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1 Introduction

Oscillations and more complex dynamics arise in a wide range or biological systems,
differing widely in scale, ranging from the population dynamics of hares and voles, the
circadian rhythms in animals and humans, to the competition between ‘warfaring’ bacteria
and calcium oscillations within individual cells.

Figure 1: 10-year lynx cycle in Northern Canada, based on fir catches/sales reported by
the Hudson’ts Bay Company (Elton and Nicholson, [1942).
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Figure 2: Calcium oscillations in bullfrog sympathetic neuron [Friel and Tsien| (1992).
These oscillations arise in response to caffeine.
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Figure 3: Competition between three strains of bacteria: killer bacteria, resistant bacteria,
and susceptible bacteria Kerr et al.| (2002); Szczesny et al. (2013).
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Figure 4: Circadian rhythms in mice (and other animals) are driven by genetic oscillators.
Mutants lacking the Bmal1 ‘clock gene’ (gene loss triggered at red bars) lose the circadian
rhythm (Yang et al., 2016).

2 Population Oscillations?)

2.1 General Considerations

Population dynamics is one of those examples that are always used in introductory classes
on differential equations. How useful is mathematical modeling for population dynamics
beyond that very basic level? Can it capture convincingly more complex dynamics than
exponential growth and saturation?

Quite a few ecological systems exhibit non-trivial dynamics like oscillations:

e lynx-hare
e voles preyed upon by weasels and birds
e competition between bacteria

e ciliate Didinium nasutum preying on ciliate Paramecium f]

5(Turchinl 2003), online version at (after logging in): https://ebookcentral.proquest.com/lib/northwestern/detail.action?docID=
6By Barfooz at the English Wikipedia. - Originally uploaded to the English Wikipedia, where it was made
by Barfooz., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172055
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Figure 5: a) Didinium nasutum preying on Paramecium|LUCKINBILL (1973).

What types of models might be useful in population modeling?

e Agent based modeling:
Since all population dynamics consist of a change in the number and possibly age
and other properties of individual animals one could aim at model each of these
individuals

— interactions like predation or competition for food can be modeled quite explicitly

— agents age with time. This can capture aspects like

x delay in reproduction, change in fertility

« change in resilience with respect to environmental changes or predators
(pups vs. mature vs. old animals)

— spatial dependence: allows migration of the agents

— when the biological system has relatively small popluations, the discreteness of
the number of agents can be important

x an individual cannot ‘die partially’, at the time of its death the population
suddenly changes

« the timing of that death is typically not deterministic: the discreteness intro-
duces noise into the system

+x when the last individuum of a population dies, that population goes extinct.

10
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— when the biological system consists of a large number of individuals, the com-
putational effort may be too large.

— analytical methods are of limited use
e Population models: describe only the density or total population size
— need the continuum limit in the number of agents by assuming a large number
of individuals
— continuum limit allows the use of differential equations

— spatial aspects can be captured with partial differential equations: migration,
‘clumping’

— to capture age structure one would need multiple coupled differential equations,
one for each age group

— interactions like predation have to be treated using some effective interaction
like mass action: assume the probability of an interaction is proportional to the
density. The classic Lotka-Volterra model is a minimal model of that from.

— Temporal evolution

*x assuming smooth changes in the densities: differential equation

« population dynamics can be seasonal: e.g. hatching every spring. Then
discrete maps from one year to the next could be more suitable.

x if the available data are only semi-annually (e.g. spring/fall), it may more
appropriate to map spring — spring or fall — fall.

General conditions for oscillations

e Autonomous differential equations:

— in 1 dimension the solution either converges to a fixed points or goes to infinity
during an oscillation the time derivative has to have opposite signs when the
solution goes through any specific value  sequentially

11
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4

a

Figure 6: Sketch of phase line: impossibility of oscillations. For any

— we need at least 2 dimensions, i.e. 2"-order differential equation or a system
of 2 1¥*-order equations

e Maps:
Yn+1 = f(yn)

— afixed point in the map need not correspond to a fixed point in the full system:
it could be periodic with a period that is a fraction of the time between iterates
of the map.

