
Models in Biology H. Riecke, Northwestern University

Mathematical Models in Biology

Hermann Riecke

Engineering Sciences and Applied Mathematics

Northwestern University

h-riecke@northwestern.edu

June 5, 2018

c©2018 Hermann Riecke

1



Models in Biology H. Riecke, Northwestern University

Contents

1 Chemotaxis 6

1.1 Chemotaxis of Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Modeling Chemotactic Motion 1 . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Modeling Wave Propagation2 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Sensing the Chemoattractant3 . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Robust Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1 Integral Feedback Control As a Dynamical System4 . . . . . . . . . 44

2 Morphogenesis 49

2.1 Turing Model for the Formation of Periodic Structures . . . . . . . . . . . . . 53

2.2 Drosophila Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 The French Flag Model and Extensions . . . . . . . . . . . . . . . . . . . . 60

3 Aggregation of Dictyostelium Discoideum 65

1(Keller and Segel, 1971a)
2(Keller and Segel, 1971b)
3worthwhile video by H. Berg: https://www.youtube.com/watch?v=ioA1yuIA-t8
4(Tu and Rappel, 2018)

2



Models in Biology H. Riecke, Northwestern University

References

Adler J. (1966a). Chemotaxis in bacteria. Science 153, 708–&.

Adler J. (1966b). Effect of amino acids and oxygen on chemotaxis in escherichia coli.
Journal of Bacteriology 92, 121–&.

Adler J., and Dahl M.M. (1967). A method for measuring motility of bacteria and for com-
paring random and non-random motility. Journal of General Microbiology 46, 161–&.

Alon U. (2007). An Introduction to Systems Biology (Chapman & Hall).

Artemenko Y., Lampert T.J., and Devreotes P.N. (2014). Moving towards a paradigm: com-
mon mechanisms of chemotactic signaling in dictyostelium and mammalian leukocytes.
Cellular and molecular life sciences : CMLS 71, 3711–3747.

Barkai N., and Leibler S. (1997). Robustness in simple biochemical networks. Nature 387,
913–917.

Berg H.C., and Brown D.A. (1972). Chemotaxis in escherichia-coli analyzed by 3-
dimensional tracking. Nature 239, 500–&.

Berg H.C., and Purcell E.M. (1977). Physics of chemoreception. Biophysical journal 20,
193–219.

Brown D.A., and Berg H.C. (1974). Temporal stimulation of chemotaxis in eschericia coli.
PNAS .

Browne E.N. (1909). The production of new hydranths in hydra by the insertion of small
grafts. Journal of Experimental Zoology 7, 1–U13.

Crick F. (1970). Diffusion in embryogenesis. Nature 225, 420–422.

Dahlquis F., Lovely P., and Koshland D.E. (1972). Quantitative analysis of bacterial migra-
tion in chemotaxis. Nature-new Biology 236, 120–&.

Driever W., and Nusslein-Volhard C. (1988). A gradient of bicoid protein in drosophila
embryos. Cell 54, 83–93.

Driver W., Siegel V., and Nusslein-Volhard C. (1990). Autonomous determination of ante-
rior structures in the early drosophila embryo by the bicoid morphogen. Development
109, 811–820.

Eldar A., Rosin D., Shilo B.Z., and Barkai N. (2003). Self-enhanced ligand degradation
underlies robustness of morphogen gradients. Developmental Cell 5, 635–646.

Goldstein R. (1996). Traveling-wave chemotaxis. Phys. Rev. Lett. 77, 775.

Gregor T., Bialek W., de Ruyter van Steveninck R.R., Tank D.W., and Wieschaus E.F.
(2005). Diffusion and scaling during early embryonic pattern formation. Proceedings of
the National Academy of Sciences of the United States of America 102, 18403–18407.

3



Models in Biology H. Riecke, Northwestern University

Grimm O., Coppey M., and Wieschaus E. (2010). Modelling the bicoid gradient. Develop-
ment 137, 2253–2264.

Harland R. (2008). Induction into the hall of fame: tracing the lineage of spemann’s orga-
nizer. Development (Cambridge, England) 135, 3321–3323.

Houchmandzadeh B., Wieschaus E., and Leibler S. (2002). Establishment of develop-
mental precision and proportions in the early drosophila embryo. Nature 415, 798–802.

Houchmandzadeh B., Wieschaus E., and Leibler S. (2005). Precise domain specification
in the developing drosophila embryo. Physical review. E, Statistical, nonlinear, and soft
matter physics 72, 061920.

Jaeger J. (2009). Modelling the drosophila embryo. Molecular Biosystems 5, 1549–1568.

Keller E.F., and Segel L.A. (1971a). Model for chemotaxis. Journal of Theoretical Biology
30, 225–&.

Keller E.F., and Segel L.A. (1971b). Traveling bands of chemotactic bacteria - theoretical
analysis. Journal of Theoretical Biology 30, 235–&.

Kessler D., and Levine H. (1993). Pattern-formation in Dictyostelium via the dynamics of
cooperative biological entities. Phys. Rev. E 48, 4801.

Lapidus I.R., and Schiller R. (1976). Model for the chemotactic response of a bacterial
population. Biophysical journal 16, 779–789.

Larsen S.H., Reader R.W., Kort E.N., Tso W.W., and Adler J. (1974). Change in direction
of flagellar rotation is basis of chemotactic response in escherichia-coli. Nature 249,
74–77.

Little S.C., Tkacik G., Kneeland T.B., Wieschaus E.F., and Gregor T. (2011). The formation
of the bicoid morphogen gradient requires protein movement from anteriorly localized
mrna. PLoS biology 9, e1000596.

Macnab R.M., and Koshland D.E. (1972). The gradient-sensing mechanism in bacterial
chemotaxis. Proceedings of the National Academy of Sciences of the United States of
America 69, 2509–2512.

McHale P., Rappel W.J., and Levine H. (2006). Embryonic pattern scaling achieved by
oppositely directed morphogen gradients. Phys. Biol. 3, 107–120.

Mears P.J., Koirala S., Rao C.V., Golding I., and Chemla Y.R. (2014). Escherichia coli
swimming is robust against variations in flagellar number. eLife 3, e01916. Original
DateCompleted: 20140212.

Meinhardt H. (1993). A model for pattern formation of hypostome, tentacles, and foot
in hydra: how to form structures close to each other, how to form them at a distance.
Developmental biology 157, 321–333.

4



Models in Biology H. Riecke, Northwestern University

Meinhardt H. (2012). Turing’s theory of morphogenesis of 1952 and the subsequent dis-
covery of the crucial role of local self-enhancement and long-range inhibition. Interface
focus 2, 407–416.

Mello B.A., Shaw L., and Tu Y.H. (2004). Effects of receptor interaction in bacterial chemo-
taxis. Biophysical Journal 87, 1578–1595.

Mesibov R., Ordal G.W., and Adler J. (1973). The range of attractant concentrations for
bacterial chemotaxis and the threshold and size of response over this range. weber law
and related phenomena. The Journal of general physiology 62, 203–223.

Nakajima A., Ishihara S., Imoto D., and Sawai S. (2014). Rectified directional sensing in
long-range cell migration. Nature communications 5, 5367.

Noorbakhsh J., Schwab D.J., Sgro A.E., Gregor T., and Mehta P. (2015). Modeling os-
cillations and spiral waves in dictyostelium populations. Physical review. E, Statistical,
nonlinear, and soft matter physics 91, 062711.

Othmer H.G., Xin X.R., and Xue C. (2013). Excitation and adaptation in bacteria-a model
signal transduction system that controls taxis and spatial pattern formation. International
Journal of Molecular Sciences 14, 9205–9248.

Purves W., an d G.H. Orians D.S., and Heller H. (1998). Life: The Science of Biology.

Sgro A.E., Schwab D.J., Noorbakhsh J., Mestler T., Mehta P., and Gregor T. (2015). From
intracellular signaling to population oscillations: bridging size- and time-scales in collec-
tive behavior. Molecular systems biology 11, 779.

Sourjik V. (2004). Receptor clustering and signal processing in e coli chemotaxis. Trends
in Microbiology 12, 569–576.

Sourjik V., and Berg H.C. (2002). Receptor sensitivity in bacterial chemotaxis. Proceed-
ings of the National Academy of Sciences of the United States of America 99, 123–127.

Spemann H., and Mangold H. (1924). The induction of embryonic predispositions by
implantation of organizers foreign to the species. Archiv Fur Mikroskopische Anatomie
Und Entwicklungsmechanik 100, 599–638.

Tindall M.J., Maini P.K., Porter S.L., and Armitage J.P. (2008). Overview of mathematical
approaches used to model bacterial chemotaxis ii: Bacterial populations. Bulletin of
Mathematical Biology 70, 1570–1607.

Tu Y.H., and Rappel A.J. (2018). Adaptation in living systems. Annual Review of Con-
densed Matter Physics, Vol 9 9, 183–205.

Turing A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London
B 237, 5.

Wolpert L. (1969). Positional information and spatial pattern of cellular differentiation.
Journal of Theoretical Biology 25, 1–&.

5



Models in Biology H. Riecke, Northwestern University

1 Chemotaxis

Chemotaxis has already been observed in the late 1800’s by Engelmann, Pfeffer, and
others. 1572 Tindall et al.

Fig. 2 Aggregation of chemotactic bacteria in regions of high attractant concentration as originally shown
by Pfeffer (1888).

concentration suppresses tumbling and leads to biasing of the random walk allowing the
bacteria to accumulate in environments containing high attractant concentrations. This
results in periods of biased directed motion known as runs. Chemotactic runs generally
last on the order of a few seconds while tumbles last approximately tenths of seconds
(Berg and Turner, 1990). A combination of runs, allowing directed motion to a response,
and tumbles, facilitating a change in direction, allow bacteria to explore and respond to
changes in their environment.

Understanding the behavior of chemotactic bacterial populations is interesting for a
number of reasons. While bacteria behave independently, populations exhibit collective
behavior as shown in Fig. 2. In the natural environment, bacterial populations are gener-
ally found to exist in the form of biofilms which can have substantial impact upon industry
and medicine (Davey and O’Toole, 2000). Hence, understanding the comparative impor-
tance of mechanisms which affect and cause the observed behavior within bacterial pop-
ulations, for example, chemotaxis and diffusion, would greatly facilitate in the prediction
of bacterial behavior in the natural environment.

The focus of our work here is to consider the mathematical modeling work which has
aimed to understand the behavior of bacterial populations. Such work has been developed
very much in parallel with experimental work over the last 30 years. Experimental results
have been used to inform mathematical models and the resulting model solutions have
helped in understanding the observed behavior of populations. Much of the in vitro exper-
imental work has been undertaken using a number of different experimental assay meth-
ods. We provide a brief overview of the more commonly used assays, in particular, those

Figure 1: Aggregation of chemotactic bacteria in regions of high concentration of an at-
tractant (Pfeffer 1888 in (Tindall et al., 2008))

Chemotaxis plays an important role in many aspects of the life of organisms (Artemenko
et al., 2014)

• Cell migration plays an important role in development; it is partially guided by chemo-
taxis

• Trafficking immune cells to sites of inflammation; incorrect chemotaxis of leukocytes
contributes to chronic inflammation diseases like arthritis

• Cancer metastasis: tumor cells searching for blood vessels

1.1 Chemotaxis of Bacteria

Bacteria are much simpler than eukaryots (cells with nucleus). But understanding their
chemotaxis may give insight also into the chemosensation in higher animals.

Experiments by Adler

• bacteria (escherichia coli) placed at one end of tube filled with food (glucose, galac-
tose, amino acids)

• migrate into the tube

• two bands are formed

• the first band uses up all the oxygen and 20% of the galactose
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• the second band uses up the remaining galactose in some anaerobic process

• in two dimensions rings form and the bands stop when they collide

 Fig. 1. Photograph showing bands of E. coli in a capillary tube. In all the experiments reported here, capillary tubes (18) were
 filled with a liquid medium (19), inoculated at one end with 2 X 105 to 2 X 106 bacteria (20), and then closed at the ends
 with plugs of agar and clay, all according to a procedure described in full elsewhere (8). The tubes were incubated horizontally
 at 37°C. The origin, which is turbid because of the bacteria that have not moved out, is visible at the left, then the second
 band of bacteria, then the first band. Plugs at ends are not shown. The concentration of galactose was 2.5 X 10-4 mole per liter.

 are motile by virtue of several flagella

 distributed around the cell. Beijerinck

 (4 ) and Baracchini and Sherris (6) had

 already tested a large number of species

 and shown that E. coli are chemotactic

 toward oxygen.

 To study chemotaxis in a medium

 containing only known chemicals, it was

 necessary first to devise a simple chem-

 ically defined medium that would still

 allow motility, and to determine the

 optimal conditions for motility by use

 of an assay developed for this purpose

 (7) .
 'This article aims, first, to demon-

 strate that chemotaxis does occur in E.

 coli; second, to determine what kinds of

 substances elicit chemotaxis in E. coli;

 and, third, to discuss the mechanism

 of chemotaxis.

 Demonstration of Bands

 About a million motile cells of E.

 coli are placed at one end of a capillary

 tube filled with a solution containing

 2.5 X 1O-4 molar galactose as the

 energy source, and the ends of the tube

 are closed with plugs of agar and clay.

 Soon afterward, two sharp, easily visible

 bands of bacteria have moved out from

 the origin, and some bacteria still re-

 main at the origin. These features are

 shown in Fig. 1.

 The bands can be observed under

 the microscope. For undistorted view-

 ing, flat capillary tubes are used ac-

 cording to the suggestion of Sherris,

 Preston, and Shoesmith (5). The two

 sharp bands are easily visible as highly

 crowded regions of bacteria whose mo-

 tion is extremely rapid and jerky; in

 the first band the bacteria appear to be

 considerably more motile than in the

 12 AUGUST 1966

 second, and the bacteria left at the

 origin are not motile.

 The bands can also be demonstrated

 by dividing the tube into compartments,

 plating the contents of each compart-

 ment, and counting colonies to deter-

 mine the number of viable bacteria

 present throughout the tube (Fig. 2).

 Another method for demonstrating the

 bands and observing their rate of move-
 ment is to scan the tube with a record-

 ing microdensitometer (9) at various

 times (Fig. 3 ) .

 The easiest way to locate the bands

 is simply to measure their position with

 a ruler, and this is the method used in

 the work described in the remainder of

 this article. Figure 4 shows the location

 of the bands at several different times.

 The "first" band is not only faster, but

 it also forms first; it is visible after S

 minutes. The ''seclond'' band becomes

 100

 80

 *; 60

 CX

 o

 c, 40
 CX
 -

 L 2O
 cv

 t 4 t
 Second Fi rst
 bond band

 Centimeters Centimeters

 Fig. 2. Bands of bacteria shown by assay of viable bacteria. The tube contained 2.5 X
 10-4M galactose and was incubated for 0 or 6 hours. At 6 hours the bands were visible
 where shown by the arrows. The tubes were fractionated into ten compartments, each
 8 mm long, by breaking at one end of the column of liquid and withdrawing samples
 with a smaller capillary tube. A total of 9.8 X 105 viable bacteria were recovered at
 0 hours and a total of 1.4 X 106 at 6 hours. The last eight compartments were free of
 any viable bacteria in the tube harvested at zero time. The procedure is described in
 full elsewhere (8).
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Figure 2: a) Two traveling bands of migrating E. coli bacteria emerge when they are
placed in a tube with a chemoattractant at one end. b) Quantification of the bacteria
concentration. (Adler, 1966a)

7



Models in Biology H. Riecke, Northwestern University

 visible after 20 minutes. (These early

 time points are not shown in the fig-
 ures.-) Figures 3 and 4 show that when
 the first band reaches the top, part of
 it remains there and part o f it retreats.
 This retreating fraction eventually fuses
 with the second band, and the fused
 bands then disappear.
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 t t t T t
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 Hou rs

 Fig. 4. Rate of movement of bands of
 bacteria. The concentration of galactose
 was 2.5 X 10-4 mole per liter. At 6 hours
 the first band has reached the end of the
 column of liquid. The location of bands
 in this and all later experiments was mea-
 sured with a ruler.

 tose. Figure 6 shows that the first band
 uses a part of the galactose, and the
 second band uses all (or at least 99 per-
 cent) of the rest.

 It is clear from these data that the
 first band of bacteria travels along con
 suming all the oxygen to oxidize a part
 of the galactose, while the second band
 uses all the residual galactose anaerobi-
 cally. When the first band reaches the
 end of the column of liquid, it begins
 to use up the galactose there (see Fig.
 6, 8 hours), and a portion of the bac-

 teria then retreats (as shown in Figs.
 3 and 4) to consume the unused galac-
 tose anaerioWbically. Bacteria that remain
 where they were placed at the start of
 the experiment are no longer motile,

 , , ,
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 S econd Fi rst
 band bond

 Centimeters

 Fig. 5. Utilization of oxygen by bands of
 bacteria in 2.5 X 10-4M g?lactose. Oxygen
 was measured polarographically by insert-
 ing an oxygen needle electrode (10) into
 the capillary tube in 4-mm steps when the
 first and second bands were visible where
 shown by the arrows.

 Heterogeneity Excluded

 It is possible to take out separately the
 first band, the second band, and the'
 material left at the origin, and then im-
 mediately to use each of these over
 again in fresh tubes. (Actually, to get
 enough bacteria the first bands- were
 pooled from 12 tubes, the second bands
 from 35 tubes, and'the material at the
 origin from l 2 tubes. ) The result in
 each of the three cases is the same as

 the original result: each component
 forms two bands, and some bacteria re-
 main at the origin. Single colony iso-
 lates also form two bands and leave
 residual bacteria at the origin. It may
 be concluded that how a bacterium
 behaves depends on where it finds itself
 when first placed into the tube, rather
 than on physiological or genetic hetero-
 geneity among the bacteria.

 Use o£ Oxygen and Galactose

 The experiments described so far and
 those to be discussed next were carried:
 out with a solution containing 2.5 X
 10-4 moles of galactose per liter. The
 galactose is present in excess over the
 oxygen, since the concentration of oxy-
 gen in water saturated with air at 37°C
 is about 2.0 X 1 0-4 mole per liter
 and it' takes six \ molecules of oxygen
 to fully oxidize a molecule of galac-
 tose.

 The amount of oxygen remaining
 throughout the tube after the bands
 appeared was measured by insert-
 ing a polarographic needle electrode
 ( l 0 ) into the capillary tube. Figure 5
 shows that the first band consumes 'all
 or nearly all the oxygen and that the
 second band is in an anaerobic environ-
 ment.

 The amount of galactose remaining
 throughout the tube was measured by
 using Cl4-galactose, dividing the tube
 into compartments, removing and chro-
 matographing the contents of each com-

 partment, and measuring the amount
 of radioactivity in the region of the
 chromatogram corresponding to galac-

 SCIENCE, VOL. 153

 '4 )\ arrw
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 Fig. 3. Bands of bacteria shown by tracings
 from a recording microdensitometer. The
 tube, containing 2.5 X 10-4M galactose,
 was incubated at 37°C for 3.5 hours and
 then kept at room temperature for mea-
 surements (9). The times indicate hours
 from the start of the experiment. From
 right to left may be seen a vertical line
 representing the edge of the plug at the
 right end of the tube, then the first band,
 then the second band, and at the left a line
 representing the bacteria remaining at the
 origin. The plug at the left end of the
 tube is not represented.
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 It is clear from these data that the
 first band of bacteria travels along con
 suming all the oxygen to oxidize a part
 of the galactose, while the second band
 uses all the residual galactose anaerobi-
 cally. When the first band reaches the
 end of the column of liquid, it begins
 to use up the galactose there (see Fig.
 6, 8 hours), and a portion of the bac-

 teria then retreats (as shown in Figs.
 3 and 4) to consume the unused galac-
 tose anaerioWbically. Bacteria that remain
 where they were placed at the start of
 the experiment are no longer motile,

 , , ,
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 Fig. 5. Utilization of oxygen by bands of
 bacteria in 2.5 X 10-4M g?lactose. Oxygen
 was measured polarographically by insert-
 ing an oxygen needle electrode (10) into
 the capillary tube in 4-mm steps when the
 first and second bands were visible where
 shown by the arrows.

 Heterogeneity Excluded

 It is possible to take out separately the
 first band, the second band, and the'
 material left at the origin, and then im-
 mediately to use each of these over
 again in fresh tubes. (Actually, to get
 enough bacteria the first bands- were
 pooled from 12 tubes, the second bands
 from 35 tubes, and'the material at the
 origin from l 2 tubes. ) The result in
 each of the three cases is the same as

 the original result: each component
 forms two bands, and some bacteria re-
 main at the origin. Single colony iso-
 lates also form two bands and leave
 residual bacteria at the origin. It may
 be concluded that how a bacterium
 behaves depends on where it finds itself
 when first placed into the tube, rather
 than on physiological or genetic hetero-
 geneity among the bacteria.

 Use o£ Oxygen and Galactose

 The experiments described so far and
 those to be discussed next were carried:
 out with a solution containing 2.5 X
 10-4 moles of galactose per liter. The
 galactose is present in excess over the
 oxygen, since the concentration of oxy-
 gen in water saturated with air at 37°C
 is about 2.0 X 1 0-4 mole per liter
 and it' takes six \ molecules of oxygen
 to fully oxidize a molecule of galac-
 tose.

 The amount of oxygen remaining
 throughout the tube after the bands
 appeared was measured by insert-
 ing a polarographic needle electrode
 ( l 0 ) into the capillary tube. Figure 5
 shows that the first band consumes 'all
 or nearly all the oxygen and that the
 second band is in an anaerobic environ-
 ment.

 The amount of galactose remaining
 throughout the tube was measured by
 using Cl4-galactose, dividing the tube
 into compartments, removing and chro-
 matographing the contents of each com-

 partment, and measuring the amount
 of radioactivity in the region of the
 chromatogram corresponding to galac-
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 Fig. 3. Bands of bacteria shown by tracings
 from a recording microdensitometer. The
 tube, containing 2.5 X 10-4M galactose,
 was incubated at 37°C for 3.5 hours and
 then kept at room temperature for mea-
 surements (9). The times indicate hours
 from the start of the experiment. From
 right to left may be seen a vertical line
 representing the edge of the plug at the
 right end of the tube, then the first band,
 then the second band, and at the left a line
 representing the bacteria remaining at the
 origin. The plug at the left end of the
 tube is not represented.
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Figure 3: Motion of the two bands and quantification of their position as a function of time.
The second band propagates more slowly (Adler, 1966a). Note that the velocity of the
fronts is quite constant in time until they hit the end of the capillary.
 .::. -

 Figs. 14 and 15. Fig. 14 (left). Three rings of Escherichia coli in a tryptone-agar plate after 5 hours of incubation at 37°C. About
 108motile cells were deposited at the center of a plate containing Difco tryptone (10 g/liter), sodium chloride (5 g/liter) and
 agar (2 g/liter). [Photograph by John L. Tschernitz] Fig. 15 (right). A suspension of motile Escherichia coli deposited at
 two places on the surface of a tryptone-agar plate swarms out in rings that stop when they meet. [Photograph by John L. Tschernitz]

 all the residual serine anaerobically

 (see 8).

 Motile cells of E. coli deposited on

 a trytone, 0.2-percent agar plate swarm

 out in three (or sometimes more)

 rings (Fig. 14). Time-lapse movies,

 taken by J. L. Tschernitz, show that

 each ring originates from the deposit

 and remains intact as it moves over the

 plate. The amino acids of casein are

 the major constituents of tryptone.

 Amino acids labeled with carbon-14

 were added one at a time to a tryptone

 agar plate, and remaining labeled amino

 acid was then determined after chro-

 matography of samples taken from be-

 hind each ring.

 The first ring consumes all ( >99

 percent) of the serine. It also uses 90

 to 95 percent of the oxygen. The sec-

 ond ring, which is restricted to the top

 of the agar where oxygen is available,

 consumes 90 percent of the aspartic

 acid, an amino acid that can be used

 only aerobically. (Perhaps the remain-
 ing 10 percent is unavailable at the

 bottom of the agar plate, where condi-
 tions are anaerobic.) The third ring

 uses all (>99 percent) of the threo-
 nine. This ring occurs at the bottom

 of the agar; presumably a pathway that

 allows anaerobic use of threonine has

 been induced under these anaerobic
 conditions. The other five oxidizable

 amino acids were not used, or were

 used at most to the extent of 15 per-

 714

 cent of the supply, by any of the three

 rings. (Asparagine and glutamine are

 heat-labile and therefore would not be

 present in this autoclaved medium.)

 Just as these bacteria prefer glucose

 over galactose, so is there an order of

 preference among the amino acids. The

 mechanism by which this preference is
 expressed has not been studied here.

 The presence of one energy source

 somehow prevents the use of another,

 as has been found in the well-known

 diauxie phenomena.

 When bacteria are deposited at two

 places on a tryptone-agar plate (Fig.

 15), the corresponding rings from each

 deposit stop when they meet, presum-

 ably because the particular amino acid

 involved has been exhausted in the

 area already traversed by each ring.

 Meehanism of Chemotaxis

 In the studies reported here, the

 bacteria create a gradient of oxygen

 or of an energy source, and then they

 move preferentially in the direction of

 the higher concentration of the chem-
 ical.

 How does a chemical influence the

 swimming of the bacteria-to make them

 move toward the chemical, or away

 from it? By the end of the l9th century

 Engelmann, Pfeffer, Rothert, Jennings,

 and others had discovered the "avoiding

 reaction" (or "shock reaction") in bac-

 teria (1-3). The avoiding reaction may

 be described as follows. Imagine a gra-
 dient between a low and a higher con-

 centration of oxygen. A bacterium that

 happens to swim from the higher into

 the lower concentration suddenly stops

 or becomes apparently uncoordinated

 for an instant or jumps back, and then

 it goes off in a new, randomly chosen

 direction; in some species that can swim

 equally well forward or backward, the

 organism stops and then swims away in

 the reverse direction. If the new direc-

 tion takes the bacterium further into

 the region of low oxygen concentration,

 the avoiding reaction is repeated, but
 if a higher concentration is encountered

 the bacterium continues to swim in the

 new direction. The net result is that

 the Ibacteria accumulate in the region

 of higher concentration. (Actually, very

 high concentrations are also avoided.)

 This taxis by avoidance of an unfavor-

 able concentration is known as "phobo-

 taxis" (2, 3, 12). More complex cells

 and organisms, for example certain

 sperm, algae, and animals, show another

 kind of taxis known as "topotaxis" (2,

 12-). In that case the organisms orient

 themselves in the direction of the source

 of stimulation and then move directly

 toward or away from,the stimulus.

 The very jerky motion of the bacteria

 in the bands studied here suggests that

 E. coli carries out the avoiding reaction

 SCIENCE, VOL. 1S3
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Figure 4: E. coli bacteria deposited in the center of an agar plate swarm out forming rings,
which annihilate when they collide (Adler, 1966a).

What are individual bacteria doing in these bands and in chemical gradients?

• the ‘avoiding reaction’ was already observed by the end of the 19th century (Engel-
mann, Pfeffer, Rothert, Jennings, cf. Fig.1)

– when a bacterium enters a low concentration region it stops suddenly, ‘looks
disoriented’, and continues swimming in some new direction: the motion of the
bacterium consists of ‘runs’ and ‘tumbles’

– in some species that can swim forward and backward the bacteria reverse di-
rection if they enter a low-concentration region

8
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• by avoiding the low concentration regions the bacteria eventually accumulate in the
regions with higher concentration

– there are also species that avoid high concentrations and accumulate at low
concentrations

– extremely high concentrations are often avoided as well.

Figure 5: E. coli swimming. a) During swimming all three flagella are interwined when
they are rotating counter-clockwise (CCW). b) When the flagella rotate clockwise (CW),
they become disordered and the bacterium tumbles. Dashed line indicates body of the
bacterium, which was not marked. For video see Canvas or the online version of the
paper (Mears et al., 2014)

Note:

• Since in biology many aspects (genetics, metabolism) are conserved across very
different species and chemosensation is a very old sense, Adler proposes that the
nervous system and the behavior of higher organisms may have evolved from chem-
ical reactions operating in the ‘most primitive living things’ (Adler, 1966a).

Modeling questions:

• What long-time dynamics results from run-and-tumble? How to describe the dynam-
ics of a population of such bacteria?

• What are limits for the sensing capabilities of very small organisms like bacteria?

• How can a bacterium sense a chemical gradient

– the observation of run-and-tumble suggests that it may not need to sense the
gradient itself; sensing the concentration as such may be enough, if its motion
takes it to locations with different concentrations, which it then compares.

9
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– but: does it tumble all the time when the overall concentration is low and run all
the time when the concentration is high? How does it then effectively compare
two different high concentrations or two low concentrations?

10
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1.2 Modeling Chemotactic Motion 5

Based on the run-and-tumble observation, Keller and Segel developed a continuum model
for the concentration of a population of bacteria.

Bacteria move by propelling themselves forward with flagella; depending on species, the
flagella pull or push the bacterium.

Assume

• during a run the bacterium moves a fixed distance

• between runs the bacteria tumble, i.e. the new direction of motion after the tumbling
is not correlated with the direction before the tumbling

• the average frequency of runs depends on the concentration at the leading edge of
the bacterium (could instead also use the trailing edge), i.e. the receptor sensing the
chemical is at the leading (or trailing) end

• the concentration does not change a lot over distances corresponding to a single
run.

Figure 6: Bacteria of size α∆ with sensors at their leading edge running a distance ∆.

For simplicity, consider only motion in 1 dimension

• during each run a bacterium moves a distance ±∆

• because of the tumbles the probability for motion to the right is equal to that to the
left

5(Keller and Segel, 1971a)
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• the bacterium has an effective size of α∆, i.e. the sensors of right- and left-moving
bacteria at a given location are a distance α∆ apart.

We want an equation for the evolution of the density of bacteria b(x).

