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1 Interesting and Fun Links

Here is a list of (randomly obtained) links that are of interest for this class or just plain
neural fun.

• Flash movie of ions participating in action potential
http://www.brainu.org/action_potential_cartoon.swf

• Movies by Rudolph and Destexhe
http://cns.iaf.cnrs-gif.fr/alain_movies.html

• Graphical Hodgkin-Huxley Simulator
http://www.cs.cmu.edu/~dst/HHsim/

this simulator is also available as Matlab source code.

• GUI for Izhikevich’s Simple Model [34]
http://vesicle.nsi.edu/users/izhikevich/publications/whichmod.htm#izhikevich

• Illusions:

– Optical illusions and other visual phenomena
http://www.michaelbach.de/ot/index.html

– Animated Necker cube
http://www.dogfeathers.com/java/necker.html

– Barber Pole Illusion:
http://www.psychologie.tu-dresden.de/i1/kaw/diversesMaterial/www.

illusionworks.com/html/barber_pole.html

– Moving Rhombus:
http://www.cs.huji.ac.il/~yweiss/Rhombus/

– More optical illusions:
http://www.purveslab.net/seeforyourself/ http://web.mit.edu/persci/

index.html

– Best Illusion Contests:
http://illusioncontest.neuralcorrelate.com/

• Many interesting aspects of the brain
http://www.youramazingbrain.org.uk/

illusions of various kinds
http://www.youramazingbrain.org.uk/supersenses/default.htm
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2 Introduction

What is the purpose of the brain?

• based on sensory input

– mouse sees cat, frog sees a fly, ...

• and past experience (memory)

– learning from experience (narrow escape, tasty), ...
[even bees and flies can be trained: extend proboscis, flying left or right in a
T-channel,...]

• the organism must decide what to do and then give generate motor output

– jump, eta, run

Figures/ChSe99.f2.1.ps

Figure 1: The multiple scales of the brain [54] (reproduced in [7]) .

Studying brain function requires studies at a wide range of scales:

• behavior of the animal

• brain regions:
anatomy, connectivity between the regions, activities of the regions related to
behavior (e.g. fMRI measuring blood-oxygen-level-dependent (BOLD) signal)
note extensive feed-back between different regions (not marked in Fig.1)

10
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• circuits within brain regions:
e.g. mammalian cortex is arranged in columns (half a million, each∼ 0.5mm wide,
∼ 2mm thick containing ∼ 50, 000 neurons )
columns have 6 layers: input, output to other columns, to other cortical areas, to
spinal cord and other areas outside of cortex
simpler circuits controling breathing, locomotion (worms), stomach grinding (lob-
ster),...

• individual neurons:
wide variety of types with different characteristics: excitatory, inhibitory, wide
spread in morphology
neurons consist of

– soma with nucleus (DNA and chemical machinery like in other cells that is
needed for metabolism)

– axon: output of information to other neurons via an electric pulse (action
potential), currents are carried by ions

– dendrite: input of information from other neurons as a result of their action
potential

Figures/webvision.med.utah.edu.visualcortex.ps

Figure 2: Different neuron morphologies in visual cortex. webvision.med.utah.edu/

VisualCortex.html
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Figures/cajal_cerebellar_cortex.ps

Figure 3: Purkinje cells (A) and basket cells (B) in cerebellar cortex.

• dendrites themselves can serve as computational units: inputs can gate other
inputs

• electric activity of neuron due to ion channels across the cell membrane

– they consist of a combination of a few large molecules, e.g. 4 molecules in
K+-channel (tetramer)

– ion concentrations are different inside and outside of the cell (e.g. Na+ much
higher outside)

– ion channels typically permeable only to certain types of ions (e.g., Na+ and
not K+, etc.)

– ion channels open and close depending on voltage across membrane (voltage-
gated) ⇒ resulting currents change voltage, which affects in turn ion chan-
nels
neurons are nonlinear devices: excitable by sufficiently strong external input
⇒ action potential

Figures/hhsim.ps

Figure 4: Action potential simulationhttp://www.cs.cmu.edu/~dst/HHsim/.

• large number of synapses provide connection between different neurons, mostly
between axons and dendrites (∼ 2 synapses/µm of dendritic length, total O(10, 000),
can be O(100, 000) for Purkinje cell)

– neurotransmitters are released from pre-synaptic terminal and diffuse across
the narrow synaptic cleft between the cells

12
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• neurotransmitters activate numerous types of receptors

– similarly to ion channels, receptors are comprised of a combination of a few
large molecules, e.g. AMPA-receptor is a tetramer

– binding of the neurotransmitter to the receptor opens an ion channel and
modifes voltage of post-synaptic cell

• genetics

– different cells express different sub-units of receptors or ion channels giving
them different properties

Computational and theoretical approaches:

• detailed modeling at a given level/scale :
individual ion channel, single synapse, single neuron, possibly circuit consisting
of few neurons, ...
extracting sufficiently many parameters from experiments is a challenge

• effective models to identify essential mechanisms of brain functions:
networks of minimal models of neurons, interaction of neural populations repre-
senting brain areas
e.g. origin of oscillations, principles of memory

• statistical approaches and information theory:
encoding of information (e.g. sensory) in spike trains: mean firing rate, timing of
individual spikes, correlation between spikes? Decoding the spike trains.
optimality considerations: ‘natural scenes’ ⇒ suggestions for brain function or
architecture (e.g. early visual processing: what type of information should the
retina transmit to the brain?)

3 Single Neuron

3.1 Passive, Single-Compartment Neuron 1

Neurons are bounded by a membrane comprised of a lipid bilayer

• hydrophilic heads oriented towards electrolyte (extra- and intra-cellular fluid)

• hydrophobic tails inside the membrane

• electric insulator
1Dayan & Abbott: DA 5.2
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Across the membrane a charge can build up: capacitance C

Q = CV C =
Q

V

Units:
charge [Q]=Coulomb, voltage [V ]=Volt, capacitance [C]=Farad

Convention:

• The potential outside the cell is defined to be 0

• Positive current is defined to be outward :
positive charges flow out of the cell and decrease the potential inside the cell:
V becomes negative

Typical voltages are in the range −90mV to +50mV . These voltages are not far above
the thermal range: at physiological temperatures T the thermal energy corresponds to
a voltage

VT =
kBT

q
∼ 25mV

and thermal fluctuations can almost move charges aross these voltages (kB is the
Boltzmann constant, q the charge of an electron) ⇒ expect noisy dynamics (i.e. even
for fixed voltage, i.e. in voltage clamp, the current should be expected to fluctuate)

A change in the voltage across the layer requires a current I

I ≡ d

dt
Q = C

d

dt
V

The capacitance increases with surface area

C = cA c ∼ 1
µF

cm2
= 10

nF

mm2

Typical cell areas are 0.01 to 0.1 mm2:

C ∼ 0.1 . . . 1nF

Axial current flow in the intracellular medium enclosed by the double-layer membrane
experiences a resistance R.

For a cylinder of length L and area A one has

R = r
L

A
r ∼ 1 . . . 3 kΩ · mm = 100 . . . 300Ω · cm

• Resistance increases with L (circuit of resistors in series)

14
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• Resistance decreases with A (circuit of parallel resistors)

• → unit: [r] = Ω · m

Current flow across the membrane possible through ion channels

• proteins embedded in membrane

• allow ions to diffuse through membrane

• proteins can be selective for specific ions
→ many different types of ion channels

Figures/BeCo96.f2.8a.ps

Figure 5: Ion channels in membrane.

Estimate of channel conductance 1/R assuming that channel pore corresponds to a
cylinder of cellular fluid:

• L ∼ 6nm, A ∼ 0.15nm2: 1/R = 25pS = 25 · 10−12S

• unit is Siemens: 1 S = 1Ω−1

• the channels cover the membrane: conductance density g
unit: [g] = pS/cm2

The membrane resistance depends on the density of open channels. It can vary sub-
stantially. For neuron in resting state specific membrane resistance rm

rm ∼ 1MΩ mm2 Rm =
rm

A
∼ 10 . . . 100MΩ

Unit: [rm] = Ωm2 since channels correspond to resistors in parallel and conductance is
proportional to membrane area.
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Equivalent Circuit:

Kirchhoff’s law:
the ions of the injected current Ie flow either back out of the cell via the membrane
current Im or they increase the charge on the membrane corresponding to a capacitive
current IC

Ie = Im + IC =
V

Rm
+ C

dV

dt

i.e.
dV

dt
= − 1

RmC
V +

1

C
Ie

Introducing the membrane time constant τm = RmC one gets

τm
dV

dt
= −V + RmIe (1)

Steady state
Vss = RmIe

Relaxation towards steady state2

V (t) = RmIe

(

1 − e−
t

RmC

)

for V (0) = 0.

Exponential relaxation with time constant τm = RmC.
Typical value: τm ∼ 1ms.

3.2 Ion Channels 3

The ion flux through the ion channels depends on the ion concentrations and the volt-
age across the membrane.

The ion concentrations inside and outside the cell are typically different:

• [Na+] and [Ca2+] higher outside the cell

• [K+] lower outside the cell

These differences are maintained by active ion pumps. Their activity requires metabolic
energy (ATP).

2The general solution of a linear, inhomogeneous ode like (1) is given by the general solution Vh of
the homogeneous equation τmdV/dt = −V (here Vh = Ae−t/τm) and any particular solution Vp of the
inhomogeneous equation (1) (here Vp = Vss).

3DA 5.2
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Figures/sodium_potassium_pump.ps

Figure 6: Na+-K+-exchange pump.
Movie http://highered.mcgraw-hill.com/olc/dl/120068/bio03.swf

Combined with the semi-permeability of the membrane the concentration differences
lead in the steady state to a difference in the electrical potential across the membrane:
the current across the membrane vanishes for a non-zero voltage called the reversal
potential.

Nernst equation:

Consider only single ion species, e.g. [Na+], and a single ion channel for now:

• V = 0

– number of ions that enter channel from inside is proportional to [Na+]inside

jout(V = 0) = k[Na+]inside

with k some constant (related to the mobility of the ions).

– number of ions that enter channel from outside is proportional to [Na+]outside

jin(V = 0) = k[Na+]outside

– for [Na+]outside > [Na+]inside ions flux is inward: this flux leads to a net posi-
tive charge inside and a net negative charge outside: V becomes positive

• for V > 0

– potential is higher inside the cell and only those Na+ ions can enter the cell
that have an enough energy (above qV ) to overcome the potential energy
barrier

– probability distribution for the energy of the ions

p(E)dE = Ne
− E

kBT dE

with normalization
∫ ∞

0

p(E)dE = 1 ⇒ N =
1

kBT

17
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– fraction of ions with energy above E0 = zqV0

P (E > E0) =

∫ ∞

E0

p(E)dE = e
−

zqV0
kBT

– the flux against the positive potential is therefore given by

jin(V ) = k [Na+]outsidee
− zqV

kBT

(z = 1 for Na+).

– ions leaving the cell need not overcome an energy barrier

jout(V ) = jout(V = 0) = k[Na+]inside

• for a certain voltage, V = ENa+ , the system is in equilibrium the two fluxes bal-
ance

jin(V = ENa+) = jout

The reversal potential ENa+ for Na+ is given by the Nernst equation (for Na+ one has
z = 1)

ENa+ =
VT

z
ln

(
[Na+]outside

[Na+]inside

)

VT =
kBT

q
.

Notes:

• For V < ENa+ the electric field (potential barrier) is not strong enough to keep
the Na+ from entering the cell ⇒ more positive charges flow into the cell and
make the potential more positive, i.e. V approaches ENa+ and conversely for
V > ENa+ .
⇒ For fixed concentrations [Na+]inside,outside the ion flux pushes the voltage to-
wards the reversal potential ENa+ .

Squid Na+ K+ Cl− Ca2+

intracellular concentration 50mM 400mM 40mM
extracellular concentration 440mM 20mM 550mM

ratio of concentrations ext/int 8.8 0.05 14
Nernst reversal potential +56mV -77mV -68mV

Birds/Mammals Na+ K+ Cl− Ca2+

intracellular concentration 12mM 155mM 4mM 100nM
extracellular concentration 150mM 4mM 120mM 1.5mM

ratio of concentrations ext/int 12.5 0.03 30 15,000
Nernst reversal potential +67mV -98mV -90mV 130mV

Table 1: Rough values of concentrations. Birds and mammals have much lower con-
centrations than marine invertebrates

• Thus, opening Na+-channels drive the potential to positive values, while K+−and
Cl−-channels hyperpolarize cells to negative potentials.
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• In thermodynamic equilibrium it does not matter how ions diffuse through the
channel: result is independent of the mobility k.

• If multiple ion species diffuse across the membrane, the steady state does in
general not correspond to thermodynamic equilibrium:

– ion fluxes can cancel each other:
although charge flux vanishes the individual ion fluxes may be non-zero

– the ion fluxes must be treated explicitly

Goldman-Hodgkin-Katz Equation 4

In general:

multiple ions species diffuse across channel ⇒ to get the steady state, i.e. the rest
potential, we need the ion flux jφ driven by the electric field E = −∇φ for each species

Planck’s equation

jφ = −zq∇φ
︸ ︷︷ ︸

force on ion

D

kBT
︸︷︷︸

drag coefficient

c = −u
z

|z|c∇φ

with

• z: valence of ion (zq is total charge of ion)

• u: mobility of ion: includes the magnitude of the charge, more strongly charged
ions have larger u
related to Fick’s diffusion constant D

u =
|z|q
kBT

D

• c: concentration of the ion species

Total ion flux

j = −D

(

∇c +
zq

kBT
c∇φ

)

In general the electric field ∇φ depends on the charge distribution ρ(r) through the
Poisson equation

∇2φ = −1

ǫ
ρ(r) ǫ = dielectric constant of the medium

Charge density changes due to the current j ⇒ coupled equations for φ and j (Poisson-
Nernst-Planck equations)

4Keener&Sneyd 2.6.2
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Figures/channel_sketch.eps

Figure 7: Modeling one-dimensional ion channel.

Simplify for short, narrow channel:

• consider the steady state: all quantities are time-independent

• assume all quantities depend only on the x-coordinate along the channel:
one-dimensional model:

∇c → dc

dx
∇φ =

dφ

dx

choose coordinates such that inside of the cell is for x < 0 and outside of the cell
is for x > L:

V = φ(0) − φ(L)

• assume that the electric field independent of position in the channel:

dφ

dx
=

φ(L) − φ(0)

L
= −V

L

This yields the differential equation

dc

dx
− αc +

j

D
= 0 with α =

zq

kBT

V

L

with boundary conditions

c(0) = cinside c(L) = coutside

Note:

• a first order differential equation has only a single free parameter: how can we
satisfy both boundary conditions? The boundary conditions will pose an addi-
tional condition on a parameter in the equation: it will determine j.

Using integrating factor e−αx

e−αx

(
dc

dx
− αc

)

= −e−αx j

D

can be written as
d

dx

(
e−αxc(x)

)
= −e−αx j

D
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integrating from x = 0 to x yields

e−αxc(x) − c(0) =
1

α

j

D

(
e−αx − 1

)

with c(0) = cinside.

To satisfies the boundary condition at x = L the flux j has to satisfy the condition

j = αD
cinside − e−αLcoutside

1 − e−αL

To get a current density je we need to multiply j with the charge of the ions. Measuring
c in moles/volume the charge per volume is ρ = zFc with F the Faraday constant
(charge of 1 Mole of single-valence ions).

This yields the Goldman-Hodgkin-Katz current equation

je =
z2Fq

kBT
P V

cinside − e−αLcoutside

1 − e−αL
with αL =

zq

kBT
V (2)

with membrane permeability

P =
D

L

Notes:

• the current-voltage relationship je(V ) is nonlinear ( through α)

• the membrane permeability in general will depend on the channel and the ion
species

Now we can consider cells with multiple ion species ci

je =
∑

i

ji
e

In the steady state the total current density je must vanish.

For simplicity consider single-valence ions, z = ±1, with concentrations ci±

0 =
∑

i+

Pi+
ci+
inside − ci+

outsidee
− q

kBT
V

1 − e
− q

kBT
V

+
∑

i−

Pi−
ci−
inside − ci−

outsidee
q

kBT
V

1 − e
q

kBT
V

rewrite it as

0 =
∑

i+

Pi+
ci+
inside − ci+

outsidee
− q

kBT
V

1 − e
− q

kBT
V

+
∑

i−

Pi−
ci−
insidee

− q

kBT
V − ci−

outside

e
− q

kBT
V − 1

0 =
∑

i+

Pi+

(

ci+
inside − ci+

outsidee
− q

kBT
V
)

−
∑

i−

Pi−

(

ci−
insidee

− q

kBT
V − ci−

outside

)
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One can solve this equation for V

VGHK =
kBT

q
ln

(∑

i+ Pi+ci+
outside +

∑

i− Pi−ci−
inside

∑

i+ Pi+ci+
inside +

∑

i− Pi−ci−
outside

)

(3)

Notes:

• for a single ion species VGHK reduces to Nernst reversal potential5. For multiple
species the concentrations are weighted with their respective permeability.

• at the rest potential V = VGHK

– the electric current across the membrane vanishes

– the concentration currents of the various ion species do in general not vanish

– the concentration differences across the membrane need to be maintained
by ion pumps to maintain the steady state

• the result depends in particular on the assumption of a spatially constant electric
field along the channel. Depending on the channel type this assumption may or
may not be a good approximation.

• unlike the Nernst potential the GHK-result is not universal: P depends on the
mobility of the various ion species in that channel

• for the standard three ion species one gets (for z = ±1)

VGHK =
kBT

q
ln

(
PNa[Na+]outside + PK [K+]outside + PCl[Cl−]inside

PNa[Na+]inside + PK [K+]inside + PCl[Cl−]outside

)

For example
Na+ K+ Cl− Ca2+

intracellular concentration 15mM 100mM 13mM
extracellular concentration 150mM 5mM 150mM

ratio of concentrations 10 0.05 11.5
Nernst Potential +62mV -80mV -65mV

P/PK 0.025 1 0.1
Because of the high membrane permeability for K+ the resting membrane poten-
tial is dominated by the K+ ions with a slight depolarization by Na+.

3.3 The Hodgkin-Huxley Model

• How do neurons function?
5Note that in the derivation of (3) we have assume z = ±1.
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• What makes the action potential?

• What is a good mathematical model for it?

Bernstein :

• measured action potentials (1968)

• based on Nernst equation and knowledge of the concentration difference across
membrane suggested that membrane is semi-permeable to K+: Vrest ∼ −70mV
(1912)

• speculated that during action potential membrane becomes permeable to all
types of ions, which would lead to a break-down of the membrane potential.

Cole and Curtis (1940):

• establish that conductance of membrance changes significantly during action po-
tential

Membrane currents can still not be measured directly until Cole and Marmont develop
space clamp technique (1940’s): insert very narrow electrode down the center of the
axon to make voltage spatially uniform and measure associated current.

Figures/KeSn98.f4.1.ps

Figure 8: The giant squid axon is not an axon from the ‘giant squid’ (from [39])

To measure currents and action potentials in axons they used the giant axon of squid:
100 times thicker than axons in mammals, made experiments feasible.

Hodgkin and Curtis independently show that during action potential the voltage over-
shoots, i.e. crosses V = 0: Bernstein’s suggestion of a general permeability of the
membrane cannot be correct.

Hodgkin and Katz (1949):
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• identify Na+ as essential for action potential generation by reducing NaCl in ex-
tracellular fluid by replacing it with some other substance like dextrose or choline
chloride (membrane is impermeable to choline ions)

Figures/HoKa49.f4.ps

Figure 9: Reduction of action potential upon partial replacement of extracellular sea-
water by dextrose, reducing extracellular [Na+] . a) 67% dextrose, b) 50%, c) 29%.
Curve 1 and 3 (wash-out) are with seawater [30]

• this explains the overshoot, since Na+ has positive reversal potential

• permeability of membrane must change selectively for ions: there must be a
period during which the permeability for Na+ dominates

Hodgkin and Huxley (1952, 5 papers, one with Katz)

• measure currents as a function of membrane voltage:

– membrane is rectifying (Fig.10)

∗ hyperpolarization beyond rest potential (V < Vrest) induces no current
∗ depolarization induces time-dependent current

· initially negative (inward) current
the inward current depolarizes the membrane further

· later positive (outward) current
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Figures/HoHu52a.f11.ps

Figure 10: Channels are rectifying: no current for hyperpolarization (to -130mV, top),
transient current for depolarization (to 0mV, bottom figure). Note: sign convention of
current opposite to the one used nowadays. [29]

∗ for channels to open the membrane needs to be sufficiently depolarized

– shape of transient depends on the voltage step (Fig.11)
different channels open for different voltages and they have different driving
forces (V − E)

Figures/HoHu52a.f12.ps

Figure 11: Shape of transient current depends on the membrane voltage.The numbers
marking the curves denote hyper-polarization relative to resting potential: negative
numbers indicate depolarization [29].

• extract K+− and Na+-current separately by replacing parts of the extracellular
NaCl with choline chlorid (Fig.12)
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– Na+-component is transient despite steady applied voltage

Figures/I_Na_separation.ps

Figure 12: Extraction of Na+-current by partial replacement of extracellular Na+ by
choline. Na+-current is transient.

