t2−t”)〈L(t′)L(t”)〉dt′dt”

= v2
0e

−γ(t1+t2) + Γe−γ(t1+t2)

∫ t1

0

dt′

{
∫ t′+ǫ

0

eγ(t′+t”)δ(t′ − t”)dt” +

∫ t2

t′+ǫ

eγ(t′+t”)δ(t′ − t”)dt”

}

= v2
0e

−γ(t1+t2) + Γe−γ(t1+t2)

∫ t1

0

dt′e2γt′

= v2
0e

−γ(t1+t2) +
Γ

2γ

(
e−γ(t1+t2)

(
e2γt1 − 1

))

〈V (t1)V (t2)〉 =

(

v2
0 −

Γ

2γ

)

e−γ(t1+t2) +
Γ

2γ
e−γ(t2−t1) (34)

To compare with the equilibrium solution: t1,2 → ∞ with t2 − t1 = τ

〈V (t1)V (t2)〉 →
Γ

2γ
e−γτ (35)

In equilibrium one has
1

2
M〈V 2〉 =

1

2
kT

Using (35) one obtains

〈V (t)2〉 =
Γ

2γ
=

kT

M
(36)

and
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〈V (t1)V (t2)〉 =

(

v2
0 −

kT

M

)

e−γ(t1+t2) +
kT

M
e−γ(t2−t1) (37)

Note:

• (36) is again a fluctuation-dissipation relation relating the fluctuations (Γ) with the
dissipation γ.

• it would be very difficult to determine the noise strength directly from the molecular
interactions ⇒ the success of the Langevin approach relies partially on this compari-

son with equilibrium statistical mechanics.

Example:

Noise in RC-circuit:

C RQ

I

macroscopic equation (Kirchhoff ’s laws):

dQ

dt
= −I = −U

R
=
︸︷︷︸

C= Q
U

− Q

RC

the macroscopic equation contains dissipation ⇒ there will also be fluctuations

dQ

dt
= − 1

RC
Q + L(t)

Noise strength: in thermal equilibrium the energy stored in the capacitor is 1
2
kT

The work done by bringing the charge dQ onto the capacitor with voltage U = E · d is

dW = EdQ · d = UdQ

The energy stored is

W =

∫

UdQ =

∫
Q

C
dQ =

1

2

Q2

C
〈

1

2

Q2

C

〉

=
1

2C

〈
Q2
〉

=
1

2
kT
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From the Langevin equation we obtain (cf. (37))

〈
Q2
〉

=
Γ

2
RC

thus

Γ =
2kT

R

Note:

• the noise depends only on the resistor ⇒ the source of the noise is in the resistor
(collision of conduction electrons with the atoms)

• the noise leads to a fluctuating current

〈
δI(t)2

〉
=
〈
L(t)2

〉
= Γ =

2kT

R

which decreases with increasing resistivity

Alternatively, one can say the noise leads to a fluctuation voltage across the resistor

〈
δU(t)2

〉
= R2

〈
δI(t)2

〉
= 2kTR

which increases with increasing resistivity.

5.1 Relation between Langevin Equation and Fokker-Planck Equa-

tion

Because in the Langevin equation the noise is δ-correlated in time it describes a Markov
process ⇒ expect that the same process also can be described by a Fokker-Planck equation

More precisely

y(t + τ) = lim
ǫ→0

∫ t−ǫ

0

−y + L(t′)dt′ +

∫ t+τ

t

−y + L(t′)dt′

i.e.

y(t + τ) − y(t) =

∫ t+τ

t

−y(t′) + L(t′)dt′

Since L(t) and L(t′) are independent of each other for t 6= t′ we have that y(t + τ) − y(t) is
independent of y(t”) for all t” < t, i.e. for all τ > 0 the value y(t + τ) depends only on y(t)
and not on any previous values.

5.1.1 Linear Langevin Equation

Consider the linear Langevin equation

dV

dt
= −γV + L(t) (38)

with Gaussian noise L(t).
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The velocity V (t) is given by a sum over the noise term at different times

V (t) = V0e
−γt +

∫ t

0

e−γ(t−t′)L(t′)dt′

which are all Gaussian.

Thus

• V (t) is also a Gaussian process

• for a complete characterization of the process V (t) only 〈V (t)〉 and 〈V (t1)V (t2)〉 are
needed (cf. (33,37)

The mean and second moments are the same as those for the Fokker-Planck equation

∂P (v, t|v0, t0)

∂t
= γ

{
∂

∂v
(vP (v, t|v0, t0)) +

kT

M

∂2

∂v2
P (v, t|v0, t0)

}

(39)

(see homework). Therefore the Langevin equation (38) is equivalent to the Fokker-Planck

equation (39).

5.1.2 Nonlinear Langevin Equation

Now consider
dy

dt
= f(y) + g(y)L(t)

Through g(y) the noise strength depends on the state of the system: multiplicative noise.

Notes:

• formally one can rewrite the Langevin equation with multiplicative noise as a Langevin
equation for a new variable ỹ with additive noise

ỹ = F (y) ≡
∫ y 1

g(y′)
dy′

then
dỹ

dt
=

1

g(y)

dy

dt
=

f(y)

g(y)
+ L(t)

i.e.
dỹ

dt
=

f(F−1(ỹ))

g(F−1(ỹ))
+ L(t).

For instance
dy

dt
= −y + yL(t)

becomes with ỹ = ln y (assuming y > 0)

dỹ

dt
= −1 + L(t)

64



• There are important qualitative differences between additive noise and multiplicative
noise, which can of course not be removed by such a transformation

1. Consider
dy

dt
= ay − y3 + L(t)

Among many possibilities, this equation could describe the buckling of a beam
under a longitudinal load with y denoting the amount of buckling. Without noise

this system exhibits a pitchfork bifurcation

y∞ =







0 for a ≤ 0

±√
a, 0 for a > 0

with ±√
a representing a buckling to the left or right, respectively.

Here the noise terms breaks the reflection symmetry y → −y (in this example it

represents a fluctuating forcing transverse to the beam) and the pitchfork bifur-
cation is perturbed.

2. Consider
dy

dt
= ay − y3 + yL(t)

Now the fluctuation force modifies a, i.e. the longitudinal load. The reflection
symmetry is preserved, the pitchfork bifurcation is still perfect, i.e. y = 0 is a

solution for all values of a, i.e. the unbuckled state exists for all a and noise
strengths.

• If f(y) is nonlinear or g(y) not constant then y is not a Gaussian process even if L(t) is

Gaussian.

To obtain the Fokker-Planck equation we need A(y) and B(y)

A(y) = lim
τ→0

1

τ

∫

|y−y0|<ǫ

(y − y0)Tτ (y|y0)dy = lim
τ→0

1

τ
〈y(τ) − y0〉

B(y) = lim
τ→0

1

τ

〈
(y(τ) − y0)

2〉

with y0 being the specified (non-random) initial condition at t = 0.

To determine these expectation values integrate the Langevin equation16 from t = 0 to

16For simplicity we assume that the process is stationary.
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t = τ ≪ 1

y(τ) − y0 =

∫ τ

0

f(y(t))dt +

∫ τ

0

g(y(t))L(t)dt

Expand

f(y) = f(y0) + (y(τ) − y0) f ′(y0) + . . .

g(y) = g(y0) + (y(τ) − y0) g′(y0) + . . .

Then

y(τ) − y0 = f(y0)τ + f ′(y0)

∫ τ

0

(y(t) − y0) dt + . . .

+g(y0)

∫ τ

0

L(t)dt + g′(y0)

∫ τ

0

(y(t) − y0) L(t)dt + . . .

Expand again in the integrand

y(τ) − y0 = f(y0)τ + f ′(y0)

∫ τ

0

{

f(y0)t + . . . + g(y0)

∫ t

0

L(t′)dt′ + . . .

}

dt + . . .

+g(y0)

∫ τ

0

L(t)dt + g′(y0)

∫ τ

0

{

f(y0)t + . . . + g(y0)

∫ t

0

L(t′)dt′ + . . .

}

L(t)dt + . . .

We are interested in the average.

〈L(t)〉 = 0 〈L(t)L(t′)〉 = Γδ(t − t′)

Thus

〈y(τ) − y0〉 = f(y0)τ + f ′(y0)f(y0)

∫ τ

0

tdt

︸ ︷︷ ︸

O(τ2)

+ . . . + f ′(y0)g(y0)

∫ τ

0

∫ t

0

〈L(t′)〉
︸ ︷︷ ︸

=0

dt′ + . . .

+g(y0) · 0 + g′(y0)g(y0)

∫ τ

0

∫ t

0

〈L(t′)L(t)〉
︸ ︷︷ ︸

=Γδ(t−t′)

dt′dt + . . .

〈y(τ) − y0〉 = f(y0)τ + g′(y0)g(y0)Γ

∫ τ

0

∫ t

0

δ(t − t′)dt′dt + . . .

