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1 Chemotaxis

Chemotaxis has already been observed in the late 1800’s by Engelmann, Pfeffer, and
others.

L3

Figure 1: Aggregation of chemotactic bacteria in regions of high concentration of an at-
tractant (Pfeffer 1888 in (Tindall et al., 2008))

Chemotaxis plays an important role in many aspects of the life of organisms (Artemenko
et al., 2014)

e Cell migration plays an important role in development; it is partially guided by chemo-
taxis

e Trafficking immune cells to sites of inflammation; incorrect chemotaxis of leukocytes
contributes to chronic inflammation diseases like arthritis

e Cancer metastasis: tumor cells searching for blood vessels

1.1 Chemotaxis of Bacteria

Bacteria are much simpler than eukaryots (cells with nucleus). But understanding their
chemotaxis may give insight also into the chemosensation in higher animals.

Experiments by Adler

e bacteria (escherichia coli) placed at one end of tube filled with food (glucose, galac-
tose, amino acids)

e migrate into the tube
e two bands are formed

e the first band uses up all the oxygen and 20% of the galactose

6
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e the second band uses up the remaining galactose in some anaerobic process

¢ in two dimensions rings form and the bands stop when they collide
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Figure 2: a) Two traveling bands of migrating E. coli bacteria emerge when they are
placed in a tube with a chemoattractant at one end. b) Quantification of the bacteria
concentration. (Adler, 1966a)
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Figure 3: Motion of the two bands and quantification of their position as a function of time.
The second band propagates more slowly (Adler, 1966a). Note that the velocity of the
fronts is quite constant in time until they hit the end of the capillary.

Figure 4: E. coli bacteria deposited in the center of an agar plate swarm out forming rings,
which annihilate when they collide (Adler, 1966a).

What are individual bacteria doing in these bands and in chemical gradients?

¢ the ‘avoiding reaction’ was already observed by the end of the 19th century (Engel-
mann, Pfeffer, Rothert, Jennings, cf. Fig.1)

— when a bacterium enters a low concentration region it stops suddenly, ‘looks
disoriented’, and continues swimming in some new direction: the motion of the
bacterium consists of ‘runs’ and ‘tumbles’

— in some species that can swim forward and backward the bacteria reverse di-
rection if they enter a low-concentration region
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¢ by avoiding the low concentration regions the bacteria eventually accumulate in the
regions with higher concentration

— there are also species that avoid high concentrations and accumulate at low
concentrations

— extremely high concentrations are often avoided as well.

Figure 5: E. coli swimming. a) During swimming all three flagella are interwined when
they are rotating counter-clockwise (CCW). b) When the flagella rotate clockwise (CW),
they become disordered and the bacterium tumbles. Dashed line indicates body of the
bacterium, which was not marked. For video see Canvas or the online version of the
paper (Mears et al., 2014)

Note:

e Since in biology many aspects (genetics, metabolism) are conserved across very
different species and chemosensation is a very old sense, Adler proposes that the
nervous system and the behavior of higher organisms may have evolved from chem-
ical reactions operating in the ‘most primitive living things’ (Adler, 1966a).

Modeling questions:

e What long-time dynamics results from run-and-tumble? How to describe the dynam-
ics of a population of such bacteria?

e What are limits for the sensing capabilities of very small organisms like bacteria?
e How can a bacterium sense a chemical gradient

— the observation of run-and-tumble suggests that it may not need to sense the
gradient itself; sensing the concentration as such may be enough, if its motion
takes it to locations with different concentrations, which it then compares.

9
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— but: does it tumble all the time when the overall concentration is low and run all
the time when the concentration is high? How does it then effectively compare
two different high concentrations or two low concentrations?

10
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1.2 Modeling Chemotactic Motion °

Based on the run-and-tumble observation, Keller and Segel developed a continuum model
for the concentration of a population of bacteria.

Bacteria move by propelling themselves forward with flagella; depending on species, the
flagella pull or push the bacterium.

Assume

e during a run the bacterium moves a fixed distance

e between runs the bacteria tumble, i.e. the new direction of motion after the tumbling
is not correlated with the direction before the tumbling

e the average frequency of runs depends on the concentration at the leading edge of
the bacterium (could instead also use the trailing edge), i.e. the receptor sensing the
chemical is at the leading (or trailing) end

e the concentration does not change a lot over distances corresponding to a single
run.

oA
P
— « )
> >
| 4 -
S-A S SiA

Figure 6: Bacteria of size oA with sensors at their leading edge running a distance A.

For simplicity, consider only motion in 1 dimension

e during each run a bacterium moves a distance +A

e because of the tumbles the probability for motion to the right is equal to that to the
left

5(Keller and Segel, 1971a)
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e the bacterium has an effective size of oA, i.e. the sensors of right- and left-moving
bacteria at a given location are a distance oA apart.

We want an equation for the evolution of the density of bacteria b(x).

Consider the flux J(z) through the location = during a short time interval A¢. This time
interval could be the typical time between tumbles and in each time step half of the popu-
lation would be oriented to the left and half to the right. The flux is considered positive if
the motion is to the right.

e if the average frequency of a run is f then the probability of a run for a given bac-
terium during the time interval At is given by fAt. The fraction of the population
doing a run is then fAt.

e all bacteria at a location s within [z — A, z| that move to the right will pass the location
x during this step; their frequency depends on the concentration at s + %aA, where
s is their location within that interal.

e all bacteria at a location s within [z, z + A] that move to the left will pass the location
x during this step; their frequency depends on the concentration at s — %ozA.

The total number of bacteria passing through the point = during the time interval At is then

J(2)At = / 1 f <c(5 + %M)) Atb(s)ds — / " (c(s - %ozA)) Atb(s) ds

Since the run size A is small compared to the lengths over which the concentrations
changes, we can expand in A

/ ;f<c(s+%aﬁ)) b(s) ds = / ; Flels)) + 1 (6(s) () 500 +O(A?) b b(s) ds

-~

F(e(@))e (z) zaA+0(A?)

where f'(c) = Y9 and ¢/(z) = 2. Expand also

fle(s) = flel@)+ (s —a)f (c(a))d(x) + O ((s — 2)?)
b(s) = b(x)+ (s—a)(z)+ O ((s —2)°)

Then
; fe(s))b(s)ds = ; fe(@) b(x) + (s — 2) [f'(c(2))d (2)b(z) + f(c(z))V ()] + O ((s — x)?) ds
= f(c(x))b(x) A+ [f'(c(x))d (2)b(x) + f(c(x)V (2)] % (s —2)°|,_,+O (A%
1 A2

12
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Analogously

z+A z+A
/ﬁ f(ds—%aA{)b@ﬁk::/ﬁ f@@»-f”@@»cxg%aA«+ou9) b(s) ds

f(c(@))e (2) 3ad+0(A2)

with

[ reenusds = [T ew)bla) + (s = ) (el @bla) + SV ) + O (s - ) ds

= F(el)) bw) A+ [ (ela))e (@) + Flela) ()] 5 (s — a7
§a2
Combined
Jx) = = [f (el@) ¢ (@)b(a) + [(e(x) ()] A + ' (e(a)) ¢ (x)alb(x) + O (A7)
= —{f'(c(@)) d(@)b(x) (1 = @) + f(c(x))V ()} A°
db dc
BETRRAT
with

ple) = fle)A?
x(e) = (a=1)f(A* = (a—1) 4 (c)

To get an evolution equation for the density we use conservation of bacteria in a little
'volume’ [x — dz, z + dz] around x

ob o 0J 5
dea =J(x—dz)— J(z+dx) = —Qa—xd:c + O(dx*)
Thus 0b 0 b 0
c
% o (—u% + Xb%> (1)
Notes:

e 1 is called the motility coefficient. It is always positive.

e With f(c) being the average frequency of steps, At = ﬁ is the average time betwen

steps
AQ
S
Thus, if f is independent of concentration we get
o _
ot~ Moa?

13
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i.e., the bacteria move in a diffusive manner: they perform a random walk (Adler and
Dahl, 1967).
Consider random steps with equal probability =A

(z) = <2Ai> =D (A} =0

=1

o ((E) o)) ) e e

i=1 j=1 uncorrelated =!

If each step takes a time At, the motility (diffusion) coefficient x is the increase in the
variance of the position per time step.

e Y is called the chemotactic coefficient.

The chemotactic coefficient can have either sign

x=20 bacteria move towards higher/lower values of the concentration

It depends on f’(¢) and on «.

e o = 0: the bacterium is extremely small y = —p/ = — f’A?
x > 0 if the average frequency of steps f decreases with concentration, i.e. the bac-
teria are less likely to leave the higher concentration than the lower concentration.
This is the run-and-tumble situation, in which the bacteria do not measure instanta-
neous concentration differences.

e a < 1: the sign of x is opposite to that of f’ (as in the case of a = 0)
consider the bacteria at the mean position in the left interval

(oo 3 bas)) 1 (oo Lo )

For a < 1 the frequency for motion to the right depends on the concentration to the
left of x and the frequency for motion to the left on the concentration to the right of «
— for the bacteria to move predominantly to the right if the concentration is higher
there, one needs f’(c) < 0 to have them be more likely to do a run on the left than
on the right.

e « > 1: the runs are shorter than the size of the bacteria: to get x > 0 one needs now

(c) > 0.

14
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Simple Explicit Model

Bacteria are small and their sensors are even smaller: they can only measure the concen-
tration in a very small volume, which contains only few molecules of the sensed chemical
= the measured concentrations ¢ fluctuate strongly. But the bacterium has to base its
motion on these fluctuating values. Consider a simple stochastic model.