— in 1 dimension the solution need not go to a fixed point: it can jump between
multiple points.
If there are only a finite number of such points, the solution of the underlying
system has a period that is rationally related to the time between iterates of the
map.
The solution can also be chaotic with infinitely many such points.

shoDrtcut

Cobweb’diagram

Figure 7: Sketch of cobweb diagram for period 2.
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2.2 Time-Series Methods for Oscillations

We will first look at a number of ways to represent dynamical behavior and characterize
oscillations.

Figure 8:
model).

T
- Prey
— Predator

0 ) ) | ) ) | A )
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Temporal evolution of prey and predator in a model (Rosenzweig-MacArthur
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Figure 9: Time series. a) Oscillations in the larch budmoth (larva/kg of larch branches)
Turchin (2003). b) Oscillatory behavior in the population of the Southern Pine beetle
Turchin et al.[(1991).

Notes

e Aspects that often arise in the data for population dynamics:

— not many oscillations are captured: the periods are often on the order of a few

years

— data are quite noisy, since the investigated populations are under the influence

of many environmental factors (other species, weather,...)

the hares are eaten by predators: often only a single species is measured,
although oscillations typically require more than a single species.

— how reliable and precise are the measurements?

13
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* counting lynx via counting number of furs returned for sale is a relatively
indirect measurement

Fourier Spectrum

For oscillations given by y(t) it is very natural to characterize them using their Fourier
spectrum

“+oo
i@ = [ ywe
However, we have data only for a finite time interval, which implies a lowest non-zero
frequency of 2=

)
tmaz

2m

tmu,z .
G = / y(t)e " ™dt  ninteger,
0
and therefore the Fourier spectrum consists of a discrete set Fourier modes with frequen-
cies given by ;Zn.

The Fourier decomposition effectively assumes that the data y(¢) have a period of ¢,,4.,
i.e. the Fourier decomposition of y(t) is the same as that of a function that is a periodic
continuation of y(t) with period tazx.

However:

e the experimental data will in general not have a period that is an integer fraction of
the duration of the experiment = the periodic continuation that the Fourier decompo-
sition automatically assumes generates in general a function that is not continuous
fromt =t,,.,t0t=0.

Consider a simple example y(t) = coswt

tmlll 3 o t
Up = / coswt e “tmaz " dt
0

For w = -2~m one has the orthogonality of the Fourier modes eTm and €7 ™ when

tmax

n # m yielding only a single non-zero Fourier component,

o e fOr n=m
Yn 0 for n#m

For general frequencies w this is not the case, even though y(¢) is a simple trig function:
its periodic continuation beyond the interval [0, ¢,,..] is not continuous.

For simplicity consider w = 2= (m + 1)

tmaz

1 tmaz . 27 s 27 1 tmaz : 2w s 27
?)n = 5 el( tmazx m+ tmaz  tmaz n)tdt —|— 5 el(_ tmazx m= tmaz  tmaz n)tdt
0 0

4in timax
—An?+ (14+2m)*> =

Notes:
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¢ all Fourier modes are now non-zero, even though the true signal only has a single
Fourier mode.

e the magnitude of the Fourier modes decays like % for large n, which represents a
relatively slow decay (compared to an exponential decay, say).

12

Figure 10: Fourier spectrum of y(¢) = cos (tfﬁ (m+1) t) showing the broadening of the
spectral peak due to the mismatch between the period of the oscillation and the duration
of the time series.
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Figure 11: Prey evolution and Fourier spectrum of its mean-subtracted time series. a) no
noise, t. = 194.6. b) no noise. t,,,, = 208.6. C) oo = 0.1, {0, = 188.6, d) o, = 0.1,
tmaz = 202.6. Mismatch and noise both lead to a broadening of the spectral peaks, making
it difficult to assess whether a peak is ‘real’ or only due to the finite duration of the time

series.