What is
∫ t

0
δ(t − t′)dt′? The question arises because the δ-function is located at end of the

integration interval.

It seems reasonable to consider the δ- correlation as the limit of a a process with finite, but
short correlation time ⇒ δ(t − t′) is the limit of some symmetric, sharply peaked function,
e.g.

δǫ(t − t′) =

{
1
ǫ

− ǫ
2
≤ t − t′ ≤ ǫ

2

0 otherwise

If we take the limit ǫ → 0 only in the very end, after all the integrals are taken one gets for
any smooth function h(t)

∫ t

0

h(t′)δ(t − t′)dt′ =
1

2
h(t)
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Then

〈y(τ) − y0〉 = f(y0)τ + g′(y0)g(y0)Γ
1

2
τ + . . .

and

A(y) = f(y) + g′(y)g(y) (40)

Analogously one gets

〈
(y(τ) − y0)

2〉 = [g(y0)]
2

∫ τ

0

dt

∫ τ

0

dt′ 〈L(t)L(t′)〉 + O(τ 2)

implying
B(y) = Γ [g(y)]2 (41)

Thus we get the Fokker-Planck equation

∂P

∂t
= − ∂

∂y

[(

f(y) +
1

2
Γg(y)g′(y)

)

P

]

+
1

2
Γ

∂2

∂y2

[
(g(y))2 P

]
(42)

Using
∂

∂y

(
g2P

)
= 2gg′P + g2 ∂

∂y
P = gg′P + g

∂

∂y
(gP )

one can rewrite the Fokker-Planck equation as

∂P

∂t
= − ∂

∂y
[f(y)P ] +

1

2
Γ

∂

∂y

[

g(y)
∂

∂y
[g(y)P ]

]

Note:

• If g(y) is not constant the noise term contributes to the drift term A(y): “noise-induced

drift”, i.e. even if f(y) = 0 the average 〈y〉 will be time-dependent and is driven purely
by the noise term and the dependence of its effect on the state y.

• The noise-induced drift points to a problem that can arise when one wants to identify
the correct Fokker-Planck equation:

– Systems with external noise, i.e. the macroscopic dynamics is separate from the
noise (one could imagine the noise can be turned off), e.g. a transmission line into

which a noisy signal is fed, a bridge under the random force of cars driving on it:

* macroscopic dynamics f(y) is known in the absence of noise and the noise,
which conceptually can be turned on or off, can modify the drift term

– System with internal noise, e.g. Brownian motion, chemical reactions, viscous
fluid flow. Here the macroscopic motion arises from the noisy microscopic motion,

the noise cannot be turned off. Therefore the macroscopic dynamics f(y) cannot
be separated from the noise.

* when the noise affects the system only additively the drift term A(y) is not
modified by the noise and the Langevin approach should be fine (viscosity in
fluid flow acts only on the linear term, the nonlinear term is the advection

term).
In particular, if the dynamics of the system are also linear the mean satisfies

the macroscopic equation.
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* when the noise acts nonlinearly then it is not clear what to take for f(y) be-
cause f(y) already contains aspects of the noise. E.g., in chemical reactions

the nonlinear terms represent reactions of molecules, which are the cause of
the noise ⇒ the nonlinear Langevin equation is then most likely not appro-

priate. One would have to start from the master equation and obtain suitable
reductions [28, Chap. X].

5.2 Mathematical Considerations: Ito vs Stratonovich17

Mathematically we are having a problem: consider the simplest Langevin equation

dy

dt
= L(t)

then

y(t) =

∫ t

0

L(t′)dt′

Being a continuous Markov process y(t) can be described by a Fokker-Planck equation.
From (40,41) we have

∂P

∂t
=

1

2
Γ

∂2

∂y2
P

i.e. y(t) is the Wiener process W (t) (cf. (6,7)).

The Wiener process is continuous but nowhere differentiable, i.e. dy
dt

does not exist!

To avoid using L(t) itself use an integral formulation

W (τ) =

∫ t+τ

t

L(t′)dt′

Write dW (t) instead of L(t)dt

The Langevin equation becomes

dy = f(y)dt + g(y)dW (t)

or in integral form

y(t + τ) = y(t) +

∫ t+τ

t

f(y(t′))dt′ +

∫ t+τ

t

g(y(t′))dW (t′)

︸ ︷︷ ︸

Riemann-Stieljes integral

The Riemann-Stieltjes integral is defined for general u(t) and v(t) as

∫ t+τ

t

u(t′)dv(t′) = lim
N→∞

N∑

i=1

u(t∗i ) [v(ti+1) − v(ti)] with t∗i ∈ [ti, ti+1]

Notes:

17[15, 4.]
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• For v(t) = t one recovers directly the Riemann integral limN→∞

∑N
i=1 u(t∗i )∆ti =

∫ t+τ

t
u(t′)dt′.

• For ‘nice’ functions with bounded variation the value of the integral does not depend

on the choice of t∗i ∈ [ti, ti+1].

• the Wiener process W (t) has unbounded variation:

N∑

i=1

|W (ti+1) − W (ti)| → ∞ for N → ∞.

Then the integral does depend on the choice of t∗i , e.g.,

〈SN〉 ≡
〈

N∑

i=1

W (t∗i ) (W (ti+1) − W (ti))

〉

=
N∑

i=1

{〈W (t∗i )W (ti+1)〉 − 〈W (t∗i )W (ti)〉}

Using (cf. (23))

〈W (t1)W (t2)〉 = min(t1, t2)

one gets

〈SN〉 =

N∑

i=1

(t∗i − ti)

choosing

t∗i = αti+1 + (1 − α)ti

one gets

〈SN〉 =
N∑

i=1

α(ti+1 − ti) = ατ

Two definitions for the stochastic integral

• Stratonovich (α = 1
2
)

∫

u(t)dv(t) = lim
N→∞

N∑

i=1

1

2
(u(ti) + u(ti+1)) (v(ti+1) − v(ti))

• Ito (α = 0)
∫

u(t)dv(t) = lim
N→∞

N∑

i=1

u(ti) (v(ti+1) − v(ti))

Notes:

• for u = g and dv = dW this means

– for Stratonovich integral the prefactor g(y) is averaged across the kick

– for Ito integral the prefactor g(y) is determined before the kick
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• the limit limN→∞ is to be understood as a mean-squared limit ms − limN→∞

ms − lim
N→∞

Yn = Y ⇔ lim
N→∞

〈
(Yn − Y )2〉 = 0 (43)

Reconsider the derivation of the terms A(y) and B(y) of the Fokker-Planck equation

y(τ) − y0 =

∫ τ

0

f(y(t′))dt′ +

∫ τ

0

g(y(t′)dW (t′)

= f(y0)τ + O(τ 2) + g(y0)

∫ τ

0

dW (t′)

︸ ︷︷ ︸

W (τ)−W (0)=W (τ)

+g′(y0)

∫ τ

0

(y(t′) − y0) dW (t′)

= f(y0)τ + g(y0)W (τ) + g′(y0)

∫ τ

0

[f(y0)t
′ + g(y0)W (t′)] dW (t′)

Since the ensemble average of dW (t) vanishes one has also

∫ τ

0

t′ 〈dW (t′)〉 = 0

and

〈y(τ) − y0〉 = f(y0)τ + g′(y0)g(y0)

〈∫ τ

0

W (t′)dW (t′)

〉

and

A(y) = f(y) + g(y)g′(y)
1

τ

〈∫ τ

0

W (t′)dW (t′)

〉

Evaluate the stochastic integral:

1. Stratonovich:

〈

S

∫ τ

0

W (t′)dW (t′)

〉

= lim
N→∞

N∑

i=1

1

2
〈(W (ti+1) + W (ti)) (W (ti+1) − W (ti))〉

= lim
N→∞

1

2

N∑

i=1

〈
W (ti+1)

2
〉
−
〈
W (ti)

2
〉

=
1

2

(〈
W (τ)2

〉
−
〈
W (0)2

〉)

We computed 〈W (t)2〉 for the Wiener process in the context of the Rayleigh particle (cf.
23)), W (t) is the position of the Brownian particle at time t,

〈W (τ)W (τ ′)〉 = min(τ, τ ′).

Therefore 〈

S

∫ τ

0

W (t′)dW (t′)

〉

=
1

2
τ =

〈
1

2
W (τ)2

〉

(44)

and

AS(y) = f(y) +
1

2
g(y)g′(y)
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2. Ito:

〈

I

∫ τ

0

W (t′)dW (t′)

〉

= lim
N→∞

N∑

i=1

〈W (ti) (W (ti+1) − W (ti))〉

= lim
N→∞

N∑

i=1

〈W (ti+1)W (ti)〉 −
〈
W (ti)

2
〉

= lim
N→∞

N∑

i=1

{ti − ti} = 0

Therefore
AI(y) = f(y)

Notes:

• In the Stratonovich interpretation of the stochastic integral the same noise-induced
drift arises as we found when interpreting the δ-correlation as a symmetric smooth

correlation function in the limit of vanishing correlation time.