Consider the flux J(x) through the location x during a short time interval ∆t. This time
interval could be the typical time between tumbles and in each time step half of the popu-
lation would be oriented to the left and half to the right. The flux is considered positive if
the motion is to the right.

• if the average frequency of a run is f then the probability of a run for a given bac-
terium during the time interval ∆t is given by f∆t. The fraction of the population
doing a run is then f∆t.

• all bacteria at a location s within [x−∆, x] that move to the right will pass the location
x during this step; their frequency depends on the concentration at s + 1

2
α∆, where

s is their location within that interal.

• all bacteria at a location s within [x, x+ ∆] that move to the left will pass the location
x during this step; their frequency depends on the concentration at s− 1

2
α∆.

The total number of bacteria passing through the point x during the time interval ∆t is then

J(x)∆t =

ˆ x

x−∆

f

(
c(s+

1

2
α∆)

)
∆t b(s) ds−

ˆ x+∆

x

f

(
c(s− 1

2
α∆)

)
∆t b(s) ds

Since the run size ∆ is small compared to the lengths over which the concentrations
changes, we can expand in ∆

ˆ x

x−∆

f

(
c(s+

1

2
α∆)

)
b(s) ds =

ˆ x

x−∆

f (c(s)) + f ′ (c(s)) c′(s)
1

2
α∆︸ ︷︷ ︸

f ′(c(x))c′(x) 1
2
α∆+O(∆2)

+O(∆2)

 b(s) ds

where f ′(c) = df(c)
dc

and c′(x) = dc(x)
dx

. Expand also

f (c(s)) = f (c(x)) + (s− x)f ′(c(x))c′(x) +O
(
(s− x)2

)
b(s) = b(x) + (s− x)b′(x) +O

(
(s− x)2

)
Then
ˆ x

x−∆

f (c(s)) b(s)ds =

ˆ x

x−∆

f (c(x)) b(x) + (s− x) [f ′(c(x))c′(x)b(x) + f(c(x))b′(x)] +O
(
(s− x)2

)
ds

= f (c(x)) b(x) ∆ + [f ′(c(x))c′(x)b(x) + f(c(x))b′(x)]
1

2
(s− x)2

∣∣x
x−∆︸ ︷︷ ︸

− 1
2

∆2

+O
(
∆3
)
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Analogously

ˆ x+∆

x

f

(
c(s− 1

2
α∆)

)
b(s) ds =

ˆ x+∆

x

f (c(s))− f ′ (c(s)) c′(s)
1

2
α∆︸ ︷︷ ︸

f ′(c(x))c′(x) 1
2
α∆+O(∆2)

+O(∆2)

 b(s) ds

with
ˆ x+∆

x

f (c(s)) b(s)ds =

ˆ x+∆

x

f (c(x)) b(x) + (s− x) (f ′(c(x))c′(x)b(x) + f(c(x))b′(x)) +O
(
(s− x)2

)
ds

= f (c(x)) b(x) ∆ + [f ′(c(x))c′(x)b(x) + f(c(x))b′(x)]
1

2
(s− x)2

∣∣x+∆

x︸ ︷︷ ︸
1
2

∆2

+O
(
∆3
)

Combined

J(x) = − [f ′ (c(x)) c′(x)b(x) + f(c(x))b′(x)] ∆2 + f ′ (c(x)) c′(x)α∆2b(x) +O
(
∆3
)

= −{f ′ (c(x)) c′(x)b(x) (1− α) + f(c(x))b′(x)}∆2

= −µ db
dx

+ χb
dc

dx

with

µ(c) = f(c)∆2

χ(c) = (α− 1) f ′(c)∆2 = (α− 1)µ′(c)

To get an evolution equation for the density we use conservation of bacteria in a little
’volume’ [x− dx, x+ dx] around x

2dx
∂b

∂t
= J(x− dx)− J(x+ dx) = −2

∂J

∂x
dx+O(dx2)

Thus
∂b

∂t
= − ∂

∂x

(
−µ ∂b

∂x
+ χb

∂c

∂x

)
(1)

Notes:

• µ is called the motility coefficient. It is always positive.

• With f(c) being the average frequency of steps, ∆t ≡ 1
f(c)

is the average time betwen
steps

µ =
∆2

∆t

Thus, if f is independent of concentration we get

∂b

∂t
= µ

∂2b

∂x2
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i.e., the bacteria move in a diffusive manner: they perform a random walk (Adler and
Dahl, 1967).
Consider random steps with equal probability ±∆

〈x〉 =

〈
N∑
i=1

∆i

〉
=

N∑
i=1

〈∆i〉 = 0

〈
x2
〉

=

〈(
N∑
i=1

∆i

)(
N∑
j=1

∆j

)〉
=

〈
N∑
i=1

N∑
j=1

∆i∆j

〉
=︸︷︷︸

uncorrelated

N∑
i=1

〈
∆2
i

〉
= N∆2

If each step takes a time ∆t, the motility (diffusion) coefficient µ is the increase in the
variance of the position per time step.

• χ is called the chemotactic coefficient.

The chemotactic coefficient can have either sign

χ ≷ 0 bacteria move towards higher/lower values of the concentration

It depends on f ′(c) and on α.

• α = 0: the bacterium is extremely small χ = −µ′ = −f ′∆2

χ > 0 if the average frequency of steps f decreases with concentration, i.e. the bac-
teria are less likely to leave the higher concentration than the lower concentration.
This is the run-and-tumble situation, in which the bacteria do not measure instanta-
neous concentration differences.

• α < 1: the sign of χ is opposite to that of f ′ (as in the case of α = 0)
consider the bacteria at the mean position in the left interval

f

(
c

(
x− 1

2
∆ +

1

2
α∆

))
= f

(
c

(
x+

1

2
(α− 1) ∆

))
For α < 1 the frequency for motion to the right depends on the concentration to the
left of x and the frequency for motion to the left on the concentration to the right of x
→ for the bacteria to move predominantly to the right if the concentration is higher
there, one needs f ′(c) < 0 to have them be more likely to do a run on the left than
on the right.

• α > 1: the runs are shorter than the size of the bacteria: to get χ > 0 one needs now
f ′(c) > 0.
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Simple Explicit Model

Bacteria are small and their sensors are even smaller: they can only measure the concen-
tration in a very small volume, which contains only few molecules of the sensed chemical
⇒ the measured concentrations ξ fluctuate strongly. But the bacterium has to base its
motion on these fluctuating values. Consider a simple stochastic model.

Assume that f(ξ) has only two values

f(ξ) =

{
k for ξ > Q

k
(
1− k̄

)
for ξ ≤ Q

with k̄ ≤ 1.

For k̄ > 0 the frequency increases with increasing concentration ⇒ expect χ > 0 only for
α > 1.

For c = 〈ξ〉 the average number of steps taken is then

f̄(c) = k
{

1 · P (ξ > Q) + (1− k̄)P (ξ ≤ Q)
}

= k
{

1− k̄P(ξ ≤ Q)
}
.

With the probability distribution of ξ given by F (ξ; c) we have then

µ = ∆2f̄(c) = ∆2k

{
1− k̄

ˆ Q

0

F (ξ; c) dξ

}
Limiting cases can be recognized already for any reasonable distribution F (ξ; c)

c→ 0: almost always ξ < Q
µ→ ∆2k

(
1− k̄

)
c→∞: almost never ξ < Q

µ→ ∆2k

Note:

• If k̄ > 0, the motility is larger for large concentrations than for low concentrations.

Assume a Poisson distribution6 with mean N̄ for the number N of molecules in the mea-
surement volume V , i.e. at any given time there is a fixed probability that a molecule

6One could also take a binomial distribution with p the probability for the molecules to be in the measure-
ment volume. In the limit p � 1 with the mean number N̄ = pN of molecules inside V fixed (i.e. for very
large total number N of molecules) the binomial distribution becomes a Poisson distribution.

P (N ;N ) =

(
N
N

)
pN (1− p)N−N =

=
N !

N !(N −N)!

(
N̄

N

)N (
1− N̄

N

)N−N
=

=︸︷︷︸
N→∞

1

N !

N (N − 1) . . . (N −N + 1)

NN︸ ︷︷ ︸
→1

N̄N

(
1− N̄

N

)N
︸ ︷︷ ︸
→e−µ

(
1− N̄

N

)−N
︸ ︷︷ ︸

→1

=
1

N !
N̄Ne−N̄ .
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arrives (and then leaves) in V . The arrival times of different molecules are thus assumed
to be independent of each other.

P (N ; N̄) =
1

N !
N̄Ne−N̄ N = ξV N̄ = cV.

Transforming from ξ to N
ˆ
F (ξ; c)dξ =

ˆ
P (N ; N̄)dN →

∑
N

P (N ; N̄)

µ = ∆2k

{
1− k̄

N∗∑
N=0

1

N !
(cV )N e−cV

}
with N∗ = QV . For χ we need µ′(c)

µ′(c) = −∆2kk̄


N∗∑
N=1

1

N !
N (cV )N−1 V︸ ︷︷ ︸

1
(N−1)!

cN−1V N

e−cV +
N∗∑
N=0

1

N !
(cV )N (−V )︸ ︷︷ ︸
− 1
N !
cNV N+1

e−cV


= −∆2kk̄e−cV

{
N∗−1∑
N=0

1

N !
cNV N+1 −

N∗∑
N=0

1

N !
cNV N+1

}
= ∆2kk̄e−cV

1

N∗!
V (cV )N

∗

For large enough N∗ approximate the factorial with Stirling’s formula

lnN ! ≈ N lnN −N +
1

2
ln (2πN) ⇒ N ! ≈ NNe−N (2πN)

1
2 = (2πN)

1
2

(
N

e

)N
Together this yields

χ ≈ (α− 1) ∆2kk̄V
1√

2πN∗
e−cV

(
cV e

N∗

)N∗
Thus

χ→ 0 for c→ 0

χ→ 0 for c→∞
Maximal chemotaxis obtained for

0 =
d

dc

(
e−cV cN

∗)
=

(
−V +N∗

1

c

)
cN
∗
e−cV ⇒ c =

N∗

V

Notes:

• For large and for small concentrations this model yields very poor chemotaxis.
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• Optimal sensitivity is obtained for concentrations close to the threshold Q for switch-
ing.

• Expect quite generally that the motility reaches a plateau for large concentration ⇒
chemotaxis will be weak at high concentrations in any system for which χ ∝ µ′.

• The functionality could be increased if the threshold Q depended on the overall con-
centration in recent history, i.e. if the system adapted to the current environment.

This model:

• the chemotactic coefficient is proportional to the concentration-dependence of the
motility

χ ∝ dµ

dc
.

• the step size is fixed and only the frequency depends on the concentration.

Keller and Segel also investigate a model in which the frequency is fixed, but the step size
depends on concentration. Then one gets a different chemotactic coefficient, but it still
satisfies (cf. Homework problem)

χ ∝ dµ

dc
.

In terms of the biochemical mechanism controling the motion these two systems are most
likely very different, but they still lead to similar results.

However, when both, the step size and the frequency, depend on concentration, χ is not
proportional to µ′ any more; an additional cross-term arises (essentially a straightforward
extension of the homework problem).

⇒ experimental comparisons of µ and χ would be able to provide insight into the mecha-
nism.

1.3 Modeling Wave Propagation7

Having a model for the chemotactic motion of a population of bacteria, how can the for-
mation of propagating bands in Adler’s experiments be understood?

Key element:

• The bacteria consume food (glucose, galactose, amino acids) and in the aerobic
case also oxygen.

Note:

• In general chemotaxis is not based on a metabolic signal, the signaling molecules
are not used metabolically (i.e. they are not ‘eaten’).

7(Keller and Segel, 1971b)
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 visible after 20 minutes. (These early

 time points are not shown in the fig-
 ures.-) Figures 3 and 4 show that when
 the first band reaches the top, part of
 it remains there and part o f it retreats.
 This retreating fraction eventually fuses
 with the second band, and the fused
 bands then disappear.
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 Fig. 4. Rate of movement of bands of
 bacteria. The concentration of galactose
 was 2.5 X 10-4 mole per liter. At 6 hours
 the first band has reached the end of the
 column of liquid. The location of bands
 in this and all later experiments was mea-
 sured with a ruler.

 tose. Figure 6 shows that the first band
 uses a part of the galactose, and the
 second band uses all (or at least 99 per-
 cent) of the rest.

 It is clear from these data that the
 first band of bacteria travels along con
 suming all the oxygen to oxidize a part
 of the galactose, while the second band
 uses all the residual galactose anaerobi-
 cally. When the first band reaches the
 end of the column of liquid, it begins
 to use up the galactose there (see Fig.
 6, 8 hours), and a portion of the bac-

 teria then retreats (as shown in Figs.
 3 and 4) to consume the unused galac-
 tose anaerioWbically. Bacteria that remain
 where they were placed at the start of
 the experiment are no longer motile,
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 Fig. 5. Utilization of oxygen by bands of
 bacteria in 2.5 X 10-4M g?lactose. Oxygen
 was measured polarographically by insert-
 ing an oxygen needle electrode (10) into
 the capillary tube in 4-mm steps when the
 first and second bands were visible where
 shown by the arrows.

 Heterogeneity Excluded

 It is possible to take out separately the
 first band, the second band, and the'
 material left at the origin, and then im-
 mediately to use each of these over
 again in fresh tubes. (Actually, to get
 enough bacteria the first bands- were
 pooled from 12 tubes, the second bands
 from 35 tubes, and'the material at the
 origin from l 2 tubes. ) The result in
 each of the three cases is the same as

 the original result: each component
 forms two bands, and some bacteria re-
 main at the origin. Single colony iso-
 lates also form two bands and leave
 residual bacteria at the origin. It may
 be concluded that how a bacterium
 behaves depends on where it finds itself
 when first placed into the tube, rather
 than on physiological or genetic hetero-
 geneity among the bacteria.

 Use o£ Oxygen and Galactose

 The experiments described so far and
 those to be discussed next were carried:
 out with a solution containing 2.5 X
 10-4 moles of galactose per liter. The
 galactose is present in excess over the
 oxygen, since the concentration of oxy-
 gen in water saturated with air at 37°C
 is about 2.0 X 1 0-4 mole per liter
 and it' takes six \ molecules of oxygen
 to fully oxidize a molecule of galac-
 tose.

 The amount of oxygen remaining
 throughout the tube after the bands
 appeared was measured by insert-
 ing a polarographic needle electrode
 ( l 0 ) into the capillary tube. Figure 5
 shows that the first band consumes 'all
 or nearly all the oxygen and that the
 second band is in an anaerobic environ-
 ment.

 The amount of galactose remaining
 throughout the tube was measured by
 using Cl4-galactose, dividing the tube
 into compartments, removing and chro-
 matographing the contents of each com-

 partment, and measuring the amount
 of radioactivity in the region of the
 chromatogram corresponding to galac-

 SCIENCE, VOL. 153

 '4 )\ arrw

 3s5 Hours

 4 7 Hours

 5,8 Hours

 . 0
 6.3 Hours

 1 A X
 7 3 Hours

 Fig. 3. Bands of bacteria shown by tracings
 from a recording microdensitometer. The
 tube, containing 2.5 X 10-4M galactose,
 was incubated at 37°C for 3.5 hours and
 then kept at room temperature for mea-
 surements (9). The times indicate hours
 from the start of the experiment. From
 right to left may be seen a vertical line
 representing the edge of the plug at the
 right end of the tube, then the first band,
 then the second band, and at the left a line
 representing the bacteria remaining at the
 origin. The plug at the left end of the
 tube is not represented.
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 Varying the Amounts of

 GaIactose and Oxygen

 When the concentration of galactose
 was varied systematically, results were
 obtained that are shown in Fig. 9. At
 about 1 X 10-4M galactose only one
 band forms. One would predict that
 the S'equivalence point" at which neither
 galactose nor oxygen is present in ex-
 cess would occur at this concentration
 and that therefore only one band would
 form which would consume all the oxy-
 gen and all the galactose as it travels
 along. This prediction takes into ac-
 count that only about half the galactose
 would be oxidized and the rest would
 serve as the source of carbon for the

 .

 synthesis of cellular material.
 As the galactose concentration is in-

 creased above 1 X 10-4 mole per
 liter, the second band travels less and
 less far in 4 hours. This is interpreted to
 mean that the band does not move
 ahead until it has used all or nearly
 all the galactose, and the more galac-
 tose there is present the longer it will
 take the band to use it. At the highest
 concentrations of galactose the second
 band does not form at all, because more
 galactose is present than can be used
 up in the time allowed; a microscopic
 examination of the tube shows that the
 bacteria everywhere are motile, so the
 failure to form a secondYband cannot
 be ascribed to lack of motility. The dis-
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 Fig. 6. Utilization of 2.5 X 10-tM galactose. The tubes contained Cl4-galactose (2.5
 X 10-4 mole/liter and 1 X lOff counts per minute per milliliter). At 4 or 8 hours,
 when the first and second bands were visible where shown by the arrows, the tube
 was fractionated into ten compartments, each 8 mm long, as in Fig. 2. The contents
 of each compartment were chromatographed on paper with n-butanol acetic acid and
 water ( 12: 3: 5 ) as the solvent and the radioactivity in the galactose region of the
 chromatogram was measured in a paper-strip counter.

 because they are left without any galac-
 tose as energy source and their endo-
 genous energy source is not available
 anaerobically (7).

 Experiments were also carried out
 with 5.0 X 10-5M galactose, a conceni
 tration which is lower than that of the
 dissolved oxygen. Figure 7 shows that
 under these conditions the first band
 uses a part of the oxygen and the second
 band uses all the rest, and Fig. 8 shows

 that the first band consumes all the ga-
 lactose while the second band is oper
 ating in the absence of galactose. These
 data show that when oxygen exceeds
 galactose the first band of bacteria
 aerobically consumes all the galactose
 as it travels along and leaves behind
 unused oxygen; the second band con-
 sumes all the residual oxygen to oxidize
 an endogenous energy source known
 (7) to be present.
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 Figs. 7 and 8. Fig. 7 (left). Utilization of oxygen by bands of bacteria in 5.0 X 10-51W galactose. Measurements were made as in
 Fig. 5. Fig. 8 (right). Utilization of 5.0 X 10-5M galactose. The tube contained Cl4-galactose (5 0 X 10-5 mole/liter and
 2 X 10S counts Eser minute per milliliter). At 4 75 hours when the first and second band-s were visible where shown by the arrows
 the tube was fractionated and chromatographed as described in Fig. 6.
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Figure 7: As the bacterial wave propagates they consume oxygen and galactose (Adler,
1966a)

Extend the equation for the chemotactic motion

• introduce an equation for the food s (‘substrate’)

• assume the substrate itself provides the information for the chemotaxis

∂b

∂t
=

∂

∂x

[
µ(s)

∂b

∂x

]
− ∂

∂x

[
χ(s) b

∂s

∂x

]
(2)

∂s

∂t
= −K(s) b+D

∂2s

∂x2
(3)

Notes:

• The size of the bacteria population is constant:
the equation has the form

∂b

∂t
=

∂

∂x
J

therefore
d

dt

ˆ
bdx =

ˆ
J dx = J |boundaries

For no-flux conditions no bacteria leave or enter the domain.

• Food consumption:

– For low food concentrations the decay should be proportional to s since the
chance of a bacterium to find the food molecules would be proportional to their
density and the decay of s would be exponential.
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– For high food concentrations the food consumption could be limited by the ability
of the bacteria to absorb or metabolize it and K could go to a constant,

K(s)→ k

which would lead to a linear decay (for constant b).

CHEMOTAXIS IN ESCHERICHIA COLI

The amount of serine remaining throughout the
tube was measured by using C14-serine together
with the 19 other amino acids unlabeled, divid-
ing the tube into 10 compartments after the
bands had appeared, chromatographing the con-
tents of each compartment, and measuring the
amount of radioactivity in the region correspond-
ing to serine.

Figure 8 shows that indeed the second band
consumed all the serine as it traveled along.
In contrast, a separate experiment with C14-
alanine together with the 19 other amino acids
unlabeled showed that the second band used no
detectable amounts of alanine, an amino acid
that can be utilized only aerobically by this strain
of E. coli. The first band used only a small part
of the serine (see Fig. 8) or of the alanine; this is
expected, since the concentration of serine or
alanine is much greater than the concentration of
oxygen.

Effect of varying the concentration of serine.
The effect that varying the concentration of serine
has on the migration of the two bands is shown
in Fig. 9, where the location of the bands at 2
hr is plotted. The second band traveled less far
as the concentration of serine was increased.
This is interpreted to mean that the band does
not move on until it has consumed most or all
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FIG. 7. Comparison ofaerobic and anaerobic utiliza-
tion of serine and alanine. The medium used is the one
described under Materials and Methods forfilling capil-
lary tubes, and contained C'4-serine (2.5 X 10-4 M
and 2.5 X 105 counts per min per ml) or C54-alanine
(10-4 m and 2.5 X 105 counts per min per ml) and
Escherichia coli (107 per ml). A 4-ml amount of the
medium in a test tube was treated with a stream ofeithler
air or nitrogen, and at various times 0.01 ml was chro-
matographed to determine remaining C14-labeled serine
or alamine, as described in Materials and Methods.
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FIG. 8. Utilizationi of serine. The tubes contained
C'4-serine (2.5 X 10-3 M and 2 X 106 counts per min
per ml) and a mixture of the other 19 amino acids un-
labeled, each at approximately 2 X 10-3 m. At 2.5
and 3.5 hr, when the bands were visible where shown by
the arrows, the tubes were fractionated into 10 com-
partments, and remaining C'4-serine in each fraction
was determined after chromatography as described in
Materials and Methods.

the serine, and it will take the band longer to
consume the serine when more of it is present.
At the highest concentrations of serine, the second
band did not form at all in the time allowed,
presumably because more serine was present
than could be used during this time.
The figure shows that the first band still formed

at high concentrations of serine, and above
10-3 M the distance it traveled was independent
of the serine concentration. This is taken to mean
that the rate of utilization of oxygen by the first
band is independent of the concentrations of
serine above 10-3 M.

In the absence of any serine, the second band
was eliminated, but the first band still formed
(Fig. 9). (The two bands can be readily distin-
guished by their characteristic shapes; see Fig. 2
and 4.) This supports the conclusion that the
second band uses serine, whereas the first band
can use other amino acids as well.

Effect of varying the concentration of oxygen.
The effect that varying the concentration of
oxygen has on the migration of the two bands is
shown in Fig. 10, where the location of the bands
at 2 hr has been plotted. The first band traveled
less far as the concentration of oxygen was
increased. This is interpreted to mean that the
band uses up all or most of the oxygen before
it moves ahead, and the higher the concentration
of oxygen, the longer it will take the bacteria to
consume it. Actually, the magnitude of the effect
is larger than the figure seems to show, because
at the higher concentrations of oxygen the number
of bacteria in the first band was much greater,
and this speeded up the band by increasing the
rate of oxygen consumption.
The figure shows that the second band was

not slowed down by increasing the concentration
of oxygen. This would be expected for a band
that does not use oxygen. Actually, the second
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Figure 8: The experiments show linear rather than exponential decrease in food concen-
tration (Adler, 1966b).

• Motility: in the absence of reliable data (when that paper was written), it is reasonable
to assume that the motility of the bacteria is constant,

µ = const.

While the dependence of the run frequency on the concentration is key for chemo-
tactic response, the dependence of the diffusion coefficient on the concentration may
amount to a higher-order effect.

• Substrate diffusion: the motility is significantly larger than diffusion coefficients for
typical substrates⇒ for simplicity set

D = 0

• Chemotactic coefficient: in the simple model discussed in Sec.1.2 assuming con-
stant motility µ would imply χ = 0. When step size and step frequency are both
concentration dependent, other relations between µ and χ are possible. Consider
such a more general case.
Assuming

χ(x) ∝ sα

Keller and Segel show that within the model (2,3) with such a simple dependence
on s no steadily propagating waves can be found unless α ≤ −1, i.e. χ becomes
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singular for small s.
They argue that the chemotactic flux

1

s

∂s

∂x

would then be consistent with the Weber-Fechner law of psychophysics, which ex-
presses the observation that in many situations the sensation of a stimulus depends
on the relative rather than the absolute change in that stimulus.
Therefore they assume

χ(s) = δ
1

s
.

In general, (2,3) need boundary conditions at both ends of the system (i.e. the tube). For
closed ends these conditions would be Neumann conditions at both sides

∂s

∂x
= 0 =

∂b

∂x

The tube is thin, i.e. its aspect ratio is large⇒

• consider the tube to be infinitely long

• we can assume that the bands are propagating with a constant speed (cf. Fig.3).

Traveling-wave ansatz

b(x, t) = b(ξ) s(x, t) = s(ξ) with ξ = x− ct

with the yet unknown wave speed c. Then (2,3) become, using also the simplification
D = 0,

−cdb
dξ

= µ
d2b

dξ2
− d

dξ

[
δ

1

s
b
ds

dξ

]
(4)

−cds
dξ

= −kb (5)

Now the differential equation in s is only first order and we can only apply a single boundary
condition for s. The equation for b is still second order and needs 2 boundary conditions.
Where and what?

As the wave propagates the bacteria eat the food and the state behind the wave depends
on the wave and cannot be imposed from outside. In contrast, the conditions ahead of the
bands can be imposed:

• Ahead of the front the food concentration is still the initial concentration,

s→ s∞ for ξ → +∞ (6)

• Ahead of the front there are no bacteria and therefore also their gradient vanishes,

b→ 0
db

dξ
→ 0 for ξ → +∞. (7)
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In (4) b and s have the same highest derivative⇒ possibly there is an algebraic connection
between them. In contrast, solving first (5) would lead to the antiderivative of b. Therefore
consider first (4). It can be integrated once directly

cb = −µdb
dξ

+ δ
1

s

ds

dξ
b+ C

Using the boundary condition (7) yields C = 0,

db

dξ
+

1

µ

(
c− δ d

dξ
ln s

)
b = 0

e
c
µ
ξ− δ

µ
ln sb = C0

b = C0e
− c
µ
ξ (s (ξ))

δ
µ (8)

Inserted into (5) for s we get
ds

dξ
=
k

c
C0e

− c
µ
ξs(ξ)

δ
µ

ˆ
ds

s
δ
µ︸ ︷︷ ︸

1

1− δµ
s
1− δµ

=
k

c
C0
µ

c
e−

c
µ
ξ + C1

s =

[
k

c2
(µ− δ)C0e

− c
µ
ξ + Ĉ1

] µ
µ−δ

What about C0? It defines the origin of ξ

C0e
− c
µ
ξ = e−

c
µ

(ξ−ξ0) with C0 = e
c
µ
ξ0

Using the boundary condition (6)

s(ξ) =

[
k

c2
(µ− δ) e− c

µ
(ξ−ξ0) + s

µ−δ
µ
∞

] µ
µ−δ

.

We can now insert s(ξ) into the expression (8) to get b(ξ).

It looks as if s could diverge for ξ → −∞. If the exponential dominates we have for µ > δ

s(ξ) ∼
(
e−

c
µ
ξ
) µ
µ−δ

= e−
c

µ−δ ξ →∞ for ξ → −∞.

For s to be bounded, we therefore need

δ > µ.

In that case
s(ξ)→ 0 for ξ → −∞

b(ξ) ∼ e−
c
µ
ξ
(
e−

c
µ−δ ξ

) δ
µ

= e−
cµ

µ(µ−δ) ξ → 0 for ξ → −∞.

Thus, within the model, as the band propagates into the fresh medium
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• the bacteria consume all of the food

• no bacteria are ‘left behind’.

Now we have a solution, but still do not know the wave speed c. How do we get that?
What information have we not used yet?

We have used the initial substrate concentration. However, the total size of the bacteria
population, which is constant in time, has not entered the equations yet. Integate (5) over
the whole domain, ˆ ∞

−∞
b dx =

c

k
(s(+∞)− s(−∞)) =

c

k
s∞

This equation determines the wave speed c.

Notes:

• The model therefore predicts that the wave speed grows (linearly) with the total pop-
ulation size and decreases with the concentration of the food. Not clear whether
these predictions have been tested.

• To check whether ignoring the diffusion of s is justified we need to look at D d2s
dξ2
/kb.

From the solutions one can show with some algebra that this ratio is proportional to
D/µ, i.e. it can be ignored if the diffusion is weak compared to the motility.

The model captures the traveling bands if χ(s) ∝ s−1. How does this compare with exper-
iments? The flux of bacteria is given by

J(x) = −µ ∂b
∂x

+ b χ(s)
∂s

∂x
= −µ ∂b

∂x
+ b

∂

∂x
ln s

Subsequent experiments with well-controled profiles s(x) show

• For a linear concentration profile the bacteria pile up on the ramp ⇒ the flux of
bacteria is not x-independent
⇒ χ must depend on s

• For an exponential concentration profile the bacterial flux is quite close to x-independent:
the pile-up occurs at the end of the ramp.

© 1972 Nature Publishing Group

© 1972 Nature Publishing Group

Figure 9: a) For a linear profile of s(x) the bacteria pile up on the ramp. b) For an expo-
nential profile the bacteria concentration is quite constant on the ramp. (Dahlquis et al.,
1972)
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• The accumulation at the end of the ramp grows linearly in time, giving a measure of
the flux along the ramp.

• The flux depends on the overall concentration (as measured by the plateau concen-
tration)⇒ dependence of χ(s) on s is modulated in addition by s.

© 1972 Nature Publishing Group
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concentration was varied in jumps of 3.16-fold to give nonoverlapping con-
centration intervals. It can be seen that taxis toward a-methylaspartate oc-
curred between 3 X 10 - 7 M and about 10- ' M with a maximum response
at about 10- 4 M. (Note that for sensitivity curves the geometric mean of
the two limiting concentrations, in the capillary and in the bacterial suspen-
sion, is plotted on a logarithmic scale on the abscissa.)