Notes:

¢ In real data one could omit data at the end points, but when the data are not very

clean it is not clear how many to drop.

e It is typically useful to compute the spectrum after subtracting the mean to avoid a

large peak at w = 0.
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Autocorrelation Function

A quantitative measure for the duration over which oscillations are coherent or persist is
the autocorrelation function

[y yt —7)dt’
[ y()2ar

Cyy(T) = (y(t)y(t —7)).

The autocorrelation function can also be obtained from the Fourier spectrum

/ y(t )yt —7)dr = /dt//dw'/dw’y(w)y(w’) giwt +i (t'=T)

e}

NP ZW/dwy(w)y(—w) e

orthogonality v (w)
27r/dw ly(w)[? ™™

The orthogonality used is
“+o00
/ etdt = 216 (w)

[e.9]

where 6(w) is the Dirac §-function defined via

+e
d(z)=0 for xz#0 d(z)dr = 1.

—€

Thus, the autocorrelation function is essentially given by the Fourier transform of the power
spectrum (Wiener-Khinchin theorem).

For discrete, finite data set

Note:

e The normalization in the discrete version takes into account that with increasing
values of m the number of terms in the sum decreases.

e In Matlab the discrete version () is obtained with xcorr with option ‘unbiased’

e For a strictly periodic function with period 7" the autocorrelation function is also peri-
odic with that period.

e For irregular/noisy oscillations the envelope of C,,(t) decays with time. The amount
by which it decays in one period is a quantitative measure of the irregularity of the
oscillations.

17
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e When calculating the autocorrelation using the Fourier transform on the finite inter-
val, the duration of the interval can significantly affect the results. When using the
direct sum, changing the finite length has less of an impact.

Figure 12:

Autocorrelation directly 1400 Spectrum Prey

2 T T
1 1 1200
0 UUU\\/\\,/U\/ 1000
0O 20 40 60 80 100 120 140 160 180 800
Time
] Autocorrelation via FFT 600
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Time
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1 4

05
05 9

of
ok
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Time Time

Autocorrelation function without and with noise from simulation data. a) For

different durations via (1) and via FFT for ¢,,,, = 194.6 and t,,,... = 204.6. c) Autocorrelation
with noise oc=0.05 with t,,.. = 250 and t¢,,,.. = 5000.

More generally, it is also useful to introduce the cross-correlation function between two
different variables

[yt —7)dt

- \/f z(t')? dt’\/f y(t)? di'

Cly(T)

18
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Figure 13: The cross-correlation between predator and prey shows how the predator dy-
namics is lagging that of the prey. o, = 0.05.

Phase Plane Analysis

In dynamical systems it is often very useful to visualize the dynamics geometrically. For
simple oscillations in 2 variables this can be done in the phase plane.

Predator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prey

Figure 14: Prey-predator phase plane.

Goal of a phase plane/space representation

e Representation in which the evolution of the system is represented as a flow.

— This requires, in particular, that for any point in that phase space the future
evolution is unique. Thus, at each point a vector is defined that shows the time
derivative of that point, i.e. the dynamics is to define a vector field.

— Trajectories cannot intersect in phase space. Trajectories can come together
only at fixed points: the vector field vanishes at those points and the dynamics
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do not go through the fixed point.

Nol

However

¢ In population dynamics often only data on one species are available, i.e. only a
single variable is measured.

As a motivation, consider instead of n first-order equations a single n*-order equation.
Then any initial condition (y(t;), y(t;), 4(t:), - - ., flt—fj ti) defines a unique solution. Instead of
using n variables one could imagine using y and its first n — 1 derivatives as the coordi-
nates for the phase space. From any point in this space a unique solution would arise.

Starting from experimental data, we have only y(¢;) at discrete time points, but no deriva-
tives. If the time points were sufficiently close one could obtain the derivatives approxima-
tively using finite differences. To obtain the point in phase space that corresponds to the
solution at time ¢, this would involve not only y(t;) but also y at time points around ¢;. This

suggests using directly y(¢;) and y at a number of earlier times, y(t; ), k=1...n — 1.

Takens Embedding Theorem

e Floris Takens: a d-dimensional attractor of a dynamical system can always be em-
bedded in Euclidean space using at most k = 2d + 1 time-delay coordinates.
For a periodic orbit therefore k£ < 3.