• In the Ito interpretation no noise-induced drift term arises.

• By adjusting the drift term appropriately, both interpretations can be used for the
same process.

• In the Stratonovich interpretation the usual integration rules hold (cf. (44))

〈∫

wdw

〉

=

〈
1

2
w2

〉

• In the Ito interpretation we found a new integration rule

〈∫

wdw

〉

= 0

• If g(y) is constant, i.e. for additive noise, there is no difference between the two ap-
proaches.

5.3 Ito Stochastic Integrals18

To use the Ito interpretation of the stochastic integrals we need to evaluate integrals like

∫

G(t′)dW (t′)

where G(t) is a non-anticipating function.

Define:

18[15, Chap.4.2]
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• G(t) is non-anticipating if it is statistically independent of W (s) − W (t) for s > t.

The integrals are evaluated in the mean-square limit (cf. (43)),

∫

G(t′)dW (t′) = ms − lim
N→∞

N∑

i=1

G(ti−1) (W (ti) − W (ti−1))

Note:

• the stochastic integral
∫

G(t′)dW (t′) is a different kind of integral than
∫

G(t′)dt′ and
there is in general no connection between the two.

• the integral
∫

G(t′)dW (t′) depends on the process W which is here assumed to be the
Wiener process.

We need a number of properties of stochastic integrals.

a) dW 2 = dt and dW 2+n = 0 for n > 0

The precise statements are

∫ t

0

G(t′) (dW (t′))
2

= ms − lim
N→∞

N∑

i=1

Gi−1 (Wi − Wi−1)
2 =

∫ t

0

G(t′)dt′ (45)

and for n > 0

∫ t

0

G(t′) (dW (t′))
2+n

= ms − lim
N→∞

N∑

i=1

Gi−1 (Wi − Wi−1)
2+n = 0 (46)

Here Gi = G(ti) and Wi = W (ti).

Thus:

• dW is a differential of order 1
2

• dW 2 = dt

To proof this identity consider the appropriate limit

lim
N→∞

〈






N∑

i=1

Gi−1




 ∆W 2

i
︸ ︷︷ ︸

(Wi−Wi−1)
2

−∆ti












2
〉

= lim
N→∞

〈
N∑

i=1

G2
i−1

(
∆W 2

i − ∆ti
)2

+

2

N∑

i=1

N∑

j=i+1

Gi−1Gj−1

(
∆W 2

i − ∆ti
) (

∆W 2
j − ∆tj

)

〉
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{g1+g2+...+gN}{g1+g2+...+gN}

first sum

second sum 19

Term with single sum:

G is non-anticipating ⇒ Gi−1 and ∆Wi are statistically independent

〈

G2
i−1

(
∆W 2

i − ∆ti
)2
〉

=
〈
G2

i−1

〉 〈(
∆W 2

i − ∆ti
)2
〉

Since W is Gaussian distributed the fourth (and higher) cumulants vanishes

0 =
〈〈

∆W 4
i

〉〉
=
〈
∆W 4

i

〉
− 3

〈
∆W 2

i

〉2

using also that all terms with odd powers of ∆Wi vanish.

Thus

〈
∆W 4

i

〉
= 3

〈
∆W 2

i

〉2
= 3

〈
(Wi − Wi−1)

2〉2 =

=
︸︷︷︸

Wiener process

3 {ti − 2ti−1 + ti−1}2 = 3∆t2i

and 〈

G2
i−1

(
∆W 2

i − ∆ti
)2
〉

=
〈
G2

i−1

〉 {
3∆t2i − 2∆t2i + ∆t2i

}
= 2

〈
G2

i−1

〉
∆t2i

Therefore

lim
N→∞

〈
N∑

i=1

G2
i−1

(
∆W 2

i − ∆ti
)2

〉

= 2 lim
N→∞







N∑

i=1

〈
G2

i−1

〉
∆t

︸ ︷︷ ︸

=O(1)

·∆t







= 0

Term with double sum:

j > i ⇒Gi−1Gj−1 (∆W 2
i − ∆ti) is statistically independent of ∆W 2

j − ∆tj
〈
Gi−1Gj−1

(
∆W 2

i − ∆ti
) (

∆W 2
j − ∆tj

)〉
=
〈
Gi−1Gj−1

(
∆W 2

i − ∆ti
)〉 〈

∆W 2
j − ∆tj

〉

︸ ︷︷ ︸

=0

Thus

lim
N→∞

〈






N∑

i=1

Gi−1




 ∆W 2

i
︸ ︷︷ ︸

(Wi−Wi−1)
2

−∆ti












2
〉

= 0

19or simpler visualization via sum over all elements in a symmetric matrix: first sum consists of the diago-
nal terms, second (double) sum is over the upper triangle.
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The proof of dW 2+n = 0 is analagous. It makes use of the higher cumulants and is more
cumbersome.

b) Integration of polynomials

d (W )n+1 = (W + dW )n+1 − W n+1 =

n+1∑

m=1

(
n + 1

m

)

W n−m+1dW m

with dW 2+k = 0 for k > 0 one gets

d (W )n+1 = (n + 1)W ndW +
1

2
(n + 1)n W n−1 (dW )2

︸ ︷︷ ︸

=dt

Integrating the previous equation we get

∫ t

0

W n(t′)dW (t′) =
1

n + 1

(
W (t)n+1 − W (0)n+1

)
− 1

2
n

∫ t

0

W (t′)n−1dt′ (47)

Example: n = 1
∫ t

0

W (t′)dW (t′) =
1

2

(
W (t)2 − W (0)2

)
− 1

2
t

therefore 〈∫ t

0

W (t′)dW (′t)

〉

=
1

2
t − 1

2
t = 0

as before.

c) Differentiation

When taking derivatives (i.e. when expanding) one has to keep in mind that (dW )2 is of the
same order as dt

df(W (t), t) = f(W (t) + dW, t + dt) − f(W (t), t) =

=
∂

∂W
f dW +

1

2

∂2

∂W 2
f dW 2 +

∂

∂t
f

i.e.

df(W (t), t) =

(
∂f

∂t
+

1

2

∂2f

∂W 2

)

dt +
∂f

∂W
dW

d) Mean-Value Formula

For non-anticipating functions one has for the Ito stochastic integral

〈∫ t

0

G(t′)dW (t′)

〉

= 0

since 〈
N∑

i=1

Gi−1 (Wi − Wi−1)

〉

=

N∑

i=1

〈Gi−1〉 〈Wi − Wi−1〉
︸ ︷︷ ︸

=0

= 0

Note:
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• For the Stratonovich interpretation of the integral this average need not be 0, since
Gi can be correlated with Wi − Wi−1 (Gi is after the kick). Aspects like this make the

Stratonovich formulation very difficult/cumbersome to use for proofs.

e) Correlation Formula

One can show (see homework)
〈∫ t

0

G(t′)dW (t′)

∫ t

0

H(t′′)dW (t′′)

〉

=

∫ t

0

〈G(t′)H(t′)〉 dt′

5.4 Ito Stochastic Differential Equation20

5.4.1 Ito’s Formula

Consider the stochastic differential equation

dy = f(y)dt + g(y)dW

One can transform the variables so that the new variable satisfies a stochastic differential

equation with additive rather than multiplicative noise.

While for multiplicative noise there is a significant difference between the differential equa-
tion in the Ito or in the Stratonovich sense, there is no difference for additive noise
⇒ the transformation of the variable must be different in the two cases, since in the orig-

inal version the stochastic differential equation is interpreted differently for Ito and for
Stratonovich.

What stochastic differential equation does v(y, t) satisfy if y satisfies the stochastic differ-
ential equation above?

dv =
∂v

∂y
dy +

1

2

∂2v

∂y2
(dy)2 +

∂v

∂t
dt + h.o.t.

=
∂v

∂y
{f(y)dt + g(y)dW}+

1

2

∂2v

∂y2
{f(y)dt + g(y)dW}2 +

∂v

∂t
dt + h.o.t.

Thus for Ito stochastic differential equations the change of variables is given by Ito’s for-
mula

dv =

(
∂v

∂t
+

∂v

∂y
f +

1

2

∂2v

∂y2
g2

)

dt +
∂v

∂y
g dW.

Example: The Kubo oscillator

A noiseless linear oscillator can be described by

dy

dt
= iωy ⇒ y = y0e

iωt

With noise one obtains

dy = iωy dt + iλydW (48)

20[15, Ch.4.3][25, Ch. 4.1]
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where λdW represents fluctuations in the frequency of the oscillator.

For the first transformation v(t) = e−iωty(t) Ito’s formula results in the usual transformation

since d2v/dy2 = 0,
dv =

(
−iωv + e−iωtiωy

)
dt + e−iωty iλdW

dv = iλv dW

For regular functions one would have

dv

v
= d (ln v)

To solve this differential equation try a second transformation, u = ln v, which yields

du =

(
1

2

(

− 1

v2

)

(iλv)2

)

dt +
1

v
iλvdW

thus du is not simply given by dv/v, instead

du =
1

2
λ2dt + iλdW (49)

with the solution

u(t) − u(0) =
1

2
λ2t + iλ (W (t) − W (0)) .