Assume that f(£) has only two values

k for& > Q
f(@:{ K(1—F) foré<Q

with k& < 1.

For k£ > 0 the frequency increases with increasing concentration = expect xy > 0 only for
a > 1.

For ¢ = (£) the average number of steps taken is then

flo)=k{1-PE>Q) +(1-kPE<Q)}=k{1-kPE<Q)}.
With the probability distribution of £ given by F'(¢; ¢) we have then

1= A2f(e) _A%{1—/5/OQF(§;C)d§}

Limiting cases can be recognized already for any reasonable distribution F'(¢; ¢)

¢ — 0: almost always ¢ < @ B
p— A%k (1—k)
¢ — oo: almost never £ < Q)
w— A%k

Note:
e If k > 0, the motility is larger for large concentrations than for low concentrations.

Assume a Poisson distribution® with mean N for the number N of molecules in the mea-
surement volume V, i.e. at any given time there is a fixed probability that a molecule

60ne could also take a binomial distribution with p the probability for the molecules to be in the measure-
ment volume. In the limit p < 1 with the mean number N = pN of molecules inside V fixed (i.e. for very
large total number A of molecules) the binomial distribution becomes a Poisson distribution.

P(N:N) = </]\V/ >pN(1_p)NN _

o (v) (%) - o
- ]\1”N(N—1).NZ(VN—N+1)NN(1_N> <1—N>

—1

I =N -~
ﬁN (& .

15
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arrives (and then leaves) in V. The arrival times of different molecules are thus assumed
to be independent of each other.

Transforming from ¢ to N

/F(g; c)dé = /P(N; N)dN — > P(N;N)

N*
- 1
#:A2k3{1—]€ E m(CV)NG_CV}
N=0" "

with N* = QV. For x we need p/(c)

N* N*
- 1 _ . 1 .
@) = —A%k ZmN(CV)N Ve V+ZM(CV)N(—V)6 v
N=1% ~~ < N=0 ~ 4
ﬁCNAVN — Ny N+
N1y N
_ 2.7, —cV Ny/N+1 Ny /N+1
N=0 N=0
_ 1 .
_ 2 —V_ = N
= A%kke N*!V(CV)

For large enough N* approximate the factorial with Stirling’s formula

1 1 L N\
lnN!%NlnN—N—I—éln(QﬂN) = N!'~ N¥e™¥ (27N)z = (2nN)? (—)

Together this yields
- 1 VeV
~(a— 1) A’kEV —— e ( )
xRl DAV s T\
Thus

x —0 forc— 0
x —0 forc — oo
Maximal chemotaxis obtained for

d * 1 *
0= — (e_CVcN ) = (—V + N*—) N eV = c=
de c

Notes:

e For large and for small concentrations this model yields very poor chemotaxis.
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e Optimal sensitivity is obtained for concentrations close to the threshold @ for switch-
ing.

e Expect quite generally that the motility reaches a plateau for large concentration =
chemotaxis will be weak at high concentrations in any system for which x o 1.

e The functionality could be increased if the threshold ) depended on the overall con-
centration in recent history, i.e. if the system adapted to the current environment.

This model:

e the chemotactic coefficient is proportional to the concentration-dependence of the
motility

dp

de’

¢ the step size is fixed and only the frequency depends on the concentration.

X X

Keller and Segel also investigate a model in which the frequency is fixed, but the step size
depends on concentration. Then one gets a different chemotactic coefficient, but it still
satisfies (cf. Homework problem)

dp
In terms of the biochemical mechanism controling the motion these two systems are most
likely very different, but they still lead to similar results.

However, when both, the step size and the frequency, depend on concentration, y is not
proportional to p/ any more; an additional cross-term arises (essentially a straightforward
extension of the homework problem).

= experimental comparisons of ; and y would be able to provide insight into the mecha-
nism.
1.3 Modeling Wave Propagation’

Having a model for the chemotactic motion of a population of bacteria, how can the for-
mation of propagating bands in Adler’s experiments be understood?

Key element:

e The bacteria consume food (glucose, galactose, amino acids) and in the aerobic
case also oxygen.

Note:

¢ In general chemotaxis is not based on a metabolic signal, the signaling molecules
are not used metabolically (i.e. they are not ‘eaten’).

"(Keller and Segel, 1971b)

17
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Figure 7: As the bacterial wave propagates they consume oxygen and galactose (Adler,
1966a)

Extend the equation for the chemotactic motion

e introduce an equation for the food s (‘substrate’)

e assume the substrate itself provides the information for the chemotaxis

0 0 ob 0 Js

& = g - o o] @
Os _ —K(s)b+D—828 (3)
ot ox?

Notes:

e The size of the bacteria population is constant:
the equation has the form
o _ 2
ot Ox
therefore
d

o | bdw = /de = Jlboundaries

For no-flux conditions no bacteria leave or enter the domain.

e Food consumption:

— For low food concentrations the decay should be proportional to s since the
chance of a bacterium to find the food molecules would be proportional to their
density and the decay of s would be exponential.

18
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— For high food concentrations the food consumption could be limited by the ability
of the bacteria to absorb or metabolize it and K could go to a constant,

K(s) =k

which would lead to a linear decay (for constant b).

T T T T T

® ®
ALANINE+N2

% REMAINING

SERINE \\ SERINE

2
HOURS

Figure 8: The experiments show linear rather than exponential decrease in food concen-
tration (Adler, 1966b).

e Motility: in the absence of reliable data (when that paper was written), it is reasonable
to assume that the motility of the bacteria is constant,

W = const.

While the dependence of the run frequency on the concentration is key for chemo-
tactic response, the dependence of the diffusion coefficient on the concentration may
amount to a higher-order effect.

Substrate diffusion: the motility is significantly larger than diffusion coefficients for
typical substrates = for simplicity set

D=0

Chemotactic coefficient: in the simple model discussed in Sec.1.2 assuming con-
stant motility © would imply x = 0. When step size and step frequency are both
concentration dependent, other relations between . and y are possible. Consider
such a more general case.
Assuming

x(z) oc s

Keller and Segel show that within the model (2,3) with such a simple dependence
on s no steadily propagating waves can be found unless o < —1, i.e. x becomes

19
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singular for small s.
They argue that the chemotactic flux

105
s 0x

would then be consistent with the Weber-Fechner law of psychophysics, which ex-
presses the observation that in many situations the sensation of a stimulus depends
on the relative rather than the absolute change in that stimulus.

Therefore they assume

X(s) = (5%.

In general, (2,3) need boundary conditions at both ends of the system (i.e. the tube). For
closed ends these conditions would be Neumann conditions at both sides

9s _,_ b
oxr Ox
The tube is thin, i.e. its aspect ratio is large =

e consider the tube to be infinitely long

e we can assume that the bands are propagating with a constant speed (cf. Fig.3).
Traveling-wave ansatz
b(x,t) =b(§) s(z,t) = s(§) with & =2 —ct

with the yet unknown wave speed c. Then (2,3) become, using also the simplification
D=0,

db d?b d 1. ds
% = Vg i "V @
—cj—z — (5)

Now the differential equation in s is only first order and we can only apply a single boundary
condition for s. The equation for b is still second order and needs 2 boundary conditions.
Where and what?

As the wave propagates the bacteria eat the food and the state behind the wave depends
on the wave and cannot be imposed from outside. In contrast, the conditions ahead of the
bands can be imposed:

e Ahead of the front the food concentration is still the initial concentration,
S = Seo for & — +o0 (6)

e Ahead of the front there are no bacteria and therefore also their gradient vanishes,

b—0 @—>0 for & — 4o0. (7)

dg
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In (4) b and s have the same highest derivative = possibly there is an algebraic connection
between them. In contrast, solving first (5) would lead to the antiderivative of b. Therefore
consider first (4). It can be integrated once directly

db ds

1
+6-h4C

b= TS

Using the boundary condition (7) yields C' = 0,

db 1 d
— + — c—é—lns)b:O
ds " p ( ds
eﬁﬁ—%lnsb == C()
c s
b= Coe (s (£)) (8)
Inserted into (5) for s we get

ds k —cg s

& —Coe » (&)»

d—f = ECoﬁe_ﬁg + Cl

Sk c c

17
1(5 s
I=u

Tl

©

n—0o

5 = L@ (11— 6) Coe™ n® + C*l}
What about Cy? It defines the origin of ¢
Coe # = w68 with  Cp = en®
Using the boundary condition (6)

K I
(6 = |5 -0 F |

We can now insert s(£) into the expression (8) to get b(&).
It looks as if s could diverge for ¢ — —o0. If the exponential dominates we have for > o
s(§) ~ ((3755)ﬁ —e 5t 500 for £ — —o.
For s to be bounded, we therefore need
d > p.

In that case
s(§) — 0 for £ — —o0

59

b(E) ~en <efﬁ£>ﬁ = e @9t 0 for & — —o0.
Thus, within the model, as the band propagates into the fresh medium
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e the bacteria consume all of the food

e no bacteria are ‘left behind’.

Now we have a solution, but still do not know the wave speed c. How do we get that?
What information have we not used yet?

We have used the initial substrate concentration. However, the total size of the bacteria

population, which is constant in time, has not entered the equations yet. Integate (5) over
the whole domain,

/ bdr = Z (s(+00) — s(—0)) = 75

o0

This equation determines the wave speed c.
Notes:

e The model therefore predicts that the wave speed grows (linearly) with the total pop-
ulation size and decreases with the concentration of the food. Not clear whether
these predictions have been tested.

e To check whether ignoring the diffusion of s is justified we need to look at D%/kb.
From the solutions one can show with some algebra that this ratio is proportional to
D/u, i.e. it can be ignored if the diffusion is weak compared to the motility.