To obtain sensitivity curves for the sugars, it was necessary to go to 100-
fold concentration differences between the capillary and the bacterial sus-
pension because the responses to 3-fold or even 30-fold differences were too
close to the blank values (the accumulations in the absence of attractant)
to be accurately measured. As can be seen in Fig. 2, taxis occurred between
10- g M and 3 X 10-5 M for galactose, between 10- M and 10-4 M for
glycerol galactoside, and between 10-6 M and 10-2 M for fucose. The maxi-
mum responses to the three sugars occurred at the following concentrations:

0 A1.0 GLYCEROL

5 A\ GALACTOSIDE
X 0

FUCOSE

6 5

<_ z

c-

0 I
1 0-7 - 6 0-5 I0 -4 10- 3 10-2 10-1 o-9 10-8 i0- 7 10-6 l05 - 0;4 03 1O-

GEOMETRIC MEAN MOLARITY GEOMETRIC MEAN MOLARITY

FIGURE I FIGURE 2

FIGURE 1. Sensitivity curve for taxis towards ac-methylaspartate. The concentration of
attractant in the capillary was 3.16 times higher than the concentration of attractant in
the bacterial suspension; the geometric mean (square root of the product) of these two
limiting concentrations is plotted on the abscissa. The number of bacteria (E. coli strain
AW518) accumulating in the capillary after 1 h at 30°C is plotted on the ordinate. The
number of bacteria accumulating in the absence of attractant (4,700) has been sub-
tracted from each point.
FIGURE 2. Sensitivity curves for taxis toward galactose (e-e), glycerol galactoside
(----), and fucose (---). The concentration of attractant in the capillary was
100 times the concentration in the bacterial suspension; the geometric mean (square
root of the product) of these two limiting concentrations is plotted on the abscissa. The
number of bacteria (E. coli strain 20SOK-) accumulating in the capillary after 1 h at
300C is plotted on the ordinate. The number of bacteria accumulating in the absence
of attractant (8,000 for the experiment with galactose, 16,200 for that with glycerol
galactoside, and 17,400 for that with fucose) has been subtracted from each point.

Figure 10: a) The flux along the exponential ramp depends on the overall concentration
(Dahlquis et al., 1972). b) For fixed concentration ratio (inside vs outside of capillary)
the accumulation of bacteria in the capillary is maximal at intermediate concentrations
(Mesibov et al., 1973).

Lapidus and Schiller (Lapidus and Schiller, 1976) introduce a sensitivity function instead
of δ

J = b δ̂
∂

∂x

s

s+ k
= b δ̂

ks

(s+ k)2

∂

∂x
ln s δ = δ̂

ks

(s+ k)2 (9)

and compare with the experiments in (Dahlquis et al., 1972).

saturates at high concentrations. The evidence strongly suggests that we write the
chemotactic current in the form

Jc = bbV [s/(s + k)] = bv, (2)

where the local chemotactic velocity v is given by

v = 6Vf = 6[ks/(s + k)2] V(ln s). (3)

6 is positive for attractants and negative for repellents.
The function

f = s/(s + k) (4)
is an S-shaped function on a logarithmic scale and k is a constant. Our current is
similar to that of Keller and Segel, except that we replace their constant 6 with the
sensitivity function b(s) = bks/(s + k)2. A plot of a as a function of s is given in
Fig. 1.
The local chemotactic speed is proportional to a with the maximum centered at

s = k. This response sensitivity presumably reflects underlying molecular and ionic
processes linking membrane receptor detection of the attractant molecules to the ulti-
mate mechanical forces responsible for the cell's motility. In the Ordal-Adler model
(12), k has a unique value as the dissociation constant for the attractant-receptor
molecular interaction.

Finally, we complete this section by writing our chemotactic equation in full:

0.2

0
ODI 0.1 1.0 10 100 -10 -5 0 5 l0 is 20

s/k x(mm)

FIGURE I FIGURE 2

FIGURE I Plot of 6(s)/6 = ks/(s + k)2 as a function ofs/k.
FIGURE 2 Plots of several fixed gradients of chemotactic attractant. (a) Exponential gradient:
s(x)/so = I (x < 0), s(x) = so exp (-x/l) (x > 0). (b) Step gradient: s(x) = sO (x < 0), s(x) = 0
(x > 0). (c) Step gradient approximated by Fermi function: s(x) = so[exp (x/l) + II-1.
(d) Ramp gradient: s(x) = so (x < 0), s(x) = so (I - 2 x/l) (O < x < 1/2), s(x) = 0 (x > 1/2).

I. R. LAPIDUS AND R. SCHILLER Modelfor Chemotactic Response ofBacteria 781

ab/dt = AV2b - 6Vf.Vb - 6V2]b.

In the remainder of this paper we compare our solutions of Eq. 5 for different at-
tractant concentration gradients to the experimental results of DLK and MOA. We
also discuss various methods for determining the values of the parameters ', 6, and k.
We briefly outline the experimental basis of our choice of chemotactic current, Eq. 2,
and suggest additional experiments to verify the validity of Eq. 5.

RESULTS

In general, the integration of Eq. 5 by analytic methods is not possible. However,
solutions may be determined directly by numerical techniques. We have obtained the
space-time development of the bacterial density distribution in several of DLK's one-
dimensional attractant concentration gradients. They are described analytically below
and illustrated in Fig. 2.

Exponential gradient:

Step gradient:

s(x) = s.(x < 0); = s0exp(-x/l)

s(X) = SI(x < ° ); =2 (;

Step gradient approximated by a Fermi function:

b(X,t)

(x > 0).

x > 0).

5 10 IS 20 -10 -5 0 5
x (mm) x (mm)

FIGURE 3 FIGURE 4

FIGURE 3 Distribution of bacteria in an exponential gradient as a function of time with P =

0.33 mm2/min, 6 = 14.0 mm2/min, and k = 0.6 x 10-3 M.
FIGURE 4 Distribution of bacteria in a step gradient (approximated by a Fermi function) as a
function of time.
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(6)

(7)

b (X,t)
bo

20

(5)

782

Figure 11: a) Sensitivity function δ of (9). b) Simulations with exponential gradients. During
early times (up t = 10min) the concentration is quite constant on the exponential ramp
(Lapidus and Schiller, 1976).
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FIGURE 7 Plot of the number of bacteria which have migrated into the central region as a func-
tion of time for the exponential gradient. For early times the plot is linear in agreement with ex-
periment. The vertical scale is arbitrary.
FIGURE 8 Plot of < v> as a function of s0/k in Eq. 13 (solid line). Computed sensitivity curves
at 5 min (dotted line) and 60 min (dashed line) are shown with the experimental data of DLK
(dark circles).

We have also calculated from the solutions to Eq. 5 the sensitivity curve for V de-
fined by Eq. 9. The sensitivity is actually a slowly varying function of time, since for
long times the chemotactic flow is balanced by the diffusion current. As shown in
Fig. 8, there is good agreement between this exact prediction of the theory at 5 min and
60 min and the approximate form for v assumed in Eq. 12. This agreement justifies
both our neglect of diffusional flow during the early period of bacterial movement into
the central region as well as our assumption that v is an average chemotactic speed in
the gradient region.

In our Fig. 8, we have also reproduced the results of DLK's sensitivity experiment
(their Fig. 8). Their data is in reasonable agreement with our predictions at medium
and high concentrations but disagree at low concentrations.
The sensitivity experiment distinguishes the model presented here from the Keller-
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FIGURE 7 Plot of the number of bacteria which have migrated into the central region as a func-
tion of time for the exponential gradient. For early times the plot is linear in agreement with ex-
periment. The vertical scale is arbitrary.
FIGURE 8 Plot of < v> as a function of s0/k in Eq. 13 (solid line). Computed sensitivity curves
at 5 min (dotted line) and 60 min (dashed line) are shown with the experimental data of DLK
(dark circles).
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Figure 12: a) Linear growth of the accumulation in the simulation of (Lapidus and Schiller,
1976). b) Dependence of the simulated flux on the concentration in the exponential ramp
configuration agrees qualitatively with experiments (solid circles) (Lapidus and Schiller,
1976).

1.4 Sensing the Chemoattractant8

How does the bacterium know which way to go? It seems that it needs to measure spatial
concentration gradients. How well can it measure concentrations in the first place? To
measure concentrations one has to count the number of molecules at the sensor. That
number fluctuates. What kind of limits does this set (Berg and Purcell, 1977)?

Consider a chemosensor that counts the number of molecules n in a small volume of size
a3. On average, that will be

〈n〉 = c a3.

At any given moment in time the number of molecules is likely to deviate from 〈n〉, the
measurement is noisy. We expect the standard deviation σ in the measurements to be of
order

√
〈n〉. Why?

Consider the small measurement volume to be part of a large volume V that contains
N molecules of the chemoattractant. Assume that at any given time each molecule has
equal probability

p =
a3

V
to be in the measurement volume. If these molecules are independent of each other, then
the probability to have exactly n molecules in the measurement volume is given by the
binomial distribution

P (n;N) =

(
N
n

)
pnqN−n with q = 1− p.

8worthwhile video by H. Berg: https://www.youtube.com/watch?v=ioA1yuIA-t8
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Then

〈n〉 =
N∑
n=0

n

(
N
n

)
pnqn−n = p

∂

∂p

N∑
n=0

(
N
n

)
pnqN−n = p

∂

∂p
(p+ q)N = pN =

a3

V
cV = c a3

as expected.

The variance is then given by

σ2 = 〈n2〉 − 〈n〉2 = p
∂

∂p

(
p
∂

∂p

N∑
n=0

(
N
n

)
pnqN−n

)
− (pN)2 =

= p
∂

∂p

(
p
∂

∂p
(p+ q)N

)
− (pN)2 =

= p
∂

∂p

(
Np(p+ q)N−1

)
− (pN)2 =

= pN(p+ q)N−1 +Np2(n− 1)(p+ q)N−2 − (pN)2 =

= pN − p2N = Npq

The relative error in the measurement of the concentration is therefore

δc

c
=

σ

〈n〉 =

√
Npq

pN
=
√
q

1√
pN

=
√
q

1√
〈n〉

∼︸︷︷︸
a3�V q→1

1√
〈n〉

=
1√
ca3

.

For small measurement volumes the relative error is therefore quite large.

To improve the measurement, the bacterium could measure K times.

Central Limit Theorem:
If {x1, x2, . . . , xK} are K independent and identically distributed random variables drawn
from a distribution with expected value µ and finite variance σ2, then

1

K

K∑
i=1

xi − µ
d︷︸︸︷→ N

(
0,
σ2

K

)
,

i.e. the sample means converge to µ and they are normally distributed with a variance σ2

N
.

But: the molecules enter and leave the measurement volume by local diffusion⇒ it takes
some time for the number of molecules in a3 to change. The distributions will be correlated
for some correlation time τc . By dimensional analysis we expect

τc =
a2

D

with D being the diffusion coefficient.

If the bacterium averages the measurements over a time τavg, it can only take K = τavg
τc

independent measurements

δc

c

∣∣∣∣
τavg

=
1√
K

1√
ca3

=

√
τc
τavg

1√
ca3

=
1√

Dacτavg
.
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To resolve a relative concentration difference δc
c

the bacteria has to measure for a duration
of

τavg =
1

Da c

( c
δc

)2

.

Could a bacterium sense the concentration difference across its body reliably within a
reasonable time?9 Consider the experiment of Fig.10, which uses concentration gradients
that are well above the sensitivity of the bacterium.

• Absolute concentrations in (Dahlquis et al., 1972) for which the bacteria still reliably
perform chemotaxis are as low as 10−6M

c ∼ 10−6Mol ∼ 10−6 × 6 · 1023 1

103cm3
= 6 · 1014 1

cm3

• Size of the bacterium
a ∼ 1µm = 10−4cm

• Diffusion of the chemoattractant

D ∼ 10−5 cm2

s

• Relative concentration difference across the bacterium (in the experiment of Dahlquis
et al. (1972) the concentration goes from essentially 0 to its full value in about 1cm)

δc

c
=

1

c

dc

dx
a ∼ 1

cm
10−4 cm = 10−4

To resolve such a gradient at this low concentration the bacterium would have to measure
for a duration of

τavg ∼
1

10−510−46 · 1014

(
104
)2 s cm3

cm2 cm
∼ 103 s ∼ 20 minutes

This time is way too long; the bacterium needs to decide faster than that to ever get to
its food. Only at the optimal concentration of 10−3M (Fig.10) the bacterium could get a
sufficiently accurate measurement within 1 second.

To increase the precision or reduce the sampling time for a given concentration the bac-
terium can

• increase the receptor size
limited by the size of the bacterium

• increase the diffusion coefficient
the bacterium cannot really change the diffusion coefficient. One could imagine that
it could stir up the fluid and enhance the exchange that way.

Thus
9Web site to find numbers relevant in biology: http://bionumbers.hms.harvard.edu/default.aspx
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• The method that bacteria use for chemotaxis cannot rely on spatial gradients across
their body.

• This limitation reflects the discrete nature of the chemoattractant molecules and the
small size of the bacterium, which limits the receptor size as well as the distance
across which differences would have to be measured. Improving the sensor quality
will not overcome this limitation.

To be exposed to larger difference in concentration the bacteria can swim around:

• with a swimming velocity of 10− 20µm/s they can cover 10− 20µm within 1 second,
which increases the concentration difference by a factor of 10-20. Even for the very
low concentration of 10−6M the required time for averaging is then of the order

τavg/102 . . . τavg/202 ∼ 2 . . . 10 s

which is closer to a reasonable range.

So, what do bacteria do?

© 1972 Nature Publishing Group

Figure 13: Three-dimensional trajectories of E. coli bacteria in a homogeneous solution.
a) Chemotactic wildtype. b) Non-chemotactic mutant (Berg and Brown, 1972).

Even for spatially homogeneous concentrations of the chemoattractant the chemotatic
bacteria perform run-and-tumble motion with the direction of the runs changing randomly
during the tumbles. The non-chemotactic mutants tumble only very rarely and perform
mostly runs.

The durations of the runs and of the tumbles are exponentially distributed, i.e. they follow
a Poisson statistics, implying that at any given time during the run (tumble) there is a finite
probability that the run (tumble) stops.
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© 1972 Nature Publishing Group

Figure 14: Runs and tumbles satisfy Poisson statistics. The plot on the bottom shows the
data from the graph on the top on a logarithmic scale. Cumulative distribution for tumbles
(curve a ) and runs (curve b) that are longer than the indicated duration (Berg and Brown,
1972).

In the presence of gradients (Berg and Brown, 1972)

• the mean duration of runs down the gradient is unchanged compared to that in ho-
mogeneous concentrations

• the mean duration of runs up the gradient is twice as as long
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© 1972 Nature Publishing Group

© 1972 Nature Publishing Group

© 1972 Nature Publishing Group

Figure 15: Run durations. a) Dependence on the concentration of the spatially homoge-
neous solution (scaled by the run length without chemoattractant). b) Cumulative distribu-
tions of run lengths in serine (top) and aspartate (bottom) experiments (a=control, b=down
the gradient, c=up the gradient). c) Quantitative comparison (Berg and Brown, 1972).

How do the runs and tumbles come about?

The bacteria are propelled by a bundle of flagella at one of the body that are rotated by a
molecular motor (cf. Fig.5).

• Counter-clockwise rotation:

– the flagella in the bundle align with each other and rotate together ⇒ strong
propelling force forward⇒ run

– attractants induce CCW rotation (Larsen et al., 1974)

• Clockwise rotation:
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– the flagella become disorganized and the bacterium performs random rotation
⇒ tumble.

– repellents induce CW rotation (Larsen et al., 1974)

Notes:

• With the run lengths being on the order of a few seconds the bacteria are operating
quite close to the limit imposed by the fluctuations in the concentration.

• The run lengths are also limited by the fact that the bacteria cannot swim perfectly
straight; their orientation fluctuates leading to rotational diffusion. Thus, after some
time the run may not go in the direction of increasing concentration any more. Then
the bacteria need to measure again.

• How can the motor so sensitively be switched between different directions of rota-
tion?

If the bacterium measures and compares concentrations by moving about, does it actually
compare concentrations in time?

Response to spatially homogeneous, temporally varying concentrations of an attractant
(Macnab and Koshland, 1972):

• Sudden strong increase ⇒ transient increase in runs. The velocities relax back to
the control within few minutes.

• Sudden strong decrease⇒ transient increase in tumbles. The velocities relax back
to the control values after ∼ 10s.

2510 Microbiology: Macnab and Koshland

Bottle A: minimal medium
[attractant ] rapid mixing device

(coiled wire double helix)

Bottle B: minimal medium
bacteria
[attractant ]

FIG. 1. Schematic illustration of temporal gradient apparatus.
Attractant concentrations are: (i) Bottle B, Ci ( 0) (ii) bottle
A, Ci' (>, = or <Ci) (iii) observation cell (as a result of stream
mixing) Cf (>, =, or <Ci). Bacteria experience Ci Cf, and
thus can be subjected to positive, zero, or negative temporal
gradients as desired. Gradient is given by AC/At, where AC = Cf
- Ci and At is mixing time.

effective mixing. Residence time in the mixing tube was about
0.2 sec, and observation commenced about 0.5 see after flow
was stopped. The observation cell consisted of microscope
cover slips or slides separated by lucite or Teflon spacers. Flow
was stopped by switching off the pump and closing the stop-
cock. Repeated observations could be made with one filling
of bottles A and B.

RESULTS
Control Experiments (Zero Gradient of Attractant). Three

types of control experiment have been done: (i) no attractant
in either stream, (ii) attractant (L-serine) at the same con-
centration in both streams, and (iii) nonattractant in the
bacterial stream (e.g., L-histidine at various initial concentra-
tions ranging from 10 nM to 1 mM). In all three cases, motility
after stoppage of flow was as follows: bacteria swam in
fairly straight lines; slight changes in their direction,
achieved by a twitching movement, occurred often; occasion-
ally a bacterium would tumble and then start swimming again
in a completely new direction. The overall impression was
one of coordinated motility that did not change over a long
period of observation, i.e., no relaxation process was observed.
This pattern is the same as that of bacteria, in a uniform
medium, that have not been subjected to the mixing process.
A stroboscopic multiple-exposure photograph of such a control
is shown in Fig. 2 (middle).
A minority (10-20%) of the population was either totally

nonmotile or had severely impaired motility. Such impaired
motility is observed in any bacterial population, although the
proportion may be somewhat higher in the present case as a
result of mechanical damage.

Positive Gradient of Attractant. In a typical experiment, L-
serine was present at 1 mM in the nonbacterial stream and was
absent from the bacterial stream. With a total flow rate of
about 2 ml min' contributed by the two streams in the ratio
3.2:1 the serine in the bacterial environment rose, in about
200 mnsec, from zero to 0.76 mM. The motility of the bacteria,
when flow was stopped, was much smoother and better-co-
ordinated than normal [Fig. 2 (upper)]. Gradually, the slight
aberrations in movement characteristic of normal motility
were restored, the interval for this relaxation process being as
long as 5 min for some concentration changes.

FIG. 2. Motility tracks of S. typhimurium, taken in the time
interval 2 - 7 see after subjection of bacteria to a sudden (200
msec) change in attractant (serine) concentration in the tem-
poral gradient apparatus. Upper: Ci = 0, Cf = 0.76 ml\1. Smooth,
linear trajectories. Middle: Ci = Cf = 0 (control). Some changes
in direction; bodies often show "wobble" as they travel. Bright
spots indicate tumbling or nonmotile bacteria. Lower: Ci = 1
mM, Cf = 0.24 mM. Poor coordination; frequent tumbles and
erratic changes in direction. (Photomicrographs were taken in
dark-field with a stroboscopic lamp operating at five pulses
sec'. Instantaneous velocity of bacteria in straight line tra-
jectories is of the order of 30 Ism sec'.)

Proc. Nat. Acad. Sci. USA 69 (1972)
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dark-field with a stroboscopic lamp operating at five pulses
sec'. Instantaneous velocity of bacteria in straight line tra-
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Proc. Nat. Acad. Sci. USA 69 (1972)

Figure 16: Trajectories of S. typhimurium after sudden large, spatially homogeneous
changes in the concentration of an attractant. a) A temporal increase in concentration
leads to more long runs. b) Constant concentration control. c) A decrease leads to in-
creased tumbling. (Macnab and Koshland, 1972)

More refined experiments with small, well-controled temporal gradients show (Brown and
Berg, 1974)

• for increasing concentrations
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– the mean length of runs depends on dc
dt

and c

– With the large jumps in (Macnab and Koshland, 1972) the transients could last
minutes, suggesting a long memory. The experiments with small changes sug-
gest the memory must be less than 100s (Brown and Berg, 1974).

• for decreasing concentrations there is little effect on the run length
 1390 Microbiology: Brown and Berg
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 FIG. 1. (a) The logarithms of the mean run lengths of E. coli
 (AW518) in positive temporal gradients as a function of the time
 after the addition of the enzyme. Each point was derived from
 the analysis of one bacterium. The bacteria were obtained from
 the same culture. Glutamate was generated in accord with Eq. 4
 with Ce = 3.1 mM and T = 213 sec. The solid curve is the function

 (lnr) = lnro + ao(dPb/dt), with lnro = -0.4 and a = 660 sec; see
 the text. (b) Data from control experiments in which the enzyme
 was omitted.

 C() = Ce[1 - exp(-t/T)], [4]

 and in the reverse reaction by

 C() = Ce[l + 5 exp(-t/T)], [5]

 where t is the time measured from the time of addition of the

 enzyme, Ce is the concentration of glutamate measured at
 equilibrium, and T is a decay time. Values of T accurate to

 within 5% were determined from linear fits to plots of lnl Ce
 - C(t)l versus t. The kinetics were the same when the reac-
 tions were run in suspensions of E. coli. Strain AW518 at an
 optical density of 0.01 (590 nm) changed the concentrations
 of the various substrates by at most 10-4 M/hr.

 TABLE 1. Relative goodness of fit of various functions (f) of C
 and dC/dt to values of Inr obtained in positive

 gradients of glutamate

 f o* Pt

 0 0.99 <<10-5

 C 0.99 <<10-5
 dC/dt 0.83 <10-3

 (dC/dt)/C 0.84 <10-4
 dPb/dtt 0.80 1

 The fits were made to data obtained in two experiments in
 which glutamate was generated in accord with Eq. 4 and in the
 corresponding controls in which the enzyme was omitted. The

 bacteria (E. coli strain AW518) were taken from the same culture.
 In the first experiment: initial concentration of alanine = 4 mM,
 initial concentration of 2-oxoglutarate = 4 mM, Ce = 1.8 mM, T
 = 184 sec, number of bacteria tracked in the gradient = 69; num-
 ber of bacteria tracked in the control = 26. In the second experi-
 ment (data shown in Fig. 1): initial concentration of alanine = 4
 mM, initial concentration of 2-oxoglutarate = 20 mM, Ce = 3.1
 mM, T = 213 sec, number of bacteria tracked in the gradient
 = 62; number of bacteria tracked in the control = 40. The two

 controls were indistinguishable. The fits given are for Eq. 7, i.e.,
 Eq. 2 with : = 1; no other fits of Eq. 2 or Eq. 3 with 0.25 < A <
 3.0 were significantly better, although some were equally good,
 e.g., Eq. 3 with 3 = 1. Eqs. 2 and 3 are equivalent when xf << 1.

 * The standard deviation of the values of lnr about (lnr).
 t The probability that the model in which (lnr) depends on f

 will describe the results of future experiments as well as one in
 which (lnrt) depends on dPb/dT.

 t The time rate of change of the fractional amount of chemore-
 ceptor bound, Eq. 6, with KD = 2 mM.

 Proc. Nat. Acad. Sci. USA 71 (1974)

 Response to Positive Gradients. The bacteria changed direc-
 tion less frequently in positive gradients. Results of a typical
 experiment with E. coli AW518 (7) are shown in Fig. 1. Runs
 were long when the concentration of glutamate changed
 rapidly (Fig. la; t < T) but were equal in length to runs in
 the control (Fig. lb) as the concentration approached its
 equilibrium value (t >> T). No changes in the lengths of runs
 were observed if the enzyme was omitted (Fig. lb), if the
 enzyme was added but alanine and/or 2-oxoglutarate were
 omitted, or if the experiment was run with the aspartate taxis
 mutant AW539 (7). Controls also were run with capillary
 assays: AW518 was not attracted to 2-oxoglutarate or to
 pyruvate; neither compound inhibited its attraction to glu-
 tamate.

 In order to determine the functional dependence of the
 mean value of lnr on C and dG/dt we fit various models to
 the data as described in Materials and Methods. Our major
 findings are summarized in Table 1. If glutamate and its
 receptor form a complex characterized by a dissociation con-
 stant KD (8), and the formation of this complex does not ap-
 preciably change C, then the time rate of change of the frac-
 tional amount of receptor (protein) bound is

 dPb/dt = [KD/(KD + C) 2 ]dC/dt [6]

 The best fits were obtained with equations which assumed a

 dependence of (lnr) on dPb/dt; the simplest was

 (lnr) = lnrT + a(dPb/dt), [7]

 where lnro and a are constants. KD and its standard devia-
 tion were estimated from this fit to be 2 ? 1.5 mM; if KD
 = 2 mM, the means and standard deviations of the other
 constants were lnro = -0.4 ? 0.1 and a = 660 ? 70 sec.
 Two other experiments with AW518 involving fewer cells
 gave values for a of 420 ? 140 sec and 1300 - 900 sec.

 The positive gradients did not affect the mean speeds of the
 bacteria, but they did reduce the fluctuations in the speeds
 during runs, the mean angular speed while running (6), the
 lengths of twiddles, and the changes in direction from run
 to run. All of these results are consistent with a model in
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 FIGc. 2. The results of sensitivity assays for taxis toward gluta-
 mate (-) and the theoretical curve KDC/(KD + C)2 fit by eye

 (solid line; KD = 2.3 mraM). The initial concentration of attractant
 in the capillary was 3.16 times that in the bacterial suspension;

 the geometric mean of the two concentrations is plotted on the

 abscissa. The number of bacteria (E. coli strain AW528) accumu-

 lating in the capillary after 1 hr at 32? is plotted on the ordinate.
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Figure 17: Dependence of mean run length on temporal gradient in the concentration.
a) The temporal gradient of glutamate was produced by an enzymatic reaction C(t) =
Ce
(
1− e−t/T

)
. Thus, the rate of change decreased exponentially with time. b) No temporal

gradient (no enzyme included) (Brown and Berg, 1974).

Aspects of the dependence can be understood in terms of a chemoreceptor protein P that
binds with the chemoattractant C to form a complex PC (Mesibov et al., 1973)

P + C

k1︷︸︸︷

︸︷︷︸
k2

PC

d[P ]

dt
= −k1[P ][C] + k2[PC]

If the reactions are fast compared to rate of change of the concentration one gets

[P ][C]

[PC]
=
k2

k1

≡ KD.

The total amount of the protein [Ptot], i.e. the sum of the protein bound in [PC] and the
unbound protein [P ], is constant,

[P ] = [Ptot]− [PC],
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yielding

KD =
([Ptot]− [PC]) [C]

[PC]
=

(
1− [PC]

[Ptot]

)
[C]

[PC]
[Ptot]

and
[PC]

[Ptot]
=

[C]

KD + [C]

The temporal gradient in [PC] is then

d

dt
[PC] =

KD

(KD + [C])2

d[C]

dt
.

Brown and Berg find the best and very good fit of their run length data for

〈ln τ〉 = ln τ0 + α
d[PC]

dt
, for

d[C]

dt
> 0.

Is this response to temporal gradients compatible with models that assume the response
depends on spatial gradients?
If the bacteria swim in a fixed spatial concentration gradient with fixed speed, the spatial
gradients translate into temporal gradients

d[C]

dx
= v

d[C]

dt
.

The motor of the bacteria seems to have only two states: running and tumbling ⇒ the
swimming speed is presumably quite fixed during a run, making such a substitution a
reasonable approximation. The sensitivity of the chemotaxis should then depend on

d

dx
[PC] =

KD

(KD + [C])2

d[C]

dx
=

KD [C]

(KD + [C])2

(
1

[C]

d[C]

dx

)
. (10)

In the experiments of Mesibov, Ordal, and Adler (Mesibov et al., 1973) (cf. Fig.10) on the
accumulation of bacteria in the capillary the concentration ratio between the solution and
the pipette was held constant as the overall concentration was changed, i.e. 1

[C]
d[C]
dx

was
held fixed. The resulting accumulation of bacteria is quite consistent with (10). Compare
also (10) with the sensitivity function (9) introduced by Lapidus and Schiller (Lapidus and
Schiller, 1976).
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 FIG. 1. (a) The logarithms of the mean run lengths of E. coli
 (AW518) in positive temporal gradients as a function of the time
 after the addition of the enzyme. Each point was derived from
 the analysis of one bacterium. The bacteria were obtained from
 the same culture. Glutamate was generated in accord with Eq. 4
 with Ce = 3.1 mM and T = 213 sec. The solid curve is the function

 (lnr) = lnro + ao(dPb/dt), with lnro = -0.4 and a = 660 sec; see
 the text. (b) Data from control experiments in which the enzyme
 was omitted.

 C() = Ce[1 - exp(-t/T)], [4]

 and in the reverse reaction by

 C() = Ce[l + 5 exp(-t/T)], [5]

 where t is the time measured from the time of addition of the

 enzyme, Ce is the concentration of glutamate measured at
 equilibrium, and T is a decay time. Values of T accurate to

 within 5% were determined from linear fits to plots of lnl Ce
 - C(t)l versus t. The kinetics were the same when the reac-
 tions were run in suspensions of E. coli. Strain AW518 at an
 optical density of 0.01 (590 nm) changed the concentrations
 of the various substrates by at most 10-4 M/hr.