For y we have now
y = eiωte

1
2
λ2t+iλW (t) (50)

Note:

• With this solution for the stochastic differential equation we have for each realization
of the Wiener process (‘random walk’) a realization of the trajectory of the oscillator.

How about the mean of y?

Clearly

〈u(t) − u(0)〉 =
1

2
λ2t

and therefore

〈y(t)〉 = eiωte
1
2
λ2t
〈
eiλ(W (t)−W (0))

〉

W (t) is Gaussian with 0 mean.
For Gaussian distributed variables z with vanishing mean one has

〈ez〉 = e
1
2〈z2〉

One obtains this result by direct evaluation of

〈ez〉 =
1√

2π∆2

∫

eze−
1
2

z2

∆2 dz
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Thus

〈y(t)〉 = eiωte
1
2
λ2te

1
2〈(iλ(W (t)−W (0)))2〉

= eiωte
1
2
λ2te−

1
2
λ2t

〈y(t)〉 = eiω0t

Note:

• Interpreted in the Ito sense the fluctuations do not affect the mean oscillation fre-

quency or the oscillation amplitude of the Kubo oscillator (48).

• Interpreted in the Stratonovich sense (48) would describe fluctuations that lead to a
damping of the oscillations. (see homework).

•

Ito’s Formula for Multiple Variables

Consider a multi-dimensional Wiener process W(t) ≡ (W1(t), . . . , Wn(t)) in which all com-

ponents are statistically independent of each other and the stochastic differential equation
for x ≡ (x1(t), . . . , xn(t)),

dx = A(x, t)dt + B(x, t)dW(t)

What stochastic differential equation does a scalar function of x, f = f(x), satisfy?

df =
∑

i

∂f

∂xi
dxi +

1

2

∑

ij

∂2f

∂xi∂xj
dxidxj

=
∑

i

∂f

∂xi

(

Aidt +
∑

k

BikdWk

)

+
1

2

∑

ij

∂2f

∂xi∂xj

(

Aidt +
∑

k

BikdWk

)(

Ajdt +
∑

l

BjldWl

)

Use

dWidWj = δijdt statistically independent

[dWi]
2+n = 0 n > 0

dt1+n = 0 n > 0

and get

df =







∑

i

∂f

∂xi
Ai +

1

2

∑

ijk

∂2f

∂xi∂xj
BikBjk
︸ ︷︷ ︸

(BBt)ij







dt +
∑

ik

∂f

∂xi
BikdWk
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5.4.2 Solvability by Variable Transform

Under what conditions can the stochastic differential equation

dy = f(y, t)dt + g(y, t)dW (51)

be solved by such a variable transformation?

Assume an invertible variable transformation

v = v(y(t), t)

Then we have from Ito’s formula

dv =

(
∂v

∂t
+

∂v

∂y
f +

1

2

∂2v

∂y2
g2

)

dt +
∂v

∂y
g dW.

This transformation reduces the stochastic differential equation to simple integrations if
the coefficients do not depend on v, i.e. if

dv = α(t)dt + β(t)dW. (52)

Thus the conditions are

∂v

∂t
+

∂v

∂y
f +

1

2

∂2v

∂y2
g2 = α(t) (53)

∂v

∂y
g = β(t) (54)

This will be possible only for certain combinations of the functions f and g, i.e. these
two equations are not conditions for v but for f and g. We now obtain the corresponding

condition.

From (54) we get
∂v

∂y
=

β(t)

g(y(t), t)
. (55)

Differentiating (53) with respect to y we get

∂2v

∂y∂t
+

∂

∂y

[
∂v

∂y
f +

1

2

∂2v

∂y2
g2

]

= 0. (56)

We want a condition on f and g and not on v. Therefore we want to eliminate v from these

conditions and still need expressions for the two terms with the second derivative

∂2v

∂y∂t
=

∂

∂t

[
β(t)

g(y(t), t)

]

=
β ′

g
− β

g2

∂g

∂t

∂2v

∂y2
=

∂

∂y

[
β(t)

g(y(t), t)

]

= − β

g2

∂g

∂y
.
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Insert them into (56) to get

β ′

g
− β

g2

∂g

∂t
+

∂

∂y

[
β(t)

g
f

]

− 1

2

∂

∂y

[
β

g2

∂g

∂y
g2

]

= 0

i.e.
β ′(t)

β(t)
=

1

g

∂g

∂t
− g

∂

∂y

[
f

g

]

+
1

2
g
∂2g

∂y2
(57)

Since the left-hand side depends only on t the condition on f and g is

∂

∂y

{
1

g

∂g

∂t
− g

∂

∂y

[
f

g

]

+
1

2
g
∂2g

∂y2

}

= 0 (58)

Thus

• the condition (58) guarantees that a y-independent β can be determined from (57).

• then v(y, t) can be determined from (55)

• (57) guarantees that the expression (53) defining α is y-independent and therefore

such an α = α(t) can indeed be chosen.

Conclusion:

• if the coefficients in the stochastic differential equation (51) satisfies the condition

(58) it can be transformed into the linear equation (52).

Example:
For the Kubo oscillator we have

f(y, t) = iωy g(y, t) = iλy

Condition (58) is satisfied

∂

∂y

{

−iλy
∂

∂y

[ω

λ

]

+
1

2
iλy

∂2

∂y2
(iλy)

}

= 0

β is determined from
β ′

β
= 0 ⇒ β = β0

For v(y, t) we get the equation

∂v

∂y
=

β0

iλy
⇒ v =

β0

iλ
ln y + v0(t)

implying

y = e
i λ

β0
(v−v0(t))
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and

α(t) = v′
0(t) +

β0

iλ

1

y
· iωy − 1

2

β0

iλ

1

y2
· (iλy)2

= v′
0(t) +

β0ω

λ
− i

2
β0λ

We still can choose v0(t) and β0 to simplify the equations.

For instance

β0 = iλ

v0(t) = −iωt

Then
y = ev−iωt

and

dv =
1

2
λ2dt + iλdW

as before (cf. (49)).

5.4.3 Fokker-Planck Equation from the Ito Stochastic Differential Equation

Consider y satisfying
y = f dt + g dW

Use Ito’s formula for dh(y(t))

〈dh〉 =

〈(
dh

dy
f +

1

2

d2h

dy2
g2

)

dt +
dh

dy
g dW

〉

yielding
d

dt
〈h〉 =

〈dh〉
dt

=

〈
dh

dy
f +

1

2

d2h

dy2
g2

〉

Using the probability distribution P (y, t|y0, t0) for initial condition y(t0) = y0 we get

d

dt
〈h〉 =

∫

h(y)
∂

∂t
P (y, t|y0, t0) dy =

∫ (
dh

dy
f +

1

2

d2h

dy2
g2

)

P (y, t|y0, t0) dy

As previously, integrate by parts to get

∫

h(y)

{
∂

∂t
P (y, t|y0, t0) +

∂

∂y
(fP (y, t|y0, t0)) −

1

2

∂2

∂y2

(
g2P (y, t|y0, t0)

)
}

dy = 0

Since h(y) is arbitraty we get again the FPE

∂

∂t
P (y, t|y0, t0) = − ∂

∂y
(fP (y, t|y0, t0)) +

1

2

∂2

∂y2

(
g2P (y, t|y0, t0)

)
(59)
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5.5 Stratonovich’s Stochastic Differential Equation

Make the connection between the Ito interpretation and the Stratonovich interpretation of
the stochastic differential equation explicit.

Consider the Ito stochastic differential equation

dy = f(y, t)dt + g(y, t)dW

which has the formal integral

y = y(0) +

∫ t

0

f(y(t′), t′)dt′ +

∫ t

0

g(y(t′), t′)dW (t′)

Consider now the Stratonovich stochastic differential equation that has the same solution

y(t),

y = y(0) +

∫ t

0

f̃(y(t′), t′)dt′ + S

∫ t

0

g̃(y(t′), t′)dW (t′),

where S
∫

denotes the Stratonovich stochastic integral.

What is the connection between f , g and f̃ , g̃?