• measure conductances: I(V )-curves

– procedure:

∗ long depolarizing voltage step to V1 to open the channel
∗ then second step to V2 to probe the conductance of the channel at that

voltage V2

∗ measure current I(V2) immediately after second voltage step before the
channel state changes

– K+ (Fig.13)

∗ initial current I(V2):

· linear I(V2)-relationship: channels represent an Ohmic resistance
(Fig.13)

IK = gK (V − EK)

· current I(V2) vanishes at reversal potential EK of K+

· slope of I(V2)=conductance gK(V2) depends on V1 and on duration
of first stimulus

∗ asymptotic current I(V1) (reached after channels adjust to voltage V1):

· goes to 0 for strongly negative V1: channels close
· becomes linear for strongly positive V1: once channels are maximally

open the channel behaves like an Ohmic resistor
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Figures/K_I_V_curve_bill.ps

Figure 13: Ohmic resistance of K+-channel.

∗– Na+:

∗ also Ohmic resistance for given channel state

• Evolution of K+-conductance (Fig.14)

– after step in voltage the conductance gK evolves smoothly to asymptotic
value

Figures/HoHu52.f2.ps

Figure 14: Sigmoidal growth and exponential decay of gk with voltage [28].

– increase from gK = 0: sigmoidal (‘tanh’-like) increase

– decrease from gK > 0: exponential

– no oscillations in the evolution
⇒ first-order evolution equation may be sufficient
simplest attempt: linear equation

τn
dn

dt
= n∞(V ) − n (4)
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n∞(V ) asymptotic value reached after a sufficiently long time (t ≫ τn)
evolution after step in V :

∗ decay after step from n∞(V ) > 0 to n∞ = 0 is exponential

n = n(0)e−t/τn

∗ growth after step from n∞ = 0 to n∞(V ) > 0 is initially linear

n(t) = n∞(V )
(
1 − e−t/τn

)
∼ n∞(V )

t

τn

not sigmoidal
∗ Hodgkin-Huxley proposed

gK = ḡK n4 (5)

with the exponent 4 resulting from a fit to the data (Fig.14)
∗ n∞(V ) and τn(V ) extracted from data by fitting

• Evolution of Na+-conductance

– main difference to K+- current: the Na+-current is transient

– Hodgkin-Huxley proposed

gNa(V, t) = ḡNam
3h

exponent 3 again from fitting the data

– activation variable m

τm
dm

dt
= m∞(V ) − m

– inactivation variable h

τh
dh

dt
= h∞(V ) − h

– difference between activation and inactivation variable:
m∞(V ) increases with increasing voltage
h∞(V ) decreases with increasing voltage

Complete Hodgkin-Huxley model for a single-compartment neuron

Cm
dV

dt
+ ḡKn4 (V − EK) + ḡNam

3h (V − ENa) + ḡL (V − EL) =
I

A
(6)

with

• injected current I defined positive if inward (opposite to the definition of the cur-
rents through the ion channels. A is area of cell membrane
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• leak current ḡL (V − EL) contains ungated channels (e.g. for Cl− and other ions)

Hodgkin and Huxley solved the coupled differential equations numerically with a me-
chanical calculator.

Using fits to the voltage dependencies of m∞(V ), τm(V ) etc. that they measured ex-
perimentally for the squid giant axon they obtained very good agreement with the ex-
perimentally observed temporal evolution of the currents after applied voltage steps
(Fig.16) (Nobel Prize in 1963, jointly with Eccles).

The fits obtained by Hodgkin and Huxley for the squid axon [28] are

αn =
0.01 (V + 55)

1 − e−0.1(V +55)
βn = 0.125 e−0.0125(V +65)

αm =
0.1 (V + 40)

1 − e−0.1(V +40)
βm = 4e−0.0556(V +65)

αh = 0.07e−0.05(V +65) βh =
1

1 + e−0.1(V +35)

where the evolution equation (4) for n is written as

dn

dt
= αn(V ) (1 − n) − βn(V )n (7)

with

τn(V ) =
1

αn(V ) + βn(V )
n∞(V ) =

αn(V )

αn(V ) + βn(V )

and analogously for m and h.

Here voltages are in mV and times are in ms.

Figures/DaAb01.f5.10.ps

Figure 15: Steady-state levels m∞, h∞, n∞ and the time scales τm,h,n for the activation
and inactivation variables of the Na+- and K+-channels of the Hodgkin-Huxley model.
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Figures/HoHu52.f11.ps

Figure 16: Comparison of current trace from numerical simulation of HH-model (left)
with the experimental curves (right). [28].

Simulations (use, e.g., hhsim, cf. Fig.4)

• mechanism underlying the generation of the action potential:

– depolarizing stimulation

– activation variable m of Na+ increases rapidly (cf. Fig.15)
⇒ Na+-channels open ⇒ Na+ rushes into the cell leading to further rapid
depolarization (positive feed-back)

– inactivation variable h of Na+ and activation variable of K+ evolve more
slowly but speed up as cell becomes more depolarized: Na+ channels close
and K+ channels open ⇒ Na+-flux is stopped and K+ flows out of the cell
⇒ voltage decreases, cell repolarizes again

– upon reaching Vr some K+-channels are still open
⇒ overshoot of V beyond Vr

• inhibition can also trigger action potential (‘rebound’)

– hyperpolarization beyond Vr by injecting negative current increases inactiva-
tion variable h of Na+ (Na+-channels become deinactivated) and decreases
activation n variable of K+(K+-channels become more inactivated)

– at off-set of negative current m increases rapidly to its equilibrium value while
h decreases only slowly and n also increases only slowly ⇒ increased Na+-
current that is not balanced by increased K+-current ⇒ depolarization of the
cell that can lead to an action potential

• steady current injection ⇒ periodic spike train (homework: does frequency change
significiantly when current is reduced below the value needed for stimulating ac-
tion potential? )

• stimulus during action potential does not trigger second action potential: refrac-
tory period (see homework)
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Notes:

• Hodgkin-Huxley modeled squid axon:
the same Na+- and K+- currents arise across all types of species (evolutionarily
conserved), with somewhat modified parameters ⇒ HH-model forms basis for
almost all other neuron models

• modeling of the currents:

– in HH-model I(V )-dependence is assumed linear

– GHK-current (2) depends nonlinearly on V

– so far theory not good enough to be predictive from first principles: theory
provides functional form of dependence. Parameters need to be determined
by fitting to experiments.
Usually no drastic difference, given the variability between cells. (Fig.17)

Figures/KeSn.f3.1.ps

Figure 17: a) Comparison of the Ohmic resistance in the Hodgkin-Huxley model with
the current given by the Goldman-Huxley-Katz model (2) [39].
b) Voltage at which no current flows when channels for Na+ and K+ are both open
as a function of the K+ concentration for GHK-model and for a combination of Ohmic
resistances for the Na+- and the K+-conductance, with ENa+ and EK+ determined
separately.

• other neurons can exhibit more complex behavior due to additional channel types

Interpretation of the activation/inactivation equations :

Write (4) again as
dn

dt
= αn(V ) (1 − n) − βn(V )n (8)

with

τn(V ) =
1

αn(V ) + βn(V )
n∞(V ) =

αn(V )

αn(V ) + βn(V )
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or equivalently

αn =
n∞

τn
βn =

1 − n∞

τn

Eq.(7) can be read as the evolution equation for the probability n of a gate to be open

n(t + ∆t) = n(t)
︸︷︷︸

probability for gate to be open

+

+ ∆t αn(V )
︸ ︷︷ ︸

probability for a closed gate to open

× (1 − n(t))
︸ ︷︷ ︸

probability of gate to be closed
− ∆t βn(V )

︸ ︷︷ ︸

probability for an open gate to close

× n(t)
︸︷︷︸

probability for a gate to be open

• alternatively n can also be read as the mean number of open gates.

If

• l gates are required to be open for the channel to be open and

• the gates open and close independently of each other

then the probability for the channel to be open (= fraction of open channels) is given by

gK

ḡK
= nl

Thus, (5) suggests that the K+-channel consists of 4 independently operating gates
that all have to be open for the K+-channel to allow ions to pass.

Microsopically, 4 equivalent gates have been identified only very recently by MacK-
innon in the form of 4 proteins, which can switch between 2 different conformations
(geometric arrangements) one of which blocks the channel (Nobel Prize in 2003).

Analogously, for the Na-channel one can think of m as the probability of one of three
gates at the channel pore to be open and of h as the probability that an additional
blocking particle is not sitting in the pore of the channel. The probability for the pore to
let charge pass is then m3h. [Note: this picture is not to be taken too literally, although
the blocking particle can be thought of as a tethered plug formed by parts of the α-unit
protein that forms the core of the channel.]

3.4 Conductance-Based Models: Additional Currents 6

In Hodgkin-Huxley model only two active currents are included

6DA Chap 6.2
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• transient Na+-current

• delayed rectifying K+-current (kicks in more slowly than Na+)

In the brain there is a zoo of neurons, which exhibit a variety of additional currents
giving the neurons specific properties.

Very commonly they are modeled similar to the currents in the HH-model in terms of a

• reversal potential and a

• Ohmic resistance with a conductance that may be controled by

– an activation variable

– an inactivation variable

• activation and inactivation variables are modeled by first-order differential equa-
tions

3.4.1 A-Type Potassium-Current

The A-type K+- current was introduced by Connor & Stevens [8, 9] to model repetitive
firing in walking-leg neurons of crustaceans. They can fire repetitive spikes at a very
low frequency. Not possible in HH-model.

In contrast to the delayed rectifying K+-current, the A-type K+-current IA inactivates.
The Connor-Stevens model includes both K+-currents.

IA = ḡAa3b (V − EA)

with

• activation variable a

τa
da

dt
= a∞(V ) − a

• inactivation variable b

τb
db

dt
= b∞(V ) − b
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Figures/connor_stevens_activation.eps

Figure 18: Voltage dependence of the parameters in the Connor-Stevens model. Note
that the parameters for INa and IK are also different than in the HH-model [9].

One finds (see homework)

• IA delays spiking after depolarizing voltage step

• firing rate grows from 0 when spiking threshold is crossed, allows arbitrarily slow
repetitive firing: Type-I neuron (HH-neuron is Type-II neuron)

3.4.2 T-Type Calcium Current

Thalamus functions as a relay from sensory organs to cortex and also between different
cortical areas.

Figures/brain_facts_p5b.ps

Figure 19: Brain structures: thalamus (above spinal cord and hindbrain) functions as
relay for sensory information.
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• in awake states and during REM sleep the relay neurons fire single spikes: signal
can be transmitted faithfully

• during slow-wave sleep (EEG shows slow waves) the thalamo-cortical relay neu-
rons fire repetitive bursts

T-type Ca2+-current is involved in the repetitive bursting [44, 33].

ICaT = ḡCaT M2H (V − ECa)

with M and H satisfying

τM
dM

dt
= M∞(V ) − M τH

dH

dt
= H∞(V ) − H

Figures/HuMc92.f1.AB.ps

Figures/HuMc92.f1.D.ps

Figure 20: a) Steady-state activation and inactivation M∞ and H∞ for IT , c) time con-
stant τM of activation, d) time constant τH of inactivation. Note the very slow recovery
from inactivation for V < −70mV [33].

Notes:
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• extracellular Ca2+-concentration is much higher than the intracellular one
⇒ ECa = +120mV , ICaT is depolarizing similar to the Na+-current

• ICaT is transient (like Na+-current);
almost no ‘overlap’ of activation and inactivation curves ⇒ for no voltage signifi-
cant steady current

• ICaT is much slower than Na+-current; deinactivation of ICaT is very slow (Fig.20d)

• ICaT can induce spiking even without INa: Ca-spikes (broader than Na+-spikes)

Figures/DaAb01.f6.2.ps

Figure 21: Burst due to ICaT . Delay of the action potential due to IA. Note decrease in
frequency across burst [10].

Burst after hyperpolarization:

• injection of hyperpolarizing current ⇒ ICaT deinactivates, i.e. inactivation is re-
moved: H → 1

• stop current injection ⇒ increase in voltage activates ICaT → further depolariza-
tion

• strong depolarization triggers multiple Na-spikes, which occur on a much faster
time scale than the variation in ICaT activation

• eventually ICaT becomes inactivated (H → 0) and bursting stops

Tonic depolarizing current injection does not deinactivate ICaT : single Na-spikes, no
bursting

What could be the function of these two modes?

• tonic spiking regime: single spikes, relay cells can transmit sensory input faithfully
in a graded manner

• bursting regime: immediately above the threshold for spike output the spike fre-
quency is high during the burst (could be like a wake-up call).
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Figures/Sh05a.f2.ps

Figure 22: Response of a thalamic neuron (in LGN) in the tonic and the bursting regime.
Same current injection induces tonic firing from a holding potential of V = −59mV (a)
but to a transient burst for V = −70mV (b). Graded vs. discontinuous response of the
neuron in the two regimes (c). In the tonic regime the firing rate encodes the sinusoidal
input very well (d), in the bursting regime only the onset of each wave is encoded (e)
[55]

Both modes arise in a given neuron in the awake and the sleeping animal. But the tonic
mode increases in prevalence with increased alertness/wakefulness of the animal.

3.4.3 Sag Current Ih

In thalamic neurons ICaT can exhibit not only single bursts but also rhythmic bursting
(1-2Hz).

Figures/McPa90.f14.ps

Figure 23: Rhythmic bursting of thalamic relay neurons. [45]
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This is mediated by a hyperpolarization-activated cation current, Ih, [45]

• permeable to Na+ and K+ ⇒ reversible potential Eh ≈ −40mV

• Ih is activated below V ≈ −70mV

• activation and deactivation is slow O(100ms − 1, 000ms)

Figures/McPa90.f1.eps

Figure 24: Sag current Ih. Current and voltage clamp results. The ‘sag’ refers to
the slow decrease in hyperpolarization after strong hyperpolarizing current injection
(arrows). [45]

Figures/McPa90.f2a.eps Figures/McPa90.f2b.eps

Figure 25: a) Activation curve of Ih (obtained from 7 different neurons, solid symbols
1 neuron). b) Time scales for activation and deactivation, c) enlargement of the tail
current after repolarization to V = −49mV (between arrows in b). [45]
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Figures/McPa90.f3.eps

Figure 26: Voltage dependence of activation and deactivation times. Fits to transients
using single exponentials are quite good. [45]

Rhythmic bursting when the cell receives input (or leak or other current) that tends to
hyperpolarize it:

• the Ih-current can depolarize the cell from hyperpolarized states

• activates ICaT inducing a (rebound) burst

• during the depolarized state Ih deactivates

• when ICaT inactivates the cell becomes hyperpolarized again due to the inputs
(or other conductances)

• Ih becomes activated again ....

3.4.4 Calcium-Dependent Potassium Current

Central pattern generators control locomotion (swimming of lamprey, walking, running)
or chewing and digestive rhythms. Often the control is in the form of periodic bursting.

For instance, California spiny lobster (and other crustaceans) grinds its food in the
stomach. Controlled by stomatogastric ganglion cells that fire repetitive bursts with
low frequency in the absence of any input. The frequency depends mainly on a Ca2+-
dependent K+-current IKCa.

IKCa is mainly activated by Ca2+, although activation may also depend somewhat on
voltage.

Model it as

IKCa = ḡKCac
4 (V − EK)
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with c satisfying

τc
dc

dt
= c∞(V, [Ca2+]) − c

Activation variable c depends on voltage V and the Ca2+-concentration [Ca2+].

Evolution of [Ca2+]:

τCa
d[Ca2+]

dt
= −τCaγICa − [Ca2+]

• Ca2+ influx ICa through Ca2+-channels (ICaT ), note ICa < 0

• slow buffering by Ca2+-buffers (remove Ca2+ from the solution) with time constant
τCa

Figures/DaAb01.f6.4.ps

Figure 27: Periodic bursting in a model for a stomatogastric ganglion cell.

Burst Cycle:

• ICaT induces Ca-spike with Na-spikes riding on top of it (burst)

• rise in [Ca2+] activates IKCa

• burst turned off by inactivation of ICaT and by activation of IKCa

• after burst [Ca2+] decreases (slow buffering) and deactivates IKCa

• when ICaT is deinactivated (very slow process; Fig.20) and IKCa is deactivated
next burst can arise.

Note:

• over multiple spikes IKCa builds up an after-hyperpolarization conductance (AHP)
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• it increases time until next spike
frequency of spikes decreases despite constant stimulation: spike-frequency adap-
tation

Thus:

• even individual, single-compartment (point) neurons can exhibit a wide range of
behavior (see also Sec.3.7)

3.5 Two-Dimensional Reduction of Hodgkin-Huxley Model

Reconsider HH-neuron. Even standard HH-model with only fast Na-conductance INa

and delayed rectifier IK is a four-dimensional dynamical system: hard to visualize.
Can the equations be simplified to get at least a semi-quantitative intuitive understand-
ing?

Observations:

• activation variable m of Na+-current is very fast

• inactivation variable h of Na+ and activation variable n of K+ are strongly corre-
lated

h ≈ 0.89 − 1.1n

⇒ replace

– m(t) → m∞(V )

– h(t) → 0.89 − 1.1n(t)

Figures/hh_h-n_V-n.eps

Figure 28: Strong correlation between n and h in standard Hodgkin-Huxley model.
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Figures/hh_adiabatic_approx.eps

Figure 29: Deviations of the activation variables m, n, h from their steady-state values
m∞, n∞, h∞ during regular firing. The large values of m/m∞ and h/h∞ are due to m∞

and h∞ becoming very small during deactivation and inactivation, respectively.

These assumptions yield reduction of HH-model to a two-dimensional system

C
dV

dt
= −gKn4 (v − EK) − gNam

3
∞(V ) (0.89 − 1.1n) (V − ENa) − (9)

−gL (V − EL) + Ie ≡ FV (V, n)

τn(V )
dn

dt
= n∞(V ) − n ≡ Fn(V, n) (10)

Note:

• this type of reduction underlies also the FitzHugh-Nagumo model (cf. [39] [41])

3.5.1 Phase-Plane Analysis 7

Many aspects of two-dimensional dynamical systems can be understood using a phase-
plane analysis

7For introductions to nonlinear dynamics see, e.g., S.H. Strogatz Nonlinear Dynamics and Chaos or
the lecture notes for Interdisciplinary Nonlinear Dynamics 438 http:// people.esam.northwestern.

edu/ ~ riecke/new_ www/ lectures.htm on the web
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Figures/Iz05.f5.20.ps

Figure 30: a) stable fixed point, large perturbation can lead to excitation. b) unstable
fixed point, periodic spiking.

To get Vrest need fixed points of (9,10). They are given by the intersections of the two
nullclines

FV (V, n) = 0 (11)

Fn(V, n) = 0 (12)

The nullcline FV separates regions with dV
dt

> 0 from those with dV
dt

< 0, and analo-
gously for Fn.

Any fixed point (V0, n0) satisfies (11,12) simultaneously.

What happens in the vicinity of the fixed point?

Consider small deviations (∆V, ∆n)

V = V0 + ∆V n = n0 + ∆n

and linearize (9,10) around the fixed point (V0, n0)

d

dt
(V0 + ∆V ) = FV (V0 + ∆V, n0 + ∆n0) ≈ FV (V0, n0)

︸ ︷︷ ︸

=0

+
∂FV

∂V

∣
∣
∣
∣
(V0n0)

∆V +
∂FV

∂n

∣
∣
∣
∣
(V0n0)

∆n

d

dt
(n0 + ∆n) = Fn (V0 + ∆V, n0 + ∆n0) ≈ Fn (V0, n0)

︸ ︷︷ ︸

=0

+
∂Fn

∂V

∣
∣
∣
∣
(V0n0)

∆V +
∂Fn

∂n

∣
∣
∣
∣
(V0n0)

∆n

d

dt
∆V =

∂FV

∂V

∣
∣
∣
∣
(V0n0)

∆V +
∂FV

∂n

∣
∣
∣
∣
(V0n0)

∆n (13)

d

dt
∆n =

∂Fn

∂V

∣
∣
∣
∣
(V0n0)

∆V +
∂Fn

∂n

∣
∣
∣
∣
(V0n0)

∆n (14)
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We have a linear system of homogeneous differential equations with constant coeffi-
cients ⇒ exponential ansatz

∆V = V1e
λt ∆n = n1e

λt

λ

(
v1

n1

)

eλt =

(
∂FV

∂V

∣
∣
(V0n0)

∂FV

∂n

∣
∣
(V0n0)

∂Fn

∂V

∣
∣
(V0n0)

∂Fn

∂n

∣
∣
(V0n0)

)(
v1

n1

)

eλt ≡ L

(
v1

n1

)

eλt

with L the Jacobian of (9,10) at the fixed point (V0, n0)

⇒ λ has to be an eigenvalue of L and
(

v1

n1

)

is the associated eigenvector8

The number of eigenvalues is equal to the number N of time-derivatives of the system.