The model captures the traveling bands if x(s) o s~!. How does this compare with exper-
iments? The flux of bacteria is given by

ob 0s ob 0
= —u—+5>b — = —u—+b—1
J(z) 'u(%s + X(s)ﬁx ”83: + Ox e

Subsequent experiments with well-controled profiles s(z) show
e For a linear concentration profile the bacteria pile up on the ramp = the flux of

bacteria is not z-independent
= x must depend on s

e For an exponential concentration profile the bacterial flux is quite close to z-independent:
the pile-up occurs at the end of the ramp.

= T
T i
e =
é 300 é g é S
£ = E_4 R0ET
£20 g2 8L 3 B=
8 g c E- £S
g S S . og
8 8 S ~ 1.0
S 3 — B O —
s 10 § £ £
‘= S Q L =
2 © k3t 1 - $
2 8 < S
3 0 I /’/ L Il n [§ m 1 1 1 , ‘——>————l__~—_~__-_j___—

9 18 27 36 ! 0 5 10 15 20 25 30

Distance (mm) Distance (mm)

Figure 9: a) For a linear profile of s(x) the bacteria pile up on the ramp. b) For an expo-

nential profile the bacteria concentration is quite constant on the ramp. (Dahlquis et al.,
1972)
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e The accumulation at the end of the ramp grows linearly in time, giving a measure of
the flux along the ramp.

e The flux depends on the overall concentration (as measured by the plateau concen-
tration) = dependence of x(s) on s is modulated in addition by s.

Plateau concentration (M)

10F
['s]
1
o
»
§
3
1 ask
<
o
(]
g
[++]
07 L L H |3 |2 |I
L L ‘ : 107 106 1005 04 103 102 0"
% = - =3 -
10 10 10 10 10 GEOMETRIC MEAN MOLARITY

Figure 10: a) The flux along the exponential ramp depends on the overall concentration
(Dahlquis et al., 1972). b) For fixed concentration ratio (inside vs outside of capillary)
the accumulation of bacteria in the capillary is maximal at intermediate concentrations
(Mesibov et al., 1973).

Lapidus and Schiller (Lapidus and Schiller, 1976) introduce a sensitivity function instead

of o 0 k 0 k
g0 =bé i 57— Ins §=10 i 5
oxrs+k (s+ k) ox (s + k)

and compare with the experiments in (Dahlquis et al., 1972).

J =06

(9)

30—
EXPONENTIAL GRADIENT
t—~o

28 1260 min

1= 30 min

o2} 20

§ %
ol |- 10 \
h ) \
ol b v vl gl b [ 1
oot ol 10 0 -0 -5 o s 0 (L]
s/k x {mm)

Figure 11: a) Sensitivity function ¢ of (9). b) Simulations with exponential gradients. During
early times (up t = 10min) the concentration is quite constant on the exponential ramp
(Lapidus and Schiller, 1976).
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Figure 12: a) Linear growth of the accumulation in the simulation of (Lapidus and Schiller,
1976). b) Dependence of the simulated flux on the concentration in the exponential ramp
configuration agrees qualitatively with experiments (solid circles) (Lapidus and Schiller,
1976).

1.4 Sensing the Chemoattractant®

How does the bacterium know which way to go? It seems that it needs to measure spatial
concentration gradients. How well can it measure concentrations in the first place? To
measure concentrations one has to count the number of molecules at the sensor. That
number fluctuates. What kind of limits does this set (Berg and Purcell, 1977)?

Consider a chemosensor that counts the number of molecules n in a small volume of size
a®. On average, that will be

(n) = ca®.
At any given moment in time the number of molecules is likely to deviate from (n), the
measurement is noisy. We expect the standard deviation ¢ in the measurements to be of

order \/(n). Why?

Consider the small measurement volume to be part of a large volume V' that contains
N molecules of the chemoattractant. Assume that at any given time each molecule has
equal probability

a3

pP=
v
to be in the measurement volume. If these molecules are independent of each other, then
the probability to have exactly n molecules in the measurement volume is given by the
binomial distribution

P(n;N)z(jr\Z)p”qN" with ¢=1-—p.

8worthwhile video by H. Berg: hitps://www.youtube.com/watch?v=ioA1yulA-t8
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Then

N N
B NN onn 0 NN . now O R
W‘Z”(n)w] =p=— ( )pq —p—ap(erq) =pN =7 cV =ca

n=0

as expected.
The variance is then given by

= pNp+ " '+ Np*(n—1)(p+ @)V = (pN)* =
= pN —p’N = Npq

The relative error in the measurement of the concentration is therefore

bc o _Npg_ 1 _ I S
T N ViGN TV S T Ve

adkV g—1

For small measurement volumes the relative error is therefore quite large.
To improve the measurement, the bacterium could measure K times.

Central Limit Theorem:
If {z1,29,..., 2k} are K independent and identically distributed random variables drawn
from a distribution with expected value 1 and finite variance o2, then

1 & ,9\ o?

i.e. the sample means converge to x and they are normally distributed with a variance "—N2

But: the molecules enter and leave the measurement volume by local diffusion = it takes
some time for the number of molecules in a3 to change. The distributions will be correlated
for some correlation time 7. . By dimensional analysis we expect

_ @
Te = D
with D being the diffusion coefficient.

If the bacterium averages the measurements over a time 7,,,, it can only take K = ™
independent measurements

dc 1 1

7. 1 1
C g VE V@ N Tag Vedd  /Dacta,
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To resolve a relative concentration difference ‘% the bacteria has to measure for a duration
of

1 ( c )2
Tos = Dae\oe) -
Could a bacterium sense the concentration difference across its body reliably within a

reasonable time?°® Consider the experiment of Fig.10, which uses concentration gradients
that are well above the sensitivity of the bacterium.

e Absolute concentrations in (Dahlquis et al., 1972) for which the bacteria still reliably
perform chemotaxis are as low as 10-°M

1 1
=6-10"—

—6 —6 23
~Y Y . 1
C 10~°Mol 10 X 6 0 103 3 3

e Size of the bacterium
a~ luym =10"*cm

e Diffusion of the chemoattractant

Of5cm2
S

D~1

¢ Relative concentration difference across the bacterium (in the experiment of Dahlquis
et al. (1972) the concentration goes from essentially 0 to its full value in about 1cm)
oc 1ldc 1

—=-—a~—10"*cm=10"*
c cdx cm

To resolve such a gradient at this low concentration the bacterium would have to measure
for a duration of

1 2 scm?

~ 4 ~ 1 3 ~ i
Tavg 10-510—46 - 1014 ( ) cmZem 0”s ~ 20 minutes

This time is way too long; the bacterium needs to decide faster than that to ever get to
its food. Only at the optimal concentration of 10~3M (Fig.10) the bacterium could get a
sufficiently accurate measurement within 1 second.

To increase the precision or reduce the sampling time for a given concentration the bac-
terium can

e increase the receptor size
limited by the size of the bacterium

e increase the diffusion coefficient
the bacterium cannot really change the diffusion coefficient. One could imagine that
it could stir up the fluid and enhance the exchange that way.

Thus

9Web site to find numbers relevant in biology: http://bionumbers.hms.harvard.edu/default.aspx
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e The method that bacteria use for chemotaxis cannot rely on spatial gradients across
their body.

¢ This limitation reflects the discrete nature of the chemoattractant molecules and the
small size of the bacterium, which limits the receptor size as well as the distance
across which differences would have to be measured. Improving the sensor quality
will not overcome this limitation.

To be exposed to larger difference in concentration the bacteria can swim around:

e with a swimming velocity of 10 — 20um/s they can cover 10 — 20um within 1 second,
which increases the concentration difference by a factor of 10-20. Even for the very
low concentration of 107°M the required time for averaging is then of the order

Tavg/10% .. Tag /20> ~2...108

which is closer to a reasonable range.

So, what do bacteria do?

AW405
Wild type
29.5s

. CheC497

howiieoin Nonchemotactic mutant
; o 12s

26 runs - i Tk 1 run

Mean speed 21.2 um/s e - Mean speed 31.3 um/s

— LA ——t
S0pm 50pm

Figure 13: Three-dimensional trajectories of E. coli bacteria in a homogeneous solution.
a) Chemotactic wildtype. b) Non-chemotactic mutant (Berg and Brown, 1972).

Even for spatially homogeneous concentrations of the chemoattractant the chemotatic
bacteria perform run-and-tumble motion with the direction of the runs changing randomly
during the tumbles. The non-chemotactic mutants tumble only very rarely and perform
mostly runs.

The durations of the runs and of the tumbles are exponentially distributed, i.e. they follow
a Poisson statistics, implying that at any given time during the run (tumble) there is a finite
probability that the run (tumble) stops.
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of runs of a given length

Fraction of twiddles or twice fraction

o,
o~

o
*~s

i

greater than a given length

Fraction of twiddles or runs of length

0.001r

) : J - | A
0 1 2 3 4
Twiddle length or run length(s)

.
5

Figure 14: Runs and tumbles satisfy Poisson statistics. The plot on the bottom shows the
data from the graph on the top on a logarithmic scale. Cumulative distribution for tumbles
(curve a) and runs (curve b) that are longer than the indicated duration (Berg and Brown,
1972).