Therefore we can in general represent the dynamics of the system by using sufficiently
many delay coordinates.

How should the delay be picked?

e To approximate derivatives one would need to pick a short delay, the shorter the
better the approximation.
However, then y(t) and y(t — 7) are very close: the points fall very close to the
diagonal, amounting to poor visualization of the attractor.

e For long delays y(t) will have ‘forgotten’ the value of y(¢t — 7) and y(¢) will depend
very little on y(t — 7)

We want:
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e Compared to y(t) the earlier value y(t — 7) should provide additional information
about the current state
= y(t) and y(t — 7) should not be correlated or anti-correlated
Pick the smallest value of 7 for which

Cyy(T) = 0.

e If the oscillations are about a large value, C,, may not vanish for any delay:

— Need to subtract the mean before computing the correlation, i.e. compute the
covariance.

Autocorrelation directly
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Figure 15: Time delay embedding of model data for different values of the delay. a)
Autocorrelation function. b) = = 0.1. ¢) 7 = 5. d) 7 = 13, e) = = 5, logarithmic scale,
fy 7 = 13, logarithmic scale; note that in this 2-dimensional embedding the trajectory
intersects itself!
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Figure 16: The self-intersections of the trajectory in the 2d embedding are removed in
3d (cf. Takens embedding theorem). (cf. movieFigures/attractor_video_etaexp0.8_
deltal.15_psi2_delay13.mp4)
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Notes:

e In general, even if Cy,(7) = 0 higher-order correlations like C,,, (7, 72) can be non-
zero. To implement the notion that y(¢t — 7) should provide as much additional infor-
mation about the current state as possible it would therefore be better to minimize
the mutual information between y(t) and y(t — 7) Fraser and Swinney, (1986). The
measurement of mutual information requires, however, a large amount of data, which
are usually not available for population dynamics.

¢ If the data are strongly affected by seasonal effects, it is good to consider the strobo-
scopic map and take the delay a multiple of a year. But this is only reasonable if the
generation time of the population is at least a year. Otherwise one needs to include
the seasonal effects in the model.

2.2.1 Black-Box Models

One important goal of modeling is to predict the future state of the system. Can we directly
predict the state based on the time series without prior knowledge of the workings of the
system and without building a mechanistic model, i.e. purely ‘data-driven’?

If we have data only at multiples of = we would want to determine F' such that

y(t)=F (y(t —7),y(t —27),...).

If the attractor reconstruction works well in 2 dimensions, we would expect that plotting
y(t) vs y(t — 7) and y(t — 27) should give a reasonable response surface.

“'x\“\\\:\"

Figure 17: Response surface in terms of the delayed coordinates S; = S(t — 27), Sy =
S(t— ), S3 = S(t) for the signal S(t).

How to quantify the response surface?
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A simple approach is to approximate the surface with low-order polynomials

ylayQ Zzamn m?/lny;l "

n=0 m=0

with y; = y(t — 7) and y, = y(t — 27). Using the data y(t;) we get then
q n
= mnemy(tic)"y(tia)”™  i=1...N
n=0 m=0

Notes:

e Notation: ¢ is the maximal order of the polynomial
e This is a linear system in the unknown coefficients a,,,.

e For N large enough these equations can be solved by linear regression

Example
qg=1
y(t;) = ago + aroy(ti—1) + ao1y(ti—2)

Write this as

L y(ty) y(t1) y(ts)

1 y(ts) y(t2) g y(ts)

PN aio =
o1

1 y(tn—1) y(tn—2) y(tn)

i.e.
Mx = b.

To get a least-squares approximation we minimize the residual R,

2
= HMX - b“2 = Z (Z Mijfﬂj — bl> s
i J

- l
i

= Z Z M’ij] bz Z zk(slk
) k

= Z ZMW% b;
- Z( ) My —
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Here ¢, is the Kronecker §

P 1 forl=k
B0 forl#k

Thus, the equation for x becomes

M!Mx = M'b.
Note:

¢ Instead of a polynomial approximation one can also do non-parametric fits, e.g. ker-
nel regression

2 6*52((yl*y(tj—l))2+(y2*y(tj’2))2)y(tj)

Ja _
i > 6_712((yl—y(tj—1))2+(y2—y(tj—2))2)
J

The only parameter is o, which characterizes the smoothing done by this fit.
With many data points the evaluation of the sum can become slow.