The general solution of (13,14) is a linear superposition of the eigenmodes with N
unknown constants to satisfy arbitrary initial conditions

(
∆V (t)
∆n(t)

)

= A1

(

v
(1)
1

n
(1)
1

)

eλ1t + A2

(

v
(2)
1

n
(2)
1

)

eλ2t

The eigenvalues determine the qualitative character of the ‘flow’ in the phase space
near the fixed point:

• real λ:
saddle (λ1λ2 < 0), stable (λ1,2 < 0) or unstable (λ1,2 > 0) node

• complex zλ1,2 ≡ σ ± iω:
L is real ⇒ λ2 = λ∗

2 and v(2) = v(1)∗

∆V (t) = eσt
(
A1v1e

iωt + A∗
1v

∗
1e

−iωt
)

stable (σ < 0) and unstable (σ > 0) spiral

• fixed point is linearly stable ⇔ all eigenvalues have negative real parts

8To calculate the eigenvalues you determine in general for which values of λ the determinant of the
matrix L − λI vanishes. Here I is the identity matrix. In the 2x2 case at hand here one can also solve
the first row of the equation for n1,

n1 =

{

λ − ∂FV

∂V

∣
∣
∣
∣
(V0n0)

}

v1
1

∂FV

∂n

∣
∣
(V0n0)

. (15)

Inserting this expression in the second row yields
{

λ − ∂Fn

∂n

∣
∣
∣
∣
(V0n0)

}{

λ − ∂FV

∂V

∣
∣
∣
∣
(V0n0)

}

v1
1

∂FV

∂n

∣
∣
(V0n0)

=
∂Fn

∂V

∣
∣
∣
∣
(V0n0)

v1.

For v1 6= 0 this results in a quadratic equation for the eigenvalues λ(1,2) and (15) yields an equation for

the eigenvectors

(

v
(1,2)
1

n
(1,2)
1

)

associated with these eigenvalues.
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Figures/page215a.eps

Figure 31: Generic (typical) trajectories in the phase plane close to a fixed point. Eigen-
vectors need not be orthogonal.

Note:

• linear stability: stable with respect to infinitesimal perturbations

• even a linearly stable fixed point can be unstable to finite-size perturbations

Need to get insight into global properties of the phase plane

Often the two variables evolve on different time scales (time-scale separation):
fast-slow analysis allows approximation to action potential, firing frequency, ...

If V is much faster than n: fast-slow analysis

• V reaches its nullcline FV (V, n) = 0 quickly without n changing much

• most of the time the system follows the V -nullcline FV (V, n) = 0 ⇒ V = Vnc(n)
slow one-dimensional dynamics driven by n(t)

dn

dt
= Fn(Vnc(n), n)

• at turning points (VTP , nTP ) the system cannot follow the V -nullcline any more:
⇒ fast one-dimensional evolution ( ‘jump’) to another branch of the V -nullcline
without much change in n

dV

dt
= FV (V, nTP )

Can construct an approximation to the complete action potential from simpler pieces.
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3.6 Integrate-and-Fire Model 9

The Hodgkin-Huxley model is computationally slow

• 4 differential equations: V , m, n, h

• even in the two-dimensional reduction the equations are stiff:
resolving the voltage spike requires very small time steps
time between spikes can be long compared to the spike width

– single neuron: adaptive time step to step quickly between spikes (implicit
scheme for stability)

– many coupled neurons: likely that some neuron spikes for any given time
⇒ small time steps all the time or complex code that updates only neurons
undergoing spike

Consider simplified models that capture essential qualitative features of the neuron

The shape of the voltage spike is often not important:

• do not model the dynamics of the spiking dynamics explicitly:
do not resolve the dynamics of activation and inactivation/deactivation of the fast
Na+-current and the delayed K+-rectifier.
Assume the conductances of the Na+- and K+−currents do not depend on volt-
age: lump all reversal potentials and conductances together into

τm
dV

dt
= EL − V + RmIe (16)

• the input current Ie (injection or from other neurons) can drive the voltage to the
spiking threshold Vth ⇒

– the voltage is reset explicitly to a reset voltage Vreset

V (t−spike) = Vth ⇒ V (t+spike) = Vreset (17)

– spike-like output, which serves as input to other neurons, is generated ‘by
hand’ :

Vout(t) = Vspδ(t − tspike)

or
Vout(t) = Vsp

{

e
− t

τ1 − e
− t

τ2

}

with τ2 < τ1

This leaky Integrate-and-Fire model was proposed by Lapicque already in 1907 by
Lapicque [42] http://www.springerlink.com/content/x03533370x281257/.

Note:
9DA 5.4
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• for small fluctuations of V around resting potential the assumption of constant
Na+− and K+- conductance is reasonable; further away from Vrest it is not a
good assumption

Firing Rate:

IF-model allows simple analytical solution for Ie = const.

τm
d

dt

(
et/τmV

)
= et/τm (EL + RmIe)

V (t) = (EL + RmIe)
(
1 − e−t/τm

)
+ V0e

−t/τm

with V0 ≡ V (t = 0). Rewrite using

V∞ ≡ EL + RmIe

as
V (t) = V∞ − (V∞ − V0) e−t/τm

Without the spike triggering mechanism one would have for t → ∞

V (t) → V∞

For small Ie, more precisely for V∞ < Vth, no spike is triggered.

For
V∞ > Vth i.e. Ie >

1

Rm

(Vth − EL)

a spike is triggered at time tspike, which is obtained by solving V (tspike) = Vth for tspike

tspike(V0) = −τm ln

(
V∞ − Vth

V∞ − V0

)

The spike time tspike(V0) depends on the initial condition V0.

For fixed Ie the neuron fires periodically:

• the initial condition for the voltage after the nth-spike is given by V (t
(n)+
spike) = Vreset

• the inter-spike interval (ISI) TISI ≡ t
(n+1)−
spike − t

(n)+
spike is given by

TISI = τm ln

(
V∞ − Vreset

V∞ − Vth

)

= τm ln

(

1 − Vreset

V∞

1 − Vth

V∞

)

for V∞ ≥ Vth > Vreset

and the firing rate by

rISI =

(

τm ln

(
V∞ − Vreset

V∞ − Vth

))−1
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Notes:

• as Ie is increased the spiking sets in first with vanishing firing rate:
in that respect the Type-I neuron is like the neuron of the Connor-Stevens model
(cf. the standard HH-neuron sets in with a fixed finite frequency: Type-II neuron)

• for large Ie and large V∞ one has

TISI ∼ τm ln

(

(1 − Vreset

V∞

)(1 +
Vth

V∞

)

)

∼ τm
Vth − Vreset

V∞

Thus, for large Ie the firing rate grows linearly with Ie,

rISI ∼
1

τm

Rm

Vth − Vreset

Ie

• in the IF-model (16,17) sufficiently large inputs Ie trigger spikes with arbitrarily
small ISI (no absolute refractory period, see below)

• time-dependence of the voltage in the IF-model does not show the up-swing that
is characteristic of the regenerative action potential; instead the voltage has a
negative second derivative (concave downward) before the spike

Refractory Period

In the Hodgkin-Huxley model the Na+-current is still inactivated shortly after an action
potential: generating another action potential is more difficult

To get an action potential the depolarizing Na+-current must overcome the hyperpolar-
izing K+-current. This requires

ḡKn4 (V − EK) < −ḡNam
3h (V − ENa)

V < Vbal ≡
ḡKn4EK + ḡNam

3hENa

ḡKn4 + ḡNam3h

Vbal determined by reversal potentials that are weighted by the degree that the respec-
tive channels are open.

For action potential we need roughly Vbal ≥ Vpeak

When Na+-current is inactivated, h ≪ 1, Vbal ≈ EK

m reaches quickly m∞(V ) ≤ 1, while n and h vary only slowly.

Shortly after action potential:

• h very small
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• Vbal ≈ Ek < Vpeak even for m = 1
⇒ even arbitrarily strong inputs cannot trigger action potential, i.e. no regener-
ative event that is driven by the activation of Na is possible: absolute refractory
period

Later after an action potential

• larger h

• if Vbal > Vpeak for m > m∞(Vmin)
⇒ for inputs that drive the cell to V = Vmin the activation variable can quickly
grow to m∞(Vmin) and push Vbal above Vpeak

⇒ action potential triggered by super-threshold inputs

• as long as h has not recovered, triggering an action potential requires larger
inputs than the inputs to trigger an action potential from the resting state: relative
refractory period

• firing threshold decreases with time

Modeling in IF-model:

• absolute refractory period: explicitly disallow firing for a duration after any spike

• relative refractory period:

– Vreset < Vrest: effective firing threshold decreases as V relaxes from Vreset to
Vrest

– introduce a decaying hyper-polarizing conductance (cf. IKCa) or time-dependent
(relaxing) threshold Vth (cf. [10]) or some generalized recovery variable (cf.
Sec.3.7)

3.7 Izhikevich’s Simple Model 10

Aim: model a wide spectrum of types of neurons phenomenologically with a single,
computationally efficient model

Extend the IF-model to include additional variable that may capture effects of IA, IKCa,
ICaT , ...

If the spike-shape is not essential: focus on subthreshold behavior

• in reduced HH-model we the dynamics of V and n

10[39, 35, 36]
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• extensions of HH (IA, ICaT , IKCa, ...) would introduce additional conductances
with dynamics that are slow compared to the spike generating Na
replace n by a generalized recovery variable u

Approximate the nullclines of V and u near the minimum of the V -nullcline

V -nullcline: u = umin + P (V − Vmin)2

u-nullcline: u = s (V − V0)

thus

τV
dV

dt
= P (V − Vmin)2 − (u − umin)

τu
du

dt
= s (V − V0) − u

Adding the injected I current, Izhikevich writes the model in the form [35]

dv

dt
= 0.04v2 + 5v + 140 − u + I (18)

du

dt
= a (bv − u) (19)

Note:

• numbers chosen such that time is measured in ms, v in mV

• v can diverge in finite time
dv

dt
= γv2

∫ v

v0

dv

v2
= γ

∫ t

0

dt

−
(

1

v
− 1

v0

)

= γt

v =
v0

1 − γv0t
→ ∞ for t → 1

γv0

> 0

⇒ ‘escape’ from the region near the left branch of the V -nullcline: action potential

• the nonlinearity gives an up-swing before the action potential

Supplement (18,19) with a reset condition like in the integrate-and-fire model

v(t−sp) = 30mV ⇒
{

v(t+sp) = c
u(t+sp) = u + d

(20)

Notes:
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• a is the relaxation time of u

• b characterizes the dependence of the steady-state value of the recovery variable
u on v, e.g. deinactivation of ICaT by hyperpolarization

• c is a reset voltage, in general not the resting potential; it could, for instance,
include an after-hyperpolarization (for Vreset < Vrest)

• d characterizes the change in the recovery variable during the spike ‘excursion’
to the other branch of the nullcline, e.g. Ca2+-influx controling IKCa or the inacti-
vation of ICaT due to the high voltage during the spike.
size of d provides a second time scale to the slow evolution of u

Figures/Iz03.f2a.ps

Figure 32: Parameters of Izhikevich’s simple model.

Note:

• the simple model is computationally efficient and captures qualitative aspects of
many neuronal types (Fig.34)

• the model can be thought of as an extension of the quadratic integrate-and-fire
model (QIF)

dv

dt
= b + v2 with (21)

v(t−sp) = vpeak ⇒ v(t+sp) = vreset (22)

(21) is the normal form for a saddle-node bifurcation

• the saddle-node bifurcation leads to a periodic orbit due to the reset, which im-
plements - by hand - the existence of an attracting invariant circle in phase space.
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Figures/page155.eps

Figure 33: Sketch of a pair of fixed points on an invariant circle (parametrized by
the phase θ of the oscillation during regular firing). The mutual annihilation of the
fixed points in a saddle-node bifurcation generates an infinite-period limit cycle (SNIC-
bifurcation leading to Type-I oscillation).

• the normal form for the transition to spiking in a saddle-node bifurcation on an
invariant circle (SNIC) is the θ-neuron by Ermentrout-Kopell [14]

dθ

dt
= (1 − cos θ) + (1 + cos θ) g (23)

where θ describes the phase of the neuron (oscillator) and θ = ±π corresponds
to a spike, and g represents input to the neuron. The rest state is near θ = 0. For
small θ and weak forcing it reduces to (21),

dθ

dt
= θ2 + g + O(θ4, gθ2)

For parameters close to the saddle-node bifurcation at g = 0 the neuron spends
almost all of the time near the ‘ghost’ of the fixed point ⇒ the period T can be
approximated by the time it takes the neuron to go from θ = −∞ to θ = +∞

∫ +∞

−∞

dθ

θ2 + g
=

∫ T
2

−T
2

dt

i.e.

T ≈ 1

g

√
g arctan

θ√
g

∣
∣
∣
∣

+∞

−∞

=
1√
g
π

thus the firing rate goes to zero like r ∝ √
g, with g measuring the distance from

the saddle-node bifurcation.
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Figures/Iz03.f2b.ps

Figure 34: Some of the neuronal types captured by Izhikevich’s simple model [35].
Compare behavior labeled thalamo-cortical with that discussed for ICaT -current in
Sec.3.4.2.

4 Cable Equation 11

So far we assumed that the neuron is characterized by a single value of the voltage:
point neuron.

Many neurons are, however, very long and branched.

• what determines how good the single-compartment model is?

• how to describe spatial structure of neurons

11DA 6.3
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Figures/neuron_morph_kath.ps

Figure 35: Neurons are not pointlike. Their morphology varies widely.

Figures/DaAb01.f6.5.ps

Figure 36: Voltage attenuation along a dendrite. A) current injection in soma triggers
large action potential there but delayed and reduced action potential in dendrite. B)
converse arrangement with stimulation (via synapses) of dendrite [10].

Voltage can be strongly attenuated further away from the stimulation site

Most parts of a neuron are long and thin: cable of radius a

• assume voltage depends only on the axial position, but not on the transverse
coordinate: one-dimensional theory, radius may depend on position as well: a =
a(x)

• two types of currents:
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– longitudinal current IL

– transverse current across membrane Im

• Kirchhoff’s law for charge conservation

Figures/DaAb01.f6.6.ps

Figure 37: Sketch of currents in an axon [10]

Longitudinal current IL:

Consider Ohm’s law for a section of length ∆x of the cable

IL = −V (x + ∆x) − V (x)

RL
= −∆V

RL

• current driven by the voltage drop ∆V across the section

• consider IL positive if it flows in the positive x-direction

• the current (positive charges) flows from the more positive potential (voltage) to
the more negative potential

• in terms of the intra-cellular resistivity rL

RL =
∆x

πa2
rL

For small ∆x

IL = −πa2

rL

∆V

∆x
becomes IL = −πa2

rL

∂V

∂x
for ∆x → 0

– similar to Fick’s law of diffusion: current driven by gradient in voltage
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Transverse current Im:

In terms of the membrane current density im

Im = 2πa∆x im

Similarly, write the current injected by an electrode in terms of the density ie

Ie = 2πa∆x ie

Kirchhoff’s law for charge conservation for a cable segment of length ∆x

2πa(x)∆xcm
∂V

∂t
︸ ︷︷ ︸

capacitive current

= −
(

πa(x)2

rL

∂V

∂x

)∣
∣
∣
∣
∣
left

︸ ︷︷ ︸

IL into the segment

+

(

πa(x)2

rL

∂V

∂x

)∣
∣
∣
∣
∣
right

︸ ︷︷ ︸

IL out of the segment
−2πa(x)∆x im
︸ ︷︷ ︸

im out of the segment

+2πa(x)∆x ie
︸ ︷︷ ︸

ie into the segment

Dividing by ∆x and using

1

∆x

((
∂V

∂x

)∣
∣
∣
∣
right

−
(

∂V

∂x

)∣
∣
∣
∣
left

)

→ ∂

∂x

(
∂V

∂x

)

for ∆x → 0

one obtains

cm
∂V

∂t
=

1

2arL

∂

∂x

(

a(x)2 ∂V

∂x

)

− im + ie (24)

• diffusive partial differential equation for the voltage

• in general im contains all the ion conductances discussed for the point neuron
(single compartment neuron): in a Hodgkin-Huxley framework the PDE is coupled
to ODEs for the activation and inactivation variables (they do not contain any
spatial derivatives)

4.1 Linear Cable Theory: Passive Cable

To make analytical progress consider passive cable with only leak current

im = gL (V − EL)

For passive neuron

gL =
1

rm

EL = Vrest
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Rewrite in terms of deviation v from Vrest: v = V − Vrest

For simplicity assume constant radius a = const.

cm
∂v

∂t
=

a

2rL

∂2v

∂x2
− 1

rm

v + ie

Using τm = rmcm the linear cable equation can be written as

τm
∂v

∂t
= λ2 ∂2v

∂x2
− v + rmie (25)

with

λ =

√
arm

2rL

• λ has the dimension of a length: this electrotonic length λ characterizes the length
scale on which the voltage varies in the cable

• with increasing length ∆x of a segment

– the membrane resistance goes down

Rm(∆x) =
1

2πa∆x
rm

– the longitudinal resistance of the intracellular medium goes up

RL(∆x) =
∆x

πa2
rL

• at what length is the two resistances equal?

Rm(ℓ) =
rm

2πaℓ
= RL(ℓ) =

ℓrL

πa2

ℓ2 =
arm

2rL
= λ2

Thus: the electrotonic length λ is that length for which the membrane resistance
and the longitudinal resistance are equal

Rλ =
rm

2πaλ
=

rLλ

πa2

Consider injecting current at a point. Flowing away from the injection site the current
flows

• along the cable

• across the membrane
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The situation is somewhat similar to the flow of water in a soaker house (i.e. a leaky
pipe).

How the current is distributed between these two paths depends on the relative resis-
tances:

• if RL < Rm the current predominantly flows into the cable and spreads away from
the injection site

• if RL > Rm the current predominantly flows across the membrane and does not
spread away from the injection site

• the current spreads to a length ℓ at which RL(ℓ) = Rm(ℓ), i.e. ℓ = λ.

Explicit solution for the steady state v = v(x) for a point injection current

ie(x) =
Ie

2πa
δ(x)

with δ(x) being the Dirac δ-function12

λ2 d2v

dx2
= v − rm

Ie

2πa
δ(x) (26)

Consider the two domains separately

• x > 0 : the general solution is given by

v+(x) = A+e+x/λ + B+e−x/λ

• x < 0 : the general solution is given by

v−(x) = A−e+x/λ + B−e−x/λ

• boundary conditions:
for x → ±∞ the voltage must remain finite:

v(x) =

{
B+e−x/λ for x > 0
A−ex/λ for x < 0

At x = 0 we need to match the two solutions:

• d2v
dx2 must be infinite to balance δ(x), i.e. the first derivative dv

dx
makes a jump

d2v

dx2
= lim

∆x→0

dv
dx

∣
∣
x+ 1

2
∆x

− dv
dx

∣
∣
x− 1

2
∆x

∆x

12Definition of the Dirac-δ-function: δ(x) = 0 for x 6= 0 and
∫ +∞

−∞
δ(x) dx = 1. The δ-function has

dimension 1/length.
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• dv
dx

is well-defined on both sides of x = 0

• v(x) is continuous13

A− = B+ ≡ v0

• Integrate (26) across x = 0

λ2

∫ +ǫ

−ǫ

d2v

dx2
dx =

∫ +ǫ

−ǫ

v(x) − rm
Ie

2πa
δ(x) dx

In the limit ǫ → 0 the integral
∫ +ǫ

−ǫ
v(x) dx goes to 0 since the integrand is finite

λ2

(
dv

dx

∣
∣
∣
∣
+ǫ

− dv

dx

∣
∣
∣
∣
−ǫ

)

= −rm
Ie

2πa

λ2 2

−λ
vo = −rm

Ie

2πa
v0 =

rmIe

4πλa
=

1

2
RλIe

Thus
v(x) =

1

2
RλIee

−|x|/λ

As expected, the injected current spreads into the cable to a distance λ.

Notes:

• the point-neuron model is a good approximation as long as the spatial extend of
the neuron is smaller than λ

• λ ∝ √
a ⇒ for thin axons or thin dendrites, which have relatively more surface

area than cross section, λ is small and the space-dependence of the voltage has
to be taken into account to capture, e.g., the propagation of the action potential
along the axon to the next neuron.

The cable equation (25) is a diffusive equation: a pulse-like current injection diffuses
away from the source like heat (cf. Fig.38).

13can be derived by taking antiderivative twice of (26). Alternatively, if v(x) was not continuous, its first
derivative would be a δ-function and its second derivative would be the derivative of the δ-function; but
the equation contains only a δ-function to balance.
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Figures/DaAb01.f6.7.ps

Figure 38: Voltage v(x) for steady current injection (A) and for short current pulse (B)
[10].

4.2 Axons and Active Dendrites

For almost all neurons the linear cable theory is insufficient

• all axons support action potentials

• most dendrites have voltage-gated channels or Ca2+-dependent channels, some
even support action potentials

⇒ im in (24) includes currents like INa, IK , ICaT , IKCa, ...