S

∫ t

0

g̃(y(t′), t′)dW (t′) =
∑

i

g̃

(
1

2
[yi + yi−1] , ti

)

(W (ti) − W (ti−1))

=
∑

i

g̃

(

yi−1 +
1

2
dyi−1, ti

)

(W (ti) − W (ti−1))

=
∑

i



g̃ (yi−1, ti) +
1

2
g̃′ (yi−1, ti)






f(yi−1, t) dt

︸︷︷︸

→O(dt dW )

+g(yi−1, t)dW






+ O(dW 2)

· (W (ti) − W (ti−1))

=

∫

g̃(y(t′), t′)dW (t′) +
1

2

∫

g(y(t′), t′)
∂g̃(y(t′), t′)

∂y
dt′

Thus we have
∫ t

0

f(y(t′), t′)dt′ +

∫ t

0

g(y(t′), t′)dW (t′) =

∫ t

0

f̃(y(t′), t′)dt′ +

∫

g̃(y(t′), t′)dW (t′) +

+
1

2

∫

g(y(t′), t′)
∂g̃(y(t′), t′)

∂y
dt′

which gives the condition for the two equations to have the same solution

g̃(y, t) = g(y, t)

f̃(y, t) = f(y, t) − 1

2
g(y, t)

∂g(y, t)

∂y

i.e.

dy = f dt + g dW [Ito] ⇔ dy =
(

f − 1
2
g ∂g

∂y

)

dt + g dW [Stratonovich]

dy = f dt + g dW [Stratonovich] ⇔ dy =
(

f + 1
2
g ∂g

∂y

)

dt + g dW [Ito]
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Variable Transformation:

Consider

dy = f dt + g dW [Stratonovich]

and
v = v(y) ⇔ y = u(v)

To use Ito’s formula for the variable transformation we need to rewrite the differential
equation first in the Ito sense

dy =

(

f +
1

2
g
∂g

∂y

)

dt + g dW [Ito]

then use Ito’s formula

dv =

[
dv

dy

(

f +
1

2
g
∂g

∂y

)

+
1

2

d2v

dy2
g2

]

dt +
dv

dy
g dW

We need to write everything in terms of v

dv

dy
=

1
du
dv

and

d2v

dy2
=

d

dy

(

1
du
dv

)

=
d

dv

(

1
du
dv

)

dv

dy

= − 1

u′2

d2u

dv2

1

u′
= − 1

u′3

d2u

dv2

Thus

dv =

[
1

u′
f +

1

u′

1

2
g
∂g

∂v

1

u′
− 1

2

1

u′3

d2u

dv2
g2

]

dt +
1

u′
g dW [Ito]

Now convert the Ito SDE back to a Stratonovich SDE

dv =

[
1

u′
f +

1

u′

1

2
g
∂g

∂v

1

u′
− 1

2

1

u′3

d2u

dv2
g2

]

dt +
1

u′
g dW

−1

2

1

u′
g

d

dv

(
1

u′
g

)

dt

=

[
1

u′
f +

1

u′

1

2
g
∂g

∂v

1

u′
− 1

2

1

u′3

d2u

dv2
g2

]

dt +
1

u′
g dW

−1

2

1

u′
g

(

− 1

u′2
u′′g +

1

u′

∂g

∂v

)

dt

= [f dt + g dW ]
1

u′

dv =
dv

dy
[f dt + g dW ]

Thus:

• for the Stratonovich stochastic differential equation the usual variable transforma-
tions hold
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5.6 Colored Noise: Ornstein-Uhlenbeck and its White-Noise Limit

So far we always considered only Gaussian white noise, i.e. the Wiener process, in the
stochastic differential equation. How can one treat different types of noise, ‘colored noise’?

Could develop the stochastic calculus for other types of noise. If the colored noise can be

written as driven by white noise it is easier to introduce an additional equation.

We will find: The Ito SDE can in general not be considered as the white-noise limit of noise
with finite correlation time.

Recall the Fokker-Planck equation for the Ornstein-Uhlenbeck process (22)

∂

∂t
P (v, t) = γ

∂

∂v
(vP (v, t)) + γ

kT

M

∂2

∂v2
P (v, t)

Comparing with (59) we get

f = −γv g =

√

2kT

M

√
γ ≡ κ

√
γ

Consider a system driven by the Ornstein-Uhlenbeck process

dy

dt
= ay + byv (60)

dv = −γv dt + κ
√

γ dW (61)

Since v is a continuous function (rather than discontinous random kicks L(t)) the equation
(60) for y is a conventional differential equation.

(61) has additive noise, therefore the additional term of Ito’s formula does not arise and we
get a standard variable transformation. Can therefore do usual integrating factor

v = e−γtu

du = κ
√

γeγtdW

u = v0 + κ
√

γ

∫ t

0

eγt′dW (t′)

and

v(t) = v0e
−γt + κ

√
γ

∫ t

0

e−γ(t−t′)dW (t′)

For simplicity set v0 = 0.

For given v(t) we can solve for y again by integrating factor

y(t) = y0e
R t

0
a+bv(t′)dt′

The Ornstein-Uhlenbeck process is a Gaussian process with finite correlation time τ = γ−1.

For γ → ∞ it turns into noise with vanishing correlation time. Determine y in that limit.
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Consider first the autocorrelation function, assuming t2 ≥ t1

C(t1, t2) =

〈(

κ
√

γ

∫ t1

0

e−γ(t1−t′)dW (t′)

)(

κ
√

γ

∫ t2

0

e−γ(t2−t′′)dW (t′′)

)〉

= κ2γ

∫ t1

0

e−γ(t1−t′)−γ(t2−t′)dt′

= κ21

2
e−γ(t2+t1)

(
e2γt1 − 1

)

= κ21

2
e−γ(t2−t1) − κ2 1

2
e−γ(t2+t1)

where we used the correlation formula and 〈dW (t′)dW (t′′)〉 = 0 for t′ 6= t′′.

For large times we get

C(t1, t2) = κ2 1

2
e−γ|t2−t1|

We want that for γ → ∞
C(t1, t2) → δ(t2 − t1)

i.e.

1 =

∫ +∞

−∞

C(t, t′)dt′ = κ2 1

2

2

γ

We need to choose κ2 = γ.

Note:

• increasing only the dissipation shortens the correlation time but decreases the overall
amount of noise ⇒ we need to increase the temperature T = Mκ2/2k at the same to
keep the noise level constant

Need to evaluate the integral for v(t) for large γ.

∫ t

0

v(t′)dt′ = γ

∫ t

0

dt′
∫ t′

0

e−γ(t′−t′′)dW (t′′)

To exploit the limit γ → ∞ we would like to do the t′-integral first

t’’

t’’=t’

t’

t
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lim
γ→∞

∫ t

0

v(t′)dt′ = lim
γ→∞

γ

∫ t

0

dW (t′′)

∫ t

t′′
e−γ(t′−t′′)dt′ =

= lim
γ→∞

γ

∫ t

0

dW (t′′)
1

γ

(

1 − e−γ(t−t′′)
)

=

=

∫ t

0

dW (t′′) = W (t)

21

Thus we have
y(t) = y0e

at+bW (t)

Since for γ → ∞ the Ornstein-Uhlenbeck process becomes δ-correlated, one might expect

that one could replace the forcing in v directly by the Wiener process

dy = ay dt + by dW [Ito]

Comparing with (50) we get then

y = y0e
at− 1

2
b2t+bW (t)

which does not agree with the limit γ → ∞ of the Ornstein-Uhlenbeck process.

Notes:

• as was the case for the Fokker-Planck description before, the Ito SDE does not describe
the limit of vanishing correlation time of smooth noise

• colored noise can be treated by using an additional equation.

21Aside: consider for an arbitrary test function h(t) and large γ

∫
∞

0

h(t′)κ
√

γe−γ(t−t′)dt′ = κ
√

γ

∫
∞

0

(

h(0) + h′(0)t′ +
1

2
h′′(0)t′2 + . . .

)

e−γ(t−t′)dt′

= κ
√

γ

{
1

γ
h(0) + h′(0)

d

dγ

(
1

γ

)

+
1

2
h′′(0)

d2

dγ2

(
1

γ

)

+ . . .

}

=
κ√
γ

h(0) + O
(

κ

γ3/2

)

thus setting κ =
√

γ

lim
γ→∞

γe−γ(t−t′) = δ(t − t′)

Then for γ → ∞
v(t) =

∫ t

0

δ(t − t′)dW (t′)

For y we need
∫ t

0

v(t′)dt′ =

∫ t

0

{
∫ t′

0

δ(t′ − t′′)dW (t′′)

}

dt′ =
︸︷︷︸

can be shown

W (t)
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6 Stochastic Resonance

There are climate variations on all kinds of time scales, from few years to 100,000 years.

Figure 1: a) Fluctuation in global ice volume (or sea level) from observations of the oxygen-

isotope content of fossil plankton in deep-sea core, which indicates fluctuations in gobal ice
volume. b) Power spectrum of that time series. [20]

The earth ’s orbit has secular variations (Milankovich cycles):

• the eccentricity of the orbit changes by 0.1% with a period of 96,000 years

• obliquity of axis of orbit varies with a period of 40,000 years

• precession of the longitude of the perihelion varies with a 21,000 year period.

However, the magnitude of the changes of the 96,000 year period is much too small:

• the temperature change induced directly by the variable heat flux is O(0.3K)

• the observed changes in temperature are O(10K)
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It was suggested by Benzi et al. [4] that fluctuations in the climate (‘noise’) may trig-
ger transitions between two states, are get resonantly enhanced by the small modulation:

stochastic resonance. They considered a bistable system in which the barrier between the
states was modulated slowly in time.