 TABLE 1. Relative goodness of fit of various functions (f) of C
 and dC/dt to values of Inr obtained in positive

 gradients of glutamate

 f o* Pt

 0 0.99 <<10-5

 C 0.99 <<10-5
 dC/dt 0.83 <10-3

 (dC/dt)/C 0.84 <10-4
 dPb/dtt 0.80 1

 The fits were made to data obtained in two experiments in
 which glutamate was generated in accord with Eq. 4 and in the
 corresponding controls in which the enzyme was omitted. The

 bacteria (E. coli strain AW518) were taken from the same culture.
 In the first experiment: initial concentration of alanine = 4 mM,
 initial concentration of 2-oxoglutarate = 4 mM, Ce = 1.8 mM, T
 = 184 sec, number of bacteria tracked in the gradient = 69; num-
 ber of bacteria tracked in the control = 26. In the second experi-
 ment (data shown in Fig. 1): initial concentration of alanine = 4
 mM, initial concentration of 2-oxoglutarate = 20 mM, Ce = 3.1
 mM, T = 213 sec, number of bacteria tracked in the gradient
 = 62; number of bacteria tracked in the control = 40. The two

 controls were indistinguishable. The fits given are for Eq. 7, i.e.,
 Eq. 2 with : = 1; no other fits of Eq. 2 or Eq. 3 with 0.25 < A <
 3.0 were significantly better, although some were equally good,
 e.g., Eq. 3 with 3 = 1. Eqs. 2 and 3 are equivalent when xf << 1.

 * The standard deviation of the values of lnr about (lnr).
 t The probability that the model in which (lnr) depends on f

 will describe the results of future experiments as well as one in
 which (lnrt) depends on dPb/dT.

 t The time rate of change of the fractional amount of chemore-
 ceptor bound, Eq. 6, with KD = 2 mM.

 Proc. Nat. Acad. Sci. USA 71 (1974)

 Response to Positive Gradients. The bacteria changed direc-
 tion less frequently in positive gradients. Results of a typical
 experiment with E. coli AW518 (7) are shown in Fig. 1. Runs
 were long when the concentration of glutamate changed
 rapidly (Fig. la; t < T) but were equal in length to runs in
 the control (Fig. lb) as the concentration approached its
 equilibrium value (t >> T). No changes in the lengths of runs
 were observed if the enzyme was omitted (Fig. lb), if the
 enzyme was added but alanine and/or 2-oxoglutarate were
 omitted, or if the experiment was run with the aspartate taxis
 mutant AW539 (7). Controls also were run with capillary
 assays: AW518 was not attracted to 2-oxoglutarate or to
 pyruvate; neither compound inhibited its attraction to glu-
 tamate.

 In order to determine the functional dependence of the
 mean value of lnr on C and dG/dt we fit various models to
 the data as described in Materials and Methods. Our major
 findings are summarized in Table 1. If glutamate and its
 receptor form a complex characterized by a dissociation con-
 stant KD (8), and the formation of this complex does not ap-
 preciably change C, then the time rate of change of the frac-
 tional amount of receptor (protein) bound is

 dPb/dt = [KD/(KD + C) 2 ]dC/dt [6]

 The best fits were obtained with equations which assumed a

 dependence of (lnr) on dPb/dt; the simplest was

 (lnr) = lnrT + a(dPb/dt), [7]

 where lnro and a are constants. KD and its standard devia-
 tion were estimated from this fit to be 2 ? 1.5 mM; if KD
 = 2 mM, the means and standard deviations of the other
 constants were lnro = -0.4 ? 0.1 and a = 660 ? 70 sec.
 Two other experiments with AW518 involving fewer cells
 gave values for a of 420 ? 140 sec and 1300 - 900 sec.

 The positive gradients did not affect the mean speeds of the
 bacteria, but they did reduce the fluctuations in the speeds
 during runs, the mean angular speed while running (6), the
 lengths of twiddles, and the changes in direction from run
 to run. All of these results are consistent with a model in

 5

 o 4

 23

 6- l

 0 106 106 5 104 103 12 -1I

 Glutamate Concentration (M)

 FIGc. 2. The results of sensitivity assays for taxis toward gluta-
 mate (-) and the theoretical curve KDC/(KD + C)2 fit by eye

 (solid line; KD = 2.3 mraM). The initial concentration of attractant
 in the capillary was 3.16 times that in the bacterial suspension;

 the geometric mean of the two concentrations is plotted on the

 abscissa. The number of bacteria (E. coli strain AW528) accumu-

 lating in the capillary after 1 hr at 32? is plotted on the ordinate.
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Figure 18: Sensitivity: dependence of the chemotactic accumulation of bacteria in the
capillary on the concentration (cf. Fig.10). For all glutamate concentrations the initial
concentration in the capillary was 3.16 times larger than in the suspension. The curve is
a fit to KD[C]/(KD + [C])2. (Brown and Berg, 1974).

In fact, Segel considered a model in which the switching of directions depends on the rate
of change of the receptor response,

∂E+

∂t
+

∂

∂x

(
vE+

)︸ ︷︷ ︸
advection

= k−1C
+︸ ︷︷ ︸

dissociation

− k1sE
+︸ ︷︷ ︸

binding of substrate

+ σ−E−︸ ︷︷ ︸
left to right

− σ+E+︸ ︷︷ ︸
right to left

∂C+

∂t
+

∂

∂x

(
vC+

)
= −k−1C

+ + k1sE
+ + σ−C− − σ+C+

∂E−

∂t
− ∂

∂x

(
vE−

)
= k−1C

− − k1sE
− − σ−E− + σ+E+

∂C−

∂t
− ∂

∂x

(
vC−

)
= −k−1C

− + k1sE
− − σ−C− + σ+C+.

Here E± is the concentration of bacteria that swim to the right/left and that have a receptor
to which no substrate is bound. C± is the concentration of bacteria in which the substrate
is bound to the receptor. σ± gives the switching rate between right and left runs. Since
the run duration is found to depend on the rate of change of the concentration only if the
concentration increases, Segel takes - considering the case ∂s

∂x
> 0 - for the switching

rates σ±

σ+ = f

((
∂

∂t
+ v

∂

∂x

)
C+

E+ + C+

)
and σ− = f (0) .
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The concentration of the substrate is assumed to satisfy

∂c

∂t
= −k1s

(
E+ + E−

)
+ k−1

(
C+ + C−

)
− d+D

∂2c

∂x2
,

i.e. the substrate is bound by the receptor, is degraded through a reaction that is limited
by the availability of an enzyme (i.e. rates is independent of s) and diffuses. For this model
Segel derived the chemotactic equation (1),

∂b

∂t
= − ∂

∂x

(
−µ ∂b

∂x
+ χb

∂c

∂x

)
,

recovering the form of the previous Keller-Segel model.

Note:

• The change in swimming is only transient ⇒ the control of the flagellar motor must
show adaptation, i.e. when the concentration goes up the control system must be
adjusting itself to that new ‘normal’.

• Chemotaxis operates over a wide range of concentration: the dynamic range of the
adaptation must be large.

 1392 Microbiology: Brown and Berg

 nitude of the response depends (at least formally) on the time
 rate of change of the fractional amount of chemoreceptor
 bound (dPb/dt).

 The responses of individual bacteria in spatial gradients

 (6) can be explained fully by this mechanism. When a bac-
 terium swims up a spatial gradient, the fractional amount
 of chemoreceptor bound increases, and the runs are long;
 when it swims down the gradient, the fractional amount of
 chemoreceptor bound decreases, and the runs are about the
 same length as in isotropic solutions. The change which occurs
 when the bacterium swims up the gradient is roughly that
 predicted by Eq. 7.

 The response depends both on C and on dC/dt. When
 C << KD, dPb/dt is proportional to dC/dt; when C >> KD, it is
 proportional to (dC/dt)/C2; when C o KD it is proportional
 to (dC/dt)/C; see Eq. 6. If more than one receptor or more
 than one binding site is involved, the response may depend
 on (dC/dt)/C over a wider range of concentrations, but this
 dependence will break down when C is smaller than the small-
 est KD or larger than the largest KD.

 The dependence on C can account for the limited validity
 of the Weber-Fechner law noted by Dahlquist, Lovely, and
 Koshland (15). When a bacterium swims in a spatial gradient,
 dC/dt is proportional to dC/dx (the steepness of the gradient),
 and the rate of drift up the gradient depends on C and dC/dx
 in the same way that (lnr) depends on C and dC/dt. (This is
 true if the speeds of the bacteria are independent of C, if the
 drift velocity is small compared to these speeds, and if the
 changes in direction from run to run do not depend on the
 direction of the gradient, conditions which are met in practice,
 refs. 4, 6, and 15.) It follows from Eqs. 6 and 7 that the rate
 of drift up a gradient for which (dC/dx)/C is constant is not
 independent of C, as implied by the Weber-Fechner law (15),
 but varies as KDC/(KD + C)2. The drift velocities of Sal-
 monella up exponential gradients of serine varied with C in
 roughly this way (15).

 The temporal mechanism can explain the shapes of the
 sensitivity curves of Mesibov, Ordal and Adler (8). Since the
 ratio of the initial concentration of attractant in the capillary
 tube to that in the suspension is fixed, (dC/dr)/C (at a given
 distance r from the mouth of the capillary and at a given time
 after its insertion) is the same from one assay to another (11).
 If the number of bacteria swimming into the capillary in a
 given time is proportional to the drift velocity, it follows from
 the arguments given above that the sensitivity curve should
 vary as KDC/(KD + C)2. This dependence has been noted
 by Ordal and Adler (ref. 8, appendix).

 The mechanism by which the bacteria sense the time rate
 of change of the fractional amount of chemoreceptor bound
 is not known. Comparisons must be made at successive in-
 tervals in time (4), but there is nothing in our data to suggest
 that these intervals need be very long. If the memory time
 were much longer than the mean run length, the rate at which
 the bacteria could drift up a spatial gradient would be small

 (Fig. 3). On the other hand, if it were very short, the temporal

 Proc. Nat. Acad. Sci. USA 71 (1974)

 gradients sensed as a result of random fluctuations in the local
 concentration of attractant would be large. Since the response
 to positive and negative gradients is asymmetric, the run

 lengths would then depend on the mean concentration, even
 in isotropic solutions. Such a dependence has been observed
 only for substances sensed by the serine receptor (6).

 There are inconsistencies between our results and the re-

 sults obtained in mixing experiments (4) which may be ac-
 counted for on the basis of the difference in the size of the
 stimuli. The gradients in the enzyme experiments are several
 hundred times smaller than those in the mixing experiments.
 We do not observe a sizeable response in negative gradients;
 in the mixing experiments, the bacteria change direction more
 frequently, but the response is short-lived (12 sec, ref. 4).
 We find a dramatic increase in run length in positive gradients;
 this is also true in the mixing experiments, but the effect per-
 sists for a very long time (up to 300 sec, ref. 4). This time is
 too long to be a memory decay time (Fig. 3). Our finding that
 the magnitude of the response to a small positive jump may
 be as great initially ds that to a large positive jump, but that
 the effect persists for a shorter time, suggests that large stim-
 uli may saturate the sensing mechanism. The decay time for

 a small stimulus, for example, might depend on the rate at

 which an intermediate diffuses away from its site of action,
 whereas the recovery time for a large stimulus might depend
 on the rate at which a transport system pumps the intermedi-
 ate out of the cell. The fact that the model which fits our track-

 ing data also explains the results of sensitivity assays (in
 which the temporal gradient repeatedly changes sign, so that
 the average time rate of change in concentration is small)
 implies that saturation effects are not important in the enzyme
 experiments.

 The capillary assays were done by Susan MacFadden. This
 work was supported by a grant from the National Science Foun-
 dation (GB-30337).
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Figure 19: Side remark: it is not always clear how authorship for a paper was decided
(Brown and Berg, 1974).
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1.5 Robust Adaptation

Understanding chemotaxis in E. coli is important in itself. In addition, it provides an ex-
cellent model system to study signal transduction more generally; results obtained for the
chemosensory pathway E. coli are most likely also relevant in other animals and for other
senses.

Need facts first:10

• Motor control via CheY

– when it is phosphorylated by CheA, it makes the flagella motors turn clockwise,
which makes the bacterium tumble

– the phosphorylated state CheY-P is relatively stable on its own (O(10s)), which
is too long for the bacterium to tumble ⇒ it becomes dephosphorylated by
CheZ, which makes the tumbling periods less than 1s.

• Receptor complex

– consists of the receptor, CheW, and CheA

– binds the ligand (chemoattractant)

– can be in an active and an inactive state

∗ when it is in the active state the kinase CheA phosphorylates CheY

– has multiple methylation sites, i.e. sites at which CH3 can be added

∗ methylation is performed by CheR
∗ demethylation by CheB; it is enhanced if CheB is phosphorylated by CheA.

– the probability of the complex to be active

∗ decreases when a chemoattractant is bound to it
∗ increases with methylation

The methylation of the receptor complex provides a feedback loop, which reduces the
impact of the ligand on the activity level of CheA.

10Good video by H. Berg https://www.ibiology.org/biophysics/bacterial-motion/#part-2
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Receptor clustering and signal
processing in E. coli chemotaxis
Victor Sourjik

ZMBH, University of Heidelberg, Im Neuenheimer Feld 282, D-69120, Germany

Chemotaxis in Escherichia coli is one of the most
thoroughly studied model systems for signal transduc-
tion. Receptor–kinase complexes, organized in clusters at
the cell poles, sense chemoeffector stimuli and transmit
signals to flagellar motors by phosphorylation of a
diffusible response regulator protein. Despite the appar-
ent simplicityof thesignal transductionpathway, thehigh
sensitivity, wide dynamic range and integration of
multiple stimuli of this pathway remain unexplained.
Recent advances in computer modeling and in quantita-
tive experimental analysis suggest that cooperative
protein interactions in receptor clusters play a crucial
role in the signal processing during bacterial chemotaxis.

Motile chemotactic bacteria are able to move towards
higher concentrations of attractants and avoid higher
concentrations of repellents by sensing temporal changes
in chemoeffector concentrations. The swimming move-
ment of Escherichia coli (the best-studied model for
bacterial chemotaxis) consists of periods of smooth swim-
ming (or runs) interrupted by short re-orientations (or
tumbles), corresponding to counterclockwise (CCW) and
clockwise (CW) rotation of the flagellar motors, respec-
tively. The direction of swimming is chosen randomly, but

proceeding in a favourable direction suppresses tumbles,
resulting in longer runs [1].

Bacterial chemotaxis is an excellent system for quan-
titative analysis. Using behavioural, genetic, biochemical
and structural data, the signal transduction pathway
mediating E. coli chemotaxis has been extensively
characterized [2,3]. E. coli can sense a variety of amino
acids, sugars and dipeptides, as well as pH, temperature
and redox state. Major receptors, such as those for
aspartate (Tar) and serine (Tsr), are highly abundant
and number several thousand molecules per cell. Minor
receptors, such as those that are specific for dipeptides
(Tap), ribose and galactose (Trg), and redox potential
(Aer), are much less abundant, with only a few hundred
copies per cell [4].

As in many other signalling systems, signalling in
chemotaxis relies on protein phosphorylation. The key
enzyme in the pathway is a histidine kinase (CheA), the
activity of which is modulated by binding of chemoeffector
to receptors and by the level of receptor methylation
(Figure 1). Changes in receptor methylation levels result
in sensory adaptation, enabling the cell to detect further
changes in concentration as it swims in chemical gradi-
ents. Because the process of receptor modification is
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Figure 1. Signalling during chemotaxis of Escherichia coli. (a) Chemotaxis pathway. Changes in attractant or repellent concentrations are sensed by a protein assembly
consisting of transmembrane receptors, an adaptor protein CheW, and a histidine kinase CheA. Autophosphorylation activity of CheA is inhibited by attractant binding and
enhanced by repellent binding to receptors. The phosphoryl group is rapidly transferred from CheA to the response regulator CheY. Phosphorylated CheY (CheY-P) diffuses
to the flagellar motors and changes the direction of motor rotation from counterclockwise to clockwise to promote tumbles. CheZ phosphatase ensures a rapid turnover of
CheY-P, which is essential to quickly re-adjust bacterial behaviour. Adaptation in chemotaxis ismediated by two enzymes,methyltransferase CheR andmethylesterase CheB,
which add or removemethyl groups at four specific glutamyl residues on each receptormonomer. Receptormodification increases CheA activity and decreases sensitivity to
attractants. Feedback is provided by CheB phosphorylation through CheA that increases CheB activity. (b) The time course of a typical chemotactic response. Step-wise
addition of saturating amount of attractant results in an initial fast (less than 0.1 s) decrease in kinase activity that is followed by a slow CheR-dependent adaptation.
Adaptation time is proportional to the change in receptor occupancy. Removal of attractant upon adaptation results in an initial fast increase in kinase activity followed by
CheB-dependent adaptation.
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Figure 2. A schematic of the signal transduction pathway in E. coli. The trimer of
chemoreceptor homodimers spans the cytoplasmic membrane, with a ligand-binding domain
on the periplasmic side and a signaling domain on the cytoplasmic side. The cytoplasmic
signaling proteins, denoted Che in the text, are identified by single letters, e.g., A = CheA.
Proteins and reactions in red promote counterclockwise (CCW) rotation of flagella, and those
in blue promote clockwise (CW) rotation of flagella. Receptor methylation sites involved in
adaptation are shown as white (demethylated) and black (methylated) circles.

The cytoplasmic domain extends from the transmembrane domain and bends back via a “U” turn
(α5–α9 in Figure 3) [17]. This domain is highly conserved and the degree of sequence identity is
maximal in the “U” turn region and declines away from the center [18,19]. The cytoplasmic domain
consists of four primary functional regions: (1) histidine kinase, adenylyl cyclase, methyl-binding
proteins and phosphatase (HAMP) region (α5 in Figure 3); (2) adaptation region, including two helixes
(α6 and α9 in Figure 3); (3) flexible bundle region; and (4) signaling region (α7 and α8 in Figure 3). The
structure of the HAMP subdomain is proposed as two amphiphilic helices joined by a connector in the
monomer and a parallel, four-helix bundle in the dimer, which fits the role in converting ligand-binding
conformational changes into intracellular signaling [20,21]. The subdomains (2)–(4) in the homodimer
is a continuous four-α-helix, antiparallel coiled-coil containing two helixes from each monomer with a
hairpin turn at its membrane distal end [17]. The adaptation region of each monomer contains four or
more glutamyl residues, glutamate (E) or glutamine (Q), located midway along the coiled-coil (circles
shown in Figure 3), which can be modified by the methyltransferase CheR and the methylesterase
CheB [22–24]. These residues are spaced in heptad repeats along one face of each helix [25]. The
flexible bundle region contains a conserved glycine hinge consisting of six glycine residues in a plane
transecting the four-helix bundle in each monomer, which allows its long axis to bend 10◦ [26,27].

Figure 20: Sketch of the signal transduction pathway (Sourjik, 2004; Othmer et al., 2013)

Consider the reaction scheme of Fig.21 (Alon, 2007).

Figure 21: Reaction scheme of the model for fine-tuned adaptation(Alon, 2007).

The receptor complex X can be in 4 different states

• unmethylated without attractant X00: inactive

• unmethylated with attractant X0a: inactive

• methylated without attractant Xm0: strongly active a0

• methylated with attractant Xma: weakly active a1 < a0.

Reactions:

• Attractant binding

X00 + L

V +
L︷︸︸︷
�︸︷︷︸
V −L

X0a
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Xm0 + L

V +
L︷︸︸︷
�︸︷︷︸
V −L

Xma

For simplicity we take the ligand binding rates the same for the methylated and un-
methylated receptor.

• Methylation by CheR and demethylation by CheB

X00 + CH3

VRR︷︸︸︷
�︸︷︷︸
VB0B

Xm0

X0a + CH3

VRR︷︸︸︷
�︸︷︷︸
VBaB

Xma

The goal of the adaptation is for the activity in steady state to be independent of the
concentration L of the ligand (attractant),

A(L = 0) = A(L).

The activity change should change only transiently, when the attractant becomes bound
or unbound.

Only the pool of methylated receptors {Xm0, Xma} contributes to activity,

A = a0Xm0 + a1Xma.

When methylated receptors become bound to the attractant they become less active and
the overall activity of that pool decreases. To keep the overall activity the same, the pool
of methylated receptors needs to be increased⇒ the rate with which CheB demethylates
the receptor should be smaller when the attractant is bound than when it is not bound

VBa < VB0.

Evolution equations for the states without ligand (R and B are the concentrations of CheR
and CheB and L is the concentration of the ligand)

dX00

dt
= −VRR

X00

K0 +X00

+ VB0B
Xm0

K +Xm0

+ V −L X0a − V +
L X00L

dXm0

dt
= VRR

X00

K0 +X00

− VB0B
Xm0

K +Xm0

+ V −L Xma − V +
L Xm0L

Analogously, for the states with ligand

dX0a

dt
= −VRR

X0a

Ka +X0a

+ VBaB
Xma

K +Xma

− V −L X0a + V +
L X00L

dXma

dt
= VRR

X0a

Ka +X0a

− VBaB
Xma

K +Xma

− V −L Xma + V +
L Xm0L
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Since the total amount of receptor is constant,

X00 +Xm0 +X0a +XMa = const.,

we do not need to consider the equation for Xm0.

Consider only switching between two extreme situations:

• no attractant, L = 0, Xma → 0 and X0a → 0 since

d

dt
(X0a +Xma) = −V −L (X0a +Xma)

• large concentration of attractant so that Xm0 → 0 and X00 → 0

d

dt
(X00 +Xm0) = −V +

L L (X00 +Xm0) + V −L (X0a +Xma)

When switching from L = 0 to L large:

• initially only X00 and Xm0 are non-zero. Their relative size depends on VR and VB0B.

• immediately after switching they start to decay and feed into X0a and Xma. Because
the attractant binds rapidly, the total size of the pool {Xm0, Xma} of methylated recep-
tors stays the same, but the fraction of receptors bound to the attractant increases
⇒ the activity decreases. The balance between Xma and X0a is initially determined
by the balance of Xm0 and X00.

• on a longer time scale the slower methylation and demethylation processes kick in
⇒ the balance between Xma and X0a will change in factor of Xma, reflecting the
reduced demethylation rate VBa compared to VB0 ⇒ the size of the pool {Xm0, Xma}
increases and with it the activity recovers.

The experiments show that the methylation by CheR is saturated: X00 � K. For simplicity,
we take the Michaelis-Menten constants to be the same, K0 = Ka.

To compare the steady states before and after applying an attractant, it is then sufficient
to consider

VRR = VB0B
Xm0

K +Xm0

for L = 0

VRR = VBaB
Xma

K +Xma

for L 6= 0 large

This yields the steady-states

Xm0 =
KVRR

VB0B − VRR

Xma =
KVRR

VBaB − VRR
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For perfect adaptation
A(L = 0) = A(L)

one needs therefore
a0Xm0 = a1Xma

a0

VB0B − VRR
=

a1

VBaB − VRR
(11)

Notes:

• In order for adaptation to occur, the parameters of the system have to satisfy a very
specific condition. This would require that they be specifically tuned, which can be
achieved by tuning

– the methylation and demethylation rates VB0, VBa, or VR
– the concentrations R and B of CheR or CheB

Most likely, this balance would depend on the concentration of the attractant, which
in this simple consideration only took on two extreme values.

• Particularly in biological systems, such fine tuning would be a challenge. The con-
centrations of CheR and CheB are relatively small; they are therefore likely to fluctu-
ate quite strongly. For that reason this model is not very convincing, if the observed
adaptation is as precise as it is observed in bacterial chemotaxis .

Figure 22: Sensitivity of the adaptation to the tuning of the parameters in (11). a) Perfectly
tuned. b) When the CheR-level R is reduced by 20% perfect adaptation is missed by a
factor of 3 (Alon, 2007).

Consider instead the reaction scheme of Fig.23.
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Figure 23: Reaction scheme of a minimal version of the Barkai-Leibler model for robust
adaptation (Barkai and Leibler, 1997) as discussed in (Alon, 2007).

Only three states arise in this model

• inactive, unmethylated state X

• inactive, methylated state Xm

• active, methylated state X∗m. Since this is the only active state denote it by A.

Key elements

• The attractant can bind to the active and the inactive methylated states.

• The attractant shifts the balance between the two methylated states: with attractant
the reaction is more biased towards the inactive state.

• CheB demethylates only the active, but not the inactive state.

The methylation by CheR is again saturated, as in the fine-tuned adaptation model.

Consider the following, simplified model

dX

dt
= −VRR

X

X +KX

+ VBBA

dXm

dt
= VRR

X

X +KX

− k(L)Xm + k′(L)A

dA

dt
= k(L)Xm − VBBA− k′(L)A

Note:

• In general, the demethylation by CheB should be taken to be nonlinear (Michaelis-
Menten). The linearization is not necessary for the adaptation, but makes it easier
to analyze.

• The methylation by CheR is written as Michaelis-Menten reaction, although it is
known to be saturated. It would therefore be appropriate to consider the limit KX →
0. But to get insight into the mechanism it is useful to keep KX , but take it to be
small. The point is that the perfect adaptation requires the saturation.
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Assuming KX � X we can expand

dXm

dt
= VRR

1

1 + KX
X

− kXm + k′A ≈ VRR− kXm + k′A−KX
VRR

X
+O(K2

X)

Because the total receptor number is fixed, the equation for X need not be considered.
Instead write

X = Xt −Xm − A
It turns out to be useful to write equations in terms of A and Xmt ≡ Xm + A, the total
amount of methylated receptor,

dXmt

dt
= VRR− kXm + k′A−KX

VRR

X
+ kXm − VBB − k′A

= VRR− VBBA−KX
VRR

Xt −Xmt

+O(K2
X) (12)

dA

dt
= kXmt − (VBB + k + k′)A (13)

For the adaptation we are interested in the steady states.

For the completely saturated case KX = 0 one gets

dXmt

dt
= VRR− VBBA

dA

dt
= kXmt − (VBB + k + k′)A

yielding the fixed point

A =
VRR

VB B
Xmt,0 =

VBB + k + k′

k

VRR

VBB

Note:

• At this leading order

– the activity A is determined by the differential equation for Xmt not that for A.

– the activity A does not depend on the binding rates k and k′, which depend on
the concentration of the attractant⇒ the steady-state activity does not depend
on the attractant concentration in this limit, the adaptation is perfect.

– the steady-state activity does depend on the concentration of CheR and CheB
and can therefore vary across bacteria.

– the concentration Xm of the inactive methylated state does depend on the at-
tractant concentration.

– the time scale for the relaxation to the steady state does depend on parameters.
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To assess what happens when methylation is not completeley saturated, expand A in KX

A = A0 +KXA1 Xmt = Xmt,0 +KXXmt,1.

At O(K0
X) we recover the result above

O(KX):

−VBBA1 −
VRR

Xt −Xmt,0

= 0 A1 =
1

VBB

VRR

Xt −Xmt,0

Notes:

• Since Xmt,0 depends on the ligand concentration, the steady-state activity changes
with the attractant concentration when saturation is not complete: adaptation be-
comes imperfect.

Revisit (12,13) to leading order,

dXmt

dt
= a (Ast − A)

dA

dt
= kXmt − bA

The dynamics of Xmt determines the steady-state value of A: at the fixed point A = Ast
independent of all other parameters in the system. Xmt provides an integral feedback
control : it integrates up the deviation of A from the target value

Xmt = a

ˆ t

(Ast − A(t′)) dt′

Thus

• As long as A has not reached the target value, Xmt grows and provides ever stronger
feedback to A.

• The fixed point obtained by the control is stable for all positive values of a, k, and b.
The Jacobian is given by

L =

(
0 −a
k −b

)
with trL < 0 (⇒ no Hopf bifurcation) and detL > 0 (no steady bifurcation).

• Since the equation for Xmt does not depend on Xmt there is no scale for Xmt. There-
fore Xmt can take on any value and can provide arbitrarily large drive to A.
Once the differential equation for Xmt does depend also on Xmt, as is the case if the
saturation of CheR is not perfect, there is a characteristic value for Xmt and its ability
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to integrate the error signal and with it its ability to shift A towards Ast is limited.
E.g. look at evolution of Xmt (12) for small Xmt

dXmt

dt
= VRR− VBBA−KX

VRR

Xt −Xmt

+O(K2
X)

= VRR− VBBA−KX
VRR

Xt

−KX
VRR

Xt

Xmt

Xt

+O(X2
mt, K

2
X)

Thus, there is a term that pushes Xmt towards 0, limiting its ability to drive A.
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Cells use complex networks of interacting molecular components
to transfer and process information. These ‘‘computational
devices of living cells’’1 are responsible for many important
cellular processes, including cell-cycle regulation and signal
transduction. Here we address the issue of the sensitivity of the
networks to variations in their biochemical parameters. We
propose a mechanism for robust adaptation in simple signal
transduction networks. We show that this mechanism applies in
particular to bacterial chemotaxis2–7. This is demonstrated within
a quantitative model which explains, in a unified way, many
aspects of chemotaxis, including proper responses to chemical
gradients8–12. The adaptation property10,13–16 is a consequence of
the network’s connectivity and does not require the ‘fine-tuning’
of parameters. We argue that the key properties of biochemical
networks should be robust in order to ensure their proper
functioning.