⇒ coupled, nonlinear PDE on a complex geometry: cannot expect to solve it analyti-
cally

Numerical solution:

• discretize dendrite and/or axon in space ⇒ compartments (small cylinders)

• ODEs in each compartment for V and activation/inactivation variables

• coupling between the compartments via the current flowing into and out of the
compartments

Numerical simulation package/language:
NEURON developed by M. Hines, J.W. Moore, and T. Carnevale: NEURON web site
http://www.neuron.yale.edu has free downloads for any relevant operating system,
documentation, tutorials. In addition, it has a large database called ModelDB, which
contains NEURON codes (models) that have been developed and used for neuro-
science publications. (For example see Fig. 39)
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Figures/DeCo96.ps

Figure 39: Burst in thalamic reticular neuron driven by low-threshold T−type Ca2+-
current which is slower than the T -current in thalamocortical relay cells (cf. Sec.3.4.2)
[12]. For movies see
Thalamic reticular neurons http://cns.iaf.cnrs-gif.fr/alain_movies.html

Figures/gating_roxin.ps

Figure 40: Gating of dendritic inputs by other dendritic inputs in pyramidal cells in
CA1 in hippocampus [37]. Movie at http://people.esam.northwestern.edu/~kath/
gating.html.

5 Synapses

Connections between neurons are provided by synapses

• electrical synapses: gap junctions

• chemical synapses

5.1 Gap Junctions

Gap junctions provide a direct electrical connection between neurons
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Figures/gap_junction_bill.ps

Figure 41: Sketch of gap junctions.

• channel (‘hole’) formed by the protein connexin, of which there exist different
types

• hemi-channels (‘connexons’) in the two cell membranes connect to each other
and form the gap junction

• gap junction channels are permeable for any ion (unspecific)

• permeability can be modulated by neuromodulators

Ohmic resistance

Igap = ggap (V1 − V2) with Vi voltage of cell i

Notes:

• direct electrical coupling tends to make coupled neurons to behave similarly, e.g.
synchronizes them

• gap junctions are bi-directional, coupled cells affect each other reciprocally

5.2 Chemical Synapses

Chemical synapses do not provide a direct electrical coupling between cells.

The information is transmitted by a neurotransmitter
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Figures/synapse_bill.ps

Figure 42: Electromicrograph of synapse displaying many vesicles and the active zone
(darker area at synaptic cleft).

Mechanism of synaptic transmission

• neurotransmitter is stored in vesicles (small ‘bags’ made of a lipid bilayer) in the
pre-synaptic terminal

• depolarization of the pre-synaptic neuron by an incoming action potential induces
Ca2+-influx into the pre-synaptic cell

• increased [Ca2+] cause vesicles to dock at the cell membrane and merge with it.
This releases the neurotransmitter into the synaptic cleft (narrow space) between
the pre-synaptic terminal and the post-synaptic cell

• the neurotransmitter diffuses across the cleft (∼ 20 − 40nm)

• binding of neurotransmitter to the receptors activates them

– ionotropic receptor

∗ binding opens ion channel directly
∗ ion flux through channel creates

· excitatory postsynaptic current (EPSC) (Na+ and K+, also Ca2+ for
NMDA) induces excitatory postsynaptic potential (EPSP)

· inhbitory postsynaptic current (IPSC) (Cl−) induces a IPSP

∗ response is fast and decays quickly (in millisecond range)

– metabotropic receptor

∗ binding activates a G-protein in the membrane, which triggers a signal-
ing pathway

· eventually opens channels
· can induce other changes (e.g. protein synthesis)
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∗ response is slow and can last very long (up to hours)

• neurotransmitter is removed from the cleft through re-uptake by the pre-synaptic
cell

• new vesicles are formed in pre-synaptic terminal by budding

Figures/synapse_mousedb_erlangen.ps

Figure 43: Sketch of chemical synapse(www.biochem.uni-erlangen.de/MouseDB)

Notes:

• transmission is uni-directional from the pre-synaptic to the post-synaptic cell

– pre-synaptic cell is not affected at all by post-synaptic cell

• different neurotransmitters bind to different receptors, which open different chan-
nels

– the post-synaptic cell can become excited or inhibited by the pre-synaptic
cell

• synapses can amplify signals: single vesicle release can open thousands of ion
channels

• Dale’s principle:
essentially all neurons express only a single neurotransmitter type ⇒ a neuron
can generate either excitatory or inhibitory output:
it is either an excitatory neuron or an inhibitory neuron

• neurons can express excitatory and inhibitory receptors:
they can receive excitatory and inhibitory inputs simultaneously

64



Computational Neuroscience H. Riecke, Northwestern University

Excitatory synapses

• neurotransmitters: mostly glutamate and also kainate

• two major types of glutamate receptors:

– AMPA (responds also to AMPA14):

∗ activates very fast and deactivates quickly (∼ 5ms)

· permeable to Na+ and K+ (mixed kation channel)
· reversal potential EAMPA ∼ 0mV

· Ohmic I(V )-dependence

– NMDA (responds also to NMDA15):

∗ activates more slowly (∼ 2ms) and deactivates much more slowly (∼
150ms) than AMPA

· permeable to Na+, K+, and to Ca2+

· reversal potential ENMDA ∼ 0mV

· nonlinear I(V )-dependence:
extra-cellular Mg2+ binds to the pore in the open channel and blocks
it, depolarization of the postsynaptic cell expells the Mg2+

Inhibitory synapses

• neurotransmitters: mostly GABA and glycine

• two types of GABA receptors:

– GABAA

∗ ionotropic receptor
∗ permeable to Cl− with reversal potential ECl ∼ −80mV

∗ Ohmic I(V )-dependence

– GABAB

∗ metabotropic receptor

· slower response
· can induce long-lasting change inside the post-synaptic neuron

∗ permeable to K+

∗ Ohmic I(V )-dependence

Synapses respond probabilistically

14AMPA=alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
15NMDA=N-methyl-D-aspartic acid

65



Computational Neuroscience H. Riecke, Northwestern University

• pre-synaptic neuron: docking of vesicles at the membrane is a random process

– docking energy is comparable to thermal energy

– process characterized by probability of release

– vesicles have a typical size: quantal release consisting of 1, 2, ... vesicles
⇒ EPSCs and IPSCs are roughly quantized (multiples of a minimal unit)

• post-synaptic neuron: binding with post-synaptic receptor is also a random pro-
cess

Thus:

• not each action potential needs to lead to synaptic transmission

• even without an action potential one can have spontaneous release of neuro-
transmitter

• different types of synapses have different levels of reliability

• if many synapses connect the same neurons the random fluctuations average out

Note:

• by contrast, gap junctions are not probabilistic.

5.2.1 Modeling Chemical Synapses 16

Ionotropic receptors are like other ion channels

Is = gs (V − Esyn)

with Esyn the reversal potential of the synapse, which determines whether it is excitatory
or inhibitory.

The conductance is determined by the number of open synaptic channels:

gs = ḡsP (t)

where

P = Prob(postsynaptic channel open)

= Prob(release occurs)
︸ ︷︷ ︸

pre-synaptic

×Prob(channel open | transmitter released)
︸ ︷︷ ︸

post-synaptic
= Prel × Ps (27)

16DA 5.8
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Evolution of Ps:

Model the probability Ps(t) of a channel to be open

dPs

dt
= αs (1 − Ps) − βsPs (28)

• opening rate αs depends on the concentration of the neurotransmitter:
for larger concentration the probability that a neurotransmitter molecule is close
to the receptor and therefore can bind to the receptor is larger

• closing rate βs is typically assumed to be independent of the concentration
channel closes when the neurotransmitter molecule unbinds from the receptor

Need to model the transmitter concentration in the cleft.

Very simple ‘square-wave’ model

• triggered by the pre-synaptic action potential at t = 0 the concentration jumps to
a positive value and remains constant for a duration T

αs ≫ βs 0 < t ≤ T

• after the duration T the concentration jumps to 0 again

αs = 0 T < t

Evolution of Ps

Ps(t) =

{
1 + (Ps(0) − 1) e−αst 0 < t ≤ T
Ps(T )e−βs(t−T ) T < t

(29)

Figures/DaAb01.f5.14.ps

Figure 44: Fit of (29) to experimentally obtained EPSC (averaged over many stimuli)
[13].

Note:
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• release of multiple vesicles will not change the concentration significantly com-
pared to teh release of single vesicles

– if the synaptic cleft is much narrower than the distance between release
sites, since then concentration at receptor right across from release site will
be much larger than at neighboring receptors

– if re-uptake is very quick, since then the neurotransmitter will be removed
before the next vesicle is released.

then one has essentially independent release sites and times, each of which
contributes ∝ PrelPs to the overall current.

Fast Synapses

For fast synapses with large αs one need not resolve Ps(t) during the short rise time:
replace the evolution by a jump.

For Ps(0) = 0 the jump is given by ∆Ps = 1 − e−αsT .

For general Ps(0) one can rewrite Ps(T ) as given by (29) as

Ps(T ) = Ps(0) + ∆Ps (1 − Ps(0))

with
∆Ps = 1 − e−αsT .

Model the synapse then by
{

Ps → Ps + ∆Ps (1 − Ps) when synaptic event occurs
dPs

dt
= −βsPs between synaptic events

Note:

• Since ∆Ps ≤ 1 one has Ps ≤ 1 after the spike

• due to the slow decay of Ps subsequent synaptic currents can overlap

Slow Synapses

Need to resolve also the rising phase of the synaptic current. The rise time introduces a
delay in the information transmission. This can have significant effects on the dynamics
of the neuronal network.

Could use (28) with solution (29). The switching from one solution to the other at t = T
is awkward: one would need to keep track of the spike and the time switching time T
later.

For simplicity, often two other approaches are taken (keeping in mind that the square-
wave model is not really realistic either)
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1. Difference of two exponentials
For Ps(0) = 0

Ps(t) = ∆Ps N
(
e−t/τ1 − e−t/τ2

)
(30)

with τ1 > τ2

• Decay time:
for large t

Ps(t) = ∆Ps N e−t/τ1

τdecay = τ1

• Maximal conductance is reached at

tmax = ln

(
τ1

τ2

)
τ1τ2

τ1 − τ2

≡ ln

(
τ1

τ2

)

τrise

N normalizes Ps(t) such that Ps(tmax) = ∆Ps,

N =

((
τ2

τ1

) τ2
τ1−τ2

−
(

τ2

τ1

) τ1
τ1−τ2

)−1

• For general Ps(0) implement the evolution of Ps(t) as

Ps(t) = N (A(t) − B(t)) (31)

where between spikes

τ1
dA

dt
= −A

τ2
dB

dt
= −B

and at spike the amplitudes are reinitiated (somewhat analogous to treat-
ment of fast synapse)

A(t+) → A(t−) + ∆Ps

(
1 − Ps(t

−)
)

(32)

B(t+) → B(t−) + ∆Ps

(
1 − Ps(t

−)
)

(33)

such that Ps(t) is continuous at spike:

A(t+) − B(t+) = A(t−) − B(t−)

2. α-function
for Ps(0) = 0

Ps(t) = ∆Ps
t

τs

e−t/τs

has decay time τs and reaches maximal conductance at

tmax = τs
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Example:

Consider 2 IF-neurons with neuron 1 giving excitatory synaptic input to neuron 2 and
vice versa

τ
dV1

dt
= −V1 + Ie(t) − g1P2(t) (V1 − Esyn) (34)

τ
dV2

dt
= −V2 + Ie(t) − g2P1(t) (V2 − Esyn) (35)

with Vthreshold = 30 and Vreset = −55. Pi(t) is given by Ps(t) triggered by spike in neuron
i (assuming Prel = 1).

a)

Figures/2cells_IF_membrane_nosummation.eps

b)

Figures/2cells_IF_membrane_summation.eps

Figure 45: Integration of multiple inputs by slow membrane. IF-modell (34,35) with
τ = 1, τ1 = 0.05, g1 = 0, τ2 = 0.025, g2 = 50, Esyn = 50 a) Ie = 50 b) Ie = 250.

Fig.45a:

• weak synaptic coupling: single spike of neuron 1 does not trigger a spike in
neuron 2

• inter-spike interval (ISI) large enough for most channels to close between synap-
tic events

• slow membrane dynamics (large τm):
some temporal summation of post-synaptic currents by the membrane

Fig.45b:

• higher firing frequency (smaller ISI): more spikes during membrane relaxation ⇒
stronger integration in time ⇒ second neuron spikes.

• multiple synaptic inputs needed to trigger spike in neuron 2
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a)

Figures/2cells_IF_synapse_nosummation.eps

b)

Figures/2cells_IF_synapse_summation.eps

Figure 46: Integration of multiple inputs by slow synapse. IF-modell (34,35) with τ =
0.1, τ1 = 0.5, g1 = 0, τ2 = 0.25, g2 = 10, Esyn = 50, a) Ie = 302, b) Ie = 400.

Fig.46:

• synapses slower than membrane:
channels do not close during ISI ⇒ temporal summation of open synaptic chan-
nels

• large fraction of channels are open persistently

Synaptic Conductance gs:

For AMPA and GABA receptors ḡs is independent of voltage.

For NMDA receptors the conductance depends on the voltage of the post-synaptic
neuron

ḡs = ḡs(Vpost)

• near the resting potential the NMDA receptors are blocked by Mg2+ ions

• the Mg2+-block is reduced/removed as voltage is increased

ḡNMDA = ¯̄gNMDA

1

1 + a [Mg2+] e−Vpost/Vblock
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Figures/StEd92.f10.eps

Figure 47: Different time scales and different voltage dependence of synaptic currents
evoked by AMPA and by NMDA receptors. CNQX blocks AMPA receptors, APV blocks
NMDA receptors. [57]

Figures/DaAb01.f5.16.ps

Figure 48: Dependence of NMDA-conductance on [Mg2+] and voltage [10].

Notes:

• NMDA-mediated excitatory currents require

– pre-synaptic action potential

– post-synaptic depolarization

• NMDA-receptors can function as coincidence detectors

• NMDA-receptors are permeable to Ca2+
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• Ca2+ plays important role in modifying the strength of synapses (synaptic plastic-
ity) and learning

• NMDA-receptors are likely a neural substrate for ‘Hebbian learning’ : ‘neurons
that fire together are wired together’ (see Sec.7.3.5)

5.2.2 Short-Term Plasticity

The magnitude and probability of synaptically evoked currents can depend on the his-
tory of the activity at the synapes

• short-term plasticity: modifications that last from milliseconds to seconds

• long-term plasticity: modifications that last much longer, possibly as long as the
animal lives

Many mechanisms can contribute to plasticity. They can be pre-synaptic and post-
synaptic.

We focus here on the short-term plasticity through changes in the probability of release
Prel (cf. (27)).

• depression: Prel is reduced by action potential
e.g. the pool of releasable vesicles can become depleted if it does not become
replenished sufficiently fast after the release

• facilitation: Prel is increased by action potential
e.g. the presynaptic [Ca2+] and with it the release probability can rise through
multiple action potentials

Simple phenomenological model:

• Between action potentials Prel relaxes to its ‘usual’ value P∞

τrel
dPrel

dt
= P∞ − Prel (36)

relaxation to the steady-state value could be that of the number of releasable
vesicles (vesicle fusion, transmitter re-uptake) or of [Ca2+] (action of Ca2+pumps).

• Depression:

Prel → fDPrel, fD < 1 at t+spike immediately after spike

• Facilitation:

Prel → Prel + fF (1 − Prel) at t+spike immediately after spike
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Consider the steady state that is reached when transmitting a regular train of action
potentials with period T

• relaxation between spikes must be balanced by increments/decrements at spikes

Facilitation:

After a spike at t = 0+ Prel gets incremented

Prel(0
+) = Prel(0

−) + fF

(
1 − Prel(0

−)
)

(37)

Then Prel relaxes according to (36)

Prel(T
−) = P∞ +

(
Prel(0

+) − P∞

)
e−T/τrel

For periodic solution we need

Prel(T
−) = Prel(0

−)

Inserting Prel(0
+) into Prel(T

−) yields

P∞ +
(
Prel(0

−) + fF

(
1 − Prel(0

−)
)
− P∞

)
e−T/τrel = Prel(0

−)

Thus

Prel(0
−) = P∞

1 −
(

1 − fF

P∞

)

e−T/τrel

1 − (1 − fF ) e−T/τrel
≥ P∞

For low firing rate (T ≫ τrel) the exponential is small and the denominator can be
expanded

Prel(0
−) = P∞ + fF (1 − P∞) e−T/τrel + O(e−2T/τrel)

Facilitation decays between spikes, Prel only slightly increased

For high firing rate (T ≪ τrel)

Prel(0
−) ≈

fF + (P∞ − fF ) T
τrel

fF + (1 − fF ) T
τrel

= 1 − 1 − P∞

fF

T

τrel
+ O

((
T

τrel

)2
)

Facilitation raises Prel to values close 1

Depression:

(37) is replaced by
Prel(0

+) = fDPrel(0
−)

yielding for the periodicity condition

P∞ +
(
fDPrel(0

−) − P∞

)
e−T/τrel = Prel(0

−)
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Prel(0
−) = P∞

1 − e−T/τrel

1 − fDe−T/τrel
≤ P∞

For low firing rate (T ≫ τrel)

Prel(0
−) = P∞

(
1 − (1 + fD)e−T/τrel

)
+ O

(
e−2T/τrel

)

For high firing rate (T ≪ τrel)

Prel(0
−) = P∞

1

1 − fD

T

τrel
+ O

((
T

τrel

)2
)

depression severely suppresses release.

How many spikes are actually transmitted by the synapse?
Per period of the presynaptic train of action potentials 1 · Prel spikes are transmitted ⇒
the transmission rate of spikes is given by

R = Prel ·
1

T

For high firing rates the transmission rate of the depressing synapse saturates

R =
P∞

1 − fD

1

τrel

+ . . .

Note:

• For high firing rates this depressing synapse does not transmit any information
about the value of the input firing rate 1/T .

• R is the output firing rate of an array of parallel synapses

For high firing rates consider step change in input firing rate r ≡ 1
T

r → r + ∆r

Before the step

P−
rel =

P∞

(1 − fD) τrel
· 1

r
R− =

P∞

(1 − fD) τrel

Immediately after the step Prel is unchanged

R+ = P−
rel (r + ∆r) = R− r + ∆r

r

and
R+ − R−

R−
=

∆r

r

where for long plateaus R− is close to the asymptotic value R = P∞

1−fD

1
τrel

.

Thus
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• For high firing rates this depressing synapse responds only to changes in input
firing rate

• The change in output firing rate is given by the relative change of the input firing
rate, independent of its absolute value (scale-invariant)

• synapse performs a ‘computation’ on the input

Figures/DaAb01.f5.19.ps

Figure 49: Response of depressing synapse to varying input firing rates [10]

Note:

• for natural conditions irregular input spiking is a better approximation
for randomly distributed spike times (Poisson train) the analogous computation
yields an equivalent result (cf. Dayan & Abbott Ch.5.8)

• depression and facilitation can occur at the same synapse on different time scales.

For a more detailed model of short-term plasticity see [59, 43].

6 Firing Rates 17

Purpose of neurons is to transmit information

• from sensory organs

17DA 1.2,1.4
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• to cortex (merging of sensory information, storage in memory, comparison with
memory, decisions)

• to motor control

• to muscles

In most parts of the brain the information is transmitted via action potentials. How do
they transmit the information?

• the shape of the action potential is stereo-typical

– presumably it contains little information

– can replace it by an elementary ‘event’

• timing of the spike

• rate at which spikes are fired

• correlations between spikes of pairs of neurons

– synchrony

– given time difference between spikes

– ...

• correlations between spikes of neuron triplets

• firing sequences

• ...

Figures/visual_receptive_fields_HW.ps

Figure 50: Receptive fields of neurons in primary visual cortex. Hubel & Wiesel video.
Long movie http://people.esam.northwestern.edu/riecke/Vorlesungen/Comp_

Neuro/Notes/Movies/VisualCortex.mov

There are a number of short movies on www.youtube.com.
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Figures/BaBu08.f2A.ps

Figure 51: Spike responses to odor inhalation of a mouse. Bars in horizontal lines
denote spikes in different trials under the same conditions [1].

Figures/DaAb01.f1.6.ps

Figure 52: Neuron in primary motor cortex. a) raster plots during reaching movements
in different directions. b) average firing rate as a function of the reaching direction [10].

Notes:

• The rate at which spikes are fired seems to contain significant information.

• There is a significant variation in the individual spike times across repeated trials.

• To assess the significance of correlations between spikes of different neurons
one needs to measure multiple/many neurons simultaneously
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– barn owl: in echo-location the coincidence of spikes from neurons from the
left and the right ear provides the information about the location of the object

– in general, role of spike synchrony and correlations is still being debated
very actively.
oscillations and rhythms are observed in coarse measures (e.g. local field
potential, EEG) of many large ensembles of neurons: function?
difficulties:

∗ data acquisition

· voltage-sensitive dies and Ca2+-imaging are slow
· multi-electrode arrays require spike sorting (neuron identification)
· ...

∗ data analysis: binomial explosion of correlations (which neurons are
read?)

Firing Rate

There are different ways to define a firing rate of a neuron.

Consider the neural reponse function

ρ(t) =
n∑

i=1

δ(t − ti)

where ti, i = 1 . . . n, are the spike times and δ(t) is the Dirac δ-function.