In the presence of gradients (Berg and Brown, 1972)

e the mean duration of runs down the gradient is unchanged compared to that in ho-
mogeneous concentrations

e the mean duration of runs up the gradient is twice as as long
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Table 3 Analysis of Runs which Move the Bacteria Up the Gradient

or Down the Gradient

Attractant

Mean concentration
(M)

Mean run length (s)

Mean run length
expected from the
control run length,
(Table 2) and the
concentration

dependence (Fig. 5) (s) 1.48

Serine
Net displacement of runs  Up

10.0+2.8
2.19+3.43 1.40+1.88 1.07+1.80 0.80+1.38

Aspartate Aspartate

Up Down

8.8+1.9 8.1+1.9

0.82 0.82

Figure 15: Run durations. a) Dependence on the concentration of the spatially homoge-
neous solution (scaled by the run length without chemoattractant). b) Cumulative distribu-
tions of run lengths in serine (top) and aspartate (bottom) experiments (a=control, b=down
the gradient, c=up the gradient). ¢) Quantitative comparison (Berg and Brown, 1972).

How do the runs and tumbles come about?

The bacteria are propelled by a bundle of flagella at one of the body that are rotated by a

molecular motor (cf. Fig.5).

e Counter-clockwise rotation:

— the flagella in the bundle align with each other and rotate together = strong

propelling force forward = run

— attractants induce CCW rotation (Larsen et al., 1974)

e Clockwise rotation:
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— the flagella become disorganized and the bacterium performs random rotation
= tumble.

— repellents induce CW rotation (Larsen et al., 1974)
Notes:

e With the run lengths being on the order of a few seconds the bacteria are operating
quite close to the limit imposed by the fluctuations in the concentration.

e The run lengths are also limited by the fact that the bacteria cannot swim perfectly
straight; their orientation fluctuates leading to rotational diffusion. Thus, after some
time the run may not go in the direction of increasing concentration any more. Then
the bacteria need to measure again.

e How can the motor so sensitively be switched between different directions of rota-
tion?

If the bacterium measures and compares concentrations by moving about, does it actually

compare concentrations in time?

Response to spatially homogeneous, temporally varying concentrations of an attractant
(Macnab and Koshland, 1972):

e Sudden strong increase = transient increase in runs. The velocities relax back to
the control within few minutes.

e Sudden strong decrease = transient increase in tumbles. The velocities relax back
to the control values after ~ 10s.

Figure 16: Trajectories of S. typhimurium after sudden large, spatially homogeneous
changes in the concentration of an attractant. a) A temporal increase in concentration
leads to more long runs. b) Constant concentration control. ¢) A decrease leads to in-
creased tumbling. (Macnab and Koshland, 1972)

More refined experiments with small, well-controled temporal gradients show (Brown and
Berg, 1974)

e for increasing concentrations
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— the mean length of runs depends on Z—f and ¢

— With the large jumps in (Macnab and Koshland, 1972) the transients could last
minutes, suggesting a long memory. The experiments with small changes sug-
gest the memory must be less than 100s (Brown and Berg, 1974).

e for decreasing concentrations there is little effect on the run length

3.0}
i a b
. I
O L
(4]
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R
‘o
el
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-1.0t :
2.0}
O 200 400 600 O 200 400

t{sec)

Figure 17: Dependence of mean run length on temporal gradient in the concentration.
a) The temporal gradient of glutamate was produced by an enzymatic reaction C(t) =

C. (1 — e—t/T). Thus, the rate of change decreased exponentially with time. b) No temporal
gradient (no enzyme included) (Brown and Berg, 1974).

Aspects of the dependence can be understood in terms of a chemoreceptor protein P that
binds with the chemoattractant C' to form a complex PC (Mesibov et al., 1973)

k1
P+C = PC
~~
ko
d[P]
dt
If the reactions are fast compared to rate of change of the concentration one gets
[PI[C] _ ko

G L e
PC] k"

= —ky[P][C] + ko[ PC]

The total amount of the protein [P,,], i.e. the sum of the protein bound in [PC| and the
unbound protein [P], is constant,

[P] = [Ptot] - [PC],
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yielding
o (Pul—IPepic] _ (1~ 1) €]
LG
and
[PC] [C]

[Pi]  Kp+[C]
The temporal gradient in [PC] is then

i Kp dO)
& ey

Brown and Berg find the best and very good fit of their run length data for

(In7) =Inm + a@, for

dc]

> 0.
dt

Is this response to temporal gradients compatible with models that assume the response
depends on spatial gradients?

If the bacteria swim in a fixed spatial concentration gradient with fixed speed, the spatial
gradients translate into temporal gradients

diC] _ d[C]
de — dt
The motor of the bacteria seems to have only two states: running and tumbling = the

swimming speed is presumably quite fixed during a run, making such a substitution a
reasonable approximation. The sensitivity of the chemotaxis should then depend on

d o Kp  d[C] Kp[C] (1dwg' 10

" Epr O dr (K + (0] \IO
In the experiments of Mesibov, Ordal, and Adler (Mesibov et al., 1973) (cf. Fig.10) on the
accumulation of bacteria in the capillary the concentration ratio between the solution and
the pipette was held constant as the overall concentration was changed, i.e. [—é]% was
held fixed. The resulting accumulation of bacteria is quite consistent with (10). Compare
also (10) with the sensitivity function (9) introduced by Lapidus and Schiller (Lapidus and

Schiller, 1976).
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Glutamate Concentration (M)

Figure 18: Sensitivity: dependence of the chemotactic accumulation of bacteria in the
capillary on the concentration (cf. Fig.10). For all glutamate concentrations the initial
concentration in the capillary was 3.16 times larger than in the suspension. The curve is
afitto Kp[C]/(Kp + [C])?. (Brown and Berg, 1974).

In fact, Segel considered a model in which the switching of directions depends on the rate
of change of the receptor response,

+
0" + 9 (vET) = kOt — kisE* + gk, - ¢Ef
ot ox S—— ~— W_/ . —~
m dissociation  binding of substrate  left to right  right to left
Jr
8% + 82 (UO+) = —]C_10+ + ](718E+ +o C — O'+C+
x
a@% — aﬁ (UE*) = k.C —kisE-—0c E 4+0"E"
X
% — % (UC_> = —]{5_10_ + k’lSE_ — O'_C_ + O'+C+.

Here E* is the concentration of bacteria that swim to the right/left and that have a receptor
to which no substrate is bound. C* is the concentration of bacteria in which the substrate
is bound to the receptor. o* gives the switching rate between right and left runs. Since
the run duration is found to depend on the rate of change of the concentration only if the
concentration increases, Segel takes - considering the case % > 0 - for the switching

rates o*
0 0 ct _
O'Jr:f((a—FU%) m) and o If(O)
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The concentration of the substrate is assumed to satisfy

dc _ _ 9%
a:—le(E—i_‘i‘E )+/€_1(C++C )—d‘i‘D@,

i.e. the substrate is bound by the receptor, is degraded through a reaction that is limited
by the availability of an enzyme (i.e. rates is independent of s) and diffuses. For this model
Segel derived the chemotactic equation (1),

o _ 0 ( b 0

ot~ oz \ Mox "Nox)
recovering the form of the previous Keller-Segel model.
Note:

e The change in swimming is only transient = the control of the flagellar motor must
show adaptation, i.e. when the concentration goes up the control system must be
adjusting itself to that new ‘normal’.

e Chemotaxis operates over a wide range of concentration: the dynamic range of the
adaptation must be large.

implies that saturation effects are not important in the enzyme
experiments.
The capillary assays were done by Susan MacFadden. This

work was supported by a grant from the National Science Foun-
dation (GB-30337).

1. Engelmann, T. W. (1883) Pfliigers Arch. Gesamte Physiol.
Menschen Tiere 30, 95124,

[ AT ndrnne D /10NN Talwh T an DRat En 20X 410

Figure 19: Side remark: it is not always clear how authorship for a paper was decided
(Brown and Berg, 1974).
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1.5 Robust Adaptation

Understanding chemotaxis in E. coli is important in itself. In addition, it provides an ex-
cellent model system to study signal transduction more generally; results obtained for the
chemosensory pathway E. coli are most likely also relevant in other animals and for other
senses.

Need facts first:'°

e Motor control via CheY
— when it is phosphorylated by CheA, it makes the flagella motors turn clockwise,
which makes the bacterium tumble

— the phosphorylated state CheY-P is relatively stable on its own (O(10s)), which
is too long for the bacterium to tumble = it becomes dephosphorylated by
CheZ, which makes the tumbling periods less than 1s.

e Receptor complex

consists of the receptor, CheW, and CheA

binds the ligand (chemoattractant)
— can be in an active and an inactive state
x when it is in the active state the kinase CheA phosphorylates CheY

has multiple methylation sites, i.e. sites at which C'H3; can be added

« methylation is performed by CheR
x demethylation by CheB; it is enhanced if CheB is phosphorylated by CheA.

— the probability of the complex to be active

+ decreases when a chemoattractant is bound to it
x increases with methylation

The methylation of the receptor complex provides a feedback loop, which reduces the
impact of the ligand on the activity level of CheA.

Good video by H. Berg https://www.ibiology.org/biophysics/bacterial-motion/#part-2
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Figure 20: Sketch of the signal transduction pathway (Sourjik, 2004; Othmer et al., 2013)

Consider the reaction scheme of Fig.21 (Alon, 2007).

v

Q) Attractant

)
e .
R > CheY-D |Less tumbling

Figure 21: Reaction scheme of the model for fine-tuned adaptation(Alon, 2007).