Transition rate is given by Kramers formula (27)

W =
1

2πγ
ω1ω2e

− 2
bγ

∆U

Notes:

• Kramers formula valid for ∆U ≫ bγ

• if the potential is time-dependent the temporal variation has to be slow compared to
the evolution inside the potential

1

U

dU

dt
≪ ω1

so that the probability distribution in the well is (almost) equilibrated at all times.

Consider a double-well system as a two-state system[21]

n+(t) =

∫ ∞

xm

P (x′, t)dx′ n−(t) =

∫ xm

−∞

P (x′, t)dx′

Transition rates between the two states

W±(t) : n± → n∓

Evolution equation for the probability for the system to be in state +

dn+

dt
= −dn−

dt
= W−(t)n− − W+(t)n+

dn+

dt
= W−(t) − (W+(t) + W−(t))n+

The transition rates are time-dependent because the barrier height depends on time.

d

dt

(

e
R t W++W−dt′n+

)

= W−e
R t W++W−dt′

n+(t) = e
−

R t
t0

W++W−dt′
n+(t0) + e

−
R t
t0

W++W−dt′
∫ t

t0

W−(t′) e
R t′

t0
W++W−dt′′

dt′

Consider modulations of the barrier

∆U± = ∆U0 ± ∆U1 cos ωst

where ∆U+ is the barrier height from the right potential well and ∆U− from the left.
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If the modulation amplitude is small, ∆U1 ≪ bγ one gets

W±(t) =
1

2πγ
ω1ω2e

− 2
bγ

(∆U0±∆U1 cos ωst) =

=
1

2πγ
ω1ω2e

− 2
bγ

∆U0

{

1 ∓ 2

bγ
∆U1 cos ωst

}

which can be written as

W±(t) =
1

2
α0 ∓

1

2
ǫα1 cos ωst + O(ǫ2)

with

α0 =
1

πγ
ω1ω2e

− 2
bγ

∆U0 ǫα1 =
2∆U1

bγ
α0

Then
W+ + W− = α− + O(ǫ2)

n+ = e−α0(t−t0)

{

n+(t0) +

∫ t

t0

(
1

2
α0 +

1

2
ǫα1 cos ωst

′

)

eα0(t′−t0)dt′
}

=

= e−α0(t−t0)

{

n+(t0) +
1

2

(
eα0(t−t0) − 1

)
+

1

2

ǫα1
√

ω2
s + α2

0

(
cos (ωst − φ) eα0(t−t0) − cos (ωst0 − φ)

)

}

with

φ = arctan
ωs

α0

Assuming the system is initially either in the right or the left well one gets for the transition
probability

n+(t|x0, t0) =
1

2







e−α0(t−t0)




2 δx0,+

︸︷︷︸

=1 for x0>0

−1 − ǫα1
√

ω2
s + α2

0

cos (ωst0 − φ)




+ 1 +

ǫα1
√

ω2
s + α2

0

cos (ωst − φ)

=
1

2







e−α0(t−t0)




2 δx0,+

︸︷︷︸

=1 for x0>0

−1 − ǫα̃1 cos (ωst0 − φ)




+ 1 + ǫα̃1 cos (ωst − φ)







with

α̃1 =
α1

√

ω2
s + α2

0

To get the power spectrum determine the correlation function

Approximate the position

〈x(t)〉 = x+n+(t) + x−n−(t) ≡ c (n+ − n−)

Then, using 〈x(t)〉 = 0

〈x(t)x(t + τ)|x0, t0〉 =
∑

s,s′=±1

sc s′cP (s, t + τ ; s′, t|x0, t0) =

= c2
∑

s,s′=±1

ss′P (s, t + τ |s′, t)P (s′, t|x0, t0)
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c−2 〈x(t)x(t + τ)|x0, t0〉 = n+(t + τ | + c, t)n+(t|x0, t0) − n+(t + τ | − c, t) n−(t|x0, t0)
︸ ︷︷ ︸

1−n+(t|x0,t0)

−n−(t + τ | + c, t)
︸ ︷︷ ︸

1−n+(t+τ |+c,t)

n+(t|x0, t0) + n−(t + τ | − c, t)
︸ ︷︷ ︸

1−n+(t+τ |−c,t)

n−(t|x0, t0)
︸ ︷︷ ︸

1−n+(t|x0,t0)

The contributions to this correlation can be read as different sequences of events like

n−(t + τ |+, t)n+(t|x0, t0) ⇔
(

x0

t0

)

→
(

x+

t

)

→
(

x−

t + τ

)

Using n− = 1 − n+ we get

c−2 〈x(t)x(t + τ)|x0, t0〉 = {2n+(t + τ | + c, t) − 1 + 2n+(t + τ | − c, t) − 1}n+(t|x0, t0)

−{2n+(t + τ | − c, t) − 1}
For large times (t0 → −∞)

〈x(t)x(t + τ)|x0, t0〉
c2

→
{
e−α0τ [1 − ǫα̃1 cos (ωst − φ)] + 1 + ǫα̃1 cos (ωs (t + τ) − φ) − 1

+e−α0τ [−1 − ǫα̃1 cos (ωst − φ)] + 1 + ǫα̃1 cos (ωs (t + τ) − φ) − 1
}
·

·1
2

[1 + ǫα̃1 cos (ωst − φ)]

−
{
e−α0τ [−1 − ǫα̃1 cos (ωst − φ)] + 1 + ǫα̃1 cos (ωs (t + τ) − φ) − 1

}

= e−α0τ + ǫα̃1 (0) +

+ǫ2α̃2
1

[
−e−α0τ cos2 (ωst − φ) + cos (ωs (t + τ) − φ) · cos (ωst − φ)

]

Notes:

• the correlation function depends on τ and t even for t0 → −∞ due to the periodic

modulation, which defines a phase

• the dependence on t is only be apparent if the averaging is done at fixed values of the
phase relative to the modulation.

Consider averaging over multiple experiments, each starting at different times in the cycle
⇒ average over t.

Typically, even for single run the correlation function is determined as an average over
time

〈x(t)x(t + τ)|x0, t0〉 →
∫ ∞

0

x(t)x(t + τ)dt

Therefore look at average over one period

ωs

2π

∫ 2π
ωs

0

cos (ωs (t + τ) − φ) · cos (ωst − φ) dt = cos ωsτ · 1

2
− sin ωsτ · 0 =

1

2
cos ωsτ

ωs

2π

∫ 2π
ωs

0

〈x(t)x(t + τ)|x0, t0〉
c2

dt = e−α0|τ |

{

1 − 1

2
ǫ2α̃2

1

}

︸ ︷︷ ︸

decaying component

+
1

2
ǫ2α̃2

1 cos ωsτ
︸ ︷︷ ︸

periodic component

Note:
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• for general τ the exponential has |τ |. In our derivation we had assumed τ > 0

Averaged power spectrum

1

c2
〈S(Ω)〉t =

{

1 − 1

2
ǫ2α̃2

1

}
2α0

α2
0 + Ω2

︸ ︷︷ ︸

Lorentzian shape

+
1

2
πǫ2α̃2

1 {δ(Ω − ωs) + δ(Ω + ωs)}

We are interested in the dependence of the signal-to-noise ratio at Ω = ωs, i.e. the ratio of
the δ-function to the smooth spectrum Ω = ωs

R =
πǫ2α̃2

1
{
1 − 1

2
ǫ2α̃2

1

}
2α0

α2
0+ω2

s

=
πǫ2α̃2

1 (α2
0 + ω2

s)

2α0

+ O(ǫ4) =

=
πǫ2α2

1

2α0
=

π4 (∆U1)
2

2b2γ2

1

πγ
ω1ω2e

− 2
bγ

∆U0

Thus

R = k0 (∆U1)
2 e−

2
bγ

∆U0

b2

Notes:

• for small noise b the signal-to-noise ratio increase with increasing noise level: the
number of jumps between the two wells increases and because the escape time de-

pends so sensitively on the barrier height these jumps occur predominantly during a
relatively well-defined period when the relevant barrier is minimal

• for large noise levels the jumping can also occur at any other times: signal becomes

noisy again

• essential is the bistability of the system: the system has to be nonlinear

6.1 Examples

Stochastic resonance has been found and investigated in a wide range of physical and bio-
logical systems (for a review see e.g. [14])

• climate models

• various set-ups of lasers

• SQUIDs (superconducting quantum interference device): superconducting loop inter-

rupted by a Josephson junction

• chemical reactions

• neuronal systems

• psycho-physical experiments

Here just a couple of examples.
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6.1.1 Ring Laser [22]

In the ring laser the beam can travel in one of two opposite directions ⇒ bistability

By an acousto-optic coupler one of the two directions can be preferred: the preferred direc-
tion depends on the frequency of the modulation ⇒ modulating the frequency periodically

a periodic switching of directions can be induced

Combine a periodic and noisy modulation of the ultrasound frequency to get stochstic res-
onance.