In this procedure we made two fundamental choices:

e embedding dimension: so far we chose p = 2 assuming that the attractor is well
embedded that way.

e order ¢ of the polynomial approximation of the response surface

How do we choose p and ¢? How well should we approximate the data points?

Issues

e If p is too small the attractor cannot be captured adequately.

e If p is too large, the number of coefficients in the approximation of the response
surface becomes too large.

e Large ¢ also leads to too many unknowns.
Moreover, in general there are two issues:

e High-order polynmials oscillate between data points — predictions are bad for inter-
mediate times
in a map this may not be so much of an issue, since the intermediate times are never
included. E.g. mapping populations from 1 spring to the next do not need to be able
to predict summer populations.

e The data are noisy and we are assuming that the deterministic aspect of the system
is smooth

— the response surface should also be smooth and should not follow the data in
all its noisy aspects
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— do not use polynomials of high order ¢ to capture the noisy details
— Do not fit the noise.

How do we know whether our approximation is already fitting the noise rather than the
underlying dynamics?
If we ran the system another time with different noise but identical parameters otherwise,

we would get a different solution. Our approximate model should capture that solution with
similar quality as the solution on which it was based:

¢ the model should generalize beyond the specific data that were used in building the
model.

Cross-Validation of the Black-Box Model
How do we assess the quality of the prediction based on the response surface?

We can measure the error in the prediction of the data that were used for obtaining the
model. But this does not address the possibility that the model is fitting the noise rather
than the underlying system. We need to use new data to test the model.

When given experimental data, we may not have the option to ask for another set of data
with the same parameters, i.e. another trial.

Instead, to test the ability of the model generalize, do not use all the available data for
building the model and use the left-out data to validate it.

Omitting data in building the model will, in principle, deteriorate the model:

¢ |f we have a lot of data, we can simply omit half of them and will still have enough to
get a good model, while using the other half for validation.

¢ If we have only few data, we do not want to omit that many data points. Instead we
can omit a single data point and test the model on that data point. Performing only
one such test is not very conclusive. Instead:

— repeatedly omit one data point, obtain the corresponding model and measure
its prediction error for this one data point.

— each omitted data point leads to a different model, i.e. a different approximation
for the response surface

x if these models differ substantially from each other, the models cannot really
be trusted.

x if these models are similar it is good to take the ‘average’ model, i.e. aver-
age the coefficients across the different models.

« Averaging over the different models may improve the model.
Since the averaged model is using effectively all data points in its training
data, one cannot assess its predictive power based on these data. One
would have to use a new set of data for that.
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Even if overfitting the data is not an issue, one may be interested in obtaining a model that
matches the data ‘optimally’ in a sense that compares the number of unknown parameters
that need to be fitted and the quality of the resulting fit.

Often one is interested in a ‘parsimonious’ model, i.e. a model that captures the essential
aspects of the system with only few assumptions, i.e. few unknowns:

e if adding further terms leads only to a marginal improvement in the fit the additional
terms presumably are not essential

A quantitative measure for the balance between fit quality and complexity of the model is
the Akaike information criterion

AIC =2k —In L0

where k is the number of parameters of the model and £,,.... is the likelihood of the pa-
rameters of the best fit given the data. Broadly speaking, in a least-squares approach the
likelihood of the parameters decreases with increasing residual.

Thus, to justify an increase in the number of parameters k the residual has to decrease
sufficiently to decrease AIC.

The overall procedure is then:

e measure average prediction error across a set of test data for increasing values of
p and ¢ and compare it with a default prediction: if the system had no significant
deterministic dynamics and all variability was just coming from noise a reasonable
prediction would be simply the temporal average y = % Zj.vzl y; of the signal. There-

fore measure N )
Zj:l (yrie(t;) — yj)
N _ 2
ijl (7 —y5)

where y;;(t;) is the prediction obtained from the fit (model) to the data that had
omitted y(¢,).