The receptor complex X can be in 4 different states

e unmethylated without attractant X,: inactive
e unmethylated with attractant X,,: inactive
e methylated without attractant X,,: strongly active a,

e methylated with attractant X,,,: weakly active a; < ao.
Reactions:

e Attractant binding
Vi
A~
X+ L & Xo
~—~
Vo
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{n}=

XmO + L Xma

Vi

For simplicity we take the ligand binding rates the same for the methylated and un-
methylated receptor.

e Methylation by CheR and demethylation by CheB

Xoo + CH;

The goal of the adaptation is for the activity in steady state to be independent of the
concentration L of the ligand (attractant),

A(L = 0) = A(L).

The activity change should change only transiently, when the attractant becomes bound
or unbound.

Only the pool of methylated receptors { X0, X.na} contributes to activity,
A = CL()XmQ + alea.

When methylated receptors become bound to the attractant they become less active and
the overall activity of that pool decreases. To keep the overall activity the same, the pool
of methylated receptors needs to be increased =- the rate with which CheB demethylates
the receptor should be smaller when the attractant is bound than when it is not bound

VBa < VBO-

Evolution equations for the states without ligand (R and B are the concentrations of CheR
and CheB and L is the concentration of the ligand)

Analogously, for the states with ligand
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Since the total amount of receptor is constant,
Xo0 + Xomo + Xoa + Xara = const.,

we do not need to consider the equation for X,,,.

Consider only switching between two extreme situations:
e no attractant, L =0, X,,,, — 0 and X, — 0 since

d
% (XOa + Xma) = _V[j (XOa + Xma)

e large concentration of attractant so that X,,, — 0 and Xy, — 0

d
a (Xoo + Ximo) = —VL+L (Xoo + Xmo) +V; (Xoa + Xona)

When switching from L = 0 to L large:

e initially only Xy, and X,,q are non-zero. Their relative size depends on Vi and Vg, B.

e immediately after switching they start to decay and feed into X,, and X,,,. Because
the attractant binds rapidly, the total size of the pool { X0, X,..} of methylated recep-
tors stays the same, but the fraction of receptors bound to the attractant increases
= the activity decreases. The balance between X,,, and X, is initially determined
by the balance of X, and X,.

e on a longer time scale the slower methylation and demethylation processes kick in
= the balance between X,,, and X,, will change in factor of X,,,, reflecting the
reduced demethylation rate Vi, compared to Vi, = the size of the pool { X0, Xina }
increases and with it the activity recovers.

The experiments show that the methylation by CheR is saturated: Xy, > K. For simplicity,
we take the Michaelis-Menten constants to be the same, K, = K,.

To compare the steady states before and after applying an attractant, it is then sufficient

to consider
XmO

K+ Xm()
iPL LBa K )»’m ?A g

This yields the steady-states

v KVsR
™0 VaoB — VeR

X KViR
VauB — ViR
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For perfect adaptation

one needs therefore
aOXmO - alezz
Qo aq

= 11
VB — VeR ~ VB — ViR 1)

Notes:

¢ In order for adaptation to occur, the parameters of the system have to satisfy a very
specific condition. This would require that they be specifically tuned, which can be
achieved by tuning

— the methylation and demethylation rates Vg, Vg,, Or Vi
— the concentrations R and B of CheR or CheB

Most likely, this balance would depend on the concentration of the attractant, which
in this simple consideration only took on two extreme values.

e Particularly in biological systems, such fine tuning would be a challenge. The con-
centrations of CheR and CheB are relatively small; they are therefore likely to fluctu-
ate quite strongly. For that reason this model is not very convincing, if the observed
adaptation is as precise as it is observed in bacterial chemotaxis .

15 — [
| | |
A |
oA 10/ \
B |
< I
’ # Adaptation
5 ” | is not exact
1
Ay \
0! 0!
0123 456 7 8 910 012 3 456 7 8910
Time Time
(a) (b)

Figure 22: Sensitivity of the adaptation to the tuning of the parameters in (11). a) Perfectly
tuned. b) When the CheR-level R is reduced by 20% perfect adaptation is missed by a
factor of 3 (Alon, 2007).

Consider instead the reaction scheme of Fig.23.
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A
DX
CheB @ _— | Tumbles
/ Active state -
X
I//‘Att ractant

CheR
Inactive state

Figure 23: Reaction scheme of a minimal version of the Barkai-Leibler model for robust
adaptation (Barkai and Leibler, 1997) as discussed in (Alon, 2007).

Only three states arise in this model

e inactive, unmethylated state X
¢ inactive, methylated state X,

e active, methylated state X . Since this is the only active state denote it by A.
Key elements

e The attractant can bind to the active and the inactive methylated states.

e The attractant shifts the balance between the two methylated states: with attractant
the reaction is more biased towards the inactive state.

e CheB demethylates only the active, but not the inactive state.

The methylation by CheR is again saturated, as in the fine-tuned adaptation model.
Consider the following, simplified model

dX X
Y TR

dX X

—" = VgR—— —k(L)X,, + K (L)A
i R Rx (L) X + K'(L)
dA ,

Note:

¢ In general, the demethylation by CheB should be taken to be nonlinear (Michaelis-
Menten). The linearization is not necessary for the adaptation, but makes it easier
to analyze.

e The methylation by CheR is written as Michaelis-Menten reaction, although it is
known to be saturated. It would therefore be appropriate to consider the limit Kx —
0. But to get insight into the mechanism it is useful to keep K, but take it to be
small. The point is that the perfect adaptation requires the saturation.
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Assuming Kx < X we can expand

X ViR
— " = VyR — kX + KA~ VRR — kX, + KA — Kx—— + O(K?

Because the total receptor number is fixed, the equation for X need not be considered.
Instead write
X=X—-X,,— A

It turns out to be useful to write equations in terms of A and X,,; = X,, + A, the total
amount of methylated receptor,

X
dd:t = VRR—kaJrk’A—KX—Vf(R+ka—VBB—k’A
VRR 2
_ ~VyBA- Ky—"" + O(K 12
Vel — Vp Xy TOKY) (12)
dA
= kX — (VaB + k+ k) A (13)

For the adaptation we are interested in the steady states.
For the completely saturated case Kx = 0 one gets

dX

= VgRR—-VgBA
dt rE—Vp
dA
— = kX - (VeB+k+k)A
yielding the fixed point
g VBB +k+ kK VR
" VB o k VB

Note:

¢ At this leading order

— the activity A is determined by the differential equation for X,,; not that for A.

— the activity A does not depend on the binding rates £ and £, which depend on
the concentration of the attractant = the steady-state activity does not depend
on the attractant concentration in this limit, the adaptation is perfect.

— the steady-state activity does depend on the concentration of CheR and CheB
and can therefore vary across bacteria.

— the concentration X,,, of the inactive methylated state does depend on the at-
tractant concentration.

— the time scale for the relaxation to the steady state does depend on parameters.
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To assess what happens when methylation is not completeley saturated, expand A in Ky

A=Ay + KxA Xt = X0 + Kx X 1.

At O(KY%) we recover the result above

O(Kx):
ViR 1 ViR
—VeBAi— % Zﬁ =0 fh:%BX‘E
t — Amt,0 t — Amt,0

Notes:
e Since X,,..o depends on the ligand concentration, the steady-state activity changes
with the attractant concentration when saturation is not complete: adaptation be-
comes imperfect.

Revisit (12,13) to leading order,

dx,,
dtt a(Ay—A)
dA
2 — kX, —bA
dt mt

The dynamics of X,,; determines the steady-state value of A: at the fixed point A = A
independent of all other parameters in the system. X,,; provides an integral feedback
control: it integrates up the deviation of A from the target value

X = a / (A — AW dt

Thus

e Aslong as A has not reached the target value, X,,; grows and provides ever stronger
feedback to A.

e The fixed point obtained by the control is stable for all positive values of a, k, and b.
The Jacobian is given by
0 —a
(1)

with ¢rL < 0 (= no Hopf bifurcation) and detL > 0 (no steady bifurcation).

¢ Since the equation for X,,; does not depend on X,,,; there is no scale for X,,;. There-
fore X,,; can take on any value and can provide arbitrarily large drive to A.
Once the differential equation for X,,; does depend also on X, as is the case if the
saturation of CheR is not perfect, there is a characteristic value for X,,,; and its ability

42



Models in Biology H. Riecke, Northwestern University

to integrate the error signal and with it its ability to shift A towards A, is limited.
E.g. look at evolution of X,,; (12) for small X,,,;

dxcmt K2
di = LRR LBBA KXXt X +O( X)
VeR VeRR X, 9 9
= - - - K
ViR —VgBA — Kx X, Kx X, X, +O(X5,, K%)

Thus, there is a term that pushes X,,,; towards 0, limiting its ability to drive A.