Cellular biochemical networks are highly interconnected: a per-
turbation in reaction rates or molecular concentrations may affect
numerous cellular processes. The complexity of biochemical net-
works raises the question of the stability of their functioning. One
possibility is that to achieve an appropriate function, the reaction
rate constants and the enzymatic concentrations of a network need
to be chosen in a very precise manner, and any deviation from the
‘fine-tuned’ values will ruin the network’s performance. Another

possibility is that the key properties of biochemical networks are
robust; that is, they are relatively insensitive to the precise values of
biochemical parameters. Here we explore the issue of robustness of
one of the simplest and best-known signal transduction networks: a
biochemical network responsible for bacterial chemotaxis. Bacteria
such as Escherichia coli are able to sense (temporal) gradients of
chemical ligands in their vicinity2. The movement of a swimming
bacterium is composed of a series of ‘smooth runs’, interrupted by
events of ‘tumbling’, in which a new direction for the next run is
chosen randomly. By modifying the tumbling frequency, a bac-
terium is able to direct its motion either towards attractants or away
from repellents. Awell established feature of chemoxis is its property
of adaptation10,13–16: the steady-state tumbling frequency in a
homogeneous ligand environment is insensitive to the value of
ligand concentration. This property allows bacteria to maintain
their sensitivity to chemical gradients over a wide range of attractant
or repellent concentrations.

The different proteins that are involved in chemotactic response
have been characterized in great detail, and much is known about
the interactions between them (Fig. 1a). In particular, the receptors
that sense chemotactic ligands are reversibly methylated. Biochem-
ical data indicate that methylation is responsible for the adaptation
property: changes in methylation of the receptor can compensate
for the effect of ligand on tumbling frequency. Theoretical models
proposed in the past assumed that the biochemical parameters are
fine-tuned to preserve the same steady-state behaviour at different
ligand concentrations17,18. We present an alternative picture in
which adaptation is a robust property of the chemotaxis network
and does not rely on the fine-tuning of parameters.

We have analysed a simple two-state model of the chemotaxis
network closely related to the one proposed previously2,19. The two-
state model assumes that the receptor complex has two functional
states: active and inactive. The active receptor complex shows a
kinase activity: it phosphorylates the response regulator molecules,
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Figure 1 a, The chemotaxis network. Chemotactic ligands bind to specialized

receptors (MCP) which form stable complexes (E), with the proteins CheA and

CheW. CheA is a kinase that phosphorylates the response regulator, CheY,

whose phosphorylated form (CheYp) binds to the flagellar motor and generates

tumbling. Binding of the ligand to the receptor modifies the tumbling frequency by

changing the kinase activity of CheA. The receptor can also be reversibly

methylated. Methylation enhances the kinases activity and mediates adaptation

to changes in ligand concentration. Two proteins are involved in the adaptation

process: CheR methylates the receptor, CheB demethylates it. A feedback

mechanism is achieved through the CheA-mediated phosphorylation of CheB,

which enhances its demethylation activity. b, Mechanism for robust adaptation. E

is transformed to a modified form, Em, by the enzyme R; enzyme B catalyses the

reverse modification reaction. Em is active with a probability of am(l), which

depends on the input level l. Robust adaptation is achieved when R works at

saturation and B acts only on the active form of Em. Note that the rate of reverse

modification is determined by the system’s output and does not depend directly

on the concentration of Em (vertical bar at the end of the arrow).

Figure 2 Chemotactic response and adaptation. The system activity, A, of a

model system (the reference system described in Methods) which was subject to

a series of step-like changes in the attractant concentration, is plotted as a

function of time. Attractant was repeatedly added to the system and removed

after 20min, with successive concentration steps of l of 1, 3, 5 and 7 mM. Note the

asymmetry to addition compared with removal of ligand, both in the response

magnitude and the adaptation time. The chemotactic drift velocity of this system

is presented in the inset. Inset: the different curves correspond to gradients V̄l ¼ 0,

0.01, 0.025 and 0.05 mM/mm. An average change in receptor occupancy of less

than 1% per second is sufficient to induce a mean drift velocity of the order of

microns per second.
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which then bind to the motors and induce tumbling. The receptor
complexes can be either in the active or in the inactive state,
although with probabilities that depend on both their methylation
level and ligand occupancy. The average complex activity can be
considered as the output of the network, whereas its input is the
concentration of the ligand. A quantitative description of the model
consists of a set of coupled differential equations describing inter-
actions between protein components (Box 1).

The two-state model correctly reproduces the main features of
bacterial chemotaxis. When a typical model system is subject to a
step-like change in attractant concentration, l (Fig. 2), it is able to
respond and to adapt to the imposed change. The adaptation is
nearly perfect for all ligand concentrations. The addition (removal)
of attractant causes a transient decrease (increase) in system activity,
and thus of tumbling frequency. We observe a strong asymmetry in

the response to the addition compared with the removal of ligand.
This asymmetry has been observed experimentally14. The chemo-
tactic response of the system has been measured by the average drift
velocity in the presence of a linear gradient of attractant (Fig. 2,
inset). The system is very sensitive: an average change in the receptor
occupancy of ,1% per second is enough to induce a drift velocity of
,1 micron per second.

Figure 3a illustrates the most striking result of the model: we have
found that the system shows almost perfect adaptation for a wide
range of values of the network’s biochemical parameters. Typically,
one can change simultaneously each of the rate constants several-
fold and still obtain, on average, only a few per cent deviation from
perfect adaptation. For instance, over 80 per cent of model systems,
obtained from a perfectly adaptive one by randomly changing all of
its biochemical parameters by a factor of two, still show ,15%
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Box 1 Two-state model of the bacterial chemotactic network

The main component of the two-state model
2,19

is the receptor complex,

MCP þ CheA þ CheW (Fig. 1a), considered here as a single entity, E. The

complex is assumed to have two functional states—active and inactive. A

receptor complex in the active state shows a kinase activity of CheA; by

phosphorylating the response regulators, CheY, it sends a tumbling signal to

the motors. The output of the network is thus the average numberof receptors

in the active state, the system activity A. It is assumed that this quantity

determines the tumbling frequency of the bacteria. The transformation

between A and the tumbling frequency depends on the kinetics of CheY

phosphorylation and dephosphorylation, as well as on the interaction of

CheY with the motors, which are not considered explicitly in the present

model.

The receptor complexes are assumed to exist in different forms. Consider

a complex methylated on m sites (m ¼ 1;…M). Such a complex can either be

occupied or unoccupied by the ligand. We denote the concentration of these

complexes by E0
m and Eu

m, respectively. Each form of the receptor complexcan

be in the active state with a probability depending on both its methylation level

and its ligand occupancy. We assume that an occupied receptor complex has

the probability a0
m of being in the active state; for an unoccupied receptor, this

probability is am. If l is the ligand concentration,B(R) the concentrationof CheB

(CheR), and {Eu
mB} the concentration of the Eu

mCheB complex and so on, the

model reactions can then be illustrated schematically (see figure).

The differential equations describing our model can be written in a

standard way from the figure. For instance, the kinetic equation for Eu
m is

dEu

m

dt
¼ 2 kllE

u

m þ k2 lE
0

mþ

1 2 dm;0 2 abamEu

mB þ db Eu

mB þ kr Eu

m 2 1R þ

1 2 dmM 2 aramEu

mR þ a9r 1 2 am Eu

mR þ db Eu

mR þ kb Eu

mþ1B

m ¼ 1;…M

The presence of am in the equation is due the fact that CheB demethylates

only the active receptors; we havealso included two different association rate

constants of CheR to the active (ar) and the inactive (a9r) receptors (see below).

djk is the Kronecker’s delta (djk ¼ 1, when j ¼ k, and is zero otherwise). Similar

equations can be written to describe kinetics of {Eu

mB}, {Eu

mR}, E0
m, {E0

mB} and

{E0

mR}, with additional parameters a0
m defining the probabilities of E0

m to be in

the active state. For fixed am and a0
m the biochemical parameters of this

system include nine different rate constants (kl ; k2 l ; ar; a9r; dr; kr; ab; db; kb)

and three enzyme concentrations (total concentrations of CheR, CheB and

receptor complexes).

The present model is by no means the only two-state model of the

chemotactic network that exhibits robust adaptation and proper chemotactic

response. Rather, it is one of the simplest variants that is consistent with the

experimental data on the response and adaptation of wild-type E. coli. The

main assumptions underlying this model are as follows.

X The input to the system is the ligand concentration; rapid binding (and

unbinding) of the ligand to the receptor induces an immediate change in the

activity of the complex. For simplicity, the binding affinity is assumed to be

independent of the receptor’s activity and its degree of methylation. This

assumption can be relaxed without affecting the main conclusions of our

model.

X The methylation and demethylation reaction occur on slower timescales.

A central assumption is that CheB can only demethylate active receptors. In

addition, the demethylation rate constants do not depend explicitly either on

ligand occupancy or on the methylation of the receptor, so that all active

receptors are demethylated at the same rate. In the variant of the model

discussed here, the phosphorylation of CheB is not considered explicitly; in

molecular terms, we assume that the phosphorylated form of CheB, CheBp,

does not move freely in the cell. Rather,. a CheBp molecule can only

demethylate the same receptor that has phosphorylated it. We note, however,

that this assumption can also be readily relaxed (N.B. et al., manuscript in

preparation). Robust adaptation is maintained as long as both CheB and

CheBp demethylate only the active receptors.

X The methylating enzyme, CheR, acts both on active and inactive

receptors. Here we assume that the association rate constant for this

reaction depends only on the activity of the receptor (a9r for inactive, ar for

active), whereas the dissociation rate constant dr and the catalytic rate

constant kr are the same for all forms of the receptor. This assumption can

again be relaxed in various ways. In particular, the accumulated biochemical

data indicate that CheR works at saturation and operates at its maximal

velocity. In this case, the conclusions of ourmodel are not altered, even if dr, a9r
and ar depend on the ligand occupancy and on the methylation level

21
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Cells use complex networks of interacting molecular components
to transfer and process information. These ‘‘computational
devices of living cells’’1 are responsible for many important
cellular processes, including cell-cycle regulation and signal
transduction. Here we address the issue of the sensitivity of the
networks to variations in their biochemical parameters. We
propose a mechanism for robust adaptation in simple signal
transduction networks. We show that this mechanism applies in
particular to bacterial chemotaxis2–7. This is demonstrated within
a quantitative model which explains, in a unified way, many
aspects of chemotaxis, including proper responses to chemical
gradients8–12. The adaptation property10,13–16 is a consequence of
the network’s connectivity and does not require the ‘fine-tuning’
of parameters. We argue that the key properties of biochemical
networks should be robust in order to ensure their proper
functioning.

Cellular biochemical networks are highly interconnected: a per-
turbation in reaction rates or molecular concentrations may affect
numerous cellular processes. The complexity of biochemical net-
works raises the question of the stability of their functioning. One
possibility is that to achieve an appropriate function, the reaction
rate constants and the enzymatic concentrations of a network need
to be chosen in a very precise manner, and any deviation from the
‘fine-tuned’ values will ruin the network’s performance. Another

possibility is that the key properties of biochemical networks are
robust; that is, they are relatively insensitive to the precise values of
biochemical parameters. Here we explore the issue of robustness of
one of the simplest and best-known signal transduction networks: a
biochemical network responsible for bacterial chemotaxis. Bacteria
such as Escherichia coli are able to sense (temporal) gradients of
chemical ligands in their vicinity2. The movement of a swimming
bacterium is composed of a series of ‘smooth runs’, interrupted by
events of ‘tumbling’, in which a new direction for the next run is
chosen randomly. By modifying the tumbling frequency, a bac-
terium is able to direct its motion either towards attractants or away
from repellents. Awell established feature of chemoxis is its property
of adaptation10,13–16: the steady-state tumbling frequency in a
homogeneous ligand environment is insensitive to the value of
ligand concentration. This property allows bacteria to maintain
their sensitivity to chemical gradients over a wide range of attractant
or repellent concentrations.

The different proteins that are involved in chemotactic response
have been characterized in great detail, and much is known about
the interactions between them (Fig. 1a). In particular, the receptors
that sense chemotactic ligands are reversibly methylated. Biochem-
ical data indicate that methylation is responsible for the adaptation
property: changes in methylation of the receptor can compensate
for the effect of ligand on tumbling frequency. Theoretical models
proposed in the past assumed that the biochemical parameters are
fine-tuned to preserve the same steady-state behaviour at different
ligand concentrations17,18. We present an alternative picture in
which adaptation is a robust property of the chemotaxis network
and does not rely on the fine-tuning of parameters.

We have analysed a simple two-state model of the chemotaxis
network closely related to the one proposed previously2,19. The two-
state model assumes that the receptor complex has two functional
states: active and inactive. The active receptor complex shows a
kinase activity: it phosphorylates the response regulator molecules,
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Figure 1 a, The chemotaxis network. Chemotactic ligands bind to specialized

receptors (MCP) which form stable complexes (E), with the proteins CheA and

CheW. CheA is a kinase that phosphorylates the response regulator, CheY,

whose phosphorylated form (CheYp) binds to the flagellar motor and generates

tumbling. Binding of the ligand to the receptor modifies the tumbling frequency by

changing the kinase activity of CheA. The receptor can also be reversibly

methylated. Methylation enhances the kinases activity and mediates adaptation

to changes in ligand concentration. Two proteins are involved in the adaptation

process: CheR methylates the receptor, CheB demethylates it. A feedback

mechanism is achieved through the CheA-mediated phosphorylation of CheB,

which enhances its demethylation activity. b, Mechanism for robust adaptation. E

is transformed to a modified form, Em, by the enzyme R; enzyme B catalyses the

reverse modification reaction. Em is active with a probability of am(l), which

depends on the input level l. Robust adaptation is achieved when R works at

saturation and B acts only on the active form of Em. Note that the rate of reverse

modification is determined by the system’s output and does not depend directly

on the concentration of Em (vertical bar at the end of the arrow).

Figure 2 Chemotactic response and adaptation. The system activity, A, of a

model system (the reference system described in Methods) which was subject to

a series of step-like changes in the attractant concentration, is plotted as a

function of time. Attractant was repeatedly added to the system and removed

after 20min, with successive concentration steps of l of 1, 3, 5 and 7 mM. Note the

asymmetry to addition compared with removal of ligand, both in the response

magnitude and the adaptation time. The chemotactic drift velocity of this system

is presented in the inset. Inset: the different curves correspond to gradients V̄l ¼ 0,

0.01, 0.025 and 0.05 mM/mm. An average change in receptor occupancy of less

than 1% per second is sufficient to induce a mean drift velocity of the order of

microns per second.

Figure 24: Barkai-Leibler model. Sketch of the minimal scheme and of the scheme involv-
ing multiple methylation levels. The methylation of E goes via the complex ER, whereas
the demethylation goes via the complex EB. Time course of adaptation after addition and
removal of increasingly larger ligand concentrations (Barkai and Leibler, 1997).
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deviation from perfect adaptation (Fig. 3a, lower panel). When
varied separately, most of the rate constants may be changed by
several orders of magnitude without inducing a significant devia-
tion from perfect adaptation.

In our model we have assumed Michaelis–Menten kinetics for
simplicity. However, we have found that cooperative effects in the
enzymatic reactions can be added without destroying the robustness
of adaptation. Similarly, robust adaptation is obtained for systems
with different numbers of methylation sites. Multiple methylation
sites are thus not required for robust adaptation, but possibly are for
allowing strong initial responses for a wide range of attractant and
repellent stimuli (N.B. et al., manuscript in preparation).

The adaptation itself, as measured by its precision (Fig. 3a), is
thus a robust property of the chemotactic network. This does not
mean, however, that all the properties are equally insensitive to
variations in the network parameters. For instance, Fig. 3b shows
that the adaptation time, t, which characterizes the dynamics of
relaxation to the steady-state activity, displays substantial variations
in the altered systems. Robustness is thus a characteristic of specific
network properties and not of the network as a whole: whereas some
properties are robust, others can show sensitivity to changes in the
network parameters.

Plots similar to the ones depicted in Fig. 3 can be obtained in
quantitative experiments. A large collection of chemotactic
mutants can be analysed for variations in the biochemical rate
constants of the chemotactic network components. Alternatively,
the rate constants of the enzymes could be systematically modified
or their expression varied. At the same time, their various physio-
logical characteristics can be measured, such as steady-state
tumbling frequency, precision of adaptation, adaption time, and
so on. In this way, the predictions of the model can be quantitatively
checked.

What features of the chemotactic network make the adaptation
property so robust? We propose here a general and simple mechan-
ism for robust adaptation. Let us introduce this mechanism for one
of the simplest networks (Fig. 1b), which can be viewed either as an
‘adaptation module’, or, as a simplifying reduction of a more
complex adaptive network, such as the one presented for bacterial
chemotaxis. Consider an enzyme, E, which is sensitive to an external
signal l, such as a ligand. Each enzyme molecule is at equilibrium
between two functional states: an active state, in which it catalyses a
reaction, and an inactive state, in which it does not. The signal level l

affects the equilibrium between two functional states of the enzyme:
we suppose that a change in l causes a rapid response of the system
by shifting this equilibrium. Thus, l is the input of this signal
transduction system and the concentration of active enzymes (that
is, the system activity, A) can be considered as its output. The
enzyme E can be reversibly modified, for example by addition of
methyl or phosphate groups. The modification of E affects the
probabilities of the active and inactive states, and hence can
compensate for the effect of the ligand. In general, then,
Aðl Þ ¼ aðl ÞE þ amðl ÞEm, where Em and E are the concentrations
of the modified and unmodified enzyme, respectively, and am(l)
and a(l) are the probabilities that the modified and unmodified
enzyme is active. After an initial rapid response of the system to a
change in the input level, l, slower changes in the system activity
proceed according to the kinetics of enzyme modification.

The system is adaptive when its steady-state activity, A
st, is

independent of l. A mechanism for adaptation can be readily
obtained by assuming a fine-tuned dependence of the biochemical
parameters on the signal level, l. This kind of mechanism has been
proposed for an equivalent receptor system17,18. A mechanism for
robust adaptation, on the other hand, can be obtained when the
rates of the modification and the reverse-modification reactions
depend solely on the system activity, A, and not explicitly on the
concentrations Em and E. This system can be viewed as a feed-back
system, in which the output A determines the rates of modification
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Figure 3 Robustness of adaptation. a, The precision of adaptation, P, and b,

adaptation time, t, to a step-like addition of saturating amount of attractant are

plotted as a function of the total parameter variation k, for an ensemble of model

systems (see Methods). The time evolution of the system activity A is depicted in

the inset for the reference system (solid curve) and for an altered model system,

obtained by randomly increasing or decreasing by a factor of two all biochemical

parameters of the reference system (dashed curve). Each point in the top graphs

in a and b corresponds to a different altered system, out of the total number of

6,157. The reference system is denoted by a black diamond; the particular altered

system from the inset is denoted by an open square. Bottom graphs: a, the

probability that P is larger than 0.95; b, the probability that t deviates from the

adaptation time of the reference system (,10min) by less than 5% (solid curve)

and by a factor 5 (dashed curve). c, ‘Individuality’ in the chemotaxis model. The

inverse steady-state activity A2 1
is plotted as a function of the adaptation time, t.

Each point represents an altered system, obtained from the reference system

(arrow) by varying the concentration of CheR (between 100 to 300 molecules per
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deviation from perfect adaptation (Fig. 3a, lower panel). When
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several orders of magnitude without inducing a significant devia-
tion from perfect adaptation.
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the rate constants of the enzymes could be systematically modified
or their expression varied. At the same time, their various physio-
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so on. In this way, the predictions of the model can be quantitatively
checked.
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ism for robust adaptation. Let us introduce this mechanism for one
of the simplest networks (Fig. 1b), which can be viewed either as an
‘adaptation module’, or, as a simplifying reduction of a more
complex adaptive network, such as the one presented for bacterial
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between two functional states: an active state, in which it catalyses a
reaction, and an inactive state, in which it does not. The signal level l
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we suppose that a change in l causes a rapid response of the system
by shifting this equilibrium. Thus, l is the input of this signal
transduction system and the concentration of active enzymes (that
is, the system activity, A) can be considered as its output. The
enzyme E can be reversibly modified, for example by addition of
methyl or phosphate groups. The modification of E affects the
probabilities of the active and inactive states, and hence can
compensate for the effect of the ligand. In general, then,
Aðl Þ ¼ aðl ÞE þ amðl ÞEm, where Em and E are the concentrations
of the modified and unmodified enzyme, respectively, and am(l)
and a(l) are the probabilities that the modified and unmodified
enzyme is active. After an initial rapid response of the system to a
change in the input level, l, slower changes in the system activity
proceed according to the kinetics of enzyme modification.

The system is adaptive when its steady-state activity, A
st, is

independent of l. A mechanism for adaptation can be readily
obtained by assuming a fine-tuned dependence of the biochemical
parameters on the signal level, l. This kind of mechanism has been
proposed for an equivalent receptor system17,18. A mechanism for
robust adaptation, on the other hand, can be obtained when the
rates of the modification and the reverse-modification reactions
depend solely on the system activity, A, and not explicitly on the
concentrations Em and E. This system can be viewed as a feed-back
system, in which the output A determines the rates of modification
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systems (see Methods). The time evolution of the system activity A is depicted in
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obtained by randomly increasing or decreasing by a factor of two all biochemical
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Figure 25: Robust adaptation in Barkai-Leibler model. The adaptation precision depends
only weakly on the parameters of the problem, as characterized by the total parameter
variation log k =

∑
n

∣∣∣log
(
kn
k0n

)∣∣∣, where kn is the modified value of the parameter compared
to the reference value k0

n for which the adaptation is perfect. In contrast, the time scale of
the adaptation depends strongly on the parameters (Barkai and Leibler, 1997).
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1.5.1 Integral Feedback Control As a Dynamical System11

Consider a general dynamical system driven by some time-dependent input X with output
Z and internal variable Y

dY

dt
= εF (X, Y, Z)

dZ

dt
= G(X, Y, Z).

Our goal is

• strong, fast transient response in Z when X is changed

• no long-term response for whatever value of X.

Thus, there are two time scales that are relevant here

• Z responds quickly to reach some peak value Zp(X + ∆X,X) when X is changed
from X to X + ∆X.

• Y responds slowly ( ε � 1) to adapt the system to the new input value of X, where
then Y = Ys(X) and Z = Zs(X).

Quantification of our goal:

High sensitivity

S =
|Zp(X + ∆X,X)− Zs(X)|

|∆X| large

Small adaptation error

E =
|Zs(X + ∆X)− Zs(X)|
|Zp(X + ∆X,X)− Zs(X)| � 1

11(Tu and Rappel, 2018)
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Figure 2
Comparison between predictions of the standard model of bacterial chemotaxis and quantitative experiments. (a) Response of Escherichia
coli to step up and step down (addition and removal, respectively) of attractant MeAsp concentrations (X1 and X2). The response (kinase
activity) is measured by using FRET [data from Sourjik & Berg (10)]. (b) Nullcline analysis of the dynamical equations for bacterial
chemotaxis. The lettered time points (A–E) correspond to those in panel a. The solid gray lines are the Z nullclines, Z = g(Y, X1) and
Z = g(Y, X2), for different inputs X1 and X2(> X1), respectively. The horizontal dashed line is the Y nullcline expressed as F (Z) = 0,
corresponding to a constant value of Z (Z = Zs ). The green solid arrow lines show the fast responses caused by changes (addition and
removal) of input X between X1 and X2. The blue dashed arrow lines show the slow adaptive dynamics along the Z nullclines. (c) The
responses to oscillatory signals (top panel ) are characterized by the response amplitude |A| and the phase shift φ. Both dependences of
|A| (middle panel ) and φ (bottom panel ) on the input frequency ν quantitatively agree with predictions from the standard model. The
results show that the system computes the time derivative of the signal at low frequencies (shaded region), where ν < νm ≈ 0.006 Hz.
The gradient computation can be seen directly by defining H ≡ A/(iν AL), which remains roughly constant in the shaded region
(dashed blue line in the middle panel ). Panel c is adapted from Reference 18. Abbreviation: FRET, Förster resonance energy transfer.

as shown in Figure 2b. Furthermore, the standard model can be used to predict responses to more
complex time-varying signals for direct comparison with quantitative experiments.

3.3.1. Responses to time-varying signals. The standard model has been tested in predicting the
responses to ramps and oscillatory signals (see Reference 6 for a recent review). Briefly, by fitting
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Figure 26: Phase plane with nullclines g(X,Y) according to (18) and f(X,Z) chosen for
perfect adaptation (Tu and Rappel, 2018).

As is typical for fast-slow systems, it is useful to consider the nullclines of the system

Z = g(X, Y ) Y = f(X,Z).

For small changes |∆X| and separated time scales on which Z and Y evolve we have

• the system starts at the intersection of the two nullclines, (Ys(X), Zs(X)) (point A in
Fig.26.

• after a small change X1 → X2 = X1 + ∆X the system quickly approaches the
nullcline of Z that is shifted due to the change in X, but with Y is still close to the
previous value (B) since ε� 1,

Zp(X + ∆X,X) ≈ g(X + ∆X, Ys(x)) ≈ g(X, Ys(x))︸ ︷︷ ︸
Zs(X)

+∆X
∂g(X, Ys(X))

∂X

• the adapted response is reached after Y evolves to its steady-state value12,

Zs(X + ∆X) = g(X + ∆X, Ys(X + ∆X))

≈ g(X, Ys(X))︸ ︷︷ ︸
Zs(X)

+∆X

(
∂g

∂X
+
∂g

∂Y

∂Ys
∂X

)
12The derivatives are to be evaluated at X and Ys(X).
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Thus,

E ≈
∣∣∣∣∣ ∂g∂X + ∂g

∂Y
dYs
dX

∂g
∂X

∣∣∣∣∣ =

∣∣∣∣ ∂g∂X
∣∣∣∣
∣∣∣∣∣1 +

∂g
∂Y

dYs
dX

∂g
∂X

∣∣∣∣∣ .
Therefore, to have a small adaptation error a necessary condition is

∂g

∂X
· ∂g
∂Y

∂Ys
∂X

< 0 (14)

i.e. the direct change of Z due to the change in X needs to be compensated by an
opposite indirect change of Z via Y ; the two pathways need to have opposite signs.

Look for a minimal system, i.e. with a minimal number of non-zero interactions.
To have a non-zero peak response we need

∂g

∂X
6= 0.

In order to be able to adapt at all we need

∂g

∂Y
6= 0.

Consider the case13 ∂g
∂X

< 0, ∂g
∂Y

> 0.

We have
dYs
dX

=
∂f

∂X
+
∂f

∂Z

∂Zs
∂X︸︷︷︸

∂g
∂X

+ ∂g
∂Y

∂Ys
∂X

Then we need
∂Ys
∂X

=
∂f
∂X

+ ∂f
∂Z

∂g
∂X

1− ∂f
∂Z

∂g
∂Y

> 0 (15)

Then, (15) can be satisfied with

1. Incoherent feed-forward loop
Y and Z respond oppositely to X

∂f

∂X
> 0

∂f

∂Z
= 0 (16)

in which case the second term in the denominator in (15) vanishes.

2. Negative feed-back loop
Y is only driven (negatively) by Z

∂f

∂X
= 0

∂f

∂Z
< 0 (17)

in which case the denominator is positive.

13The case ∂g
∂X < 0, ∂g

∂Y > 0 works analogously.
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Figure 1
Generic adaptation behavior and responsible network motifs . (a) Illustration of adaptation dynamics of the
output Z(t) in response to a step function change in input from X to X + !X . (b) The two basic network
architectures (motifs) that can provide accurate adaptation. The red arrow lines highlight the slow
interactions critical for adaptation. The NFL and IFFL networks differ in the placement of these slow
interactions. Abbreviations: IFFL, incoherent feed-forward loop; NFL, negative feedback loop.

environment, a cell needs to first respond quickly. To maintain the high sensitivity over a wide
range of backgrounds, the cell needs to adapt to a constant environment over a longer timescale.
Indeed, one of the key requirements for adaptation is the separation of these two timescales, i.e.,
τZ ≪ τY . This means that the controller Y adjusts the system only after the system has enough
time to respond. Due to its slow timescale, Y can also be understood as a working memory for the
signal encountered by the cell.

2.2. Response Sensitivity and Adaptation Accuracy
There are two key characteristics for adaptation. The short time response is characterized by the
response sensitivity:

S ≡
|Zp(X + !X , X ) −Zs(X )|

|!X |
2.

for small !X . The long time recovery is characterized by the adaptation error:

ϵ ≡ |Zs(X + !X ) −Zs(X )|
|Zp(X + !X , X ) −Zs(X )|

, 3.

which measures how close the output adapts back to its original value relative to the initial response.
Adaptive behavior requires ϵ < 1, and perfect adaptation corresponds to ϵ = 0 when the adapted
output recovers to exactly its prestimulus value.

2.3. Network Requirement for Adaptation
Given the separation of timescales τZ ≪ τY , the short time response Zp can be expressed as
Zp(X + !X , X ) ≈ g[Ys(X ), X + !X ]. For small |!X |, we can express the initial response as
|Zp(X +!X , X )−Zs(X )| ≈ |g[Ys(X ), X +!X ]−g[Ys(X ), X ]| = | ∂g

∂ X !X | and the adapted response
as |Zs(X + !X ) −Zs(X )| = |g[Ys(X + !X ), X + !X ] −g[Ys(X ), X ]| = |( ∂g

∂ X + ∂g
∂Y × dYs

dX )!X |.
Plugging these expressions into Equation 3, the requirement ϵ < 1 results in a necessary condition
for adaptation:

∂g
∂ X

×
(

∂g
∂Y

× dYs

dX

)

< 0. 4.
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 Figure 27: Sketch of the two minimal networks to achieve adaptation (Tu and Rappel,

2018).