• Spike-count rate

r =
n

T
=

1

T

∫ T

0

ρ(t)dt

– counts the total number of spikes over the whole duration T of the trial

– does not give any temporal resolution

– for uncorrelated spikes the variability in r depends on the total number of
spikes in the interval:
variability becomes small for rT ≫ 1

• Time-dependent firing rate

– to get temporal resolution need an integration window ∆t that is short com-
pared to the time scale τ over which the firing rate changes

∗ fluctuations in firing rate are small if

· if the firing rate is high and
· if it varies only on a slow time scale τ allowing ∆t = O(τ):

the number of spikes during τ must be large: rτ ≫ 1.
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– if ∆t is very short it will contain very few spikes
to get a reliable measure average over multiple trials of the same experiment

r(t) =

〈
1

∆t

∫ t+∆t

t

ρ(t′)dt′
〉

trials

=
1

∆t

∫ t+∆t

t

〈ρ(t′)〉 dt′

where 〈. . .〉trials denotes the average over trials

∗ the size of ∆t limits the temporal resolution
∗ ∆t can be chosen small if many trials are available

– in the limit ∆t → 0 at most 1 spike occurs during ∆t

∗ r(t)∆t is the fraction of trials during which a spike occurred in the interval
[t, t + ∆t]

∗ thus, r(t)∆t is the probability of firing a spike during that interval

Figures/DaAb01.f1.4.ps

Figure 53: Spike train and firing rates obtained by binning in fixed windows (b), in sliding
rectangular window (c), in sliding Gaussian window (d), causal window (e). [10].

• Population firing rate

– in many situations an animal does not have the privilege to average over
many trials

– if multiple, statistically independent neurons convey the same information
the animal can use a population average 〈. . .〉pop summing up the spikes of
those neurons during an interval ∆t

rpop(t) =
1

∆t

∫ t+∆t

t

〈ρ(t′)〉popdt′

6.1 Poisson Spike Trains

Averaging over trials relies on the variability of the spiking response across trials (cf.Fig.51).
If the spikes always occurred at precisely the same times averaging would not make ρ
any smoother.
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Consider random spike trains

The trains are thought of as being generated by a stochastic process. We are inter-
ested in

P [t1, t2, . . . , tn] = Probability of spikes occuring at the specified times

Spikes are events: a stochastic process that generates a sequence of discrete events
is called a point process.

Events could depend on all previous events. Simpler processes are

• renewal process: spiking probability depends only on the previous spike time

• Poisson process: spiking probability is completely independent of all previous
spike times

Note:

• if only the firing rate is relevant a suitable model for the spike train is a Poisson
process

– constant firing rate r: homogeneous Poisson process

– time-varying firing rate r(t): inhomogeneous Poisson process

Homogeneous Poisson process:

Determine the probability that during interval T exactly n spikes are fired (at arbitrary
times): PT [n]

Divide T into M = T/∆t bins with M → ∞ eventually

PT [n] = lim
∆t→0

(r∆t)n

︸ ︷︷ ︸

spike in n bins

× (1 − r∆t)M−n

︸ ︷︷ ︸

no spikes in M−n bins

M !

(M − n!) n!
︸ ︷︷ ︸

choose n from M

Rewrite second factor using ǫ = −r∆t

lim
ǫ→0

(1 + ǫ)
T
∆t

−n = lim
ǫ→0

(1 + ǫ)−
Tr
ǫ
−n = lim

ǫ→0

((

(1 + ǫ)
1
ǫ

)−rT

(1 + ǫ)−n

)

= e−rT

Using Stirling formula for ln N for large N

ln N ! = N ln N − N + O(ln N)

for large M at fixed n we get then

ln
M !

(M − n)!
≈ M ln M − M −

(

(M − n) ln
(

M (1 − n

M
)
))

+ M − n

= M ln M − (M − n) ln M + O(n)

≈ n ln M
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yields the limit
M !

(M − n)!
→ Mn for M → ∞

Thus

PT [n] = lim
∆t→0

(r∆t)n e−rT 1

n!

(
T

∆t

)n

Thus, the Poisson process is described by the Poisson distribution

PT [n] =
1

n!
(rT )n e−rT

Figures/DaAb01.f1.11.ps

Figure 54: a) Probability of having exactly n spikes as a function of rescaled firing rate
rT . b) For not too small rT the Poisson distribution is well approximated by a Gaussian
distribution with a variance that is equal to its mean [10].

Compute mean and variance

〈n〉 =
∞∑

n=0

n PT [n] σ2
n ≡ 〈n2〉 − 〈n〉2 =

∞∑

n=0

(n − 〈n〉)2 PT [n]

To compute these it is useful to introduce what is called the moment-generating function

g(α) =

∞∑

n=0

eαnPT [n]

It allows to calculate the moments
〈
nk
〉

very easily,

〈nk〉 =
dk

dαk
g(α)

∣
∣
∣
∣
α=0

Now

g(α) =
∞∑

n=0

eαn 1

n!
(rT )n e−rT = e−rT

∞∑

n=0

1

n!
(eαrT )n = e−rT eeαrT
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using the Taylor series of the exponential

ex =

∞∑

n=0

1

n!
xn

dg

dα

∣
∣
∣
∣
α=0

= e−rT erTeα

rTeα
∣
∣
α=0

= rT

d2g

dα2

∣
∣
∣
∣
α=0

= e−rT erTeα

(rTeα)2 + e−rT erTeα

rTeα
∣
∣
α=0

= (rT )2 + rT

Thus:
〈n〉 = rT σ2

n = rT

Note:

• the Fano factor is defined as

F =
σ2

n

〈n〉

• for the Poisson distribution the mean and the variance are equal, independent of
T

F = 1

Figures/ShNe98.f1.ps

Figure 55: High firing variability of cortical neurons (area MT of an alert monkey) reflect-
ing balanced excitatory and inhibitory input from a large number of neurons. Variance
grows (super-linearly) with mean firing rate [53].
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Figures/FiCh07.f4_top.ps

Figure 56: Low firing variability of retinal ganglion cells (sub-Poisson). [17]

Figures/SrYo06.f11.ps

Figure 57: Mean firing rate and variability of firing rate of peripheral (SA1 and RA) and
cortical neurons (3b and 1) in response to tactile stimulation of macaque monkey [56].

6.2 What Makes a Neuron Fire? 18

Tuning curves like Fig.52 show how a neuron responds for a range of selected stimuli,
e.g. different orientations of a given grating pattern.
Can one assess what kind of stimulus would elicit maximal response from the neuron
without restricting the stimulus to a specific type (e.g. grating pattern with a given
wavelength)?

6.2.1 Spike-Triggered Average

Consider a neuron responding to a stimulus s(t) with a spike train {ti, i = 1 . . . n}
18DA 1.3 +2.2
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Figures/DaAb01.f1.9_left.ps

Figure 58: Time-dependent stimulus and resulting spiking activity of electrosensory
neuron in weakly electric fish [10].

• The stimulus provides a time-varying input current to the neuron.

• The neuron accumulates the input and spikes when the threshold voltage is sur-
passed (cf. Fig.45).

• what is the average stimulus history that leads to a spike?

For each spike at time ti in the experimental interval [0, T ] measure the stimulus at a
time ti − τ contributing to the spike
To get spike-triggered average stimulus average the spike trains for many presentations
(‘trials’) of the same stimulus s(t)

C(τ) =

〈

1

n

n∑

i=1

s(ti − τ)

〉

Figures/DaAb01.f1.8.ps

Figure 59: Procedure to compute the spike-triggered average stimulus [10].

Assuming small fluctuations in the number of spikes across the trials (∼ 1/〈n〉1/2) to
pull the factor 1

n
out of the average over trials and using the neural response function

ρ =
∑n

i=1 δ(t − ti)
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C(τ) ≈ 1

〈n〉

〈
n∑

i=1

s(ti − τ)
︸ ︷︷ ︸

R T

0 δ(t′−ti) s(t′−τ)dt′

〉

=

=
1

〈n〉

〈∫ T

0

ρ(t′) s(t′ − τ) dt′
〉

=
1

〈n〉

∫ T

0

〈ρ(t′)〉 s(t′ − τ) dt′

=
1

〈n〉

∫ T

0

r(t′) s(t′ − τ) dt′

Consider the correlation function between stimulus and firing rate

Qrs(τ) =
1

T

∫ T

0

r(t′) s(t′ + τ) dt′

Using 〈n〉 = rT we get

C(τ) =
Qrs(−τ)

r

Note:

• the spike-triggered average stimulus is proportional to the reverse correlation (be-
cause of the minus-sign)

• C(τ) depends on the stimulus set used:

– to cover all possible inputs: use random stimulus ensemble (e.g. white
noise)

– statistically stationary stimulus

∗ the response properties of a neuron could depend on its mean firing
rate (e.g. by facilitation or depression); statistically nonstationary stimuli
would average over different ‘states’ of the neuron.

– 〈. . .〉 is the average over many realizations from that ensemble

To characterize stimulus ensemble: auto-correlation function of s(t)

Qss(τ) =
1

T

∫ T

0

s(t′)s(t′ + τ)dt′

Use white noise without any correlations between different times

Qss(τ) = σ2
sδ(τ)
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Figures/DaAb01.f1.9.ps

Figure 60: Spike-triggered average stimulus for a pyramidal neuron in the electrosen-
sory lateral line-lobe, which is the first central nucleus of the electrosensory pathway in
weakly electric fish [20] (in [10]).

6.2.2 Linear Response Kernel and Optimal Stimulus

The spike-triggered average gives information about the stimulus that contributed to
triggering a spike, i.e. to information about the stimulus given a spike.

Can one conversely estimate/predict how a neuron will respond to a given stimulus?

Assume a linear response of the neuron

rest(t) = r0 +

∫ ∞

0

D(τ)s(t − τ)dτ (38)

• r0 is the spontaneous firing rate for s = 0

• effect of mean stimulus s0 ≡
∫ T

0
s(t′)dt′ = 0 can be absorbed in r0:

assume s0 = 0

• the kernel D(τ) measures the degree to which the stimulus at the earlier time
t − τ contributes to the firing rate at time t

Notes:

• neurons are nonlinear

– assumption of linear response is non-trivial

– approximation expected to be good if the spontaneous firing rate r0 is only
slightly modulated by the stimulus
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– one can go beyond the linear response using a Volterra expansion (or a
Wiener expansion), which is an analog of a Taylor expansion)

• firing-rate framework requires that firing rate and stimulus vary sufficiently slowly

Determine D(τ) by minimizing the error in estimating the firing rate rest compared to
the measured firing rate r

E =
1

T

∫ T

0

(rest(t
′) − r(t′))

2
dt′

Using the linear response assumption

E{D(τ)} =
1

T

∫ T

0

(

r0 +

∫ ∞

0

D(τ)s(t′ − τ)dτ − r(t′)

)2

dt′

Goal:
find D(τ) such that E is minimal, i.e. arbitrary small changes ǫ∆(τ) of D(τ) do not
change E (cf. df

dx
= 0 at the minimum of the function f(x)), i.e. require

δE ≡ E{D(τ) + ǫ∆(τ)} − E{D(τ)} = 0 + O(ǫ2)

δE =
1

T

∫ T

0

(

r0 − r(t′) +

∫ ∞

0

D(τ)s(t′ − τ)dτ + ǫ

∫ ∞

0

∆(τ ′)s(t′ − τ ′)dτ ′

)2

dt′ −

− 1

T

∫ T

0

(

r0 − r(t′) +

∫ ∞

0

D(τ)s(t′ − τ)dτ

)2

dt′

= 2ǫ
1

T

∫ T

0

[(

r0 − r(t′) +

∫ ∞

0

D(τ)s(t′ − τ)dτ

)∫ ∞

0

∆(τ ′)s(t′ − τ ′)dτ ′

]

dt′ + O(ǫ2)

=
2ǫ

T

∫ ∞

0

∆(τ ′)

{∫ T

0

s(t′ − τ ′)

(

r0 − r(t′) +

∫ ∞

0

D(τ)

∫ ∞

0

s(t′ − τ)dτ

)

dt′
}

dτ ′ + O(ǫ2)

For D(τ) to be optimal the term proportional to ǫ must vanish for arbitrary ∆(τ ′). This
requires the term inside {} to vanish 19

∫ T

0

(r0 − r(t′)) s(t′ − τ ′) dt′ +

∫ ∞

0

D(τ)

{∫ T

0

s(t′ − τ)s(t′ − τ ′)dt′
}

dτ = 0

Thus
∫ ∞

0

D(τ)

(
1

T

∫ T

0

s(t′ − τ)s(t′ − τ ′) dt′
)

dτ =
1

T

∫ T

0

(r(t′) − r0) s(t′ − τ ′) dt′

19In Appendix B this is derived using functional derivatives.
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Shifting integration variable t′′ = t′ − τ ′

1

T

∫ T

0

s(t′ − τ)s(t′ − τ ′) dt′ =
1

T

∫ T−τ ′

−τ ′

s(t′′ + τ ′ − τ)s(t′′) dt′′ = Qss(τ
′ − τ)

Using
∫ T

0
s(t′)dt′ = 0 and interchanging τ and τ ′ we get

∫ ∞

0

D(τ ′)Qss(τ − τ ′)dτ ′ = Qrs(−τ)

For a white-noise stimulus Qss(τ − τ ′) = σ2
sδ(τ − τ ′)

D(τ) =
Qrs(−τ)

σ2
s

=
〈r〉
σ2

s

C(τ) (39)

Notes:

• for white-noise stimuli the spike-triggered average gives the optimal kernel to
predict the firing rate

• rest is obtained by projecting the stimulus onto D (see (38))
⇒ via (39) the maximal response20 is obtained by a stimulus with the shape of
the spike-triggered average stimulus

Figures/DaAb01.f2.1.ps

Figure 61: Response prediction using the optimal kernel (39) for the H1 neuron in the
visual system of the fly. The H1 is sensitive to horizontal motion of large portions of the
visual field.
a) image velocity used as input. b) two spike sequences obtained in response to that
input. c) measured (dashed) and predicted (solid) firing rate [10].

20at fixed energy. See DA Appendix 2.9B
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6.2.3 Receptive Fields: Visual System

Neurons may respond not only to a single stimulus, but to many different stimuli. The
response depends then not only on the temporal characteristics of the stimulus but on
the combination of the various stimuli.

Example: spatial information in the visual system

Sketch of initial stages:

• retina:
rods and cones, temporal processing by bipolar cells, lateral connections via hor-
izontal cells

• optical chiasm: left and right fields of vision combined for both eyes

• lateral geniculate nucleus in the thalamus: some integration with other informa-
tion

• primary visual cortex V1

• ...

a)

Figures/DaAb01.f2.4a.ps

b)

Figures/KaSc00.f26-6.ps

Figure 62: Structure of the retina. a) Drawing by Cajal (1911). b) Sketch of cone and
rod pathway in the retina [38].

Figures/DaAb01.f2.5.ps

Figure 63: Visual pathway from the retina to primary visual cortex [10].
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Each stage - even the retina - involves extensive neural computation.

Notes:

• The mapping between the stages is retinotopic: neighboring neurons respond to
neighboring ‘pixels’ in the retina.

• In each stage there are different types of neurons with different response proper-
ties

The neural response is characterized by the receptive field D(x, y, t), i.e. the spatio-
temporal stimulus that elicits optimal response.

Focus here on neuron types for which the linear response theory appears to be ade-
quate.

In analogy to (39) one then has

D(x, y, t) =
〈r〉
σ2

s

C(x, y, t)

with the spatio-temporal spike-triggered averaged stimulus C(x, y, t).

Retinal ganglion cells/LGN cells:

The receptive field of many cells has a center-surround structure in space

D(x, y) =
Acenter

2πσ2
center

e
− x2+y2

2σ2
center − Asurround

2πσ2
surround

e
− x2+y2

2σ2
surround

• on-center cell: Acenter > 0, Asurround > 0

• off-center cell: Acenter < 0, Asurround < 0

a)

Figures/DeOh95.f1.ps

b)

Figures/DeOh95.f3.ps

Figure 64: a) Center-surround receptive field of an on-center LGN-neuron in cat. b)
Temporal structure of receptive field of LGN-neurons in cat. Horizontal axis: x, vertical
axis: t, green: excitatory, red: inhibitory. A) Excitatory response at light onset. B)
Excitatory response delayed, but stronger than immediate inhibitory response. [11]
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Typically the receptive fields have also a temporal structure,

Acenter,surround = Acenter,surround(t),

as shown in Fig.64b.

6.3 LNP Cascade Models 21

So far:

• To characterize response properties of neuronswe used spike-triggered average
and the linear response.

• Linear response only expected to be successful if the firing rate varies by small
amounts about a non-zero mean rate.

• Linear response does not capture

– spiking threshold

– saturation of firing rate

• Rate model does not include individual spikes, which can occur probabilistically
(Poisson spiking)

Beyond linear response:

Volterra series: fit the input-ouput relation with higher-order polynomial in the stimulus
s

rest(t) = r0 +

∫ ∞

0

D1(τ)s(t − τ)dτ +

∫ ∞

0

∫ ∞

0

D2(τ, τ
′)s(t − τ)s(t − τ ′)dτdτ ′ + . . .

The kernels Di(τ, τ
′, . . .) are to be determined to give a good approximation for a wide

range of stimuli: use white-noise stimulus with

Qss(τ, τ
′) = σ2

sδ(τ − τ ′)

Then we had

D1(τ) =
〈r〉
σ2

s

C(τ)

with C(τ) the spike-triggered average

C(τ) =

〈
n∑

i=1

s(ti − τ)

〉

trials

The higher-order kernels can be determined via higher powers of the stimulus with the
output (spiking).

Notes:
21cf. [6]
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• as in fitting data points with polynomials the coefficients of the polynomials change
when the order of the polynomial changes (the fit is not a Taylor expansion)

The interdependence between the various kernels can be removed by switching to a
Wiener series[50]

rest(t) = g0+

∫ ∞

0

g1(τ)s(t−τ)dτ+

{∫ ∞

0

∫ ∞

0

g2(τ, τ
′)s(t − τ)s(t − τ ′)dτdτ ′ − σ2

s

∫ ∞

0

g2(τ, τ)dτ

}

+. . .

with the filters given by

g0 = 〈r(t)〉

g1(τ) =
1

σ2
s

〈r(t)s(t − τ)〉 = D1(τ)

g2(τ, τ
′) =

1

σ4
s

〈r(t)s(t − τ)s(t − τ ′)〉
. . .

But:

• Sigmoidal dependence of the firing rate on the input is poorly approximated by
polynomials

– Volterra and Wiener series require high orders to give good results ⇒ im-
practicable, would require huge amounts of data

Can one make use of the preferred stimulus (spike-triggered average) to construct a
simpler nonlinear model?

Cascade Model:

• spike-triggered average generates from the input history a scalar quantity rlin(t)

• rlin(t) is the input to a static nonlinearity F which gives a spiking probability

• spikes are generated from a Poisson distribution based on the time-dependent
spiking probability F (rlin(t))

rest(t) = F

(∫ ∞

0

g(τ)s(t − τ)dτ

)

How to determine F and g?

This model has only a single filter, g(τ)

Require:
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• the first Wiener filter of the true data should agree with the first Wiener filter of the
estimated data

〈r(t) s(t − τ)〉 = 〈r(t)est s(t − τ)〉

Note:

• since the Wiener filters are independent of each other this condition does not
require any knowledge of higher Wiener or Volterra filters

Slightly easier to consider discrete time series (binned data) si, i = 1 . . . N , for the N
past values of the stimulus, which result in the current value of the output r and its
estimate rest. The model then reads

rest = F (g · s)

with the discrete filter g.

Consider first spherically symmetric probability distributions for the stimuli

P (s) = P (|s|)

〈rests〉 =

∫

rest sP (s)ds1 . . . dsN

=

∫ ′

P (|s|)
︸ ︷︷ ︸

spherical

[
F (g · s) s + F

(
g · s+

)
s+
]
ds1 . . . dsN

where s+ is chosen such that g · s = g · s+, i.e.

s+ = 2
s · g
|g|2

g − s

and the sum
∫ ′ is adjusted to avoid double counting.

Then

〈rests〉 =







∫ ′

P (|s|)
︸ ︷︷ ︸

spherical

F (g · s)







(
s + s+

)

︸ ︷︷ ︸

∝g

ds1 . . . dsN ∝ g

Since we require 〈rests〉 = 〈r s〉 the filter g satisfies

g = α 〈r s〉

The nonlinearity is then obtained by plotting r vs the linear filter output g · s.
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For Gaussian, not necessarily spherical, distributions one can show the equivalent
result (Bussgang theorem[4, 10])

〈rests〉 =

∫

rest(s) se−
1
2
stC−1sds1 . . . dsN

= −
∫

rest(s)C∇s

(

e−
1
2
stC−1s

)

ds1 . . . dsN

=
︸︷︷︸

integration by parts

C

∫

e−
1
2
stC−1s∇srest(s)ds1 . . . dsN

= C 〈∇srest(s)〉
= C 〈∇sF (g · s)〉
= Cg 〈F ′ (g · s)〉

Thus, we have
g ∝ C−1 〈rest s〉 = C−1 〈r s〉

Notes:

• for Gaussian white noise: the filter g is proportional to the spike-triggered average

• for correlated Gaussian noise: the spike-triggered average needs in principle to
be decorrelated.
however: when the data sets are not large enough the average 〈r s〉 often con-
tains still noise. The decorrelation also amplifies this noise and may not improve
the filter.