600

INPUT
(4)
VAN
/ (N —
,’ \ i:: 400
¥ R d‘/HE A — /(E R —. é
E % (£ B)/ Ena ) £
o’ -
B 4, /
/(E"R) T ER g o . . )
OUTPUT E} ‘\(E‘B)AbE‘ ~—— e P M o 40 80 120 160 (min)

Time

Figure 24: Barkai-Leibler model. Sketch of the minimal scheme and of the scheme involv-
ing multiple methylation levels. The methylation of £ goes via the complex ER, whereas
the demethylation goes via the complex £ B. Time course of adaptation after addition and
removal of increasingly larger ligand concentrations (Barkai and Leibler, 1997).
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Figure 25: Robust adaptation in Barkai-Leibler model. The adaptation precision depends
only weakly on the parameters of the problem, as characterized by the total parameter

variation logk = ) ’10g <Z—g> ’ where £k, is the modified value of the parameter compared

to the reference value £° for which the adaptation is perfect. In contrast, the time scale of
the adaptation depends strongly on the parameters (Barkai and Leibler, 1997).
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1.5.1 Integral Feedback Control As a Dynamical System'’

Consider a general dynamical system driven by some time-dependent input X with output
Z and internal variable Y

dy
— = eF(X)Y, 7
= F(X.Y.2)
dz
— = GX,Y,Z2).
dt (XY, 2)

Our goal is

e strong, fast transient response in Z when X is changed

e no long-term response for whatever value of X.
Thus, there are two time scales that are relevant here

e Z responds quickly to reach some peak value Z,(X + AX, X) when X is changed
from X to X + AX.

e Y responds slowly ( ¢ <« 1) to adapt the system to the new input value of X, where
then Y = Y (X) and Z = Z,(X).

Quantification of our goal:
High sensitivity
ZP(X + AXvX) - ZS(X)’

N
5= AX)

large

Small adaptation error

— <1
1Z,(X + AX, X) — Z,(X)|

" (Tu and Rappel, 2018)
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Controller (Y)

Figure 26: Phase plane with nuliclines ¢(X,Y) according to (18) and f(X, Z) chosen for
perfect adaptation (Tu and Rappel, 2018).

As is typical for fast-slow systems, it is useful to consider the nuliclines of the system
For small changes |AX| and separated time scales on which Z and Y evolve we have

¢ the system starts at the intersection of the two nuliclines, (Y:(X), Z,(X)) (point A in
Fig.26.

e after a small change X; — X, = X; + AX the system quickly approaches the
nullcline of Z that is shifted due to the change in X, but with Y is still close to the
previous value (B) since € < 1,

09(X,Ys(X
Zy(X + AX, X))~ g(X + AX,Y,(z)) = g(X, Ys(x)) +AXM
Zs(X)

e the adapted response is reached after Y evolves to its steady-state value'?,
Zy( X +AX) = g(X+AX,Y,(X +AX))

dg  0g Y
< g rax (24 2208

Zs(X)

12The derivatives are to be evaluated at X and Y;(X).
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Thus,
99 | 9g dYs 99 dYs
lax Tavax | _ Jg Y dX
oxX ox

Therefore, to have a small adaptation error a necessary condition is

99 090,
0X 0Y 0X

i.e. the direct change of Z due to the change in X needs to be compensated by an
opposite indirect change of Z via Y'; the two pathways need to have opposite signs.

<0 (14)

Look for a minimal system, i.e. with a minimal number of non-zero interactions.
To have a non-zero peak response we need

dg
ax 7"

In order to be able to adapt at all we need

dg
— #0.
oY 7
. 0 0
Consider the case' $% < 0, 5% > 0.
We have
dy, of of 07,
dX 90X  0Z 00X
~
E) dg 8Ys
ax Tov ax

Then we need of  of 0
g
Y,  ax T azax

- of dg
0X — L2

>0 (15)

Then, (15) can be satisfied with

1. Incoherent feed-forward loop
Y and Z respond oppositely to X

of

of
e 0 (16)

57 =

in which case the second term in the denominator in (15) vanishes.

>0

2. Negative feed-back loop
Y is only driven (negatively) by Z

of _
0xX

of

0 37

<0 (17)

in which case the denominator is positive.

13The case 22 < 0, 22 > 0 works analogously.
0X oY
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Figure 27: Sketch of the two minimal networks to achieve adaptation (Tu and Rappel,
2018).

Compare with the simple model (12,13) discussed before for perfect saturation: A — Z,
X — Y,

G(X,Y,Z) = kY — (Va+k(X)+ K (X)) Z
eF(X,Y,Z) = VgR—VyBZ,

which matches case (17) of the negative feed-back loop. Since methylation and demethy-
lation are much slower than ligand binding, i.e. VxR and Vg B are small of O(e).

a

g B C————X
- 2
2
c X'I_
= A D E
[ [ [ [ [ [ [
0.08
£
_ 2o
N > E
- vy
5 0.04 ﬂg_
s L v X
S "o
o g
X o
LL
0 ~—

0 200 400 600 800
Time (s)

Figure 28: Experimentally observed adaptation of the response Z (kinase activity) to step
changes in concentration in attractant. (Sourjik and Berg, 2002) as shown in (Tu and
Rappel, 2018).
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Experimentally, it has been found that the input-output relationship follows a sigmoidal
form with a very large Hill coefficient. Part of this high sensitivity has been attributed to
cooperativity between the different chemoreceptors, which are clustered near the pole of
E. coli and other bacteria. Modeling this cooperativity yields for G the form

11 1+ X\"
GX,Y,Z2)=——2Z+— | 1+ V() (—K> . (18)

X
Tz Tz 1+ i

At this point we will not go into details of the modeling of the receptor cluster and just look
at the results they obtained for the adaptation (e.g. (Mello et al., 2004)).

Increasing the concentration of the attractant shifts the Z-nulicline to larger values of Y.
After an increase in concentration the output Z drops quickly to the new nulicline of Z.
Then the system follows that nullcline during the adaptation process. It comes to an end
at the new fixed point (Fig.26),

e Since F' = F(Z) is independent of Y and X that new fixed point has to have the
same output as the previous fixed point.

e Any dependence of F' on X or Y would generically destroy the perfect adaptation,
unless it was explicitly tuned to keep the intersection of the nuliclines at the same
value of Z.

This model gives also good agreement for the response to sinusoidally varying attract
concentrations. It shows that for low frequencies the adaptation mechanism essentially
computes the time derivative of the concentration (Fig.29)
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Figure 29: Adaptation response to sinusoidally varying concentrations (Tu and Rappel,
2018).
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2 Morphogenesis

How do multicellular organisms develop?
How do cells know when to differentiate
and how and where they need to go? In
simple animals many body parts can be
regenerated and parts of the body can be
grafted onto other bodies. An excellent ex-
ample is hydra. Important work demon-
strating that grafting the hypostome of one
hydra onto another one can induce a sec-
ond axis (e.g. #42 in Fig.31) was done
by Ethel Browne in her PhD thesis Browne
(1909). This was already well before Spe-
mann and Mangold identified the organiz-
ers in salamander embryos (see below).
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PRODUCTION OF NEW HYDRANTHS IN HYDRA
Eruer NicuorsoN Browne
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Figure 31: Hydra grafting. 42: graft of white tentacle
which involves also material from the green hydra: the cells from the white hydra seem to
instruct the cells of the green hydra what to do. 47: graft of green foot on white hydra at
foot end — full green hydra. (Browne, 1909)

20

Prate V

Graft of white tentacle with peristome in middle of green hydra.

Graft of white tentacle with peristome in foot of green hydra,

Graft of green tentacle without peristome in white hydra.

Graft of green body tissue in white hydra.

Graft of green hydranth in white hydra.

Graft of green foot in white hydra.

Heteromorphosis in reversed ring of green tissue grafted on white stock.

makes whole additional hydranth,
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PRODUCTION OF NEW HYDRANTHS IN HYDRA PLATE IV
ErneL NicuoLsoN BrRowNE

TaE JourRNAL oF EXPERIMENTAL Z0BLOGY, VOL. VII, NO, 1

Prare IV

Figs. 40-41. Graft of regenerating tissue.

Figs. 49-50 Small hydra produced by graft of white tentacle in foot of green hydra.
Fig. 51 Graft of green tentacle without peristome in white hydra.

Fig. 52 Graft of green hydranth in white hydra.

Figs. 53-54 Graft of green and white heads.

Figs. 55-57 Graft of green foot in white hydra.

Figure 32: Hydra grafting. 55-57: depending on the location of the graft, grafting foot onto
foot may lead to another foot or a complete hydranth. (Browne, 1909)

What controls how a grafted body part will evolve?

Organizers: Spemann and Mangold (Spemann and Mangold, 1924) looked at the very
early embryogenesis in salamander (Triton cristatus and Triton taeniatus), around the time
of gastrulation. At that point the zygote has undergone many cell divisions but the cells
are still quite undifferentiated, i.e. there are only two types of cells in two layers. At that
stage one can transplant small pieces of tissue from one embryo to another, even between
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different species:

¢ In most cases, the transplanted piece of tissue evolves like the tissue at the location
to which it was transplanted. Thus, tissue that is taken from an area that would
develop into brain tissue develops into epidermal tissue if it was transplanted to
a location where the tissue develops into epidermal tissue. The tissue effectively
adapts to its environment.

e However, tissue from a specific area behaves differently: it does not adapt; instead it
determines the development of the surrounding tissue and generates an additional,
secondary neural tube and can eventually lead to the development of a second head.
This organizer tissue therefore determines the development of the surrounding tis-
sue. The tissue of the secondary neural tube and organs involves also tissue from
the host and not only from transplant itself.

sca, Med.

sec. Mes.
crist,

Fig. 4. Um 8b. Cross section through the anterior third of the embryo (cf. Figs. 2 and 3) pr. Med., primary neural tube; sec.
Med., secondary neural tube. The implant (light) is in the mesoderm (sec. Mes. crist.). 100X.

Figure 33: Transplantation of tissue from one salamander embryo to another. The implant
has lighter color; that was one of the important steps forward compared to earlier exper-
iments of Spemann’s. This allowed to establish that the second neural tube etc. were
not made only of implanted tissue, but that the organizer recruited the host tissue as well.
(Spemann and Mangold, 1924).
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A Host Donor

Blastopore

lip
% Organizer graft

B Secondary gut —.