Compare with the simple model (12,13) discussed before for perfect saturation: A → Z,
Xmt → Y ,

G(X, Y, Z) = kY − (VB + k(X) + k′(X))Z

εF (X, Y, Z) = VRR− VBB Z,

which matches case (17) of the negative feed-back loop. Since methylation and demethy-
lation are much slower than ligand binding, i.e. VRR and VBB are small of O(ε).
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Figure 2
Comparison between predictions of the standard model of bacterial chemotaxis and quantitative experiments. (a) Response of Escherichia
coli to step up and step down (addition and removal, respectively) of attractant MeAsp concentrations (X1 and X2). The response (kinase
activity) is measured by using FRET [data from Sourjik & Berg (10)]. (b) Nullcline analysis of the dynamical equations for bacterial
chemotaxis. The lettered time points (A–E) correspond to those in panel a. The solid gray lines are the Z nullclines, Z = g(Y, X1) and
Z = g(Y, X2), for different inputs X1 and X2(> X1), respectively. The horizontal dashed line is the Y nullcline expressed as F (Z) = 0,
corresponding to a constant value of Z (Z = Zs ). The green solid arrow lines show the fast responses caused by changes (addition and
removal) of input X between X1 and X2. The blue dashed arrow lines show the slow adaptive dynamics along the Z nullclines. (c) The
responses to oscillatory signals (top panel ) are characterized by the response amplitude |A| and the phase shift φ. Both dependences of
|A| (middle panel ) and φ (bottom panel ) on the input frequency ν quantitatively agree with predictions from the standard model. The
results show that the system computes the time derivative of the signal at low frequencies (shaded region), where ν < νm ≈ 0.006 Hz.
The gradient computation can be seen directly by defining H ≡ A/(iν AL), which remains roughly constant in the shaded region
(dashed blue line in the middle panel ). Panel c is adapted from Reference 18. Abbreviation: FRET, Förster resonance energy transfer.

as shown in Figure 2b. Furthermore, the standard model can be used to predict responses to more
complex time-varying signals for direct comparison with quantitative experiments.

3.3.1. Responses to time-varying signals. The standard model has been tested in predicting the
responses to ramps and oscillatory signals (see Reference 6 for a recent review). Briefly, by fitting
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Figure 28: Experimentally observed adaptation of the response Z (kinase activity) to step
changes in concentration in attractant. (Sourjik and Berg, 2002) as shown in (Tu and
Rappel, 2018).
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Experimentally, it has been found that the input-output relationship follows a sigmoidal
form with a very large Hill coefficient. Part of this high sensitivity has been attributed to
cooperativity between the different chemoreceptors, which are clustered near the pole of
E. coli and other bacteria. Modeling this cooperativity yields for G the form

G(X, Y, Z) = − 1

τZ
Z +

1

τZ

1 + eNfm(Y )

(
1 + X

Ki

1 + X
Ka

)N
−1

. (18)

At this point we will not go into details of the modeling of the receptor cluster and just look
at the results they obtained for the adaptation (e.g. (Mello et al., 2004)).

Increasing the concentration of the attractant shifts the Z-nullcline to larger values of Y .
After an increase in concentration the output Z drops quickly to the new nullcline of Z.
Then the system follows that nullcline during the adaptation process. It comes to an end
at the new fixed point (Fig.26),

• Since F = F (Z) is independent of Y and X that new fixed point has to have the
same output as the previous fixed point.

• Any dependence of F on X or Y would generically destroy the perfect adaptation,
unless it was explicitly tuned to keep the intersection of the nullclines at the same
value of Z.

This model gives also good agreement for the response to sinusoidally varying attract
concentrations. It shows that for low frequencies the adaptation mechanism essentially
computes the time derivative of the concentration (Fig.29)CO09CH10_Tu ARI 13 February 2018 8:53
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Figure 2
Comparison between predictions of the standard model of bacterial chemotaxis and quantitative experiments. (a) Response of Escherichia
coli to step up and step down (addition and removal, respectively) of attractant MeAsp concentrations (X1 and X2). The response (kinase
activity) is measured by using FRET [data from Sourjik & Berg (10)]. (b) Nullcline analysis of the dynamical equations for bacterial
chemotaxis. The lettered time points (A–E) correspond to those in panel a. The solid gray lines are the Z nullclines, Z = g(Y, X1) and
Z = g(Y, X2), for different inputs X1 and X2(> X1), respectively. The horizontal dashed line is the Y nullcline expressed as F (Z) = 0,
corresponding to a constant value of Z (Z = Zs ). The green solid arrow lines show the fast responses caused by changes (addition and
removal) of input X between X1 and X2. The blue dashed arrow lines show the slow adaptive dynamics along the Z nullclines. (c) The
responses to oscillatory signals (top panel ) are characterized by the response amplitude |A| and the phase shift φ. Both dependences of
|A| (middle panel ) and φ (bottom panel ) on the input frequency ν quantitatively agree with predictions from the standard model. The
results show that the system computes the time derivative of the signal at low frequencies (shaded region), where ν < νm ≈ 0.006 Hz.
The gradient computation can be seen directly by defining H ≡ A/(iν AL), which remains roughly constant in the shaded region
(dashed blue line in the middle panel ). Panel c is adapted from Reference 18. Abbreviation: FRET, Förster resonance energy transfer.

as shown in Figure 2b. Furthermore, the standard model can be used to predict responses to more
complex time-varying signals for direct comparison with quantitative experiments.

3.3.1. Responses to time-varying signals. The standard model has been tested in predicting the
responses to ramps and oscillatory signals (see Reference 6 for a recent review). Briefly, by fitting
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as shown in Figure 2b. Furthermore, the standard model can be used to predict responses to more
complex time-varying signals for direct comparison with quantitative experiments.

3.3.1. Responses to time-varying signals. The standard model has been tested in predicting the
responses to ramps and oscillatory signals (see Reference 6 for a recent review). Briefly, by fitting
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Figure 29: Adaptation response to sinusoidally varying concentrations (Tu and Rappel,
2018).
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2 Morphogenesis

Figure 30: Hydra.

How do multicellular organisms develop?
How do cells know when to differentiate
and how and where they need to go? In
simple animals many body parts can be
regenerated and parts of the body can be
grafted onto other bodies. An excellent ex-
ample is hydra. Important work demon-
strating that grafting the hypostome of one
hydra onto another one can induce a sec-
ond axis (e.g. #42 in Fig.31) was done
by Ethel Browne in her PhD thesis Browne
(1909). This was already well before Spe-
mann and Mangold identified the organiz-
ers in salamander embryos (see below).
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PRODUCTION OF NEW HYDRANTHS IN HYDRA 
ETHEL NICHOLSON BROWNE 

THE JOURNAL OP EXPERIMENTAL ZOOLOGY, VOL. VL 

PLATE V 

Ricciol. dcl. 

PLATE V 

Fig. 42 Graft of white tentacle with peristome in middle of green hydra. 
Fig. 43 Graft of white tentacle with peristome in foot of green hydra. 
Fig. $$ Graft of green tentacle without peristome in white hydra. 
Fig. 45 Graft of green body tissue in white hydra. 
Fig. 46 Graft of green hydranth in white hydra. 
Fig. 47 Graft of green foot in white hydra. 
Fig. 48 Heteromorphosis in reversed ring of green tissue grafted on white stock. 

Figure 31: Hydra grafting. 42: graft of white tentacle makes whole additional hydranth,
which involves also material from the green hydra: the cells from the white hydra seem to
instruct the cells of the green hydra what to do. 47: graft of green foot on white hydra at
foot end→ full green hydra. (Browne, 1909)
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PRODUCTION OF NEW HYDRANTHS IN HYDRA 
ETHEL NICHOL~ON BROWNE 

PLATE IV 

49 I I  4 41 

THE JOURNAL OF EXPERIMENTAL ZO~LOGY, VOL. VII, NO. I 

PIATE 

Figs. 40-41. Graft of regenerating tissue. 
Figs. 4g-50 Small hydra produced by graft of white tentacle in foot of green hydra. 
Fig. 51 Graft of green tentacle without peristome in white hydra. 
Fig. sz Graft of green hydranth in white hydra. 
Figs. 53-54 Graft of green and white heads. 
Figs. 55-57 Graft of green foot in white hydra. 

Figure 32: Hydra grafting. 55-57: depending on the location of the graft, grafting foot onto
foot may lead to another foot or a complete hydranth. (Browne, 1909)

What controls how a grafted body part will evolve?

Organizers: Spemann and Mangold (Spemann and Mangold, 1924) looked at the very
early embryogenesis in salamander (Triton cristatus and Triton taeniatus), around the time
of gastrulation. At that point the zygote has undergone many cell divisions but the cells
are still quite undifferentiated, i.e. there are only two types of cells in two layers. At that
stage one can transplant small pieces of tissue from one embryo to another, even between
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different species:

• In most cases, the transplanted piece of tissue evolves like the tissue at the location
to which it was transplanted. Thus, tissue that is taken from an area that would
develop into brain tissue develops into epidermal tissue if it was transplanted to
a location where the tissue develops into epidermal tissue. The tissue effectively
adapts to its environment.

• However, tissue from a specific area behaves differently: it does not adapt; instead it
determines the development of the surrounding tissue and generates an additional,
secondary neural tube and can eventually lead to the development of a second head.
This organizer tissue therefore determines the development of the surrounding tis-
sue. The tissue of the secondary neural tube and organs involves also tissue from
the host and not only from transplant itself.

Induction of embryonic primordia by implantation of organizers from a different species        17

a few hours later , neural folds appeared, indicating the contour of a future neural plate. The implant
was still distinctly recognizable in the midline of this plate; it extended forward from the blastopore as
a long narrow str ip, slightly curved, over about two-thirds of the plate (Fig. 3).

This secondary neural plate, that developed in combination with the implanted piece, lagged only a
little behind the primary plate in its development. When the folds of the primary plate were partly
closed, those of the secondary plate also came together . Approximately a day later , both neural tubes
were closed. The secondary tube begins, together  with the primary tube, at the normal blastopore and
extends to the r ight of the primary tube, rostrad, to approximately the level where the optic vesicles of
the latter  would form. It is poorly developed at its posterior  part, yet well enough that the cristatus
implant was invisible from the outside. The embryo was fixed at this stage and sectioned as nearly
perpendicularly to the axial organs as possible. The sections disclosed the following:

The neural tube of the primary embryonic anlage is closed through the greater  part of its length and
detached from the epidermis, except at the anterior  end where it is still continuous with it, and where
its lumen opens to the exterior  through a neuropore. The lateral walls are considerably thickened in
front; this is perhaps the first indication of the future primary eye vesicles. The notochord is likewise
completely detached, except at its posterior  end where it is continuous with the unstructured cell mass
of the tail blastema. In the mesoderm, four to five somites are separated from the lateral plates, as far
as one can judge from cross sections of such an early stage.

Only the anterior  part of the neural tube of the secondary embryonic anlage is closed and detached
from the epidermis. Here it is well developed; in fact, it is developed almost as far  as the primary tube
at its largest cross-section: its walls are thick and its lumen is drawn out sideways (Fig. 4). Perhaps we
can see here the first indication of optic vesicles. The central canal approaches the surface at its posterior
end and eventually opens to the outside. Then the neural plate rapidly tapers off; its hindmost portion
is only a narrow ectodermal thickening (Figs. 5 and 6).

Although the overwhelming mass of this secondary neural tube is formed by cells of the taeniatus host
that can be recognized by the finely dispersed pigment, a long, narrow str ip of completely unpigmented

Figs. 2  (left) and 3  (right). Um 8b. The taeniatus
embryo at the neurula stage, with primary and sec-
ondary neural plate; the elongated white cr istatus
implant is in the median plane of the latter. 20X.

cristatus embryo and replaced by a piece of presump-
tive epidermis of the taeniatus embryo. This taeniatus
implant was found, later  on, as a marker in the neural
plate of the cristatus neurula, between the r ight neural
fold and the midline, and it extended to the blastopore,
slightly tapering toward the posterior  end (Fig. 1). One
could not see in the living embryo whether  it continued
into the interior , and the sections, which are poor in this
region, did not show this either .

The cristatus explant (the “organizer”) was inserted
on the r ight side of the taeniatus embryo, approxi-
mately between the blastopore and the animal pole. It
was found in the neurula stage to the r ight and ventrally,
and drawn out in the shape of a narrow str ip (Fig. 2). ln
its vicinity, at first a slight protrusion was observable;

Fig. 4 . Um 8b. Cross section through the anterior third of the embryo (cf. Figs. 2 and 3) pr. Med., primary neural tube; sec.
Med., secondary neural tube. The implant (light) is in the mesoderm (sec. Mes. crist.). 100X.

Figure 33: Transplantation of tissue from one salamander embryo to another. The implant
has lighter color; that was one of the important steps forward compared to earlier exper-
iments of Spemann’s. This allowed to establish that the second neural tube etc. were
not made only of implanted tissue, but that the organizer recruited the host tissue as well.
(Spemann and Mangold, 1924).
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Tracing normal Xenopus development
In their 1983 study, Smith and Slack decided to repeat the organizer
graft experiments of Spemann and Mangold in Xenopus laevis,
rather than in newts, using HRP as the lineage tracer. It had
previously been established that HRP rapidly fills the cell it is
injected into, so all of the progeny of the cell are labeled; at the same
time, the tracer remains confined to that cell. Smith and Slack also
established that cells do not take up HRP from the surrounding
medium (where it might be released by dying cells). Thus, by all
criteria, this tracer was ideal for the organizer grafting experiments
they wanted to perform.

As a prelude to these experiments, it was important to know the
normal fates of tissues in Xenopus laevis embryos. Therefore,
they first used the tracer to monitor the normal fates of the dorsal
and ventral marginal zones (the marginal zone is the region near
the equator of the embryo, where the animal and vegetal
hemispheres meet), by grafting pieces from HRP-filled embryos
to the same (orthotopic) location of an unlabelled host. The results
of these HRP grafting experiments supported an earlier analysis
by Ray Keller in which vital dyes were used (Keller, 1976).
Moreover, the clarity of the histochemical stain illustrated
beautifully that the dorsal marginal zone populates a narrow strip
of dorsal mesoderm – the prechordal plate and notochord – over
the entire craniocaudal extent of the embryo, in addition to the
anterior endoderm. Importantly for the experiments that followed,
the dorsal marginal zone was not seen to contribute to the nervous
system.

In contrast to the fate of the dorsal marginal zone, the small piece
of orthotopically grafted ventral marginal zone spread considerably
and populated the posterior lateral plate and endoderm. The latter
point has been revisited lately, with some authors arguing that the
prospective posterior fate of the ‘ventral’ marginal zone should
prompt a different term to be used for this region of the embryo, and,
together with the findings of other experiments, for the axes of the
blastula to be renamed (reviewed by Lane and Sheets, 2006).
However, there is little question that the dorsal marginal zone is both
dorsally specified and dorsally fated, so there also remains a good
rationale to adhere to the nomenclature used by Smith and Slack
(reviewed by Harland, 2004). In any case, the main motivation of

Smith and Slack’s fate-mapping experiments was to rule out the
possibility that a grafted dorsal marginal zone might contain any
neural tissue, and, although they may not have provided a
comprehensive fate map of the whole gastrula, this important point
was resolved.

Signaling from the organizer
Fate mapping aside, the most important experiments in the Smith
and Slack JEEM paper addressed the signaling activities of the
organizer, and the response of the ventral marginal zone to an
organizer graft. Indeed, the results of the dorsal marginal zone
graft showed that neural induction had occurred, such that the
neural tube of the secondary axis was composed of host cells, and
not of self-differentiating cells of the graft. Therefore, the neural
tissue of the host’s secondary axis must have been derived from
an inductive interaction. The results presented were extremely
clear, and, together with those of Gimlich and Cooke, published
in the same year (Gimlich and Cooke, 1983), reinforced the
importance of the dorsal marginal zone as an organizing center
that can recruit ectoderm into a secondary neural tube. The idea
that the nervous system was already fully specified in the blastula
(Jacobson, 1982) was effectively laid to rest.

After disposing of the controversy related to neural induction,
the paper then focused on dorsalization of the mesoderm: the
process that respecifies prospective ventral tissue, such as blood
and mesenchyme, to more dorsal fates, such as muscle. This
phenomenon had previously been recognized, but because so
much attention had been devoted to neural induction, it had
received less attention. Furthermore, experiments on mesoderm
induction by Nieuwkoop had suggested that the pattern of the
mesoderm was already induced by graded signals from the
vegetal endoderm (Boterenbrood and Nieuwkoop, 1973). The
ability of organizers, or indeed of chemicals (Yamada, 1950),
to dorsalize mesoderm had been described, but one of the
strengths of Smith and Slack’s paper is that it clearly states the
distinction between the organizer’s role in dorsalizing the
mesoderm and the process of mesoderm induction. Thus, the
paper laid out a clear sequential signaling process: mesoderm
induction in the blastula is followed by dorsalization of the

JEEM CLASSIC Development 135 (20)

Fig. 1. Organizer grafts result in induction of a
secondary axis. (A)Schematic of the organizer graft
created by Spemann and Mangold, using a light-gray newt
donor (Triturus cristatus) grafted into a dark-gray host
(Triturus taeniatus). The gastrulae are shown in hemisection
for illustrative purposes only (dorsal is towards the right,
and the dimensions of these embryos are more Xenopus-
like than Triturus-like). (B)The famous result of an optimal
grafting experiment (Spemann and Mangold, 1924),
showing a section through the trunk of a twinned embryo.
The light-gray graft has contributed to the notochord,
medial somite and floor plate of the secondary axis. The
graft has an induced neural tube, somites, a pronephros
and a secondary archenteron cavity. (C,D)Contemporary
organizer grafts from Andrea E. Wills (UC Berkeley, CA,
USA). (C)The section shows a rafted organizer labeled with
lacZ mRNA and stained with Red-Gal; the section is taken
through the trunk of a stage 28 Xenopus laevis embryo,
where the axial tissues are also stained with Tor70 antibody.
(D)Twinned Xenopus embryo, resulting from an organizer
graft carried out at stage 10.
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Figure 34: Implantation of a second organizer can lead to the development of a second
head (Harland, 2008).

How is the information communicated from the organizer to the remaining tissue? It could
be a chemical signal, a morphogen, or multiple morphogens (Turing, 1952). In the hydra,
e.g., it could determine what becomes the head and what the foot.

2.1 Turing Model for the Formation of Periodic Structures

In 1952 Turing suggested that the combined activity of two (possibly more) morphogens,
an activator and an inhibitor, could set up spatially periodic concentration profiles that
could drive the formation of periodic structures. He mentioned as a possible specific
example the formation of the tentacles of hydra in that paper, which are sort of periodically
spaced around the mouth.

The key element is that the differentiation of the cells occurs in a translationally invariant
system, i.e. via spontaneous symmetry breaking. The model is therefore formulated as

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v)
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with f and g allowing a homogeneous base state (u0, v0),

f(u0, v0) = 0 g(u0v0) = 0.

Linearization around this base state

u = u0 + εu1 v = v0 + εv1

yields

∂u1

∂t
= Du

∂2u1

∂x2
+ au1 − bv1

∂v1

∂t
= Dv

∂2v1

∂x2
+ cu1 − dv1

and the linear stability with a Fourier ansatz in space

u1 = U(t)eiqx v1 = V (t)eiqx

gives (
∂U
∂t
∂V
∂t

)
=

(
−Duq

2 + a −b
c −Dvq

2 − d

)
︸ ︷︷ ︸

L

(
U
V

)

and

detL =
(
−Duq

2 + a
) (
−Dvq

2 − d
)

+ bc traceL = −Duq
2 + a−Dvq

2 − d

We are interested in the appearance of steady rather than temporally oscillatory patterns
⇒ assume

a < d,

which makes the traceL negative for all wave numbers⇒ no Hopf bifurcation.

We have

detL = DuDvq
4 + q2 (Dud−Dva) + bc− ad.

As parameters are varied, the determinant detL can vanish first for q = 0 or for q > 0. We
are interested in the case q > 0⇒ we need

bc− ad > 0

Dud−Dva < 0

Together with the condition a < d this implies

Dv

Du

>
d

a
> 1
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More precisely, the instability occurs first at a q2
c for which at its minimum detL − 0. This

requires
d detL

dq2
= 2DuDvq

2
c +Dud−Dva = 0 q2

c =
Dva−Dud

2DuDv

> 0

(Dva−Dud)2

4DuDv

− (Dva−Dud)2

2DuDv

= −(Dva−Dud)2

4DuDv

= ad− bc

(Dva−Dud)2 = 4DuDv (bc− ad)

The onset of the instability occurs then at

bc =
(Dva+Dud)2

4DuDv

.

The key elements of the Turing instability are

• the activator is (effectively) autocatalytic and activates also the inhibitor

• the inhibitor inhibits itself and the activator

• the inhibitor diffuses faster than the activator⇒

– a local bump in the activator drives also a local bump in the inhibitor

– the inhibitor bump is wider than the activator bump

– the more localized activator bump sustains itself,

– the activator bump is kept from spreading by the inhibitor bump

– only at distances at which the inhibitor has sufficiently decayed the activator can
arise again⇒ spatially periodic structure

With respect to hydra Meinhardt (earlier with Gierer) developed a more elaborate model
comprised of 3 activator-inhibitor systems, one each for the head, for the foot, and for
the tentacles. In addition, that model includes a long-range gradient in the source density
for the generation of the activator that establishes and maintains the head-foot polarity
Meinhardt (1993).
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classical transplantation experiments. A tissue frag-
ment derived from a position closer to the head of a
donor hydra has a higher chance of triggering a new
head after transplantation into the body column of
another hydra. In terms of the model, the graded com-
petence provides a bias; it is decisive where the
activation will occur during regeneration. Because the
organizing region is small (the tip of the hypostome)
but the competence is a smoothly graded tissue prop-
erty over the body column, it is expected that a long-
ranging signal spreads from the organizer that causes
an increase in the ability to perform the pattern-forming
reaction [36,39]. Thus, with increasing distance from an
existing maximum, not only the inhibitor concentration
but also the competence decreases. The cells become
less and less able to establish a new centre, especially
while the primary organizer is present. This stabilizes
the polar character of the axial pattern during growth
by suppressing the trigger of secondary organizing
regions. The inhibitor may have a double function:
inhibiting the formation of other maxima and establish-
ing this graded competence. It is crucial that the
competence has a much longer time constant; it remains
almost unchanged during the decisive early steps in

regeneration, providing in this way a sort of memory for
the polarity of the tissue. It causes regeneration to occur
with a predictable polarity. In contrast, the actual
pattern formation is a self-regulating process. Foot for-
mation occurs at the lowest level of head competence
and reduces the head competence further (figure 6).
Thus, the foot signal appears at the largest possible
distance from the head signal and contributes to suppres-
sing the formation of a second head signal [27,36]. As
discussed later, the graded competence also plays a crucial
role in the positioning of the tentacles. The molecular
realization of the competence in hydra is not yet clear.

Taken together, by coupling positive-acting elements
of different ranges, the polarity can be maintained over
a large range of sizes and very localized signals are avail-
able nevertheless. The expected generation of multiple
peaks in situations where only a single peak should
occur was used as an argument against Turing’s mech-
anism. As shown earlier, this ‘wavelength problem’,
inherent in simple pattern-forming systems, can be
solved by the superposition of several patterning
systems with different wavelengths.

8. TENTACLE FORMATION IN HYDRA:
A SYSTEM THAT TURING WAS
CONSIDERING AS AN EXAMPLE OF
A PERIODIC PATTERN ON A CIRCLE

The ring of tentacles around the opening of the gastric
column in hydra was mentioned explicitly by Turing as
an example of a periodic pattern on a ring. As the pri-
mary axial pattern, the tentacle pattern is also restored
during regeneration and during pattern formation in
re-aggregating cells (figure 5). A second look at this pat-
tern, however, shows that its generation is not so simple.
Tentacles emerge close to each other around the circum-
ference but no tentacles are formed further down along
the body column. Tentacle formation is an example of a
type of pattern that is frequently encountered in develop-
ment:two structures emerge close to each other but not
somewhere else. Such a controlled neighbourhood of
structures is enforced if one structure activates the
other on a medium range but excludes it locally [40,41].
Tentacle formation can be explained under the assump-
tion that the primary patterning system that generates
the head—or, more precisely, the hypostome—generates
on a longer range the precondition to form the tentacles.
Locally, however, the tentacle system is suppressed by the
hypostome system. Therefore, tentacles can only appear
next to the hypostome. Owing to the inhibition produced
by the tentacles formed at the privileged position, tenta-
cle formation is suppressed further down the body
column. Even further down, around the budding zone,
tentacle formation is impossible since the competence is
too low. This model [36] has recently found support
from molecular investigations. By treatment with the
drug alsterpaullone that stabilizes b-catenin, it was poss-
ible to obtain a high competence everywhere in the body
column [37], allowing tentacle formation everywhere
(figure 6). As observed, the first supernumerary tentacles
appear at some distance from the normal tentacles
because there their inhibitory influence is the lowest.

(a)

(b) (c)

(d ) (e)

Figure 6. Already considered by Turing:tentacle patterning in
hydra as an example of a periodic pattern on a ring. (a) Model
for hydra patterning:the signals for head (green), foot (pink)
and tentacle formation (brown) are assumed to be accom-
plished by activator–inhibitor systems [36]. These systems
are coupled via the competence (blue). The head signal inhi-
bits locally the tentacle signal but generates on longer range
the high competence that is required for tentacle formation.
Therefore, tentacles are formed only next to the head. (b,c)
After treatment with a drug (alsterpaullone), tentacles are
formed all over the body column [37], Wnt5 marks the tip of
the tentacles (b), Wnt8 their base (c) [38]. The drug stabilizes
b-catenin; all cells of the body column obtain a high compe-
tence [37]. (d,e) Model: owing to the generally elevated
competence (blue), the position next to the head is no
longer privileged; tentacles appear first at some distance
from the existing tentacles (d), as observed (b), and later all
over with a similar spacing that is normally only observed in
the tentacle ring, in agreement with the observations
[37,38]. (Photographs were kindly provided by Isabelle Philipp
and Bert Hobmayer; see Philipp et al. [38]; with permission
from Proc. Natl Acad. Sci. USA.)
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Figure 35: (a) Normal development of hydra within the Meinhardt model. (b,c) Exposure
to the drug alsterpaullone leads to additional tentacles along the body of the hydra (wnt is
strongly expressed at the tips of the tentacles). (d,e) This can be captured qualitatively in
the model. (from Meinhardt (2012)).

Notes:

• It is not clear if/to what extent these molecular gradients have been confirmed exper-
imentally.

• Diffusion is probably not the only communication between cells. Tentacle formation
requires notch-signaling, which is based on cell contact. Notch receptors interact
with transmembrane proteins of the adjacent cells and triggers regulation of gene
expression in the nucleus.

• For smaller system sizes the long-range inhibition can stabilize polarization of the
system rather than generate periodic structures.

• Inherent in the spontaneous symmetry breaking is that noise plays a significant role
in establishing the patterned state, since the perfect unpatterned state exists below
and above the threshold for the formation of the pattern. That raises the question
whether in its original form it is robust enough to generate patterns for which preci-
sion and reliability is important (e.g. limb formation, in contrast to pigment patterns
on fish skin, say).
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2.2 Drosophila Development

The early development of drosophila embryos has been studied extensively and there is
a wealth of information available by now. Consider it as an example.

Figure 36: Life cycle of drosophila (from Purves et al. (1998)) .

Figure 37: Drosophila: 22-hour-old embryo showing denticle bands on the cuticle. Head
on the left (Wikipedia).

The main stages of early embryonic development of drosophila are14

• fertilization of the egg, making it a zygote
143 great videos by E. Wischaus are at https://www.ibiology.org/development-and-stem-cells/bicoid/ . see

also https://www.ibiology.org/speakers/eric-wieschaus/
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• 9 cycles of divisions of the nuclei generating 256 nuclei (each taking ~8 minutes).
The zygote does not grow during that time and the nuclei are not separated by cell
walls.

• During the 10th cycle the nuclei migrate to the periphery of the cell creating the
syncytial blastoderm.

• After the 13th cycle (~4 hours after fertilization) cell walls form between the ~6,000
nuclei (‘cellularization’), forming the cellular blastoderm.

– At this point the cells have not differentiated yet, but the expression of various
genes shows pre-patterns that direct the subsequent development and differ-
entiation of the cells.

• Gastrulation

• ...

4 Hierarchies of Genes Involved in Morphogenesis

provides a spatial description of a chemical reaction between
two reactants by the following system of partial differential
equations:

@X

@t
¼ FðX ;YÞ þ D1r2X

@Y

@t
¼ GðX ;YÞ þ D2r2Y :

ð1Þ

X and Y represent reactant concentrations. F(X,Y) and G(X,Y)
are production functions describing the chemical interactions
between reactants. D1 and D2 are diffusion constants, and
r2 is the Laplacian operator which implements diffusion.
Turing used his model to show that this simple chemical
system can exhibit symmetry breaking and formation of

stable spatial patterns triggered by random fluctuations in
the initially homogeneous spatial distribution of reactant
concentrations. This requires, among other things, distinct
diffusion rates D1 and D2 for each of the two reactants.20

An early application of Turing’s model to Drosophila
development by Kauffman, Shymko and Trabert (KST)
interpreted the establishment of boundaries between segments
in the embryo as a series of bifurcation events in the model.21–23

Linear analysis of Turing’s model (Eqn (1)) showed that the
wavelengths of the periodic spatial patterns resulting from
random initial perturbation depended only on the size of the
elliptical spatial domain over which the system was defined.21

Therefore, morphogen patterns of decreasing wavelength
(and thus increasing periodicity or stripe number) could be
formed by a series of bifurcations caused by the growth of the

Fig. 1 The segmentation gene network of D. melanogaster. Gradients of transcription factors encoded by maternal co-ordinate genes bicoid (bcd),

hunchback (hb) and caudal (cad) provide the initial conditions for zygotic segmentation gene expression. The terminal maternal system acts through

the zygotic terminal gap genes tailless (tll) and huckebein (hkb; not shown). Gap genes hb, Krüppel (Kr), knirps (kni) and giant (gt) are expressed

in one or two broad domains. Maternal co-ordinate and gap genes provide regulatory inputs for pair-rule gene expression (examples shown are

even-skipped (eve), hairy(h), runt (run) and fushi tarazu (ftz)). Pair-rule genes regulate the initial expression of segment-polarity genes in 14 narrow

stripes (shown for engrailed (en) as newly forming mRNA pattern at blastoderm, and persistent protein pattern at extended germ-band stage).