• the LN-model approach can also be used to characterize the membrane voltage
response of neuron in response to a stimulus
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a)

Figures/ZaBo05.f3a1.ps

b)

Figures/ZaBo05.f3a2.ps

Figure 65: LN-model for OFF Y-type retinal ganglion cell for low and high contrast of
the stimulus. a) Membrane voltage response. b) Spike rate response. [62]

Figures/ZaBo05.f2b.ps

Figure 66: Comparison of the voltage prediction of LN-model for the OFF Y-type retinal
ganglion cell shown in Fig.65 for low and high contrast of the stimulus (stimulus in top
row) [62]..

LN-models can also be used to characterize quantitatively certain aspects of the neu-
ronal response, like the gain.

Typically the gain depends on the contrast of the stimulus.

For the cell shown in Fig.65 the amplitude of the linear filter can be rescaled such that
the nonlinearity is the same for both contrast conditions

rest = F (γlow,high g · s) with γhigh < γlow

Note:
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• The gain is reduced for high contrast. This helps avoiding saturation of the re-
sponse.

a)

Figures/ZaBo05.f3b1.ps

b)

Figures/ZaBo05.f3b2.ps

Figure 67: LN-model for the same OFF Y-type retinal ganglion cell as in Fig.65. After
rescaling of the filter the nonlinearities become the same for low and high contrast of
the stimulus (grey=low contrast, black=high contrast). a) Membrane voltage response.
For high contrast gain is reduced to 0.83 of the gain for low contrast. b) Spike rate
response. Gain reduced to 0.64 [62]
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a)

Figures/ZaBo05.f3c1.ps

b)

Figures/ZaBo05.f3c2.ps

Figure 68: LN-model for ON Y-type retinal ganglion cell. After rescaling of the filter
the nonlinearities become the same for low and high contrast of the stimulus (grey=low
contrast, black=high contrast). a) Membrane voltage response. Gain redcued to 0.74.
b) Spike rate response. Gain reduced to 0.54. [62]

The description of some cells require multiple filters and nonlinearities.

Shifting backgrounds in visual scenes can modify the response of ganglion cells to
inputs in their receptive field. This could be relevant during saccades.
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a)

Figures/GeDe07.f1a.eps

b)

Figures/GeDe07.f2.eps

Figure 69: Input outside the classical receptive field can modify a ganglion cells re-
sponse. a) grating exciting the periphery is shifted every 9s. b) The response of this
ganglion cell is transiently changed from OFF-center to ON-center briefly after a pe-
ripheral shift. [21]

Figures/GeDe07.f4.eps

Figure 70: Extraction of two temporal filters using a principal component analysis (PCA)
of the spike-triggered covariance matrix [21]

99



Computational Neuroscience H. Riecke, Northwestern University

7 Neural Networks: Rate Models

The power of the brain stems to a large extent from the interaction between different
neurons that communicate with each other.

Characteristics of most functional networks in the brain

• comprised of many neurons

• each neuron receives many inputs

• neurons are connected only to a fraction of the other neurons:
‘sparse connectivity’

Modeling with detailed spiking neurons very challenging

• time scales:

– channel opening/closing: < 1ms

– action potential: ∼ 2ms

– ...

– period of θ-rhythm ∼ 100ms

– persistent activity in working memory > 1s

– ...

• multiple variables V , m, n, h,...

• many compartments for branching dendrites, axons

• complex nonlinearities

• many parameters, of which many are poorly known

For large networks firing-rate models are useful

• do not resolve short time scales of action potential

• fewer variables

• simpler nonlinearities

• few parameters

• cannot capture aspects of spike synchrony

Note:

• In the Blue Brain Project a single neocortical column consisting of 10,000 neurons
is being simulated with morphological details of neurons retained. It uses a 8192-
processor Blue Gene computer.
http://bluebrain.epfl.ch/page18699.html
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7.1 Firing-Rate Models 22

In a spiking model the activity of the network is characterized by the neural response
function ρj(t) =

∑

i δ(t − ti) of each neuron j.

In a firing-rate model ρj(t) is replaced by its trial-average, the firing rate r(t) = 〈ρ(t)〉.
Necessary for firing-rate approximation:

• network behavior does not depend on specific timing of the spikes

The dynamics of a neuron depend on its total input.

The response of a neuron is insensitive to individual spike times of its inputs if

• large number N of uncorrelated spikes contribute to the response

– many synapses

– slow synapses

– slow membrane properties (τm = RC large)
(cf. Fig.45b)

⇒ input fluctuations due to individual spikes ∝
√

N , mean input ∝ N .

We need

• synaptic input current Is to neuron (measured at soma) due to the changes in all
the synaptic conductances as a function of pre-synaptic firing rate u

• output firing rate v as a function of Is

Synaptic Current Is

Consider a neuron with Nu synaptic inputs

Is(t) =
Nu∑

i=1

wi

∑

tj<t

Ks(t − t
(i)
j ) =

Nu∑

i=1

wi

∫ t

−∞

Ks(t − τ)ρi(τ)dτ

with

• synaptic kernel Ks

– effect at the soma of the synaptic input (spike times given by ρi(t))
includes synaptic dynamics and propagation along dendritic cable

22DA 7.1
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– assume Ks equal for all synapse on the neuron
need not be the case: the impact of a synapse may well depend on its
distance from the soma

– normalized:
∫ t

−∞
Ks(t − τ)dτ =

∫∞

0
Ks(t

′)dt′ = 1

• wi strength of synapse i

– assume no short-term plasticity, wi does not change from spike to spike,
does not depend on inter-spike interval

– wi > 0: excitatory synapse
wi < 0: inhibitory synapse

• assume synaptic inputs sum up linearly
however, active dendrites can sum up their input sub-linearly or super-linearly

Firing-rate assumption

• the synaptic current Is can be approximated by its trial average

Is ≈ 〈Is(t)〉 =

Nu∑

i=1

wi

∫ t

−∞

Ks(t − τ) 〈ρi(τ)〉
︸ ︷︷ ︸

ui(τ)

dτ (40)

Assume a single-exponential kernel (fast rise time)

Ks(t) =
1

τs
e−t/τsH(t)

with the Heaviside function

H(t) =

{
1 for t > 0
0 for t < 0

H(t) = 1 for t > 0 and H(t) = 0 for t < 0.

Then one can express (40) in terms of a differential equation

Using the derivative of (40)

dIs

dt
=

Nu∑

i=1

wi

(
1

τs
ui(t) −

∫ t

−∞

e−(t−τ)/τsui(τ)dτ

)

yields

τs
dIs

dt
= −Is +

Nu∑

i=1

wiui ≡ −Is + w · u (41)

Firing Rate

For steady input current Is the output firing rate of the neuron is given by

v∞ = F (Is)

Typical choices
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• threshold linear function

F (Is) = [Is − Ithreshold]+ ≡
{

Is − Ithreshold for Is − Ithreshold > 0
0 for Is − Ithreshold ≤ 0

• sigmoid function for smoothness and for saturation

For time-dependent Is(t) a simple assumption is that v relaxes exponentially to v∞ on
a time scale τr.

This yields the coupled system

τr
dv

dt
= −v + F (Is(t)) (42)

τs
dIs

dt
= −Is + w · u (43)

i) τr ≪ τs: v relaxes very quickly to v∞

v = F (Is) τs
dIs

dt
= −Is + w · u (44)

ii) τr ≫ τs: Is(t) relaxes quickly

τr
dv

dt
= −v + F (w · u) (45)

Note:

• if the neurons providing the input are in turn described by a firing-rate model one
gets for (44)

τs
dIs

dt
= −Is +

Nu∑

i=1

wiF (Isi(t)) (46)

with Isi the input current of the input neurons.

• comparing (46) with (45) shows:
the two models differ then in the position of the nonlinearity F .

• the position of the nonlinearity, which is non-negative, is also related to the fact
that Is can be negative but v cannot.

7.2 Feed-Forward Networks

The brain can roughly be thought of as a modularly structured network
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• feed-forward connections from one module to the next (e.g. sensory → thalamus
→ initial processing in cortex → ... higher level processing .... → motor control →
motor output)

• recurrent connections within modules

• top-down (feed-back) input: most regions that receive feed-forward input from
lower levels also project back to those levels

General form within the frame-work of firing-rate models:

• Feed-forward

τ
dv

dt
= −v + F (Wu) (47)

with W the matrix of synaptic weights of the inputs.
In components

τ
dvi

dt
= −vi + F

(
∑

j

Wijuj

)

• Recurrent

τ
dv

dt
= −v + F (Wu + Mv) (48)

with M the matrix of synaptic weights of the recurrent connections.

Consider first feed-forward networks. Although simpler to treat than recurrent ones,
they can still perform very powerful computations.

Note:

• without input u feedforward networks are silent, v = 0
(unless the individual, uncoupled neuron fire spontaneously, F (0) 6= 0.)

7.2.1 Hubel-Wiesel Model for Visual Orientation Tuning

Observations of visual receptive fields:

• retinal ganglion cells and cells in lateral geniculate nucleus (LGN) in thalamus
have center-surround receptive fields (cf.Sec.6.2.3)

• cells in the input layer (layer IV) of visual cortex V1 have more complex receptive
fields:

– for many cells the receptive field is based on an oriented stripe pattern

∗ different orientations
∗ different wavelengths
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∗ stationary or moving at a certain speed

Figures/HuWi62.f2.ps

Figure 71: Receptive fields: A) ON-center in LGN, B) OFF-center in LGN, C)-G) simple-
cell receptive fields in V1 [32]

How can orientation tuning in V1 arise from center-surround tuning of the ganglion cells
in the retina?

Figures/HuWi62.f19.ps

Figure 72: Feed-forward network for simple cell [32].

Simple cell responds most strongly to

• bright (dark) stripe in the center

• dark (bright) stripes next to the bright stripe

⇒ selective for orientation, wavelength and position.

Complex cells are not selective for position (phase) of the stripes, only for their orien-
tation
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Figures/HuWi62.f4.ps

Figure 73: Receptive field of a complex cell. A)-D) same orientation but different lo-
cation of the bar within the receptive field. E)-G) different orientations. H) bar with
orientation as in A)-D) moved rapidly across the receptive field. The horizontal bars
above the record indicate when the stimulus is on [32].

Figures/HuWi62.f20.ps

Figure 74: Possible connectivity of a complex cell: input from multiple simple cells with
different preferred locations of the bar [32].

For any phase (position) of the grating some simple cell in the receptive field of the
complex cell responds, while the others are quiet: no cancellation of the input from the
active cells

Thus:

• the complex cell is not sensitive to the position of the stripe:

• it encodes the generalized information ‘some stripe with this orientation’

Note:

• for linearly responding cells with high spontaneous firing rate the reduced input
from the simple cells that are responding only weakly would compensate the
enhanced input from the strongly responding simple cells.
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Notes:

• it has been argued that the feed-forward architecture is insufficient to explain

– sharpness of selectivity

– contrast invariance of the selectivity
selectivity is as sharp for high-contrast pattern as for low-contrast pattern (cf.
ice-berg effect)

recurrent network architectures have been proposed [2]
it seems, however, that if data and models are analyzed in more detail the feed-
forward network may well be sufficient [18]

7.2.2 Neural Coordinate Transformations 23

Receptive fields of LGN cells and of cells in V1 are in terms of positions on the retina
(retinotopic map), which depends on eye and head direction (gaze).

To manipulate an object its position needs to be known in a body-centered coordinate
system.

⇒ brain needs to transform from the retinal to the body coordinate system

One-dimensional example:

s = angle in retina coordinates g = angle of the gaze ⇒ s + g = body-centered angle

Figures/DaAb01.f7.4.ps

Figure 75: Coordinate transformation between body-centered coordinates and retina-
centered coordinates.

23DA 7.3
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Figures/GrHu97.f13.ps

Figure 76: Response of a bimodal (visual-tactile) neuron in the ventral pre-motor cortex
of a macaque monkey. Its tactile receptive field is near the left cheek. The visual
response to an object approaching along paths marked I-V does not depend on the
eye position (A1, B1, C1) (or the arm position (B2)), but it does depend on the head
position (B3), i.e. it depends on the position of the object relative to its tactile receptive
field (similar data for tactile field on the arm) [24].

a)

Figures/GrHu97.f16.ps

b)

Figures/GrHu97.f17.ps

Figure 77: Tuning curves of face+visual bimodal neurons in ventral pre-motor cortex
are in head-centered coordinates. a) The receptive field is shifted when the head is
turned. b) The receptive field is not shifted if the gaze, but not the head is rotated [24].

Figures/DaAb01.f7.6a.ps

Figure 78: Tuning curve of neurons in the posterior parietal cortex. The preferred
location is given in retinal coordinates, but the magnitude of the response, i.e. the
height of the tuning curve, is modulated by the gaze direction [3].

Consider two model networks at the interface between sensory function and motor
control [51]
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i) Sensory Network (posterior parietal cortex PP):
The response of bimodal neurons in PP depends on the retinal coordinate s and the
gaze coordinate g. Different neurons have different preferred retinal angles ξ and dif-
ferent characeristic gaze angle γ.
The neurons have tuning curves in retina coordinates, but the gaze enters via the gain,

uξγ(s, g) = f±
u (s − ξ, g − γ) = Ae

−
(s−ξ)2

2σ2
s · [M ± (g − γ)]M+

Experimentally it is found that the gain varies rougly linearly with the gaze, here mod-
eled with a threshold and saturation.
Depending on the neuron the gain can increase or decrease with the gaze angle.
Assuming that the second network reads both types of neurons one can lump them
together into an ‘effective’ population described by

fu(s − ξ, g − γ) = Ae
− (s−ξ)2

2σ2
s · [M − |g − γ|]M+

which effectively has a preferred gaze angle.
For simplicity assume a continuum of neurons characterized by ξ and γ.

ii) Motor Control Network (ventral pre-motor cortex PMv):

Neurons in PMv receive input from the neurons of the sensory network

Can the input weights be chosen such that the neurons in the motor control network
have tuning curves in body-coordinates?

Steady-state firing rate for one such neuron

v∞(s, g) = F (w · u)

Assuming a continuum for the preferred angles ξ and γ the sum can be replaced by
integrals and one obtains

v∞(s, g) = F






∫ +∞

∞

∫ +∞

∞

w(ξ, γ)
︸ ︷︷ ︸

connection from neuron labeled (ξ,γ)

fu (s − ξ, g − γ) ρξργ dξdγ






where ρξdξ and ργdγ are the numbers of neurons with preferred location and gaze in
the ranges [ξ, ξ+dξ] and [γ, γ +dγ], respectively. They are assumed to be independent
of ξ and γ and can then be pulled out of the integral.
The tuning curve for this neuron should depend only on the angle in body coordinates

v∞ = v∞(s + g)

To bring s and g together shift the variables

s − ξ = s + g − ξ′ g − γ = −γ′
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i.e.
ξ = ξ′ − g γ = γ′ + g

then

v∞(s, g) = F

(

ρξργ

∫ +∞

−∞

∫ +∞

−∞

w(ξ′ − g, γ′ + g) fu(s + g − ξ′,−γ′) dξ′dγ′

)

To make the first integrand independent of g choose

w(ξ, γ) = w(ξ + γ)

then

v∞(s, g) = F

(

ρξργ

∫ +∞

−∞

∫ +∞

−∞

w(ξ′ + γ′) fu(s + g − ξ′,−γ′) dξ′dγ′

)

Figures/coordinate_transform_1.eps Figures/coordinate_transform_2.eps

Figure 79: a) The neuron in PMv integrates the contributions from all neurons in PP with
a weight w(ξ, γ) depending on their ‘preferred’ location (ξ, γ). Their receptive fields are
represented by circles. b) For a different stimulus (s′, g′) the each of the PP-neurons
responds differently. But for each neuron at (ξ, γ) there is a neuron at (ξ′, γ′) with
ξ′ + γ′ = ξ + γ that responds like the neuron (ξ, γ) did for stimulus (s, g). The output of
the PMv-neuron depends only on s + g if the weight for the neuron (ξ′, γ′) is equal to
the weight of neuron (ξ, γ), i.e., if the weight w(ξ, γ) depends only on ξ + γ.

Note:

• In [51] it is discussed that the required connectivity w(ξ + γ) can be obtained in a
natural learning procedure: baby follows its own random hand motion [60].

7.3 Recurrent Networks 24

Recurrent networks are harder to analyze than feed-forward networks. Consider first
linear neural dynamics, F (u) = u.

24DA 7.4
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7.3.1 Linear Recurrent Networks

Need to consider N coupled odes for the components of v

τr
dv

dt
= −v + Wu

︸︷︷︸

input h

+Mv (49)

Solve in terms of the eigenvectors eµ of M

Meµ = λµeµ

with eigenvalues λµ.

For general matrices M the eigenvalues and the eigenvectors can be complex, λ ∈ C.

Assume: M is symmetric, Mij = Mji

• eigenvalues λµ ∈ R

• eigenvectors eµ mutually orthogonal

eµ · eν = δµν (50)

• all vectors v can be written as a linear combination of the eigenvectors

v(t) =

Nv∑

µ=1

vµ(t) eµ (51)

for any fixed t with Nv the number of components of v. vµ(t) is the time-dependent
amplitude of the eigenmode eµ.

Insert expansion (51) into (49)

τr

∑

µ

dvµ

dt
eµ = −

∑

µ

(1 − λµ) vµeµ + h

Use orthogonality (50) to project the equation onto eν

τr
dvν

dt
= − (1 − λν) vν + eν · h (52)

Now we have only a single ode. Its solution is given by

vν(t) =
eν · h
1 − λν

+ Aνe
− 1−λν

τr
t

Using the initial condition
vν(0) = eν · v(0)
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we get

Aν = eν · v(0) − eν · h
1 − λν

The full solution is then given by the sum over all the eigenmodes with their respective
amplitudes

v(t) =
Nν∑

ν=1

(
eν · h
1 − λν

+ Aνe
− 1−λν

τr
t

)

eν (53)

The evolution of the components vν of v depends on the associated eigenvalue λν

• For λν < 1:

– a steady state is reached at large times

vν(t) → v∞
ν ≡ eν · h

1 − λν
for t → ∞

– for λν < 0 the output component v∞
ν is reduced compared to the input com-

ponent

– for 0 < λν < 1 the output component v∞
ν is larger than the input component

eν · h: selective amplification of components of h

– for λν → 1 the approach to the steady state becomes infinitely slow

τν =
τ

1 − λν
→ ∞

(critical slowing down)

• For λν > 1:

– no steady state is reached

∗ vν diverges exponentially within this linear approximation
∗ nonlinearity F may lead to saturation

• For λν = 1:

– it is easier to determine solution directly from (52)

τr
dvν

dt
= eν · h

i.e.
vν(t) = eν · h

t

τ

– no saturation, linear growth
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– more generally, for h = h(t)

vν(t) =
1

τr

∫ t

t0

eν · h(t′)dt′

network functions as an temporal integrator of its input

Notes:

• temporal integration is needed, e.g., to obtain positions from a velocities

– to compensate head orientation on visual input need to obtain head orienta-
tion from rotation measured in vestibular system.

• λ > 0 implies excitatory recurrent inputs: self-excitation

7.3.2 Oculomotor Control during Eye Saccades

In many animals eye position is fixed for a period of time and then a sudden jump
(‘saccade’) to a new position is made.

Even with closed eyes the eye position relative to the object remains fixed during head
rotations.

How is the eye position controled?

Figures/KaSc00.f17-2.ps

Figure 80: Sketch indicating location of medulla and other parts of the brain stem [38].

Different types of neurons are involved (located in parts of the medulla at the end of
the spinal cord)

• neurons firing tonically: firing rate proportional to eye position

• neurons firing bursts during saccades
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• both neurons feed into the motor neurons:
motor neurons have pulse-step behavior

Note:

• If position neurons fail (by lesion, e.g.), animal can still make a saccade to a new
eye position but the eye relaxes back to its rest position afterwards

a)

Figures/McFu92.f4.ps

b)

Figures/McFu92.f8.ps

Figure 81: a) Burst-position neuron (A,C) and position neuron (B,D) in the monkey
medulla (HE=horizontal eye position, HT=horizontal target position, FR=firing rate). b)
The duration of the bursts is strongly correlated with the duration of the saccades and
usually precedes them by ∼ 10ms (solid bars in inset for burst-position cells, open bars
for position cells) [47].
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Figures/PaCr94.f2.ps

Figure 82: Neurons in goldfish medulla. coding for eye position (A,B) or eye velocity
(D). A) spontaneous eye movement. Firing rate (FR) correlated with left eye position
(LE). B) Sinusoidal head rotation (in the dark) with compensating eye movement. Firing
rate correlated with eye position, not eye velocity. D) Sinusoidal head rotation. Firing
rate correlated with eye velocity. (LE=left eye position, ˙LE=left eye velocity, Ḣ=head
velocity) [48].