This paper triggered a huge interest in stochastic resonance.

Figure 2: Experimental set-up of ring laser [22]
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Figure 3: Left: Input and output of laser for two noise strengths. Right: Power

spectrum for increasing noise strength [22].

Figure 4: Dependence of the signal-to-noise ratio on the noise strength [22].
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6.1.2 Mechanoreceptors in Crayfish[12]

Stimulate mechanical mechanoreceptors on the tailfan of the crayfish ⇒ sensory neuron
generates spikes triggered by the stimulation

Stimulus: weak periodic signal + noise of variable strength

p

Figure 5: a) Power spectrum from spiking activity of crayfish mechanoreceptor for 3 dif-
ferent noise levels with fixed weak periodic signal. b) Interspike interval histograms for
different noise levels [12].
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Figure 6: Dependence of the signal-to-noise ratio as determined from the power spectrum
(top) and the interspike interval distribution (bottom) on the strength of the external noise
[12].

6.1.3 Tactile Sensation[9]

Human psychophysics experiment: apply small indentations to the tip of a subject’s middle
digit

There is a minimal indentation that is needed for the person to perceive it.

To be discriminated:

• subthreshold stimulus plus noise

• no stimulus plus noise
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Figure 7: Indentation stimulus given to the finger tip. Three different noise strengths [9].

Figure 8: Percent of correct discrimination of the stimulus for three different subjects as a
function of noise strength [9].

For another interesting psychophysics experiment see [26].
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7 Sketch of Numerical Methods for Stochastic Differ-

ential Equations

For numerical solutions of stochastic differential equations two goals are possible

1. Strong approximation: pathwise approximation

for any given realization W (t) of the noise the numerical solution approximates the
exact solution ỹ

Es(t) = 〈|y(t) − ỹ(t)|〉 =
1

N

N∑

k=1

|yk(t) − ỹk(t)|.

Here yk(t) is the numerical result one obtains for the kth−realization of the noise. To

get a good estimate of the error the number N of realizations has to be sufficiently
large. Add up absolute value of error to avoid error cancellation.

2. Weak approximation: approximation of expectation values
for any f(y) in a class of test functions the mean value obtained with the numerical
solution approximates the mean value of f(y)

Em(t) =< f(ỹ(t)) > − < f(y(t)) >

Typically one would require convergence of the

(a) mean: f(y) = y

(b) variance: f(y) = y2

Notes:

• to obtain a strong approximation the numerical realizations W (t) of the noise have to
approximate the exact realizations

• for a weak approximation the numerical noise can be quite different than the exact
noise as long as it yields a y(t) for which sufficiently many expectation values agree,

e.g. mean, variance, higher moments 〈(y(t))m〉.

7.1 Strong Approximation

7.1.1 Euler-Maruyama Scheme

Consider

dy = f(y, t)dt + g(y, t)dW (62)

Discretize time and integrate over a short time interval ∆t

∫ t+∆t

t

dy =

∫ t+∆t

t

f(y, t′)dt′ +

∫ t+∆t

t

g(y, t′)dW (t′)
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Using a left-endpoint rule with only a single interval one obtains the Euler-Maruyama
scheme

yn+1 = yn + f(yn, tn)∆t + g(yn, tn)∆Wn (63)

where

∆Wn = W (tn + ∆t) − W (tn).

The ∆Wn are Gaussian distributed with variance ∆t. They are δ−correlated

〈∆Wn∆Wn′〉 = δn,n′.

Using a normally distributed variable ∆W̃ that has variance 1 we get ∆Wn by setting

∆Wn =
√

∆t ∆W̃ with P (∆W̃ ) =
1√
2π

e−
∆W̃2

2 (64)

The noise strength is characterized by g(yn, tn).

Notes:

• For each time step generate a new random number ∆Wn that obeys Gaussian statis-

tics (normal distribution); in matlab this is done with randn.

• If y is a vector, usually the random processes for different components of y are inde-
pendent: for each component of y one has to generate a different independent random

number

• To check convergence of the strong approximation:

need to compare solutions with different time steps ∆t for the same realization W (t)

1. Starting with smallest ∆t, generate increments ∆W
(0)
n for all time steps tn using

a random number generator for a normal (Gaussian) distribution with variance
∆t according to (64).

2. Increase the time step to ∆t(2) ≡ 2∆t, generate the Wiener process with incre-

ments ∆W
(1)
n with larger time step by adding pairs of successive increments,

∆W (1)
n = ∆W

(0)
2n + ∆W

(0)
2n+1 n = 0, 1, ... (65)

3. Continue to add up the appropriate increments of the Wiener process with incre-

ments ∆W
(l)
n to generate Wiener processes with increments ∆W

(l+1)
n , l = 1, 2, . . .

corresponding to time steps ∆t(l+1) = 2l+1∆t. These compound increments have

the variance
〈
(
∆W (l)

n

)2〉 = 2l

since the variances are additive

〈
(x1 + x2)

2〉 =

∫

(x1 + x2)
2 e−

x2
1

2σ2 e−
x2
2

2σ2 dx1dx2 =
〈
x2

1

〉
+ 〈2x1x2〉
︸ ︷︷ ︸

=0

+
〈
x2

2

〉
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4. Use 2l∆t and ∆W
(l)
n , l = 1, 2, . . ., for successively less accurate approximations in

(63).

Note:

• For f(yn, tn) = 0 and g(yn, tn) = 1 the Euler scheme (63) generates W (t) exactly for all l.
Changing the time step for a given realization makes no difference since the coarsened

Brownian motion adds the steps of the finer representation of the realization.

Order:

• One can show that, in general, the Euler-Maruyama scheme is of order ∆t
1
2 .

• If dg
dy

= 0 then the Euler-Maruyama scheme is of order O(∆t1) as in the deterministic

case (see (68)).

7.1.2 Milstein Scheme

In particular for multiplicative noise one may want to get a higher-order approximation.

Write the stochastic differential equation again in integral form

∫ t+∆t

t

dy =

∫ t+∆t

t

f(y)dt′ +

∫ t+∆t

t

g(y)dW (t′) (66)

Note:

• for simplicity assume that f and g do not depend explicitly on time.

To obtain a higher-order approximation we need to go beyond the left-end-point rule: use a

better approximation of the integrand.

Use Ito’s formula for a function v(y) with y satisfying the stochastic differential equation
(62)

dv =

(
dv

dy
f +

1

2

d2v

dy2
g2

)

dt +
dv

dy
g dW

Rewrite as integral

v(y(t′)) = v(y(t)) +

∫ t′

t

(
dv

dy
f +

1

2

d2v

dy2
g2

)

dt′′ +

∫ t′

t

dv

dy
g dW (t′′)
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Use Ito’s formula in integral form to rewrite the two integrands in (66)

y(t + ∆t) = y(t) +

∫ t+∆t

t

[

f(y(t)) +

∫ t′

t

(
df

dy
f +

1

2

d2f

dy2
g2

)

dt′′ +

∫ t′

t

df

dy
g dW (t′′)

]

dt′

+

∫ t+∆t

t

[

g(y(t)) +

∫ t′

t

(
dg

dy
f +

1

2

d2g

dy2
g2

)

dt′′ +

∫ t′

t

dg

dy
g dW (t′′)

]

dW (t′) (67)

= y(t) + ∆t f(y(t)) + g(y(t)) ∆W
︸ ︷︷ ︸

Euler-Maruyama

+h.o.t.

We want the leading-order terms in the h.o.t.:
since dW 2 = dt the dominant term is

∫ t+∆t

t

∫ t′

t

dg(y(t′′)

dy
g(t′′) dW (t′′) dW (t′) =

dg(y(t))

dy
g(t)

∫ t+∆t

t

{
∫ t′

t

dW (t′′)

}

dW (t′) + ...

Use the Ito integration rule (47) for polynomials

∫ t

0

W n(t′)dW (t′) =
1

n + 1

(
W (t)n+1 − W (0)n+1

)
− 1

2
n

∫ t

0

W (t′)n−1dt′

to evaluate the integral

∫ t+∆t

t

{
∫ t′

t

dW (t′′)

}

dW (t′) =

∫ t+∆t

t

[W (t′) − W (t)] dW (t′)

=
1

2

(

W (t + ∆t)2 − W (t)2 − 1

2
∆t

)

− W (t) (W (t + ∆t) − W (t))

=
1

2
(W (t + ∆t) − W (t))2 − 1

2
∆t =

1

2
∆W 2 − 1

2
∆t

Note:

• the integral does not vanish since in a given realization one has in general ∆W 2 6= ∆t;
only in the mean one has 〈∆W 2〉 = ∆t.

Thus one obtains

yn+1 = yn + ∆t f(yn) + g(yn) ∆W +
1

2

dg(yn)

dy
g(yn)

(
∆W 2

n − ∆t
)

(68)

Notes:

• For the convergence test proceed as for the Euler-Maruyama scheme and generate
increments ∆Wn with variance ∆t for the smallest ∆t to be used and then generate

the compound increments as in (65).