This segmental pre-pattern later determines the position of the morphological embryonic segments.

This journal is %c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 1549–1568 | 1551
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Figure 38: Hierarchy of maternal and zygotic genes (Jaeger, 2009).
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Differentiation is controled by 4 generations of genes, which provide successively finer
spatial control, with the genes operating on larger scales controling those operating on
smaller scales

• maternal genes

– bicoid (bcd), hunchback (hb), and caudal (cad)
the mRNA for these proteins are deposited by the mother on the egg, giving the
cell polarity:
∗ bcd mRNA is expressed at the anterior end
∗ hb and cad mRNA are expressed uniformly along the anterior-posterior

axis
∗ the translation of the corresponding proteins starts with the fertilization of

the egg

• zygotic genes

– gap genes
∗ hb (zygotic hunchback transcription and translation enhances the protein

translated from maternal mRNA), Krüppel (Kr ), knirps (kni), giant (gt)
– pair-rule genes
∗ even-skipped (eve) and others

– segment-polarity genes

We focus here on the gradient of bicoid. Bicoid was the first protein to be recognized to be
a morphogen (Driever and Nusslein-Volhard, 1988). It sets the stage for the further spatial
organization.
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Figure 1. Maternal Effect Mutations Affecting the Anterior Pattern of the Drosophila Embryo 
Cuticular patterns (A-E) and a schematic presentation of the expression pattern of eve as determined from whole mount staining of embryos at 
the blastoderm stage with anti-eve antibody (F-J) to illustrate changes in the fate map of mutant embryos. Anterior is at the top in all cases. (A, 
F) Wild type. (B) bcdEllbcd El, a strong bcd mutant. Head and thorax are replaced by a duplicated telson (PS13"), and the anterior abdomen is 
defective. (G) eve expression in bcdE1/Df(3R)LIN. (C, H) exuPJlexu QR. (D, I) Weak phenotype of swaWswa TM. (E, J) stauD3/stau D3 displays anterior 
as well as abdominal defects. PS1, PS7, and PS13 indicate parasegments 1, 7, and 13, respectively; HE, head; TH, thorax; AB, abdomen; TE, telson. 

descr ibed by Driever and NQsslein-Volhard (1988). For a 
quant i tat ive evaluat ion and compar ison of the bcd  protein 
concentrat ion, we included in each staining reaction em- 
bryos from females with the normal  diploid gene dosage 
for bcd. To be able to dist inguish these control embryos 
from the exper imenta l  embryos,  the control embryos  were 
mutant  for oskar (osk) and thus lacked the pole cells (Leh- 

mann and NQsslein-Volhard, 1986). The bcd  protein distri- 
but ion in o s k -  embryos  is the same as in wi ld-type em- 
bryos, as shown in Figure 5B2. 

In embryos at the syncytial  b lastoderm stage der ived 
from both exu and swa females, bcd  protein is distr ibuted 
in a very  shal low gradient  at 40% to 100% egg length 
(Figures 2A, 2B, and 3A). Levels of bcd  protein in swa mu- 

Figure 39: Maternal mutations that reduce expression of bicoid lead to substantially dif-
ferent embryos (bottom row give sketch of expression of eve. a) wildtype, b) Strong
bcd mutant (almost no bcd), head and thorax replaced by a duplicated telson (sort of
tail, marked PS13∗), c,d) Mutations with only moderately suppressed bcd (Driever and
Nusslein-Volhard, 1988).
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The Drosophila maternal morphogen bicoid 817

oogenesis where bed mRNA is detectable contribute to
more than 80% of the ovary of a well-fed female. In
none of the ovarian extracts were we able to detect bed
protein, although we obtained strong signals for bed
protein from the embryonic extracts. Thus we conclude
that, like wild-type bed mRNA, bcdTN3 mRNA is not
translated during oogenesis. The bed mRNA leader
sequence seems not to be required for translational
control during oogenesis.

Fig. 5. Cuticular phenotypes of embryos injected at various
positions with in vitro transcribed mRNAs coding for bed
protein. (A) Uninjected control embryo from females
homozygous mutant for the strong bcdE[ allele. Instead of
head and thorax, a duplication of posterior terminal
structures is formed at the anterior. (B) Embryo from a
bcdEl mutant female injected at the anterior tip with
bcdTN3 mRNA (0.4/ig/il"1). All the structures present in
wild-type head and thorax are completely rescued.
(C) Embryo from a bcdEl mutant female injected at the
middle of the embryo with bcdTN3 mRNA (1.5 ^g;/]"').
While posterior terminal structures still form at both
termini, head structures are formed at the site of injection,
surrounded by thoracic dentical belts and sense organs. (D)
Closeup of the induced head region from the embryo shown
in C. The bilateral symmetry of the induced head structures
is typical for the arrangement of structures in such animals
(see also Frohnhdfer and Nusslein-Volhard, 1986). (E)
Wild-type embryo injected at the posterior pole with
bcdTN3 mRNA (1.7^gfd~l). Head structures and thorax
are induced in the posterior half of the embryo. All
embryos were injected during early cleavages (stage 2,
before pole cell formation). Pictures were taken using dark-
field optics (except D, phase contrast optics). Anterior is
always to the left, dorsal at top. A=Abdomen, Al=first
abdominal segment, A8=eighth abdominal segment,
ap=anal plate, aso=antennal sense organ, ci=cirri,
fk=filzkorper, mh=mouth hooks, mso=maxillary sense
organs, Tl to T3=first through third thoracic segment. The
structures of the head are described by Jiirgens et al. 1986.

T1 T2 T3 A1 T3 T2

Fig. 6. Experimental induction of dicephalic embryos. A
wild-type embryo, injected with bcdTN3 mRNA at the
posterior pole, developed an exceptionally perfect mirror-
image duplication of head and thorax. The only hint to the
posterior origin of the right head is the size reduction of the
labrum, which is hardly visible underneath the epistomal
sclerite (eps) in (A). Al=first abdominal segment, Tl to
T3=first through third thoracic segment, ci=cirri,
m=mouth hooks, pv=proventriculus. Anterior is left.
Phase-contrast pictures: (A) focus at central plane, (B)
focus on ventral cuticle.
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Figure 40: bicoid autonomously controls development: a) Severely impacted development
of an embryo coming from mother with strong bcd mutation b) Injecting bcd mRNA res-
cues that development (cf. Fig.39b). c) Injection in the middle generates additional head
(marked H). d) injection at the posterior end generates symmetric head formation (Driver
et al., 1990).

2.3 The French Flag Model and Extensions

How could the morphogen direct the spatial differentiation? The concentration could pro-
vide positional information if a sufficiently large concentration gradient can be established.
A very influential model along these lines was the french-flag model of Wolpert (Wolpert,
1969).

domain, or by the restriction of diffusion, which occurs
through membrane invagination in the blastoderm embryo.
Cells (or nuclei) within the domain could then interpret each of
these patterns by determining whether they are exposed to
morphogen concentrations below or above a given threshold.
Over time, this results in a combinatorial code where a
succession of such binary decisions results in a ‘code word’
which determines the developmental fate of each individual
cell.21

A major problem with the KST model is that it turned out to
be extremely sensitive to the shape of its elliptical spatial domain.
Numerical simulations of the model on more embryo-like
domains did not manage to recover the regular wave patterns
found by linear analysis.22 This cast serious doubt on the
applicability of Turing models to blastoderm pattern formation.
Much time and effort had to be spent in later studies to show that
such systems indeed are capable of producing regular and robust
striped patterns, and that they could do so independent of the
exact (and often deliberately unrealistic) kinetic mechanisms
implemented in these models.24–29

Still, the KST model was an important inspiration for later
attempts at modelling segment determination since it suggested
profound parallels between the mechanism of boundary
formation in the Drosophilaembryo and the series of bifurcating
wave patterns observed in Turing systems (Fig. 3). This
parallel became especially striking after the expression patterns
of segmentation genes in general, and pair-rule genes in
particular, had been visualized experimentally. Turing
mechanisms now provided an elegant explanation for the
existence and two-segment periodicity of pair-rule stripes,
whose biological significance was far from obvious to bio-
logists and theoreticians at that time.

The models suggested that local regulatory interactions
among segmentation genes were not the cause—or at least
not sufficient—for segment determination. Instead, they
postulated that segmentation gene expression was the symptom
of an elusive global or field patterning mechanism.24–27,29,30

In other words, the frequency doubling observed during the
pair-rule to segment-polarity transition was thought to reflect
the spatial harmonics of the embryo, which depended on
embryo shape and size more than on the exact regulatory
interactions among segmentation genes.30 This was of
particular interest to people studying non-linear dynamical
systems since frequency doubling is typical for systems in
transition to deterministic chaos.31

Unfortunately, experimental studies soon revealed a rather
less elegant mechanism for periodic pattern formation in the
Drosophilablastoderm.32,33 Expression of individual pair-rule
stripes depends on the presence and position of specific gap
domain boundaries. Thus, the position and number of
pair-rule stripes are a direct consequence of the position
and number of gap domains, and there is no evidence for
a molecular Turing mechanism at work in the Drosophila
blastoderm.
With hindsight, it seems obvious that the biggest problem

with these models was their lack of attention to detail (which
was not only necessitated by the lack of data, but was in many
cases deliberate).

Fig. 2 The French flag model in 1968 (A) and in 2009 (B). (A) Lewis Wolpert’s original model.12 A morphogen diffuses from its source (shown in

green) to its sink (pink). If no degradation occurs in the tissue, the gradient will be linear at steady state. Specific concentration thresholds in the

gradient (T1 and T2) lead to the expression of different sets of target genes (indicated by blue, white and red) in the tissue. Development is seen as a

two-step process: establishment (step 1) and interpretation of the gradient (step 2) are completely separated from each other. (B) The Drunken

French flag: imprecise, initial target gene boundaries shift, refine and sharpen over time. There is no more one-to-one correspondence between

concentration thresholds in the gradient and boundaries of target gene expression. Moreover, establishment and interpretation of the gradient can

no longer be clearly separated.

Fig. 3 Spatial harmonics of the Drosophila embryo? (A–F) illustrate

a bifurcation series of standing wave patterns in a Turing system as its

domain increases in size. Diagram modified from ref. 30.

1552 | Mol. BioSyst., 2009, 5, 1549–1568 This journal is !c The Royal Society of Chemistry 2009
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Figure 41: French flag model (Wolpert, 1969).

In a minimal version one could imagine that the concentration of the morphogen is fixed
at the two ends of the organism. In the absence of any degradation its concentration is
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then linear and the concentration defines a coordinate system. With suitable thresholds
subsequent gene expression can be directed.

dm

dt
= D

d2m

dx2
c(0) = c0 c(L) = cL

Question: is there enough time to set up such a (linear) gradient during development?
Crick estimated the diffusion of the - at that time hypothetical - morphogen. He assumed
a molecular weight of the order of 500 and a viscosity corresponding to that of a strong
sucrose solution (40% by weight) (Crick, 1970) ,

D = O(10−6 cm
s2

)

He concluded that within 3 hours (104 s) a gradient of 700µm could be built up, which would
correspond to roughly 70 cells. That size is of the order of the size that Wolpert discussed
for various embryonic developments (not drosophila).

Back to drosophila: what is known about the concentration profile of bcd?
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Figure 42: The same bcd-concentration in drosopila (from (Driever and Nusslein-Volhard,
1988)) plotted linearly (a), logarithmically in y (b), and double-logarithmically (c).

The concentration profile is clearly not linear

• the diffusion coefficient could be space-dependent D(x) or depend on the mor-
phogen concentration D(m) ,

• the protein could become degraded with time

Model with fixed degradation rate

dm

dt
= −αm+D

d2m

dx2

For bcd it is known that the protein is translated from the mRNA that is localized near the
anterior end. Assume as boundary conditions

dm

dx

∣∣∣∣
x=0

= −J dm

dx

∣∣∣∣
x=L

= 0.
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In steady state one obtains then an exponential profile

m(x) = m0e
− x
λ m0 =

√
D

α
J λ =

√
D

α
(19)

How robust does such a gradient define a location? The flux J depends on the mRNA
concentration, which could well vary between cells. How much would this change the
location. Assume the threshold mθ for triggering subsequent differentiation is fixed

mθ = m(x1; J1) = λJ1e
−x1
λ

!︷︸︸︷
= m(x2; J2) = λJ2e

−x2
λ

x2 − x1 = λ ln
J1

J2

⇒ x2 − x1 ∼ 0.7λ for J2 = 2J1

Since λ sets the scale over which the concentration gradient varies, the size of the vari-
ous domains of the french flag cannot be much larger than λ otherwise the threshold mθ

separating the second from the third domain becomes too small to be reliably measured.

Therefore it has been suggested that an exponential decay does not allow robust pattern-
ing (Eldar et al., 2003). In a different context - the development of the drosophila wing,
i.e. in the patterning of the morphogens Wg and Hh of the imaginal wing disc - they sug-
gest that the profile should be steep near the source but shallow in the regions that define
the domains. This would allow large variations of the source current without shifting the
domain boundaries too much⇒ assume the degradation is nonlinear in the concentration

dm

dt
= −αm2 +D

d2m

dx2
.

Consider again the steady state

D
d2m

dx2
= αm2

Try a power law
m(x) = Axp

Dp(p− 1)Axp−2 = αA2x2p

p− 1 = 2p ⇒ p = −2 and A =
6D

α

m(x) =
6D

α
x−2

This solution diverges at x = 0:

• boundary condition needs to be placed somewhere else:

dm

dx

∣∣∣∣
x=b

= −J ⇒ −2
6D

α
b−3 = −J b =

(
J

2

α

6D

)− 1
3

which implies

m(b) =
6D

α

(
J

2

α

6D

) 2
3

=

(
6D

α

) 1
3
(
J

2

) 2
3

or J = 2
( α

6D

) 1
2
m(b)

3
2
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• even large variations in J can be accommodated with small shifts in the boundary
position

b2 − b1 =

(
J2

2

α

6D

)− 1
3

−
(
J1

2

α

6D

)− 1
3

=

(
J1

2

α

6D

)− 1
3 (
δ−

1
3 − 1

)
for δ =

J2

J1

.

Thus, for J1 → ∞ at fixed δ one has b2 − b1 → 0, i.e. the change in the distance from
the domain location at which m = mθ becomes very small for large J1,2. Specifically, with
m(xθ) = mθ we have

xθ =

√
6D

αmθ

and

b2 − b1

xθ
=

(
δ−

1
3 − 1

)( α

6D

)− 1
3

+ 1
2

(
J1

2

)− 1‘
3

m
1
2
θ

=
(
δ−

1
3 − 1

)( α

6D

)− 1
3

+ 1
2
− 1

6

(
mθ

m(b1)

) 1
2

=
(
δ−

1
3 − 1

) ( mθ

m(b1)

) 1
2

To get robustness, the concentration at the end of the system must be much larger than
at the domain boundaries that are to be defined by the gradient: to get 10% accuracy
one needs concentrations at the boundary that are a factor of 100 larger than inside the
domain. Is that realistic?

Reassess the concentration profiles for bicoid :

• the concentration varies by a factor of 10 over the whole system

• for this mechanism to be operating one should see power-law behavior particularly
for large concentrations. However, near the anterior end the behavior is nicely expo-
nential and clearly not a power-law.
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degradation. The consequence of the balance between synthesis
and degradation is that both the total concentration of Bicoid in the
embryo and the spatial concentration profile remain stable (Fig.
3A). Mathematically, at steady state, the diffusion reaction equation
(1) becomes time independent and allows an exact solution. The
concentration of Bicoid at a given position now depends only on
the diffusion and lifetime of the protein.

A solution to equation (1) where the source is a point
j(x,t)
Q�(x)H(t) is obtained by setting the time derivative to zero
!C(x,t)/!t
0 (Rice, 1985) so that:

Css (x) = Q
αλeq

e
− x

λeq  , (2)

where Q is the amount of Bicoid being produced at position x
0 at
a constant rate, 	 is the degradation rate, and �eq
!D/	 is the length
constant (see Box 5) at equilibrium. The overall shape of the
gradient is then only defined by the ratio of the diffusion coefficient
and the degradation rate.

The notion of steady state originates from the field of
mathematics. The steady state is the time-independent
asymptotic solution of a differential equation. In real-life
experimental conditions, a true steady state cannot be observed
as it would require an infinite time of observation. However,
most chemical systems relax towards their steady state
exponentially quickly. This means that even if the steady state is
never reached, an observed quantity can appear to be almost
stable, and this stable state will be extremely close to the
theoretical steady state. Therefore, an experimental quantity,
such as the concentration of a protein, can be described as being
at steady state if this quantity is within X% of its steady-state
value (known theoretically), where X is a number that is defined
arbitrarily.

With respect to the Bicoid gradient, numerous discussions
have centred on whether or not the gradient is at steady state.
Before asking this question, one should define what steady state
means for such an experimentally observed quantity.
Furthermore, the Bicoid gradient can appear to be stable without
being close to any kind of steady state. Everything depends on
what we see as being stable. For example, measurements of the
nuclear concentrations of Bicoid may suggest that the total
gradient does not change over the last five cell cycles and
therefore that the gradient is at steady state. But, as we discuss
below, this might or might not be true. It is worth pointing out
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Fig. 2. Bicoid forms a nuclear concentration
gradient along the anterior-posterior axis of
the Drosophila embryo. The Bicoid nuclear
concentration gradient provides the Drosophila
embryo with positional information. (A)
The
Bicoid gradient in cycle 14, visualised by confocal
microscopy of a living embryo expressing Venus-
Bicoid. Anterior is to the left. The gradient is
quantified by sliding a box (red) along the
nucleocytoplasmic area and computing the mean
pixel intensity within the box. The intensity value
is then projected onto the AP axis (red).
(B)
Quantitative information obtained from the
embryo in A. The fluorescence intensity (which is
proportional to Bicoid concentration) is shown as
a function of egg length (x). (C)
Expression of the
Bicoid target genes hunchback and Kruppel in
cycle 14. Anterior is to the left. (D)
Graph
showing the concentration of Bicoid protein
(positional information in red) and expression of
the target genes hunchback and Kruppel (blue
and black, respectively). x/L is the relative position
along the AP axis. (E)
The length constant, �, of
the Bicoid gradient is obtained by fitting an
exponential (red) to the Bicoid intensity profile
and computing the position at which the
concentration has dropped to 1/exp of the
maximal value at the anterior (at x
0). au,
arbitrary units.

Box 3. Protein lifetime and steady state
The lifetime of a protein, that is, its characteristic survival time, sets
a limit as to whether and when a steady state is reached. For first-
order chemical reactions, such as the uni-molecular degradation
scheme A	rØ, the time evolution of the decaying chemical species
is exponential: [A](t)
[A](t
0)exp(–	t), where [A](t) is the
concentration of the chemical species A, and 	 is the degradation
rate (the amount of material being degraded per unit of time).

It is possible to define the lifetime � as the mean survival time of
a particle before it is degraded. For an exponential decay (as above),
the lifetime is the inverse of the degradation rate: �
1/	. Some
studies refer to half-life h (the time at which the concentration of
the chemical species has dropped to one half of its initial value)
rather than to lifetime. The relation between lifetime and half-life
is �
hlog(2).
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degradation. The consequence of the balance between synthesis
and degradation is that both the total concentration of Bicoid in the
embryo and the spatial concentration profile remain stable (Fig.
3A). Mathematically, at steady state, the diffusion reaction equation
(1) becomes time independent and allows an exact solution. The
concentration of Bicoid at a given position now depends only on
the diffusion and lifetime of the protein.

A solution to equation (1) where the source is a point
j(x,t)
Q�(x)H(t) is obtained by setting the time derivative to zero
!C(x,t)/!t
0 (Rice, 1985) so that:

Css (x) = Q
αλeq
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λeq  , (2)

where Q is the amount of Bicoid being produced at position x
0 at
a constant rate, 	 is the degradation rate, and �eq
!D/	 is the length
constant (see Box 5) at equilibrium. The overall shape of the
gradient is then only defined by the ratio of the diffusion coefficient
and the degradation rate.

The notion of steady state originates from the field of
mathematics. The steady state is the time-independent
asymptotic solution of a differential equation. In real-life
experimental conditions, a true steady state cannot be observed
as it would require an infinite time of observation. However,
most chemical systems relax towards their steady state
exponentially quickly. This means that even if the steady state is
never reached, an observed quantity can appear to be almost
stable, and this stable state will be extremely close to the
theoretical steady state. Therefore, an experimental quantity,
such as the concentration of a protein, can be described as being
at steady state if this quantity is within X% of its steady-state
value (known theoretically), where X is a number that is defined
arbitrarily.

With respect to the Bicoid gradient, numerous discussions
have centred on whether or not the gradient is at steady state.
Before asking this question, one should define what steady state
means for such an experimentally observed quantity.
Furthermore, the Bicoid gradient can appear to be stable without
being close to any kind of steady state. Everything depends on
what we see as being stable. For example, measurements of the
nuclear concentrations of Bicoid may suggest that the total
gradient does not change over the last five cell cycles and
therefore that the gradient is at steady state. But, as we discuss
below, this might or might not be true. It is worth pointing out
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Fig. 2. Bicoid forms a nuclear concentration
gradient along the anterior-posterior axis of
the Drosophila embryo. The Bicoid nuclear
concentration gradient provides the Drosophila
embryo with positional information. (A)
The
Bicoid gradient in cycle 14, visualised by confocal
microscopy of a living embryo expressing Venus-
Bicoid. Anterior is to the left. The gradient is
quantified by sliding a box (red) along the
nucleocytoplasmic area and computing the mean
pixel intensity within the box. The intensity value
is then projected onto the AP axis (red).
(B)
Quantitative information obtained from the
embryo in A. The fluorescence intensity (which is
proportional to Bicoid concentration) is shown as
a function of egg length (x). (C)
Expression of the
Bicoid target genes hunchback and Kruppel in
cycle 14. Anterior is to the left. (D)
Graph
showing the concentration of Bicoid protein
(positional information in red) and expression of
the target genes hunchback and Kruppel (blue
and black, respectively). x/L is the relative position
along the AP axis. (E)
The length constant, �, of
the Bicoid gradient is obtained by fitting an
exponential (red) to the Bicoid intensity profile
and computing the position at which the
concentration has dropped to 1/exp of the
maximal value at the anterior (at x
0). au,
arbitrary units.

Box 3. Protein lifetime and steady state
The lifetime of a protein, that is, its characteristic survival time, sets
a limit as to whether and when a steady state is reached. For first-
order chemical reactions, such as the uni-molecular degradation
scheme A	rØ, the time evolution of the decaying chemical species
is exponential: [A](t)
[A](t
0)exp(–	t), where [A](t) is the
concentration of the chemical species A, and 	 is the degradation
rate (the amount of material being degraded per unit of time).

It is possible to define the lifetime � as the mean survival time of
a particle before it is degraded. For an exponential decay (as above),
the lifetime is the inverse of the degradation rate: �
1/	. Some
studies refer to half-life h (the time at which the concentration of
the chemical species has dropped to one half of its initial value)
rather than to lifetime. The relation between lifetime and half-life
is �
hlog(2).
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degradation. The consequence of the balance between synthesis
and degradation is that both the total concentration of Bicoid in the
embryo and the spatial concentration profile remain stable (Fig.
3A). Mathematically, at steady state, the diffusion reaction equation
(1) becomes time independent and allows an exact solution. The
concentration of Bicoid at a given position now depends only on
the diffusion and lifetime of the protein.

A solution to equation (1) where the source is a point
j(x,t)
Q�(x)H(t) is obtained by setting the time derivative to zero
!C(x,t)/!t
0 (Rice, 1985) so that:

Css (x) = Q
αλeq

e
− x

λeq  , (2)

where Q is the amount of Bicoid being produced at position x
0 at
a constant rate, 	 is the degradation rate, and �eq
!D/	 is the length
constant (see Box 5) at equilibrium. The overall shape of the
gradient is then only defined by the ratio of the diffusion coefficient
and the degradation rate.

The notion of steady state originates from the field of
mathematics. The steady state is the time-independent
asymptotic solution of a differential equation. In real-life
experimental conditions, a true steady state cannot be observed
as it would require an infinite time of observation. However,
most chemical systems relax towards their steady state
exponentially quickly. This means that even if the steady state is
never reached, an observed quantity can appear to be almost
stable, and this stable state will be extremely close to the
theoretical steady state. Therefore, an experimental quantity,
such as the concentration of a protein, can be described as being
at steady state if this quantity is within X% of its steady-state
value (known theoretically), where X is a number that is defined
arbitrarily.

With respect to the Bicoid gradient, numerous discussions
have centred on whether or not the gradient is at steady state.
Before asking this question, one should define what steady state
means for such an experimentally observed quantity.
Furthermore, the Bicoid gradient can appear to be stable without
being close to any kind of steady state. Everything depends on
what we see as being stable. For example, measurements of the
nuclear concentrations of Bicoid may suggest that the total
gradient does not change over the last five cell cycles and
therefore that the gradient is at steady state. But, as we discuss
below, this might or might not be true. It is worth pointing out
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Fig. 2. Bicoid forms a nuclear concentration
gradient along the anterior-posterior axis of
the Drosophila embryo. The Bicoid nuclear
concentration gradient provides the Drosophila
embryo with positional information. (A)
The
Bicoid gradient in cycle 14, visualised by confocal
microscopy of a living embryo expressing Venus-
Bicoid. Anterior is to the left. The gradient is
quantified by sliding a box (red) along the
nucleocytoplasmic area and computing the mean
pixel intensity within the box. The intensity value
is then projected onto the AP axis (red).
(B)
Quantitative information obtained from the
embryo in A. The fluorescence intensity (which is
proportional to Bicoid concentration) is shown as
a function of egg length (x). (C)
Expression of the
Bicoid target genes hunchback and Kruppel in
cycle 14. Anterior is to the left. (D)
Graph
showing the concentration of Bicoid protein
(positional information in red) and expression of
the target genes hunchback and Kruppel (blue
and black, respectively). x/L is the relative position
along the AP axis. (E)
The length constant, �, of
the Bicoid gradient is obtained by fitting an
exponential (red) to the Bicoid intensity profile
and computing the position at which the
concentration has dropped to 1/exp of the
maximal value at the anterior (at x
0). au,
arbitrary units.

Box 3. Protein lifetime and steady state
The lifetime of a protein, that is, its characteristic survival time, sets
a limit as to whether and when a steady state is reached. For first-
order chemical reactions, such as the uni-molecular degradation
scheme A	rØ, the time evolution of the decaying chemical species
is exponential: [A](t)
[A](t
0)exp(–	t), where [A](t) is the
concentration of the chemical species A, and 	 is the degradation
rate (the amount of material being degraded per unit of time).

It is possible to define the lifetime � as the mean survival time of
a particle before it is degraded. For an exponential decay (as above),
the lifetime is the inverse of the degradation rate: �
1/	. Some
studies refer to half-life h (the time at which the concentration of
the chemical species has dropped to one half of its initial value)
rather than to lifetime. The relation between lifetime and half-life
is �
hlog(2).
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Figure 43: More recent measurements of bicoid concentration using fluorescence (using
venus, a GFP-derivative (Little et al., 2011)). There is a baseline level of fluorescence,
which is subtracted when fitting to the exponential (Grimm et al., 2010).
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Note:

• It is not clear that this type of robustness, while mathematically possible, is imple-
mented in the bicoid system. Clearly, to answer questions like this good quantitative
measurements as in Fig.43 are required.

Egg Sizes

Another dimension of robustness regards the size of the eggs

• Different species of drosophila differ significantly in their size, as do their eggs.

• The expression patterns scale with the egg size.

many spatially separated locations. If the underlying molecular
motion is in fact diffusive, then these dynamics at each location
will be fit by the solution of the diffusion equation, with only a
single free parameter (the diffusion constant itself) that can be
chosen to fit all of the data. Although the data were roughly
consistent with analytic predictions for diffusion along one
dimension, for quantitative analysis we used numerical calcula-
tions in realistic 3D geometries to more accurately model the
expected concentration dynamics (see Methods). Fig. 1B indi-
cates that concentration changes on the length and time scales
relevant for development are well described by the diffusion
equation and hence that the molecular motion can be approx-
imated by random walks.

If random molecular movement is due to Brownian motion
(passive diffusion), then it is governed by the Stokes–Einstein
relationship: diffusion coefficients decrease inversely with
increasing molecular radius. To test this relationship, we
measured diffusion constants for dextran molecules of four
different nominal molecular masses (Table 1). Fig. 1C shows
a good fit of the Stokes–Einstein relation to our data with an
effective cytoplasmic viscosity of 4.2 cP (1 P ! 0.1 kg!m"1!s"1),
four times higher than water. This is well within the range of
viscosities reported in other systems (15, 16). We also observe
a constant, radius-independent contribution to the diffusion
constant (the parameter b in the legend to Fig. 1C), as noted
previously (10). This is consistent with a random ‘‘stirring’’ of
the cytoplasm and is #25% of the total at molecular masses of
55 kDa, the molecular mass of Bcd. This would represent an
active, and hence biologically controllable, contribution to the
dynamics of molecular motion. Although this enhances the
effective diffusion constant, our experiments show that it does
not invalidate the description of the dynamics by the diffusion
equation.