Primary neural tube \ Secondary somite
\ Secondary
7

Figure 34: Implantation of a second organizer can lead to the development of a second
head (Harland, 2008).

How is the information communicated from the organizer to the remaining tissue? It could
be a chemical signal, a morphogen, or multiple morphogens (Turing, 1952). In the hydra,
e.g., it could determine what becomes the head and what the foot.

2.1 Turing Model for the Formation of Periodic Structures

In 1952 Turing suggested that the combined activity of two (possibly more) morphogens,
an activator and an inhibitor, could set up spatially periodic concentration profiles that
could drive the formation of periodic structures. He mentioned as a possible specific
example the formation of the tentacles of hydra in that paper, which are sort of periodically
spaced around the mouth.

The key element is that the differentiation of the cells occurs in a translationally invariant
system, i.e. via spontaneous symmetry breaking. The model is therefore formulated as

ou 0%u
5 Du@ + f(u,v)
Ov 0%

a Dv@ + g(u, v)
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with f and ¢ allowing a homogeneous base state (ug, vo),

f(UOa UO) =0 g(uovg) =0.

Linearization around this base state

U = Ug + €Uy vV = Uy + €V
yields

8u1 82U1

W = DUW + auy — bUl

87)1 82’01

E = DUW + CcCuy — dU1

and the linear stability with a Fourier ansatz in space

up = U(t)e'” vy = V(t)e' "

LN [ —-Du*+a —b U
v )= c ~Dug® —d )\ 'V

(.

gives

and
detLL = (—Duq2 + a) (—qu2 — d) + be tracel = —Dy¢* +a — Dy¢* — d

We are interested in the appearance of steady rather than temporally oscillatory patterns
= assume
a<d,

which makes the traceL. negative for all wave numbers = no Hopf bifurcation.

We have

detLi = DyDyq* + ¢* (Dyd — Dya) + be — ad.

As parameters are varied, the determinant detL can vanish first for ¢ = 0 or for ¢ > 0. We
are interested in the case ¢ > 0 = we need

bc—ad >0

D,d— D,a <0
Together with the condition a < d this implies

D”>d>1
D, «a
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More precisely, the instability occurs first at a ¢> for which at its minimum detL — 0. This
requires

d detLL ,  Dya—D,d

=2D,Dyq> + Dyd — Dya =0 = > 0
g2 e ’ %= "9p,D,
(Dya — Dyd)*  (Dya — Dyd)? (Dya — Dyd)? i
— = - =ad — bc
4D, D, 2D, D, 4D, D,

(Dya — Dyd)* = 4D, D, (bc — ad)
The onset of the instability occurs then at

(Dya + Dud)2

be —
¢ iD,D,

The key elements of the Turing instability are

e the activator is (effectively) autocatalytic and activates also the inhibitor
e the inhibitor inhibits itself and the activator
¢ the inhibitor diffuses faster than the activator =

— alocal bump in the activator drives also a local bump in the inhibitor
— the inhibitor bump is wider than the activator bump

— the more localized activator bump sustains itself,

— the activator bump is kept from spreading by the inhibitor bump

— only at distances at which the inhibitor has sufficiently decayed the activator can
arise again = spatially periodic structure

With respect to hydra Meinhardt (earlier with Gierer) developed a more elaborate model
comprised of 3 activator-inhibitor systems, one each for the head, for the foot, and for
the tentacles. In addition, that model includes a long-range gradient in the source density
for the generation of the activator that establishes and maintains the head-foot polarity
Meinhardt (1993).
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(b)

Figure 35: (a) Normal development of hydra within the Meinhardt model. (b,c) Exposure
to the drug alsterpaullone leads to additional tentacles along the body of the hydra (wnt is
strongly expressed at the tips of the tentacles). (d,e) This can be captured qualitatively in
the model. (from Meinhardt (2012)).

Notes:

e ltis not clear if/to what extent these molecular gradients have been confirmed exper-
imentally.

¢ Diffusion is probably not the only communication between cells. Tentacle formation
requires notch-signaling, which is based on cell contact. Notch receptors interact
with transmembrane proteins of the adjacent cells and triggers regulation of gene
expression in the nucleus.

e For smaller system sizes the long-range inhibition can stabilize polarization of the
system rather than generate periodic structures.

¢ Inherent in the spontaneous symmetry breaking is that noise plays a significant role
in establishing the patterned state, since the perfect unpatterned state exists below
and above the threshold for the formation of the pattern. That raises the question
whether in its original form it is robust enough to generate patterns for which preci-
sion and reliability is important (e.g. limb formation, in contrast to pigment patterns
on fish skin, say).
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2.2 Drosophila Development

The early development of drosophila embryos has been studied extensively and there is
a wealth of information available by now. Consider it as an example.

Anterior {§ Posterior

Ventral

5 nuclear divisions
(symcytial blastoderm)

Nuclei migrate
Zygote to periphery
nugleus (2N)
Fertilized egg

Adult

blastoderm

Protein gradients
establish segmentation
Thoracic Abdominal

segments segments Embryo at 10 hours Segments

Figure 36: Life cycle of drosophila (from Purves et al. (1998)) .

Figure 37: Drosophila: 22-hour-old embryo showing denticle bands on the cuticle. Head
on the left (Wikipedia).

The main stages of early embryonic development of drosophila are'*

e fertilization of the egg, making it a zygote

143 great videos by E. Wischaus are at https://www.ibiology.org/development-and-stem-cells/bicoid/ . see
also https://www.ibiology.org/speakers/eric-wieschaus/

o7



Models in Biology H. Riecke, Northwestern University

e 9 cycles of divisions of the nuclei generating 256 nuclei (each taking ~8 minutes).
The zygote does not grow during that time and the nuclei are not separated by cell
walls.

e During the 10th cycle the nuclei migrate to the periphery of the cell creating the
syncytial blastoderm.

e After the 13th cycle (~4 hours after fertilization) cell walls form between the ~6,000
nuclei (‘cellularization’), forming the cellular blastoderm.

— At this point the cells have not differentiated yet, but the expression of various
genes shows pre-patterns that direct the subsequent development and differ-
entiation of the cells.

e Gastrulation

4 Hierarchies of Genes Involved in Morphogenesis

Maternal Coordinate Genes
Terminal Gap Genes

Hb Cad

-
Trunk Gap Genes

\_ Hb

a—
Pair-Rule Genes

Segment-Polarity Genes

Segment Determination

en (blastoderm) En (germband)

Figure 38: Hierarchy of maternal and zygotic genes (Jaeger, 2009).
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Differentiation is controled by 4 generations of genes, which provide successively finer
spatial control, with the genes operating on larger scales controling those operating on
smaller scales

e maternal genes

— bicoid (bcd), hunchback (hb), and caudal (cad)
the mRNA for these proteins are deposited by the mother on the egg, giving the
cell polarity:
x bcd mMRNA is expressed at the anterior end
x hb and cad mRNA are expressed uniformly along the anterior-posterior
axis
x the translation of the corresponding proteins starts with the fertilization of
the egg

e zygotic genes

— gap genes
x hb (zygotic hunchback transcription and translation enhances the protein
translated from maternal mRNA), Krippel (Kr), knirps (kni), giant (gt)

— pair-rule genes
* even-skipped (eve) and others
— segment-polarity genes
We focus here on the gradient of bicoid. Bicoid was the first protein to be recognized to be

a morphogen (Driever and Nusslein-Volhard, 1988). It sets the stage for the further spatial
organization.

Figure 39: Maternal mutations that reduce expression of bicoid lead to substantially dif-
ferent embryos (bottom row give sketch of expression of eve. a) wildtype, b) Strong
becd mutant (almost no bed), head and thorax replaced by a duplicated telson (sort of
tail, marked PS13*), c,d) Mutations with only moderately suppressed bcd (Driever and
Nusslein-Volhard, 1988).
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Figure 40: bicoid autonomously controls development: a) Severely impacted development
of an embryo coming from mother with strong bcd mutation b) Injecting bcd mRNA res-
cues that development (cf. Fig.39b). c) Injection in the middle generates additional head
(marked H). d) injection at the posterior end generates symmetric head formation (Driver
et al., 1990).

2.3 The French Flag Model and Extensions

How could the morphogen direct the spatial differentiation? The concentration could pro-
vide positional information if a sufficiently large concentration gradient can be established.
A very influential model along these lines was the french-flag model of Wolpert (Wolpert,
1969).

>
|

Step 1
Morphogen Concentration

Step 2

Figure 41: French flag model (Wolpert, 1969).

In a minimal version one could imagine that the concentration of the morphogen is fixed
at the two ends of the organism. In the absence of any degradation its concentration is
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then linear and the concentration defines a coordinate system. With suitable thresholds
subsequent gene expression can be directed.

dm d*>m

% == DW C(O) = Cp C(L) = Cr,
Question: is there enough time to set up such a (linear) gradient during development?
Crick estimated the diffusion of the - at that time hypothetical - morphogen. He assumed
a molecular weight of the order of 500 and a viscosity corresponding to that of a strong
sucrose solution (40% by weight) (Crick, 1970) ,

_gCM
D =0(10 6?)

He concluded that within 3 hours (10% s) a gradient of 700,:m could be built up, which would
correspond to roughly 70 cells. That size is of the order of the size that Wolpert discussed
for various embryonic developments (not drosophila).

Back to drosophila: what is known about the concentration profile of bcd?

on E‘J o0
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Figure 42: The same bcd-concentration in drosopila (from (Driever and Nusslein-Volhard,
1988)) plotted linearly (a), logarithmically in y (b), and double-logarithmically (c).