Ry=1-—

Y

Note:

e Here we consider situations where we only have a single time series, i.e. we have
no direct way of measuring the variability of y at a given time. Therefore we cannot
compare the quality of the prediction at a given time point with the variance in the
data at that time point.

Thus,

e if R, is close to 1 the prediction is good.

e if R, is close to 0 the prediction is no better than just taking the overall average of
the data

e if Ry is negative the prediction is utmost bad.
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Investigate the black-box approach using a non-trivial model for a prey N and a predator

P (see Sec)2.4.1),
N 1
aN = N(1-N)-—
dt 1+nN
dP N
— = 6P P
dt +¢1+77N

()
(3)

In these simulations we can generate a lot of data. For the cross-validation we therefore
simply take half of the data y»;, i = 1... N/2, to fit the model and the other half of the data,
Yoir1, 0 = 1... N/2, to test the generalization of the model.

16
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1.2

1

0.8
06

041

0.2

0

;
—Prey
—— Predator|{

! ! 1 ! ! L

0 50 100 150 200 250 300 350

Time

Autocorrelation directly
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0 5 10 15 20
Time
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Figure 18: n = %35, initial conditions (0.3,0.8), § = 0.25, ¢ = 2, t,... = 300. a) Noiseless
trajectoy. b) Autocorrelation function.
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Figure 20: Response surface and predictions 1, 5, and 9 steps ahead for 7 = 4, n = €%3°.
a) linear approximation to the response surface, b) quadratic, c) cubic. Initial conditions
(0.3,0.8), 6 = 0.25, ¢ = 2. The resulting error R, is listed as the title. Note: the period of
the oscillations is about 15, i.e. a 9-step prediction with 7 = 4 predicts 2 periods. Note that
the estimate of the prediction error is not precise enough to warrant 5 digits; there should

be at most 2 digits.
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Figure 21: Prediction for different delays with cubic response surface. No noise. 7 = 4,
T =12, 7 = 15, 7 = 17. The predictions are slightly worse for + = 15 than for - = 12 and
T = 17, reflecting possibly the worse reconstruction of the attractor for 7 = 15.

Increasing 7 increases the impact of the denominator, the nonlinearity of the differential
equation bercomes ‘less polynomial’. The approximations for the response surface are
not as good for larger n and the predictions become quite bad. In fact, for yet larger
n the predictions often diverge. Possibly, higher-order polynomials would still improve
the approximation. Given the nonlinearity in the differential equations a more general
nonlinearity might be better or using a kernel regression.
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Figure 22: Cubic response surface and prediction. Initial condition (0.3,0.8), § = 0.25,
v=2,7=4.a)n =" Db)n=e" c)n=e"". Note the anharmonicity of the oscillation
for n = %67,

The real system is most likely noisy

AN 1

B —N)——— _NP+N 4
dt N(1-N) 14N +Now (4)
dP N

o 5P+¢1+17N + PCp (5)
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with ¢, being a Gaussian random variable satisfying

(Ca(®)) =0 (Calt)Cs(t)) = 02d(t — t')das  Witha, B € {N, P}.

Note:

e The noise in is multiplicative to avoid that the populations become negative.

—— Predator|

Autocorrelation directly
T T

A : h f A : A ‘ ‘
0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150
Time Time

Figure 23: Noisy system o, = 0.02. Initial condition (0.3,0.8), 6 = 0.25, ¢ = 2, 7 = 4.
n = e tae = 1000.

The noise leads to strongly varying oscillation amplitudes and correspondingly a decaying
autocorrelation function.

Of course, the prediction cannot take the noise into account that is different in each future
step. This will impact particularly multi-step predictions. To assess the quality of the pre-
diction one would also have to average the results over noise realizations. The response
surface will also depend on the noise, since only a finite number of data point are available.
To alleviate this, a longer time series is used in Fig[24] (t,,.. = 2000).