Scaling of Gene Expression Profiles. The above results make
plausible that spreading of Bcd from its localized source, and
hence the generation of the primary anteroposterior gradient,
will be described by the diffusion equation. However, diffu-
sion-based models provide no natural mechanism for gener-
ating spatial patterns that scale with the size of the egg.
Specifically, in systems where patterns emerge through a
combination of diffusion and biochemical reactions, the dif-
fusion constant and reaction rates determine an absolute
length scale. Thus, when the size of the system changes, the
spacing of the pattern elements would remain fixed (4).
Although Bcd is conserved across $100 million years of
dipteran evolution (17), the eggs of closely related species vary
over at least a factor of five in length (Table 2). Despite these
changes in size, the stripe-like patterns of gap and pair-rule
genes scale with egg length, as is clear qualitatively in Fig. 2.
As a quantitative example of this scaling, the point of half
maximal hunchback expression is at 45 % 6% egg length in L.
sericata and at 48 % 3% in D. melanogaster, so that the absolute
positions of this boundary are changing in proportion to egg
length over a nearly threefold range.

In D. melanogaster, the expression patterns illustrated in Fig.
2 reflect and depend on the underlying distribution of Bcd (17).
We can envision two very different mechanisms for generating
scaled versions of these profiles in the species with larger
embryos. First, the Bcd gradient could stay the same, and the
cis-acting control sites of downstream genes could have adapted
over evolution so that specific genes are activated by lower
concentrations of Bcd in species with larger eggs. Alternatively,
the Bcd gradient itself could scale, while the readout mecha-
nisms encoded in the control sites of downstream genes are
conserved across species.

To distinguish between these possibilities, we examined Bcd
protein profiles from images of immunofluorescently stained
embryos in L. sericata, D. melanogaster, and D. busckii embryos
(Fig. 3A; see Methods). In Fig. 3B Upper, we show Bcd profiles
from multiple embryos of each species, and in Fig. 3B Lower, we
show the same data but with the x axis normalized by embryo
length for each individual. Bcd protein extends farther in the
larger eggs; however, when scaled to egg size, the Bcd gradients
for the different species overlay one another.

For each embryo in all species studied, the apparent concen-
tration of Bcd vs. position has an exponential form, c(x) &
exp("x!!), which is consistent with the simplest model of
diffusion and degradation (see Methods). Here, ! is a charac-
teristic length; rapidly (slowly) decaying gradients have a short
(long) !. In a scatter plot of ! vs. egg length (Fig. 3C), we see that
the large variations of egg length across species are associated
with changes in absolute values of !. Within each species, we
observe significant embryo-to-embryo variability, as reported
previously for D. melanogaster (14), indicating that individual egg

Fig. 2. Immunofluorescence stainings for products of the gap and pair-rule
genes in higher diptera. (A) Immunofluorescence staining of L. sericata (upper
embryos) and D. melanogaster (lower embryos) for Hunchback (green) and
Giant (red) in the left column, and for Paired (green) and Runt (red) in the right
column. (B) Anti-Hunchback (green) and anti-Runt (red) immunofluorescence
staining of D. melanogaster (upper embryo) and D. busckii (lower embryo).
(Scale bars: 100 "m.)

Table 2. Effective diffusion constants of 40-kDa dextran
molecules in dipteran species

Species (mean egg length) N D, "m2!s

D. busckii (344 "m) 8 14.5 % 3.8
D. melanogaster (485 "m) 20 17.6 % 1.8
L. sericata (1,170 "m) 6 22.8 % 1.5
C. vicina (1,420 "m) 4 20.3 % 1.3

Table 1. Effective diffusion constants, D of dextran molecules of
different sizes in D. melanogaster

Molecular
mass, kDa rs, nm N D, "m2!s

10 2.3 11 29.1 % 4.2
40 4.5 20 17.6 % 1.8
70 5.9 8 15.3 % 1.4

150 9.0 5 12.9 % 3.4

The sample size N refers to the number of diffusion experiments analyzed.
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size does not feed back on the shape of the individual gradients.
The adjustment in average ! across species, however, achieves
almost perfect scaling. The distributions of length constants in
units of embryo length are nearly identical in all species (Fig.
3D), and in particular the mean values for these distributions
agree within 2%. Thus, we conclude that the scaling of zygotic
gene expression (Fig. 2) has its origins in scaling of the primary
Bcd gradient.

Mechanisms of Scaling. How is scaling of the Bicoid gradient
achieved? In the simplest model, the length constant ! ! "D",
where " is the protein lifetime (see Methods). The active con-
tribution to the effective diffusion constant D that we have

identified above raises the possibility that total effective diffusive
transport itself can be adjusted across species. To test this
possibility, we injected 40-kDa dextran molecules into eggs of D.
busckii, L. sericata, and Calliphora vicina. Table 2 shows a
summary of our results: the diffusion constants in the different
species vary only slightly. There is a tendency for increased
diffusivity and decreased variability with increasing egg length,
but the increase does not scale with egg size.

Given our diffusion and length constant measurements, "
has to scale across species, and hence the Bcd lifetime would
range from " ! 3 min in D. busckii to " ! 32 min in L. sericata.
These values represent a lower bound on ", because the real
diffusion constant of Bcd protein could still be modulated
across species in ways that would not be detected in experi-
ments with inert molecules, e.g., by binding to immobile
proteins. But such mechanisms usually are associated with a
slowing down of diffusion (18), and this is problematic: lower
diffusion constants require longer protein lifetimes to achieve
the same values for !. Because relaxation to steady state
requires a time ##", large eggs would need more time to
produce stable gradients.

To test the plausibility of these time scales, we observed the
developmental sequence in all these species. The number of
nuclei, Nnuc, is roughly constant across species, log2 Nnuc !
12.8 $ 0.2 (mean $ SD), implying that all species undergo 13
nuclear divisions after fertilization. We found that they show
remarkably similar time courses, with 9- to 20-min cleavage
cycles, a pause to cellularize at 2 h postfertilization, and gastru-
lation after 3 h at 25°C, as is well documented for D. melanogaster
(7). Thus, the Bcd lifetimes required to generate scaling of ! are
near the limit of what is possible for the larger embryos, even
assuming that diffusion is unhindered. Within the simplest
model, then, essentially unhindered diffusion with a species-
specific adaptation of the Bcd lifetime seems to be the only viable
explanation of scaling.

Bcd lifetimes could be adjusted in several different ways. First,
the different sequences of Bcd in different species could directly
influence the susceptibility of the protein to degradation. Second,
different species could adjust the activity of the degradation ma-
chinery so as to modulate the Bcd lifetime. Finally, degradation
could be occurring in a significantly nonuniform fashion, so that the
effective Bcd lifetime becomes sensitive to the embryo geometry.
As an example, if degradation occurs dominantly within nuclei, then
the effective lifetime depends on the density of nuclei, and our
observation that the number of nuclei is fixed across species implies
that this density will scale with embryo size.

Conclusion
Our results indicate that scaling of body plans during the evolution
of higher diptera can be traced back to scaling of spatial patterns in
the expression of morphogens and to the primary anteroposterior
gradient in Bcd itself. This systematic scaling across species stands
in contrast to the absence of scaling of the Bcd gradient among
individual D. melanogaster eggs of different sizes. Passive diffusion
constants for Bcd-sized molecules do not vary significantly across
species, nor do the time scales of development. Indeed, given these
time scales, pattern formation based on diffusible morphogens
would be physically impossible in embryos much larger than C.
vicina. Of the many possible mechanisms for scaling, the only one
that is consistent with our data is variation in the effective lifetime
of the Bcd protein itself.
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Fig. 3. Scaling of Bcd profiles. (A) Typical confocal images of Bcd immuno-
fluorescence staining for L. sericata (top), D. melanogaster (middle), and D.
busckii (bottom). The focal plane is at mid-embryo and top-embryo in the left
and right columns, respectively. (Scale bar: 100 #m.) (B) Intensity profiles of
Bcd fluorescence of 27 L. sericata (blue), 35 D. melanogaster (red), and 18 D.
busckii (green) embryos. The abscissa in Upper is absolute; the abscissa in
Lower is relative to egg length. (C) Length constants ! as a function of egg
length for L. sericata (blue), D. melanogaster (red), and D. busckii (green). (D)
Cumulative probability distributions of length constants ! for L. sericata
(blue), D. melanogaster (red), and D. busckii (green). Asterisks indicate the
means of the three distributions.

18406 ! www.pnas.org"cgi"doi"10.1073"pnas.0509483102 Gregor et al.

Figure 44: a) Embryos of L. sericata (upper) and D. melanogaster (lower) with hunchback
(green) and giant (red). B) Embryos of D. melanogaster (upper) and D. susckii (lower)
with hunchback (green) and runt (red). b) The length constants λ (cf. (19)) scale across
species with the size of the embryos; however, within the species the length constants
vary significantly (Gregor et al., 2005).

same variability we measured for xBcd (jBcd = jlln(1/t)).
In contrast to Bcd, the Hb protein profile displays an extreme

reproducibility from embryo to embryo. The Hb profile in about
100 embryos from early to late cycle 14 is shown in Fig. 2d. We
quantified the hb distribution using the point (xHb) at which each
profile crosses the 0.5 threshold (Fig. 2b). The standard deviation of
xHb (jHb) is 0.01 EL, meaning that two-thirds of embryos have Hb
boundaries defined more precisely than the size of one nucleus. The
information about the embryo scale is also revealed at hb expression
level. As discussed above, the Bicoid exponential profile should not
be affected by embryo length. When xBcd is plotted against EL
(Fig. 2e), the correlation coefficient is indeed negligible (P = 0.40).
A similar lack of correlation is observed between the values of l and
EL. In contrast to Bcd, however, the position of the Hb boundary
displays a strong correlation with the embryo length (Fig. 2f). The
linear (r) and Spearman’s rank (rs) correlation coefficients between
xHb and EL are 0.84 and 0.82, respectively (P , 10-20; all P-values
are computed for rs). hb mRNA displays the same precision and
conservation of proportions as Hb protein. The spatial position of
the hb mRNA boundary in early cycle 14 embryos has a standard
deviation of 0.01 EL, and displays a high correlation with the egg
length (rs = 0.88, P , 10-8).

The precision of the Hb boundary compared with the variability
of the Bcd gradient could seem at odds with experiments where Bcd
dosage has been modified. However, when the Hb boundary
position as a function of Bcd dosage is compared with the expected
value from a simple thresholdmodel (Table 1), the measured shift is
significantly smaller than that expected, even when the reduced
efficiency we measure for the bcd transgenes is taken into consid-

eration. The shift cannot be explained quantitatively if hb were
activated only by Bicoid.
In mid-embryo, the Hb concentration decreases from the highest

to the lowest value across about 0.1 EL. The corresponding change
in Bcd concentration in this region is only 30% (corresponding to
1 - exp(-0.1/0.27)). If Bcd were the only source of cooperative
activation of hb, this small change in the Bcd concentration would
necessitate a Hill coefficient of more than 10. Such strong coopera-
tive activation would be very sensitive to temperature variations6.
To measure the temperature sensitivity of the Hb profile, we
collected embryos for 1 h at 25 8C, and then allowed them to
reach cycle 14 at different temperature (9–29 8C). The develop-
mental time varies strongly as a function of temperature, and ranges
from 2 h at 25 8C to 20 h at 9 8C. The induced changes in the Bcd and
Hb profiles are shown in Fig. 3c and d. The Bcd profile is sensitive to
temperature: this could be expected from a simple diffusing

Table 1 Hb boundaries in different bcd backgrounds

Background Measured Expected if efficiency is50% Expected if efficiency is100%
.............................................................................................................................................................................

xHb (bcd 1 £ ) 0.41 NA 0.30
xHb (bcd wild type) 0.49 NA NA
xHb (bcd 4 £ ) 0.56 0.60 0.68
xHb (bcd 6 £ ) 0.59 0.68 0.79
.............................................................................................................................................................................

The measured and expected values for the position of the Hb boundary are shown for different bcd
dosages. The expected shift of Hb boundary is lln(n/n0 ), where n is the number of copies of bcd
comparedwith thewild type (n0 = 2). The jHb is 1% for thewild-type embryos and bcd 1 £ , 1.5%
for bcd 4 £ , and 2% for bcd 6 £ . The statistical significance of the differences between the
expected and measured xHb, P , 10 -16 . For 4 £ and 6 £ , flies carrying two copies of a bcd
transgene on chromosome X were used. Heterozygous mothers have four copies of bcd (bcd
4 £ ) and homozygous ones possess six copies (bcd 6 £ ). For 1 £ , mothers heterozygous for
bcdE1 were used. bcd wild-type flies are 2 £ . NA, not applicable.

Figure 2 Positional information of Bcd and Hb gradients. a, Bcd gradient in about 100
embryos. b, Distribution of positions at which each gradient crosses a given threshold:
0.23 for Bcd, 0.5 for Hb. c, Distribution of slope of exponential decay for each Bcd profile.

d, Hb gradient in about 100 embryos. e, f, Position at which each gradient crosses the
given threshold versus embryo length (EL) for Bcd (e) and Hb (f).
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same variability we measured for xBcd (jBcd = jlln(1/t)).
In contrast to Bcd, the Hb protein profile displays an extreme

reproducibility from embryo to embryo. The Hb profile in about
100 embryos from early to late cycle 14 is shown in Fig. 2d. We
quantified the hb distribution using the point (xHb) at which each
profile crosses the 0.5 threshold (Fig. 2b). The standard deviation of
xHb (jHb) is 0.01 EL, meaning that two-thirds of embryos have Hb
boundaries defined more precisely than the size of one nucleus. The
information about the embryo scale is also revealed at hb expression
level. As discussed above, the Bicoid exponential profile should not
be affected by embryo length. When xBcd is plotted against EL
(Fig. 2e), the correlation coefficient is indeed negligible (P = 0.40).
A similar lack of correlation is observed between the values of l and
EL. In contrast to Bcd, however, the position of the Hb boundary
displays a strong correlation with the embryo length (Fig. 2f). The
linear (r) and Spearman’s rank (rs) correlation coefficients between
xHb and EL are 0.84 and 0.82, respectively (P , 10-20; all P-values
are computed for rs). hb mRNA displays the same precision and
conservation of proportions as Hb protein. The spatial position of
the hb mRNA boundary in early cycle 14 embryos has a standard
deviation of 0.01 EL, and displays a high correlation with the egg
length (rs = 0.88, P , 10-8).

The precision of the Hb boundary compared with the variability
of the Bcd gradient could seem at odds with experiments where Bcd
dosage has been modified. However, when the Hb boundary
position as a function of Bcd dosage is compared with the expected
value from a simple thresholdmodel (Table 1), the measured shift is
significantly smaller than that expected, even when the reduced
efficiency we measure for the bcd transgenes is taken into consid-

eration. The shift cannot be explained quantitatively if hb were
activated only by Bicoid.
In mid-embryo, the Hb concentration decreases from the highest

to the lowest value across about 0.1 EL. The corresponding change
in Bcd concentration in this region is only 30% (corresponding to
1 - exp(-0.1/0.27)). If Bcd were the only source of cooperative
activation of hb, this small change in the Bcd concentration would
necessitate a Hill coefficient of more than 10. Such strong coopera-
tive activation would be very sensitive to temperature variations6.
To measure the temperature sensitivity of the Hb profile, we
collected embryos for 1 h at 25 8C, and then allowed them to
reach cycle 14 at different temperature (9–29 8C). The develop-
mental time varies strongly as a function of temperature, and ranges
from 2 h at 25 8C to 20 h at 9 8C. The induced changes in the Bcd and
Hb profiles are shown in Fig. 3c and d. The Bcd profile is sensitive to
temperature: this could be expected from a simple diffusing

Table 1 Hb boundaries in different bcd backgrounds

Background Measured Expected if efficiency is50% Expected if efficiency is100%
.............................................................................................................................................................................

xHb (bcd 1 £ ) 0.41 NA 0.30
xHb (bcd wild type) 0.49 NA NA
xHb (bcd 4 £ ) 0.56 0.60 0.68
xHb (bcd 6 £ ) 0.59 0.68 0.79
.............................................................................................................................................................................

The measured and expected values for the position of the Hb boundary are shown for different bcd
dosages. The expected shift of Hb boundary is lln(n/n0 ), where n is the number of copies of bcd
comparedwith thewild type (n0 = 2). The jHb is 1% for thewild-type embryos and bcd 1 £ , 1.5%
for bcd 4 £ , and 2% for bcd 6 £ . The statistical significance of the differences between the
expected and measured xHb, P , 10 -16 . For 4 £ and 6 £ , flies carrying two copies of a bcd
transgene on chromosome X were used. Heterozygous mothers have four copies of bcd (bcd
4 £ ) and homozygous ones possess six copies (bcd 6 £ ). For 1 £ , mothers heterozygous for
bcdE1 were used. bcd wild-type flies are 2 £ . NA, not applicable.

Figure 2 Positional information of Bcd and Hb gradients. a, Bcd gradient in about 100
embryos. b, Distribution of positions at which each gradient crosses a given threshold:
0.23 for Bcd, 0.5 for Hb. c, Distribution of slope of exponential decay for each Bcd profile.

d, Hb gradient in about 100 embryos. e, f, Position at which each gradient crosses the
given threshold versus embryo length (EL) for Bcd (e) and Hb (f).
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same variability we measured for xBcd (jBcd = jlln(1/t)).
In contrast to Bcd, the Hb protein profile displays an extreme

reproducibility from embryo to embryo. The Hb profile in about
100 embryos from early to late cycle 14 is shown in Fig. 2d. We
quantified the hb distribution using the point (xHb) at which each
profile crosses the 0.5 threshold (Fig. 2b). The standard deviation of
xHb (jHb) is 0.01 EL, meaning that two-thirds of embryos have Hb
boundaries defined more precisely than the size of one nucleus. The
information about the embryo scale is also revealed at hb expression
level. As discussed above, the Bicoid exponential profile should not
be affected by embryo length. When xBcd is plotted against EL
(Fig. 2e), the correlation coefficient is indeed negligible (P = 0.40).
A similar lack of correlation is observed between the values of l and
EL. In contrast to Bcd, however, the position of the Hb boundary
displays a strong correlation with the embryo length (Fig. 2f). The
linear (r) and Spearman’s rank (rs) correlation coefficients between
xHb and EL are 0.84 and 0.82, respectively (P , 10-20; all P-values
are computed for rs). hb mRNA displays the same precision and
conservation of proportions as Hb protein. The spatial position of
the hb mRNA boundary in early cycle 14 embryos has a standard
deviation of 0.01 EL, and displays a high correlation with the egg
length (rs = 0.88, P , 10-8).
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of the Bcd gradient could seem at odds with experiments where Bcd
dosage has been modified. However, when the Hb boundary
position as a function of Bcd dosage is compared with the expected
value from a simple thresholdmodel (Table 1), the measured shift is
significantly smaller than that expected, even when the reduced
efficiency we measure for the bcd transgenes is taken into consid-

eration. The shift cannot be explained quantitatively if hb were
activated only by Bicoid.
In mid-embryo, the Hb concentration decreases from the highest

to the lowest value across about 0.1 EL. The corresponding change
in Bcd concentration in this region is only 30% (corresponding to
1 - exp(-0.1/0.27)). If Bcd were the only source of cooperative
activation of hb, this small change in the Bcd concentration would
necessitate a Hill coefficient of more than 10. Such strong coopera-
tive activation would be very sensitive to temperature variations6.
To measure the temperature sensitivity of the Hb profile, we
collected embryos for 1 h at 25 8C, and then allowed them to
reach cycle 14 at different temperature (9–29 8C). The develop-
mental time varies strongly as a function of temperature, and ranges
from 2 h at 25 8C to 20 h at 9 8C. The induced changes in the Bcd and
Hb profiles are shown in Fig. 3c and d. The Bcd profile is sensitive to
temperature: this could be expected from a simple diffusing
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xHb (bcd wild type) 0.49 NA NA
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The measured and expected values for the position of the Hb boundary are shown for different bcd
dosages. The expected shift of Hb boundary is lln(n/n0 ), where n is the number of copies of bcd
comparedwith thewild type (n0 = 2). The jHb is 1% for thewild-type embryos and bcd 1 £ , 1.5%
for bcd 4 £ , and 2% for bcd 6 £ . The statistical significance of the differences between the
expected and measured xHb, P , 10 -16 . For 4 £ and 6 £ , flies carrying two copies of a bcd
transgene on chromosome X were used. Heterozygous mothers have four copies of bcd (bcd
4 £ ) and homozygous ones possess six copies (bcd 6 £ ). For 1 £ , mothers heterozygous for
bcdE1 were used. bcd wild-type flies are 2 £ . NA, not applicable.

Figure 2 Positional information of Bcd and Hb gradients. a, Bcd gradient in about 100
embryos. b, Distribution of positions at which each gradient crosses a given threshold:
0.23 for Bcd, 0.5 for Hb. c, Distribution of slope of exponential decay for each Bcd profile.

d, Hb gradient in about 100 embryos. e, f, Position at which each gradient crosses the
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Figure 45: The location of the bicoid concentration boundary is much more variable than
that of the hunchback concentration. (a,b) Concentration profiles. (c) In contrast to the bi-
coid position the hunchback position scales with the individual egg sizes (with the species)
(Houchmandzadeh et al., 2002).
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The hunchback gradient is much more precise than that of bicoid

• The standard deviation of the domain size as defined by bcd is 7% of the embryo
size:, in 50% of the embryos the boundary is off by 5 nuclei.

• For hb the standard deviation is only 1% of the embryo size: it is precise to within a
single nucleus

How does the hunchback gradient know about the embryo size, but the bicoid gradient
does not?

• One possibility is that hb interacts with another gene that is localized posterior
(Houchmandzadeh et al., 2005; McHale et al., 2006)⇒ homework problem.

3 Aggregation of Dictyostelium Discoideum

The slime mold Dictyostelium discoideum is an interesting organism. Much of its life it is a
unicellular amoeba roaming for food, i.e. bacteria like E. coli. It finds its prey using chemo-
taxis detecting the folic acid that the bacteria secrete. When the food supply is depleted
the amoeba start to aggregate and form a mound and then a slug. The slug consists of
up to 105 cells. It moves towards light, heat, and humidity to find better conditions. Then
the cells differentiate into stalk cells and spore cells and the slug transforms into a stalk
with the spores on top. From there the spores are dispersed and become new amoebae
(myxamoebae).

Figure 46: Life cycle of Dictyostelium discoideum.
(https://openi.nlm.nih.gov/detailedresult.php?img=PMC3352040_1423-0127-19-41-1&req=4)

The aggregation stage has attracted some interesting modeling efforts. The aggregation
is based on two key features15

15Videos of Dictyostelium aggregating etc.:
https://www.youtube.com/watch?v=5h8WOWEqP6o

https://www.youtube.com/watch?v=tpdIvlSochk
https://www.youtube.com/watch?v=bkVhLJLG7ug
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• Each amoeba acts as an excitable element (Noorbakhsh et al., 2015; Sgro et al.,
2015): upon sensing a sufficient amount of cAMP it becomes excited and releases
cAMP itself. After this excitation the amoeba becomes for some time unresponsive
to further inputs. That is its refractory phase..
The sensing and releasing of cAMP allows the amoebae to communicate with each
other through cAMP waves that propagate across the population.

• Upon sensing cAMP each amoeba moves towards the perceived source of cAMP.
This drives the aggregation of the amoeabe.
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A simple model is studied for the chemotactic movement of biological cells in the presence of a

periodic chemical wave. It incorporates the feature of adaptation that may play an important role in
allowing for “rectified” chemotaxis: motion opposite the direction of wave propagation. The conditions
under which such rectification occurs are elucidated in terms of the form and speed of the chemical
wave, the velocity of chemotaxis, and the time scale for adaptation. An experimental test of the
adaptation dynamics is proposed. [S0031-9007(96)00678-3]
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Many biological processes involve chemotaxis, cellu-
lar motion in response to a chemical stimulus. Often, the
chemoattractant propagates through a set of cells as travel-
ing waves [1,2], as in a case of long-standing interest: the
emergence of a multicellular structure from colonies of
the eukaryotic microorganism Dictyostelium discoideum
sDdd [3]. In controlled experiments, a monolayer with
105 2 106 cellsycm2 on the surface of agar begins within
several hours after nutrient deprivation to support waves
of cyclic adenosine monophosphate (cAMP) triggered by
spontaneous release of cAMP from a small subpopulation
of cells. These target or rotating spiral waves (Fig. 1),
whose fronts appear as bands under dark-field visual-
ization through their effects on cell shape [4], induce
chemotaxis toward their centers, followed by complex
multicellular morphogenesis.
Chemical waves in excitable media such as Dd are

quite thoroughly explored [5,6], but their coupling to cell
density through chemotaxis is far less well understood,
although of long-standing interest [7–9]. As emphasized
recently [10], and illustrated in Fig. 1(a) [11], chemotaxis
driven by traveling waves is quite intriguing. A cell in the
position indicated by the arrow experiences a progression
of leftward-moving wave fronts as the nearby spiral rotates
outward. In seeking higher levels of cAMP, the cell
would move first rightward into each advancing wave,
then leftward after the peak has passed [Fig. 1(b)]. In
the simplest model of chemotaxis, the cell velocity is
proportional to the local chemical gradient, and it has
been argued [10] (but not proven theoretically) that the
net cellular motion would be in the same direction as the
wave, i.e., “advection” away from the center, rather than
the observed motion towards the spiral core. Tracking
studies of cells [10] suggest a resolution to this by noting
that, as the cells experience the rising cAMP level of the
approaching wave, their chemotactic response diminishes,
leaving them less responsive to the trailing edge, but their
response recovers in time for the next front. They thus
rectify the traveling waves, with net motion opposite that
of the wave.
In an effort to understand the underlying mechanism

of this process, we study here a very simple model

for “adaptive” traveling-wave chemotaxis and suggest
experiments to test its predictions for the conditions
under which rectification occurs. This model is closely
related to, but considerably simpler than, one introduced
recently in important work by Höfer et al. [12], who
demonstrated by numerical computations that a process
of adaptation could lead to rectified motion. A number
of important aspects of this problem become clear with
these simplifications, particularly in the experimentally
relevant limit of chemotactic velocities small compared
to the wave speed. First, in this limit an elementary proof
is given of the heuristic argument [10] that nonadaptive
chemotaxis will not produce rectified motion. Second,
it is shown that rectified motion requires only two

FIG. 1. (a) Dark-field image of spiral waves in Dictyostelium
discoideum [11]. Wave fronts of cAMP appear as dark bands.
A cell in the position indicated experiences a periodic train of
cAMP waves, shown schematically in (b). Net chemotactic
motion occurs toward the spiral core, opposite the direction of
wave propagation.
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Figure 47: cAMP spiral waves during the aggregation of Dictyostelium discoideum (Gold-
stein, 1996).

Excitability

A standard minimal way to model an excitable system is using a two-component fast-slow
system

dx

dt
=

1

ε
F (x, y)

dy

dt
= G(x, y)

with ε� 1 and taking an N -shaped nullcline for x and a linear nullcline for y.

After infinitesimal perturbations away from the fixed point (intersection of the two nullclines)
the trajectory returns immediately to the fixed point. After perturbations above a certain
threshold the system makes a large excursion, which in this example reaches the left
branch of the F -nullcline, which it then follows slowly to the local maximum at which the
systems proceeds quickly to the branch of the nullcline. It then relaxes slowly back to the
fixed point.

Excitable system have a (relative) refractory period after the excursions during which only
extremely large (if any) perturbation can drive an excursion.
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Figure 48: Nullclines and excursion from fixed point in standard excitable system.

Chemotaxis

Compared to our previous discussions of chemotaxis there are two important differences

• amoeabae are large enough (O(10µm) to sense gradients by comparing concentra-
tion differences across there bodies, no run-tumble.

• the concentration gradients consist of propagating waves of cAMP rather than sta-
tionary gradients.

A minimal model for the chemotactic response of an amoeba at position x to a chemoat-
tractant S traveling with wave speed v is therefore (Goldstein, 1996)

dx(t)

dt
= r

d

dx
S(x(t)− vt).

It is useful to go into a moving frame z = x−vt because it allows the separation of variables

dz

dt
= r

d

dx
S(z)− v

λ

〈
1

rS ′(z)− v

〉
≡
ˆ z0+λ

z0

dz

rS ′(z)− v = τ

where τ is the time the amoeba takes to cover one period λ of the wave. In the moving
frame this amounts on average to a velocity

v̄(z) =
λ

τ
.

Back in the stationary frame this yields then

v̄ =
1〈
1

rS′(z)−v

〉 + v.
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Typically, the wave speed is much larger than the velocity of the amoeba. Therefore ex-
pand v̄ in 1/v

1

rS ′(z)− v = −1

v

1

1− rS′

v

= −1

v

(
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rS ′

v
+

(
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)2

+ . . .

)
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〉
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〉2
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))
Now: if the chemotactic coefficient r is constant we get〈

rS ′

v

〉
=

1

λ

r

v
{S(z0 + λ)− S(z0)} = 0

due to the periodicity of the traveling wave ⇒ to leading order there is no chemotactic
response on average: the amoeba is attracted as much to the front of the wave as it is
repelled by the back.

At O
(

1
v2

)
one gets

v̄ = v

〈(
rS ′

v
−
〈
rS ′

v

〉)2
〉

⇒ signv̄ = signv

The amoeba drifts in the same direction as the wave propagates: the amoeba is advected,
i.e. it moves away from the source of the wave.

This is independent of the sign of the chemotactic coefficient r and of the wave profile
of the chemoattractant: whenever the amoeba is moving towards the wave the time it is
exposed to the gradient is shorter than when it moves with the wave ⇒ the motion with
the wave is enhanced compared to the motion against it.

How can the amoeba move towards the source of the wave? It needs to respond to the
front of the wave differently than to the back.

Possibilities:

• the chemotactic coefficient r adapts to the concentration, i.e. it depends on the
concentration with some delay (Nakajima et al., 2014)16

• the amoeba moves only briefly and becomes unresponsive once it has moved, like
a refractory period for motion.

Kessler and Levine proposed and analyzed a minimal agent-based model for the chemo-
tactic aggregation (Kessler and Levine, 1993).

16Their videos NakSaw14_s2,3.mov (on Canvas) show that the amoebae do not back up when they are
under the back of the wave.
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