• Milstein scheme has strong convergence of order ∆t1
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• for additive noise one has dg
dy

= 0: the Euler-Maruyama scheme is then identical to the

Milstein scheme and also becomes strong of O(∆t) (see simulations).

Sample Code:

function milstein

% pre-assign memory for speed

nstepmax=1e5; time(1:nstepmax)=0; x(1:nstepmax)=0; realization(1:nstepmax)=0;
noise(1:nstepmax)=0;

% physical parameters

tmax=0.5; amp=.1; field=0.1; x(1)=0;

% numerical parameters

ntjmin=3;ntjmax=12;

nstep max=2ˆntjmax; dtmin=tmax/nstep max;

nconf=100;

log plot sol=0;

% control scheme:

%forward euler: milstein=0 %milstein: milstein=1

milstein=1;

errormean(1:ntjmax-1)=0;

for iconf=1:nconf

for i=1:nstepmax

realization(i)=sqrt(dtmin)*randn;

end

for ntj=ntjmax:-1:ntjmin

nt=2ˆntj;

dt(ntj)=tmax/nt;
time(1)=0;

for i=1:nt

if (ntj==ntjmax)

noise(i)=realization(i);

else

noise(i)=noise(2*i-1)+noise(2*i);
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end
x(i+1)=x(i)+dt(ntj)*F(x(i),amp,field)+...

x(i)*noise(i)+...
1/2*milstein*x(i)*(noise(i)ˆ2-dt(ntj));

time(i+1)=time(i)+dt(ntj);

end
if (log plot sol==1)

figure(1)

plot(time(1:nt+1),x(1:nt+1));
if ntj==1

figure(1)

hold all
xlabel(’time’);
ylabel(’x’);

end

end
xfinal(ntj)=x(nt+1);

end

if (log plot sol==1)

hold off

end

error(iconf,1:ntjmax-1)=abs(xfinal(2:ntjmax)-xfinal(1:ntjmax-1));

errormean=errormean+error(iconf,:);

figure(3)

slope1x=[0.001,0.01];
slope1y=[0.0001,0.001];

slope05x=[0.001,0.1];
slope05y=[0.0001,0.001];

loglog(dt(1:ntjmax-1),error(iconf,1:ntjmax-1),’-o’);
hold all
loglog(slope1x,slope1y);

loglog(slope05x,slope05y);
xlabel(’dt’);

ylabel(’difference between succ. approx’);

end

hold off

errormean=errormean/nconf;

figure(4)

loglog(dt(1:ntjmax-1),errormean(1:ntjmax-1),’-o’);

axis([1e-4 1e-1 1e-6 1e-2]);

hold all
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loglog(slope1x,slope1y);

loglog(slope05x,slope05y);

xlabel(’dt’);

ylabel(’difference between succ. approx’);

hold off

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [F]b=F(x,amp,field)

%xmin2=5;

%F=-amp*x*(1-x)*(xmin2-x)/xmin2;

F=-amp*2*x+field;

end
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Figure 9: Euler-Maruyama scheme for dy = −0.2y dt + y dW : a) errors for 20 individual

realizations of the Wiener process as a function of ∆t. b) mean error.
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Figure 10: Milstein scheme for dy = −0.2y dt+ y dW : a) errors for 20 individual realizations

of the Wiener process as a function of ∆t. b) mean error.

To go beyond O(∆t) we would have to deal with the integrals

∫ t+∆t

t

∫ t′

t

dW (t′′)dt′
∫ t+∆t

t

∫ t′

t

dt′′dW (t′)

They cannot be expressed simply in terms of ∆W and ∆t. One would have to introduce an

additional random variable

∆z =

∫ t+∆t

t

∫ t′

t

dW (t′′)dt′.

One can show

〈∆z〉 = 0 〈(∆z)2〉 =
1

3
∆t3 〈∆z∆W 〉 =

1

2
∆t2

Note:

• expect ∆z to be of O(∆t
3
2 ), very loosely speaking.

• with ∆z included the scheme would become of O(∆t
3
2 ).

7.1.3 Implicit Schemes

As in deterministic case stability may require implicit scheme.

If one tries to implement a fully implicit scheme one runs into difficulties:

as example, consider backward Euler for

dy = aydt + bydW

yn+1 =
yn

1 − a∆t − b∆Wn

Since ∆W is unbounded the denominator can vanish for some ∆Wn.
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⇒ treat only the deterministic term implicitly

i) Backward Euler

yn+1 = yn + ∆tF (yn+1, tn+1) + g(yn, tn)∆W

ii) Backward Milstein

yn+1 = yn + ∆tF (yn+1, tn+1) + g(yn, tn)∆W +
1

2

dg(yn)

dy
g(yn)

(
∆W 2 − ∆t

)

7.2 Weak Approximation

If only averages and moments like 〈yn〉 are of interest the strong approximation is not

needed, i.e. any given run need not converge to the exact solution corresponding to a given
realization of the noise.

In particular:

The noise used in the simulation need not be the same noise as in the stochastic differential
equation.

i) Forward Euler

yn+1 = yn + F (yn)∆t + g(yn)∆W̃

where the process ∆W̃ needs to satisfy
〈

∆W̃
〉

= O(∆t2)
〈(

∆W̃
)2
〉

= ∆t + O(∆t2)

〈(

∆W̃
)3
〉

= O(∆t2)

Notes:

• the noise ∆W̃ need not be the Wiener process, i.e. ∆W̃ need not be
∫ t+∆t

t
dW (t′).

Specifically, it may differ from the Wiener process at order O(∆t2). The conditions for
the process ∆W̃ can be combined to

|〈∆W̃ 〉| + |〈∆W̃ 3〉| + |〈∆W̃ 2〉 − ∆t| ≤ K∆t2

• the noise could be a simple coin toss with ∆W̃ = ±
√

∆tand

P (∆W̃ = ±
√

∆t) =
1

2

(it seems however that in matlab there is no random number generator for such a

dichotomic noise: need to generate uniformly distributed numbers in the interval
[0, 1] and then check whether the number is larger or smaller than 1

2
. This seems to

be slower in matlab than the Gaussian distribution)
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• this weak Euler scheme has weak convergence of O(∆t)

ii) Order-2 Weak Taylor Scheme

by keeping all the integrals in (67) and keeping also a term coming from dW 2dt at next
order one gets

yn+1 = yn + Fn∆t + gn∆W +
1

2
gn

dgn

dy

(
∆W 2 − ∆t

)
+

+
dFn

dy
gn∆z +

1

2

(

Fn
dFn

dy
+

1

2

d2Fn

dy2
g2

n

)

∆t2 +

+

(

Fn
dgn

dy
+

1

2

d2gn

dy2

)

(∆W∆t − ∆z)

with

∆z =

∫ t+∆t

t

∫ t′

t

dW (t′′)dt′

For weak convergence ∆W can be replaced by ∆W̃ and ∆z by 1
2
∆W̃∆t if

|〈∆W̃ 〉| + |〈∆W̃ 3〉| + |〈∆W̃ 5〉| + |〈∆W̃ 2〉 − ∆t| + |〈∆W̃ 4〉 − 3∆t2| ≤ K∆t3

Notes:

• the conditions are satisfied by Gaussian random variable and also by three-state dis-
crete random variable with

P (∆W̃ = ±
√

3∆t) =
1

6
P (∆W̃ = 0) =

2

3

With that replacement get simplified scheme

yn+1 = yn + Fn∆t + gn∆W̃ +
1

2
gn

dgn

dy

(

∆W̃ 2 − ∆t
)

+
1

2

(

Fn
dFn

dy
+

1

2

d2Fn

dy2
g2

n

)

∆t2

+
1

2

(
dFn

dy
gn + Fn

dgn

dy
+

1

2

d2gn

dy2

)

∆W̃∆t

Note:

• generate ∆W̃ : generate a uniformly distributed variable ξ ∈ [0, 1] (using rand in
matlab)

0 ≤ ξ ≤ 1

6
∆W̃ = +

√
3∆t

1

6
< ξ <

1

3
∆W̃ = −

√
3∆t

1

3
< ξ ≤ 1 ∆W̃ = 0
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8 Projects

Suggested Projects:

1. Thermal Ratchets [10, 2]

2. Ratchets and games [3]

3. Bifurcations [18]

4. Coherence resonance [23]

5. Coherence resonance in SIR [19]

6. Reduction of Kramers equation to Smoluchowski equation [5]

7. Stability of incoherent spiking in neuronal networks [6]

8. Localization of waves in random media [11]

9. Noise-induced neuronal network oscillations [24]

10. Noisy Kuramoto model: Fokker-Planck for oscillators [27, can be downloaded from
class web site]

11. Exit from non-smooth potentials [29]

12. Black-Scholes equation for options pricing [31, 16, chapters from these books]

13. Coagulation [7, chapter III.6]
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