Position neurons need to integrate velocity information, e.g. from vestibular system
about head rotation

Model for an integrator:

• single neuron with excitatory autapse (synapse of neuron onto itself)

• network with excitatory recurrent connections

Integrator needs to receive input corresponding to the motor commands (efference
copy25) to update the position.

25Efference copies inform the brain also about expected sensory input (finger touching hand) to dis-
tinguish sensory signals created by the animal itself rather than by external influence. Efference copies
presumably underly the observation that one cannot tickle oneself.
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Figures/SeLe00a.f1.ps

Figures/SeLe00a.f3.ps

Figure 83: a) Network model for integrator in okulomotor control via recurrent exci-
tation. The integrator network receives efference copies of the motor control signals
(excitatory and inhibitory bursts) to update the stored eye position. b) Results from the
integrator model of [52].

For these integrators exact integration requires

λν = 1

For λν < 1 the eye position would slowly relax back to center position

For λν > 1 the eye position would diverge to the sides

The relaxation/divergence occurs with the time-constant

τν =
τr

1 − λν

Experimentally one finds that the eye position relaxes with a time constant

τrelax = O(10s)

(in goldfish [52]) and
τr = 5ms . . . 100ms

For this type of integrator to be sufficient one would need the relevant eigenvalue to be
precisely tuned,

|λν − 1| =
τr

τrelax
=

1

2000
. . .

1

100
.

So far, it is not clear whether there are mechanisms that would allow such a precise
tuning of the synaptic strengths.

7.3.3 Limulus Vision. Contrast Enhancement

Output of the retina is not simply a pixelated picture of the visual scene:
The receptive fields of retinal ganglion cells have a spatial center-surround structure
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and in addition temporal structure (Fig.64)
⇒ non-trivial computations are performed already in the retina

Simple example: contrast enhancement by lateral inhibition

Figures/mach_band_david_anson_bw_no_separator.ps

Figures/mach_band_david_anson_bw_with_separator.ps

Figure 84: Mach bands. Contrast enhancement by lateral inhibition.

The vertebrate (and mammalian) retina is very complex (Fig.85).

Figures/KaSc00.f26-6.ps

Figure 85: Many different types of cells contribute to the function of the retina, among
them horizontal cells that provide lateral inhibition [38].

Consider simpler visual system: Limulus (horse-shoe crab)
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Figures/horseshoe-crab.jpg Figures/Horseshoe-crab-eye-detail.jpg

Figure 86: Horseshoe crab and its compound eye

The compound eye consists of O(1000) ommatidia. Each ommatidium has an individual
lens and is functioning as 1 pixel.

Vision in Limulus was in particular studied by H.K. Hartline, starting in the 1930s (Nobel
Prize 1967 [25]).
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Figures/Ha69.f1.ps

Figure 87: Electrical activity in single optic nerve. Stimulation with 3 different intensities
[25].

Figures/HaRa57.f1.ps

Figures/HaRa57.f2.ps

Figure 88: Stimulated ommatidia inhibit each other reciprocally with threshold [26].

The output from a given ommatidium depends on the stimulation of the ommatidia in
its surround:

• lateral inhibition

• linear in the firing rate of the inhibiting ommatidium

• threshold: minimal firing rate needed for inhibition

Note:

• The inhibition is not driven directly by the stimulus to the other ommatidium but
by the output of the other ommatidium: recurrent network
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Simple Rate Model:

τr
dvi

dt
= −vi + F (Is,i(t))

τs
dIs,i

dt
= −Is,i + hi

︸︷︷︸

light stimulus

−
∑

j

wij [vj − vthresh]+

Note:

• It is found that the synaptic strength wij depends on the distance between the
ommatidia.

Focus on stationary state:

v∞
i = F (I∞

s ) I∞
s = hi −

∑

j

wij

[
v∞

j − vthresh

]

+

thus

v∞
i = F

(

hi −
∑

j

wij

[
v∞

j − vthresh

]

+

)

Simplifications

• one-dimensional continuum of neurons: vi ⇒ v(x)

• to avoid boundaries assume periodic domain −π < x ≤ +π

• observation: suppression of firing is linear in the firing rate of the suppressing
neuron
⇒ equations become linear

• distance dependence of synaptic strength:

wij ⇒ g M(x − x′) =

{
g x − ∆ ≤ x′ ≤ x + ∆
0 otherwise

Thus

v∞(x) = h(x) − g

∫ +π

−π

M(x − x′)v∞(x′)dx′ (54)

To solve this integral equation note

• equation is linear
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– corresponds to matrix equation (49)

– solve using eigenvectors, i.e. eigenfunctions, satisfying26

∫ x+π

x−π

M(x − x′)en(x′)dx′ = λnen(x)

• equation is translation invariant: M(x, x′) = M(x − x′)
⇒ eigenfunctions are Fourier modes

e(c)
n (x) = cos nx e(s)

n = sin nx

Determine eigenvalues:
∫ x+π

x−π

M(x − x′) cos nx′ dx′ =

∫ x+∆

x−∆

cos nx′ dx′ =

=
1

n
(sin n (x + ∆) − sin n (x − ∆))

2

n
cos nx sin n∆

∫ x+π

x−π

M(x − x′) sin nx′ dx′ =

∫ x+∆

x−∆

sin nx′ dx′ =
2

n
sin nx sin n∆

Thus
λ0 = 2∆ for eigenvectore(c)

0 = 1

λn =
2

n
sin n∆ for e(c)

n = cos nx and fore(s)
n = sin nx n > 0

Expand v∞(x) and h(x) into Fourier series

v∞(x) =
∞∑

n=0

v(c)
n cos nx +

∞∑

n=1

v(s)
n sin nx h(x) =

∑

n

h(c)
n cos nx + h(s)

n sin nx

and insert into (54)
∫ x+π

x−π

M(x − x′)v∞(x′) dx′ =
∞∑

n=1

∫ x+π

x−π

M(x − x′)
(
v(c)

n cos nx′ + v(s)
n sin nx′

)
dx′ =

=
∞∑

n=1

λnv
(c)
n cos nx + λnv(s)

n sin nx

Using the orthogonality of different trigonometric functions (e.g.
∫ +π

π
cos nx cos mxdx =

δnm)

one can collect all cos nx and sin nx separately to get

v(c,s)
n =

1

1 + gλn

h(c,s)
n

26cf. DA Chap. 7.4
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Consider small step in luminosity

h(x) =

{
1 − δ x < 0
1 + δ x > 0

with expansion

h
(s)
2n+1 =

4δ

(2n + 1)π
n = 0, 1, 2 . . .

h
(s)
2n = 0 h(c)

n = 0 n = 0, 1, 2, . . .

h
(c)
0 = 1

Thus

v∞(x) =
1

1 + 2g∆
+

∞∑

n=0

1

1 + g 2
2n+1

sin(2n + 1)∆

4δ

π (2n + 1)
sin (2n + 1)x (55)

a)

Figures/mach_plot.eps

b)

Figures/visual_lateral.1.eps

Figure 89: Mach band: lateral inhibition enhances small differences in luminosity (g∆ =
1). a) solution (55) b) qualitative sketch.

Note:

• differences between pixels are enhanced by lateral inhibition

– Mach bands

– contrast enhancement

a)

Figures/Ha69.f13a.ps

b)

Figures/KnTo70.f6.ps

Figure 90: a) Sharpening of on-transient by delayed lateral inhibition. Upper curve:
response if only a single ommatidium is illuminated. Lower non-monotonic curve: il-
lumination covers also neighbors, which provide delayed inhibition [25]. b) Temporal
shape of lateral interaction: short excitation followed by longer inhibition [40].
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Dynamical behavior:

• Lateral inhibition arises with a delay
initially strong response of all cells, then inhibition kicks in ⇒ firing of cells de-
crease ⇒ inhibition decreases ⇒ firing rate increases again after a delay
⇒ non-monotonic approach to steady state

• In addition self-inhibition:
rises very quickly, decays then more slowly than lateral inhibition

Could model lateral interaction with a double-exponential as for the slow synapse (cf.
(30))

• rapidly decaying excitation

• slowly decaying inhibition

Is,i = hi + I(e)
s,u + I

(i)
s,i

τe

dI
(e)
s,i

dt
= −I

(e)
s,i +

∑

j

w
(e)
ij

[

vj(t) − v
(e)
thresh

]

+

τi

dI
(i)
s,i

dt
= −I

(i)
s,i −

∑

j

w
(i)
ij

[

vj(t) − v
(i)
thresh

]

+

7.3.4 Persistent States

Consider again nonlinear recurrent network (17)

τ
dv

dt
= −v + F (h + Mv)

So far we did not investigate any possible role for the nonlinearity F

Consider for simplicity minimal model:

• single neuron with sigmoid firing-rate function with threshold vθ

τ
dv

dt
= −v + F (h + mv) F (h + mv) =

1

1 + e−(h+m(v−vθ))

Can combine threshold and feed-forward input: vth = (vθ − h) /m

τ
dv

dt
= −v +

1

1 + e−m(v−vth)
(56)
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Steady states v = v∞ satisfy the transcendental equation

v∞ =
1

1 + e−m(v∞−vth)

Cannot be solved in terms of simple functions: use graphical approach

• small m:
straight line intersections sigmoid in exactly 1 point: single steady state (fixed
point)

• large m:

– large positive vth: single fixed point with v∞ ≈ 0

– large negative vth: single fixed point with v∞ ≈ 1

– intermediate values of vth: three fixed points simultaneously
can show

∗ ‘outer’ fixed points v
(1)
∞ ≈ 0 and v

(3)
∞ ≈ 1 are linearly stable

∗ intermediate fixed point v
(2)
∞ is linearly unstable: solution exists, but any

small perturbation will push v away from v
(2)
∞ to either v

(1)
∞ or v

(3)
∞

Easier visualization of dynamics using a potential

τ
dv

dt
= −dU

dv
with U(v) =

1

2
v2 −

∫ v

−∞

1

1 + e−m(v′−vth)
dv′

Consider large m and approximate F by a step function

F (v) =

{
1 for v > vth

0 for v < vth

then

U(v) =

{
1
2
v2 − (v − vth) for v > vth

1
2
v2 for v < vth

Minima at

v = 1 for vth < 1

v = 0 for vth > 0

Thus:

vth < 0 single minimum at v(1)
∞ = 1

0 < vth < 1 two minima at v(1)
∞ = 0 v(3)

∞ = 1

1 < vth single minimum at v(3)
∞ = 0
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Figures/bistable_potential.eps

Figure 91: Potential U(v) for three values of vth.

During the evolution the value of the potential U(v) cannot increase

dU(v(t))

dt
=

dU(v)

dv

dv

dt
= −

(
dU

dv

)2

≤ 0

‘Particle with position v is sliding down the potential landscape U ’

Thus:

• eventually the neuron will always go into a steady state

• neuron can be active v∞ ≈ 1 even without any input h: persistent activity

• neuron can be bistable:
depending on initial conditions the neuron will go into the steady state v

(1)
∞ or v

(3)
∞

neuron can function as a memory

Working memory used to remember items for a brief time (e.g. phone numbers,...)

Figures/delay1.eps Figures/delay2.eps Figures/delay3.eps

Figure 92: Delayed memory task. The cue (red circle) tells the monkey which of the
two blue buttons it is to press after the delay, i.e. when the red go-signal comes on.
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Figures/ChGo98.f8b.ps

Figure 93: Firing rate of a population of neurons in prefrontal cortex in rhesus macaque
monkeys. Neurons fire persistently during the delay period while the stimulating cue is
off. The neurons stop firing when the monkey makes a saccade to the goal indicated
by the cue [5].

7.3.5 Associative Memory 27

We would like to store multiple patterns in a network.

Simplify the system and its dynamics yet further by considering a network of N McCulloch-
Pitts neurons [46]

• neurons are ON (v = +1) or OFF (v = −1)

• input: sum of weighted inputs

• step function F (x) = sgn(x)

• discrete time steps: iteration vi → v′
i

v′
i = sgn

(
∑

j

Mijvj

)

(57)

Figures/hyper_cube.eps

Figure 94: State space of a network consisting of 3 McCulloch-Pitts neurons.

Note:
27[27] Ch.2
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• the space of possible states are the corners of an N-dimensional hypercube

• the dynamics consists in hopping from one corner to another

Goal:

• find M such that given k patterns v̂(s), s = 1 . . . k, are stable fixed points of the
iteration (57)

Consider symmetric M, Mij = Mji, with vanishing diagonal28, Mii = 0,

Introduce the energy function

E = −1

2

∑

i

∑

j

Mijvivj

The energy is non-increasing under the iteration (57):
when some component vl changes to

v′
l = sgn

(
∑

j

Mijvj

)

≡ vl + ∆vl

the energy change is (using Mii = 0)

∆E = −∆vl

∑

j

Mljvj

Then

∆E = −sgn

(
∑

r

Mlrvr

)
∑

r

Mlrvr + vl

(
∑

r

Mlrvr

)

= −
∣
∣
∣
∣
∣

∑

r

Mlrvr

∣
∣
∣
∣
∣
+ vl
︸︷︷︸

=±1

∑

r

Mlrvr

Thus

∆E =

{
−2 |∑r Mlrvr| forsgn (

∑

r Mlrvr) = −sgn (vl) vl did change
0 for sgn (

∑

r Mlrvr) = sgn (vl) no change in vl

Moreover, E is bounded from below since vl = ±1

Note:

• for any such M and any initial conditions the dynamics always leads to a fixed
point

28Diagonal elements need not be chosen to vanish, but the performance is somewhat better that way
[27].
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• discrete motion in a discrete energy landscape

• no energy exists in general if M is not symmetric

How to choose the coupling matrix M to store k specific patterns, i.e. to have specific
patterns as stable fixed points?

Single pattern: Consider v̂ = (v̂1, . . . , v̂N),

sgn

(
∑

j

Mlj v̂j

)

= v̂i

Try

Mij =

{
αv̂iv̂j for i 6= j
0 for i = j

Then each term in the energy sum has the same sign for that pattern v̂ making the
energy extremal for that pattern

E(v̂) = −1

2

∑

i

∑

j

Mij v̂iv̂j = −1

2
α
∑

ij

v̂2
i v̂

2
j =
︸︷︷︸

Mii=0

−1

2
α
(
N2 − N

)

Consider the iteration (57)

∑

j

Mij v̂j = αv̂i

N∑

i6=j=1

v̂2
j = α (N − 1) v̂i

Choose α = 1/ (N − 1). Then v̂ is a fixed point of the iteration.

What happens if some of the components of the initial conditions ṽ do not agree with
v̂? E.g. ṽ agrees with v̂ only in the first m components,

ṽ = (v̂1, v̂2, . . . v̂m,−v̂m+1, . . . ,−v̂N)

Then29

∑

j

Mlj ṽj =
m∑

j=1

Mlj v̂j −
N∑

j=m+1

Mlj v̂j =
1

N
v̂l (m − (N − m)) =

1

N
(2m − N) v̂l

Thus, for m > N/2 the sign of this sum is the same as for v̂

⇒ ṽ is also mapped to v̂.

Notes:

• v̂ is an attractor
29Strictly speaking, since Mll = 0 one needs to distinguish between l ≤ m and l > m. But it makes

only a small difference. For l ≤ m one gets (N − 1)−1(2m − N − 1) whereas for l > m one gets
(N − 1)−1(2m − N + 1).
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• the mapping M first projects30 the vector v onto v̂ and then scales up the vector
again to full size.

• for initial conditions within the basin of attraction the iteration corrects incorrect
components of the initial condition

• initial conditions that contain too many ‘errors’ do not converge to the attractor,
they are outside the basin of attraction of this attractor and in the basin of attrac-
tion of another attractor

• following the work of John Hopfield [31] this type of associative memory has been
studied extensively from a computational perspective.

Thus:

• The network serves as associative memory (content-addressable memory):
the memorized state v̂ is retrieved (reached) even if it is only partially remem-
bered in the initial condition

Multiple patterns. Consider v̂(µ), 1 ≤ µ ≤ k, and try

Mij =
1

N

∑

µ

v̂
(µ)
i v̂

(µ)
j

Is each pattern indeed a fixed point of the iteration?
Start the iteration at one of the patterns v̂(ν)

∑

j

Mij v̂
(ν)
j =

1

N

∑

µ

v̂
(µ)
i

∑

j

v̂
(µ)
j v̂

(ν)
j = v̂

(ν)
i +

1

N

∑

µ6=ν

∑

j

v̂
(µ)
i v̂

(µ)
j v̂

(ν)
j

︸ ︷︷ ︸

cross-talk

Thus,

• analogous to the case of a single stored memory M first projects v onto the
subspace spanned by the patterns v̂(µ) and then scales the vector up again via
the nonlinearity

• if
1

N

∣
∣
∣
∣
∣

∑

µ6=ν

∑

v̂
(µ)
i v̂

(µ)
j v̂

(ν)
j

∣
∣
∣
∣
∣
< 1

the sign of
∑

j Mij v̂
(ν)
j is the same as that of v̂

(ν)
j

⇒ the pattern v̂(ν) is correctly retrieved.

30
M can be written as M = v̂v̂

t, with v̂
t being a row vector and v̂ as column vector.
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• again the iteration can complete the pattern if the initial condition v(init) differs not
too much from v̂(ν)

• because of the cross-talk the error tolerance is reduced

• expect that the cross-talk becomes more significant for larger numbers of stored
patterns
⇒ the network has only a finite capacity kmax for storing patterns, which depends
on the error rate accepted. For random patterns one can show

kmax ≈ 0.14 · N

• the network has often also ‘spurious memories’, i.e. attractors that do not corre-
spond to the k stored patterns

– because of symmetry vi → −vi inverted pattern is always also an attractor

– some mixtures of patterns like vi = ±v̂
(µ1)
i ± v̂(µ2) ± v̂

(µ3)
i are also attrac-

tors (mixtures composed of even number of patterns could add up to 0 and
cannot be in the state space.

• if the patterns to be stored are orthogonal to each other,
∑

j v̂
(µ)
j v̂

(ν)
j = δµν , the

cross-talk vanishes: no error in the iteration

– but: for k = N one has, using matrix notation (V)iµ ≡ v̂µ
i ,

cross-talk: VtV = I ⇒ Vt = V−1

weight matrix: VVt = VV−1 = I

thus the weight matrix is diagonal and the network preserves any input: no
memory at all.
i.e. since retrieval corresponds to projection onto the subspace spanned
by the stored patterns: N orthogonal vectors span the whole space → the
projection becomes the identity.

– for k < N the performance does improve if the patterns are orthogonal
often preprocessing is employed to make the patterns of interest more or-
thogonal

Note:

• If the network ‘learns’ one pattern at a time

M
(µ+1)
ij = M

(µ)
ij +

1

N
v̂

(µ+1)
i v̂

(µ+1)
j

the weight update resembles Hebb’s rule (‘neurons that fire together wire to-
gether’):
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– weight is strengthend if pre- and post-synaptic neuron are active

– weight is weakened if only one of them is active

– but:

∗ weight is also strengthened when neither neuron is active
∗ weight can be positive or negative: same synapse can switch from exci-

tatory to inhibitory or vice versa
∗ model can be modified to make it physiologically more reasonable

8 Statistical Approach

In particular in cortex

• variability of spiking (cf. Fig.55)

– deterministic variability or noise?

– relevant for function or ‘nuisance’?

• during short intervals only small number of spikes, which fluctuates strongly be-
tween trials
⇒ imprecise and unreliable transmission of information

• need to merge multiple sources/types of sensory inputs:
multi-sensory integration: how to weigh different sources of information

Gain insight into working of brain by considering illusions, i.e. situations in which the
brain seemingly ‘draws incorrect conclusions’

Examples:

• unreliable information: moving rhombi at low contrast
http://www.cs.huji.ac.il/~yweiss/Rhombus/

• merging information for disambiguation: Necker cube with additional information
http://www.cut-the-knot.org/Curriculum/Geometry/Necker.shtml

http://www.dogfeathers.com/java/necker.html

• barber pole illusion
http://www.psychologie.tu-dresden.de/i1/kaw/diverses%20Material/www.illusionworks

com/html/barber_pole.html

In particular at low contrast: imprecise information due to low spike rate:
interpret the spiking of the neuron as information about the probability of a certain
sensory input, say.
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Consider simple example: neuron sensing the position s of an object (prey, say)

Goal for the brain area that is reading that unreliable information:
What is the probability for the prey to be at a certain position s under the condition that
a certain neuron spikes during a brief time ∆t (r = 1/∆t),

P (s|r)

What information does the neuron provide directly?
the neuron has a tuning curve, i.e. r̄ = f(s)

Assuming a Poisson distribution for the spiking of the neuron as a function of its mean
firing rate r̄ one obtains for the probability of the neuron to spike during a brief intervat
∆t

P (r|s) =
1

1!
(r̄∆T )1 e−r̄∆t ≈ r̄∆t = f(s) ∆t

How do we convert between these two probabilities?

Consider joint probability

P (r, s) = P (r|s)P (s) = P (s|r)P (r)

Which implies Bayes’ Theorem31

P (s|r)
︸ ︷︷ ︸

Posterior

=
1

P (r)
P (r|s)
︸ ︷︷ ︸

Likelihood

P (s)
︸︷︷︸

Prior

Notes:

• Prior: probabiliy distribution of stimuli independent of whether the neuron spikes
or not
The prior reflects the knowledge (expectation) that the system (animal) has a
priori about its environment.
It may have learned the prior on different time scales

– under evolutionary control (long time scales)

– through previous input, e.g.