The concentration profile is clearly not linear

e the diffusion coefficient could be space-dependent D(z) or depend on the mor-
phogen concentration D(m) ,

¢ the protein could become degraded with time

Model with fixed degradation rate

For bcd it is known that the protein is translated from the mRNA that is localized near the
anterior end. Assume as boundary conditions

dm\ _ _, dm| .
dr |,_, dz |,_,
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In steady state one obtains then an exponential profile

m(z) = mee” > my = \/?J A= \/g (19)

How robust does such a gradient define a location? The flux J depends on the mRNA
concentration, which could well vary between cells. How much would this change the
location. Assume the threshold my for triggering subsequent differentiation is fixed

|
me = m(:m; J1) = )leeszl "’:\m(xz; JQ) _ )\J267I72
i

1'2—%'1:)\11’17 = 29— 11 ~ 0.7\ forJ2:2J1
2

Since ) sets the scale over which the concentration gradient varies, the size of the vari-
ous domains of the french flag cannot be much larger than X\ otherwise the threshold m,
separating the second from the third domain becomes too small to be reliably measured.

Therefore it has been suggested that an exponential decay does not allow robust pattern-
ing (Eldar et al., 2003). In a different context - the development of the drosophila wing,
i.e. in the patterning of the morphogens Wg and Hh of the imaginal wing disc - they sug-
gest that the profile should be steep near the source but shallow in the regions that define
the domains. This would allow large variations of the source current without shifting the
domain boundaries too much = assume the degradation is nonlinear in the concentration

dm N d*m
— == D—-.
a T
Consider again the steady state
d*m 9
_dJJQ = am
Try a power law
m(zx) = Az?
Dp(p — 1) AxP™% = o A%z
D
p—1=2p = p=—2 and A:6—
(0%
6D _,
m(x) = —z

This solution diverges at x = 0:

e boundary condition needs to be placed somewhere else:

D -
L Ly g (£i>
(0%

dm

dr

r=b

which implies
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e even large variations in J can be accommodated with small shifts in the boundary
position

by by — (éi

— (%%) - (5‘% _ 1) for § = %

Thus, for J; — oo at fixed 6 one has b, — b; — 0, i.e. the change in the distance from
the domain location at which m = m, becomes very small for large .J; ,. Specifically, with
m(zg) = my We have

o
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To get robustness, the concentration at the end of the system must be much larger than
at the domain boundaries that are to be defined by the gradient: to get 10% accuracy

one needs concentrations at the boundary that are a factor of 100 larger than inside the
domain. Is that realistic?

N[

D=

Reassess the concentration profiles for bicoid:

e the concentration varies by a factor of 10 over the whole system

e for this mechanism to be operating one should see power-law behavior particularly
for large concentrations. However, near the anterior end the behavior is nicely expo-
nential and clearly not a power-law.
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Figure 43: More recent measurements of bicoid concentration using fluorescence (using
venus, a GFP-derivative (Little et al., 2011)). There is a baseline level of fluorescence,
which is subtracted when fitting to the exponential (Grimm et al., 2010).
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Note:

e It is not clear that this type of robustness, while mathematically possible, is imple-
mented in the bicoid system. Clearly, to answer questions like this good quantitative
measurements as in Fig.43 are required.

Egg Sizes
Another dimension of robustness regards the size of the eggs

¢ Different species of drosophila differ significantly in their size, as do their eggs.

e The expression patterns scale with the egg size.
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Figure 44: a) Embryos of L. sericata (upper) and D. melanogaster (lower) with hunchback
(green) and giant (red). B) Embryos of D. melanogaster (upper) and D. susckii (lower)
with hunchback (green) and runt (red). b) The length constants A (cf. (19)) scale across
species with the size of the embryos; however, within the species the length constants
vary significantly (Gregor et al., 2005).
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Figure 45: The location of the bicoid concentration boundary is much more variable than
that of the hunchback concentration. (a,b) Concentration profiles. (c) In contrast to the bi-
coid position the hunchback position scales with the individual egg sizes (with the species)
(Houchmandzadeh et al., 2002).
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The hunchback gradient is much more precise than that of bicoid

e The standard deviation of the domain size as defined by bcd is 7% of the embryo
size:, in 50% of the embryos the boundary is off by 5 nuclei.

e For hb the standard deviation is only 1% of the embryo size: it is precise to within a
single nucleus

How does the hunchback gradient know about the embryo size, but the bicoid gradient
does not?

e One possibility is that hb interacts with another gene that is localized posterior
(Houchmandzadeh et al., 2005; McHale et al., 2006) = homework problem.

3 Aggregation of Dictyostelium Discoideum

The slime mold Dictyostelium discoideum is an interesting organism. Much of its life it is a
unicellular amoeba roaming for food, i.e. bacteria like E. coli. It finds its prey using chemo-
taxis detecting the folic acid that the bacteria secrete. When the food supply is depleted
the amoeba start to aggregate and form a mound and then a slug. The slug consists of
up to 10° cells. It moves towards light, heat, and humidity to find better conditions. Then
the cells differentiate into stalk cells and spore cells and the slug transforms into a stalk
with the spores on top. From there the spores are dispersed and become new amoebae
(myxamoebae).

growth
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Figure 46: Life cycle of Dictyostelium discoideum.
(https://openi.nim.nih.gov/detailedresult.php?img=PMC3352040_1423-0127-19-41-1&req=4)

The aggregation stage has attracted some interesting modeling efforts. The aggregation
is based on two key features'®

5Videos of Dictyostelium aggregating etc.:
https://www.youtube.com/watch?v=5h8 WOWEQqP60

https://www.youtube.com/watch?v=tpdlviSochk

https://www.youtube.com/watch?v=bkVhLJLG7ug
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e Each amoeba acts as an excitable element (Noorbakhsh et al., 2015; Sgro et al.,
2015): upon sensing a sufficient amount of cAMP it becomes excited and releases
cAMP itself. After this excitation the amoeba becomes for some time unresponsive
to further inputs. That is its refractory phase..

The sensing and releasing of CAMP allows the amoebae to communicate with each
other through cAMP waves that propagate across the population.

e Upon sensing cAMP each amoeba moves towards the perceived source of cAMP.
This drives the aggregation of the amoeabe.

Figure 47: cAMP spiral waves during the aggregation of Dictyostelium discoideum (Gold-
stein, 1996).

Excitability

A standard minimal way to model an excitable system is using a two-component fast-slow
system

dx 1
I ZF(% Y)
dy

with € < 1 and taking an N-shaped nulicline for = and a linear nulicline for y.

After infinitesimal perturbations away from the fixed point (intersection of the two nullclines)
the trajectory returns immediately to the fixed point. After perturbations above a certain
threshold the system makes a large excursion, which in this example reaches the left
branch of the F-nullcline, which it then follows slowly to the local maximum at which the
systems proceeds quickly to the branch of the nullcline. It then relaxes slowly back to the
fixed point.

Excitable system have a (relative) refractory period after the excursions during which only
extremely large (if any) perturbation can drive an excursion.
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Figure 48: Nullclines and excursion from fixed point in standard excitable system.

Chemotaxis
Compared to our previous discussions of chemotaxis there are two important differences

e amoeabae are large enough (O(10:m) to sense gradients by comparing concentra-
tion differences across there bodies, no run-tumble.

e the concentration gradients consist of propagating waves of CAMP rather than sta-
tionary gradients.

A minimal model for the chemotactic response of an amoeba at position x to a chemoat-
tractant S traveling with wave speed v is therefore (Goldstein, 1996)
dx(t) d
dt dx

1 20+ dz
YA E/ -
<7"S’(z) —v> - rS'(z) — v

where 7 is the time the amoeba takes to cover one period X of the wave. In the moving
frame this amounts on average to a velocity

A
7@ =2,

Back in the stationary frame this yields then
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Typically, the wave speed is much larger than the velocity of the amoeba. Therefore ex-
pand v in 1/v

and

v ' N 2 —1
(1424 (=) 4. )

1]
|

v

rS’ rS"\ rS\ 2 1
= v|(—)+(|(—) )—(—) +O0| =3
(% (% v v
Now: if the chemotactic coefficient r is constant we get

<£> _ %% {S(z0 +A) — S(z0)} = 0

()

due to the periodicity of the traveling wave =- to leading order there is no chemotactic
response on average: the amoeba is attracted as much to the front of the wave as it is
repelled by the back.

At O (%) one gets

) <(7"S’ <7~s'>)2> o
v=wv — —(— = signo = signv
v v

The amoeba drifts in the same direction as the wave propagates: the amoeba is advected,
i.e. it moves away from the source of the wave.

This is independent of the sign of the chemotactic coefficient » and of the wave profile
of the chemoattractant: whenever the amoeba is moving towards the wave the time it is
exposed to the gradient is shorter than when it moves with the wave = the motion with
the wave is enhanced compared to the motion against it.

How can the amoeba move towards the source of the wave? It needs to respond to the
front of the wave differently than to the back.

Possibilities:

e the chemotactic coefficient » adapts to the concentration, i.e. it depends on the
concentration with some delay (Nakajima et al., 2014)'6

e the amoeba moves only briefly and becomes unresponsive once it has moved, like
a refractory period for motion.

Kessler and Levine proposed and analyzed a minimal agent-based model for the chemo-
tactic aggregation (Kessler and Levine, 1993).

8Their videos NakSaw14_s2,3.mov (on Canvas) show that the amoebae do not back up when they are
under the back of the wave.

68