∗ memories stored from previous exposures
∗ previous spikes of the same neuron (affecting neural spiking via facilia-

tion and/or depression) e.g. ambient light

• Posterior: probability distribution of the stimulus incorporating the fact that the
neuron spiked
Best ‘guess’ for the position of the prey presumably at the maximum of the pos-
terior (MAP=maximum a posteriori estimate)

dP (s|r)
ds

∣
∣
∣
∣
smax

= 0

subsequent brain areas may use this best guess to base decisions on
31Thomas Bayes, mathematician and Presbyterian minister (1702-1761).
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• P (r) does not affect the dependence on the stimulus: we can usually ignore it

Examples:

i) Gaussian tuning curve f(s) ∝ e−(s−s0)2/2σ2

ii) Gaussian tuning curve with linear prior: e.g., prey is approaching from the right
⇒ shift in smax

iii) successive measurement by the same neuron: for interpretation of second spike
use the posteriori obtained from the first spike as prior ⇒ sharpening of distribution.

a)

Figures/bayes_tuning.eps

b)

Figures/bayes_two_spikes.eps

Figure 95: a) Posteriori for Gaussian tuning curve and linear prior. b) Flat initial prior,
posterior of first and second spike used as prior for second and third spike, respectively.

iv) two neurons:
if the spiking of the two neurons is given by two independent Poisson processes

P (s|r1, r2) =
1

P (r1, r2)
P (r1, r2|s)P (s) ≈ 1

P (r1, r2)
P (r1|s)P (r2|s)P (s)

a)

Figures/bayes_two_neurons_close.eps

b)

Figures/bayes_two_neurons_further.eps

Figure 96: Two neurons with Gaussian tuning curve and different preferred location. a)
equal widths. b) unequal widths.

When combining the information from two neurons, the peak is shifted towards the pre-
ferred location of neuron with narrower likelihood (which has more precise information).

Note:

• In the case of the Necker cube the likelihood for both configurations are exactly
the same as is the prior

– both configurations have also equal posteriors and the percept switches.

– integration of additional information necessary to disambiguate the percept.
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8.1 Bayes and the Cutaneous Rabbit

A tactile illusion:
stimulate mechanically the skin with brief pulses (2 ms) sequentially at two locations
(cf. Fig.97a)

Perception:
...There is a smooth progression of jumps up the arm, as if a tiny rabbit were hopping
from wrist to elbow...[22]

...In one experiment it was possible to induce a vivid hopping that traveled up one
arm, across the neck, and down the other arm by the use of five contacts, two widely
separated on each arm and one on the nape of the neck...[22]

The touch can even be perceived at locations that are anesthetized.

a)

Figures/Go07a.f1A.ps

b)

Figures/Go07a.f1B.ps

c)

Figures/Go07a.f1C.ps

Figure 97: Sketch of stimulation protocol (positions in cm, time in seconds). a) Rabbit
can be interpreted as length contraction. b) τ -effect: the more rapidly traversed of
two equal distances is perceived as shorter. c) Two-arm comparison τ -effect: different
lengths are perceived as the same if theu are traversed in different times [23]

Can these illusions be understood as arising from a rational model for the perception
of the brain?

Need a high-level model:
consider a Bayesian observer, i.e. model probabilities for response and percept:

• describe perceived trajectory as

x = b + mt

with perceived endpoints

x(0) = b x(∆t) = b + m∆t

• for simplicity consider two neurons with Gaussian receptive fields centered at the
true endpoints of the trajectory, x1 and x2, respectively,

fi(x) ∝ 1

σs
e−(x−xi)2/2σ2

s , i = 1, 2
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• Likelihood of the activation pattern D of these neurons if the trajectory was given
by x = b + mt and the time interval was ∆t, 32

P (D|m, b) ∝ 1

σs

e−(b−x1)2/2σ2
s

1

σs

e−(b+m∆t−x2)2/2σ2
s

the values m and b can be considered as hypotheses about the trajectory

• assume: eventual percept of the trajectory is given by the maximum (‘mode’)
of the probability for the trajectory given the stimulus-evoked neural activation
pattern D

P (m, b|D).

mmax and bmax would constitute the most likely hypotheses about the trajectory.
i.e. use maximum a posteriori (MAP) estimate.

• to obtain P (m, b|D) in terms of P (D|m, b) use Bayes’ theorem

P (m, b|D) ∝ P (D|m, b) P (m, b)

• we need a prior P (m, b):
assume:

– the initial point could be anywhere (flat prior for b)

– small velocities are more likely than large velocities

P (m, b) ∝ 1 · 1

σv
e−m2/2σ2

v

• combined

P (m, b|D) ∝ 1

σs
e−(b−x1)2/2σ2

s
1

σs
e−(b+m∆t−x2)2/2σ2

s · 1 · 1

σv
e−m2/2σ2

v

Figures/Go07a.f2B.ps

Figure 98: Probability distributions of the model in terms of initial position and velocity
(a) or initial and end position (b). Factual values inidicated by cross [23].

32naive Bayes: assume that the conditional probability of the response of the two sensory modalities
are independent of each other, i.e. can factorize the joint conditional probability. ‘noise of the two
modality is uncorrelated’
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If the brain operates using the MAP estimate then the perceived trajectory should cor-
respond to mmax and bmax that maximize P (m, b|D)

Determine maximum by minimizing exponent

∂

∂b
ln (P (m, b|D)) = − 1

σ2
s

((bmax − x1) + (bmax + mmax∆t − x2)) = 0

bmax =
1

2
(x1 + x2 − mmax∆t)

∂

∂m
ln (P (m, b|D)) = − 1

σ2
s

(bmax + mmax∆t − x2)∆t − 1

σ2
v

mmax = 0

bmax = − σ2
s

∆t σ2
v

mmax − mmax∆t + x2

yielding

mmax =
∆x

∆t

1

1 + 2
(λ∆t)2

and
bmax = x1 + ∆x

1

2 + (λ∆t)2

with
λ =

σv

σs

characterizing the reliability of the position information and the degree of bias towards
low velocities.

Maximum of posterior is at a smaller velocity

Consequently the perceived lengths is contracted (since times are kept fixed)

∆x′ ≡ mmax∆t = ∆x
1

1 + 2
(λ∆t)2

i.e.
∆x′

∆x
=

1

1 + 2
(λ∆t)2

The initial point is perceived as shifted towards the final point by

bmax − x1 = ∆x
1

2 + (λ∆t)2

This model has a single fit parameter λ:

• large λ: high spatial acuity and/or low expectation for slow motion
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• small λ: low spatial acuity and/or strong expectation for slow motion

a)

Figures/Go07a.f3A.ps

b)

Figures/Go07a.f3B.ps

Figure 99: a) Perceived length contraction as a function of duration of trajectory. True
distance between taps is 10cm, perceived distance is l′. b) Two-arm τ -effect: ratio of
lengths that yield the same perceived length as a function of the ratio of the durations
of the trajectories (∆t2 = 1s − ∆t1). Value for λ was fit separately for a) and b). [23]

Two-arm τ -effect: different lengths are perceived as equal if the durations are different

∆x′
1

∆x′
2

= 1 =

∆x1
1

1+ 2

(λ∆t1)2

∆x2
1

1+ 2

(λ∆t2)2

In the experiment a specific protocol was used (tmax = 1s)

∆t2 = tmax − ∆t1

Rewrite length ratio in terms of

ν =
∆t2
∆t1

to yield

∆x′
1

∆x′
2

=
1 + 2(1+ν)2

λ2t2max

1 + 2(1+ν)2

λ2t2maxν2

Notes:

• model provides coherent rationalization of
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– perception of length contraction

– τ -effect (dependence of perceived distance on time between stimuli)

– κ-effect (dependence of perceived time between stimuli on distance between
them)

• merges the expectation of slow movements with the observed imprecisely deter-
mined positions

• reasonable success suggests that

– the brain may be using such probabilities in the information processing

– the brain may be employing optimal merging of unreliable information in
Bayes fashion

• how could probabilities be encoded?
one can show that for Poisson-like spike statistics [61]

– neural populations can encode probabilities

– implementing Bayes’ theorem, which requires multiplying two probability dis-
tributions, can be achieved by adding the activities of the neurons encoding
the two distributions

• this gives a function to the high variability of cortical spiking activity

8.2 Integration of Multi-Sensory Information 33

• How should possibly conflicting information from different sensory inputs be com-
bined?

• How does the brain do it?

Experimental study of the integration of haptic and visual information

• visual information about the height of a bar via three-dimensional image:

– to modify the reliability of that information the images are corrupted by vari-
ous degrees of noise

• haptic (touch) information provided by simulated force feed-back

• the haptic and visual information disagree with each other by O(10%)

33following [16]
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a)

Figures/ErBa02.f2a.ps

b)

Figures/ErBa02.f2b.ps

Figure 100: a) Set-up: three-dimensional image of a bar and simulated force feed-back
from a bar of possibly different height. b) Stereoscopic image of bar without and with
noise [16].

Theoretical treatment:

Assume independent Gaussian likelihoods for the visual and the haptic information

Pv(rv|S) ∝ 1

σv

e
− (S−Sv)2

2σ2
v

Ph(rh|S) ∝ 1

σh
e
−

(S−Sh)2

2σ2
h

thus

Pvh(rv, rh|S) ∝ 1

σvσh
e
−

(S−Sv)2

2σ2
v e

−
(S−Sh)2

2σ2
h

Assume a constant prior
P (S) = P0

Posterior
Pvh(S|rv, rh) ∝ Pvh(rv, rh|S) P0

Note:

• Since the prior is constant:
maximum a posteriori estimate (MAP) is equivalent to a maximum likelihood es-
timate (MLE)

Rewrite in terms of a single Gaussian

(S − Sv)
2

σ2
v

+
(S − Sh)

2

σ2
h

=
1

σ2
vh

(S − Svh)
2 + c0

with
1

σ2
vh

=
1

σ2
v

+
1

σ2
h

⇔ σ2
vh =

σ2
vσ

2
h

σ2
v + σ2

h

(58)

Svh = wvSv + whSh with wv =
σ2

vh

σ2
v

wh =
σ2

vh

σ2
h

(59)

Note:
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• if the uncertainty in the two responses is not equal, the response of the input that
is less uncertain, i.e. with σ2 smaller, is to be weighted more.

To test whether humans use MLE in this context one needs to know Svh as well as Sv

and Sh and the associated uncertainties, σ2
v , σ2

h, and σ2
vh

Measure uncertainty via psychometric function:

• have subjects repeatedly compare the height of the test stimulus with that of
comparison stimuli, which have various heights

• psychometric function Ψ(S): relative frequency of the subjects ranking the com-
parison stimulus (variable height) to be higher than that of a test stimulus (height
55mm)

• point of subjective equality (PSE) = 50% level:

Ψ(SPSE) = 0.5

• discrimination threshold Tv,h: Ψ(SPSE + Tv,h) = 0.84

Figures/ErBa02.f1.ps

Figure 101: Sketch of the likelihoods (top) and of the psychometric function (bottom)
for two values of the ratio σ2

h/σ
2
v with fixed discrepancy ∆ between the visual and haptic

bar height. Top: solid line gives estimated height based on combined information.
Bottom: The psychometric function gives the fraction of trials in which the comparison
stimulus (variable height) is perceived as higher than the test stimulus (fixed average
height 1

2
(Sv + Sh) = 5.5cm) [16].

• the cumulative Gaussian (error function) gives a good fit of Ψ (Fig.102). For that
function one has

Tv,h = σv,h

this determines the individual σ2
h and σ2

v for the different noise levels in the visual
input.
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Figures/ErBa02.f3a.ps

Figure 102: Measured psychometric function for estimates based on haptic or visual
information alone (visual information corrupted by noise) [16]

Figures/ErBa02.f3b.ps

Figure 103: Noise dependence of the combined visual-haptic height estimate [16]

• the measured σ2
v,h give the theoretically optimal weights wv,h for the integration

wv =
σ2

vh

σ2
v

wh =
σ2

vh

σ2
h

• experimentally determined weights from (59) using wh = 1 − wv

wv =
Svh − Sh

Sv − Sh

• quite good agreement with the optimal weights (Fig.104)

Note:

• the weights must adjust within the 1 second of the presentation, since noise levels
vary random from one presentation to the next.
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Figures/ErBa02.f3c.ps

Figure 104: Measured and MLE-optimal weights entering the combined estimate as a
function of noise level [16]

• integration of visual and haptic information reduces the variance (58), which low-
ers the threshold for discrimination (Tvh = σvh)

Figures/ErBa02.f3d.ps

Figure 105: The threshold for combined visual-haptic height discrimination is lower
than each individual threshold [16].

Not quite class-appropriate example of an illusion arising from the merging of unreliable
auditory with precise, but incorrect visual information
http://www.youtube.com/watch?v=7-ZnPE3G_YY
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A Basic Concepts of Numerical Methods for Differen-
tial Equations

Consider differential equations of the type

dy

dt
= F(t,y) y(t = 0) = y0

In general y is a vector: coupled equations.

Note:

• all higher-order equations can be written as systems.
E.g.

d2y

dt2
= F (t, y,

dy

dt
)

can be written as
dy

dt
= v

dv

dt
= F (t, y, v)

For simplicity we consider scalar equations

dy

dt
= F (t, y)

For numerical approximation discretize time

yn ≡ y(tn)

We need then

For small time steps ∆t we can perform a Taylor expansion

yn+1 = y(tn + ∆t) =

= y(tn) + ∆t
dy

dt

∣
∣
∣
∣
tn

+
1

2
∆t2

d2y

dt2

∣
∣
∣
∣
tn

+ ...

We cannot keep all terms in the expansion: truncate

yn+1 = yn + ∆t F (tn, yn) + Elocal(∆t, tn) (60)

where the error Elocal(∆t, tn) contains all the omitted terms.

This is the forward Euler34 scheme.

Expect
Elocal(∆t, tn) = O(∆t2) = a(tn)∆t2 + b(tn)∆t3 + . . .

Note:
34Leonhard Euler (1707-1783)
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• in each time step the scheme makes an error O(∆t2): this is the local error

• to obtain y(tmax) = y(N∆t) we need to make N steps
in these N steps the error could accumulate to a global error

Eglobal =
N∑

n=1

Elocal(∆t, tn) ≈
N∑

n=1

a(tn)∆t2 ≈ Nā∆t2 = ātmax∆t

expect that the error decreases linearly when ∆t is increased.

• if Eglobal → 0 for ∆t → 0 a scheme is called convergent

• The Euler scheme is called a first-order accurate scheme.

• To obtain accurate solutions the Euler scheme requires very small ∆t: slow.
Higher-order schemes with Eglobal = O(∆tn) with n = 2, 3, 4, .. can be much more
efficient (faster) to obtain accurate solutions. Examples are Runge-Kutta, Crank-
Nicholson, predictor-corrector,... [49]

Example:
dy

dt
= λy

with exact solution
ỹ(t) = y(0)eλt

Note:

• for λ < 0 the solution decays to 0 for any initial condition

Euler scheme

yn+1 = yn + ∆t λyn = (1 + ∆tλ) yn = (1 + ∆tλ)2 yn−1 = . . .

i.e.
yn = (1 + ∆tλ)n y(0)

Does this solution decay for any ∆t if λ < 0?

|yn| = | (1 + ∆tλ)n | |y(0)| = | (1 + ∆tλ) |n |y(0)|

Thus: the solution decays only if |1 + ∆tλ| < 1,

−1 < 1 + ∆tλ < +1

For λ < 0 this is only the case if

∆t < ∆tmax ≡ 1

|λ|
The forward Euler scheme has a stability limit.

For ∆t > ∆tmax:
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• solution grows exponentially in magnitude with the number of time steps (al-
though exact solution decays to 0)

• in each time step the solution switches sign

• the scheme is unstable for these large time steps: the numerical solution has
nothing to do with the true solution of the differential equation.

Thus:

• the numerical solution of an equation can only be trusted if it converges as ∆t → 0
i.e. one has to solve the differential equation for sequentially smaller values of ∆t
and the solution is to change less and less as ∆t becomes smaller and smaller

Eglobal ∼ ∆tp p = 1 for Euler

ln Eglobal ∼ p ln ∆t

p is given by slope on log-log-plot. Always check whether the scheme obtains the
correct slope over at least a decade in ∆t

• unstable schemes typically generate solutions that oscillate with each time step
independent of the size of the step:
halfing the time step doubles the frequency of the oscillations

• any oscillation that corresponds to a true solution of the differential equation will
have a period that is

– independent of ∆t for small ∆t

– significantly larger than ∆t (to resolve an oscillation one needs on the order
of 10 time steps/period).

Choice of time step:

• accuracy: time step needs to be small enough to resolve fastest change in the
true solution

• stability: scheme needs to remain stable

Stiff problems:

• true solution evolves on a slow time scale: would allow large ∆t

• system has very rapid modes that decay and are not visible in the final solution:
requires small ∆t
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Example (see homework):

dy

dt
= λy + A sin ωt λ < 0 |λ| ≫ ω

after a rapid decay during a time 1/|λ| the solution evolves slowly with frequency ω.

In the Taylor formula expand around tn+1

yn = yn+1 − ∆t
dy

dt

∣
∣
∣
∣
tn+1

+ O(∆t2)

yielding the scheme
yn+1 = yn + ∆t F (yn+1, tn+1) (61)

This is the backward Euler scheme, which is also first-order accurate.

In our simple linear example we get:

yn+1 = yn + ∆tλ yn+1

which is easily solved for yn+1

yn+1 =
1

1 − ∆tλ
yn

Consider magnitude of the solution

|yn| =
1

|1 − ∆tλ|n |y(0)|

thus, |yn| → 0 with n → ∞ for arbitrarily large values ∆t if λ < 0.

The backward Euler scheme is unconditionally stable.

Note:

• of course, for very large ∆t the solution may not be very accurate, but no insta-
bility will arise.

• choice of time step purely based on the desired accuracy of the solution.

But:

• the scheme (61) is implicit :
the unknown yn+1 appears also on the right-hand side inside the function F (y, t)
the equation is an implicit equation for yn+1, which may be difficult to solve if
F (y, t) is nonlinear in y.

• implicit schemes typically require additional effort (e.g. Newton iteration method
for solving the nonlinear equation)

For more details about numerical schemes see, e.g. Numerical Recipes 35[49] or the
lecture notes for ESAM 346 Modeling and Computation in Science and Engineering36

.
35Numerical Recipes http: // www. nr. com
36ESAM 346 Modeling and Computation in Science and Engineering http://people.esam.

northwestern.edu/~riecke/Vorlesungen/346/Notes/notes.346.pdf
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B Linear Response Kernel using Functional Derivatives

In a more fancy fashion the optimal kernel describing the linear linear response of a
neuron can be derived using functional derivatives (cf. Sec.6.2.2).

E is a functional of D(τ)

E{D(τ)} =
1

T

∫ T

0

(

r0 +

∫ ∞

0

D(τ)s(t′ − τ)dτ − r(t′)

)2

dt′

For functions minima are characterized by a vanishing derivative. Analogously, minima
of functionals can be found elegantly by using the functional derivative. One can avoid
the explicit use of functional derivatives by converting the integral into a sum (see
Appendix 2.9A in [10])

At a minimum the functional derivative vanishes

δE{D(τ)}
δD(τ)

= 0

Basic property of functional derivatives

δD(τ)

δD(τ ′)
= δ(τ − τ ′) Dirac δ − function

In short, this is analogous to
∂x

∂x
= 1

∂y

∂x
= 0

or for a function that depends on the components vi of a vector one has

∂vi

∂vj

= δij

Using this basic property

δE{D(τ)}
δD(τ ′)

=
1

T

∫ T

0

δ

δD(τ ′)

(

r0 +

∫ ∞

0

D(τ)s(t′ − τ)dτ − r(t′)

)2

dt′

=
1

T

∫ T

0

{

2

(

r0 +

∫ ∞

0

D(τ)s(t′ − τ)dτ − r(t′)

)

·

·
∫ ∞

0








(
δ

δD(τ ′)
D(τ)

)

︸ ︷︷ ︸

δ(τ−τ ′)

s(t′ − τ)








dτ







dt′

=
2

T

∫ T

0

(

r0 +

∫ ∞

0

D(τ)s(t′ − τ)dτ − r(t′)

)

s(t′ − τ ′)dt′

!
︷︸︸︷
= 0 at a minimum
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NOTES:

• discuss also some of the networks stuff in Rolls&Treves (good for homework sim-
ulations and to get a feeling for these kind of networks)

• check out book by Trappenberg (Tr09)[58]

• look at book by Cox (GaCo10)[19]

• also Ermentrout and Terman [15]

• include also population coding: Fisher information etc.

• other simple spiking models in addition to Izhikevich (e.g. Gerstner: Badel 2008).
Put something like that in the homework? Fit things.

• LNP and GLM (i.e. LNP with feedback of spike history for refractory effects). cf.
Alonso paper DeJi10
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