To assess the impact of the embedding delay on the prediction one needs to compare
predictions for similar prediction times, i.e. the 1-step for 7 = 12 should be compared with
the 3-step prediction for 7 = 4. Based on the individual examples in the figure, it seems
that the 1-step predictions for larger = are worse than the 3-step prediction for = 4.
However, no significant difference is apparent between the predictions for 7 = 12, 7 = 15,
and 7 = 17, despite the worse embedding for 7 = 15 (cf. Fig[19).
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Figure 24: Noisy system o, = 0.02. Initial condition (0.3,0.8), § = 0.25, ¢ = 2. n = "3,
tmaz = 2000. top: 7 = 4, bottom: 7 = 12.
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Figure 25: Noisy system o, = 0.02. Initial condition (0.3,0.8), 6 = 0.25, ¢ = 2, 7 = 4.
n = €%t = 2000. top: 7 = 15, bottom: 7 = 17.

These simulations suggest that the (slightly) worse embedding for 7 = 15, compared to
T = 12, does not play a big role here (to assess in detail we would have to measure the
error over many noise realizations and take the average).
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Consider also the presence of measurement noise. Assume ¢-correlated Gaussian noise
N(t) = N(t) + £(1)
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Figure 26: a) Prey with measurement noise (but no system noise). Embedding and re-
sponse surface for data with measurement noise. b) 7 =4c¢) 7 =8,d) 7 =12, e) 7 = 15,

With this noise the limit cycle is still much better defined for 7 = 4,12,17 than it is with
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system noise (4l]5), where the attractor was quite ‘washed out’ (Figs[24)25). However, for
7 =8 and 7 = 15 no ‘hole’ is visible, which may lead to ‘confusion’ in the predictions.
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Figure 27: Prediction and error for data with measurement noise. Right column shows all
n steps of the prediction starting from a fixed time point. a) 7 =4 b) 7 =8, ¢) 7 = 12, d)
T =15,e) 7 = 17. o = 0.005.

Notes

e The predictions based on the poorly embedded attractor are substantially worse than
for delays for which the autocorrelation function is close to 0.

e In the n-step prediction figures (right column in Figl27) the individual oscillations are
not resolved; their period is around 15.

Usefulness of the Black-Box Model Approach
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e Predictions are possible without any detailed knowledge of the system at hand.
¢ Quantification of the type of dynamics observed by identification of optimal ¢

- qg=0:
* deterministic component in the mapping not significant
noisy fixed point
noisy periodic orbit with a period that is equal to the sampling time

to discriminate between these two possibilities: are data available with finer
sampling time?

*

*

*

-q=1:
x fixed point

« oscillations with a period that is commensurate with the sampling time (e.g.
oscillations in lock-step with seasonal changes)

x certain type of chaotic dynamics, cf. the logistic map
-q=2

x fixed point
oscillations
chaotic dynamics

*

*

e Knowing ¢ provides some guidance for developing mechanistic models
— how many dynamical variables are needed? how many species are interacting?

¢ Interpolation between different parameter values if data are available for multiple
sets of parameters.

— possibly one could identify transition points between different types of dynamics,
e.g. fixed point to oscillations.

Drawbacks of the Black_Box Model Approach

¢ In themselves the models do not provide mechanistic, intuitive insight into the sys-
tem.

Notes:

e The same approach can be used to develop mechanistic models:

— if data are available for multiple components participating in the dynamics

— if functional forms for the evolution equations are suggested by the mechanistic
framework
(cf. Mangan’s research on chemical reactions)

— if the terms in the differential equations are to be recovered data are needed
with fine time resolution.
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2.3 Mechanistic Models: Introduce 'The Biology’

To really understand what is going on in the system we would like to have mechanistic
models, i.e. we would like to udnerstand the mechanisms that are at work in the system:

e the dynamical variables include all the relevant ‘players’ of the system, e.g. food
(grass), prey, predators

e the equations describe

— the actions of the players, e.g. birth, death, movement
— the interaction between the players, e.g. grazing, hunting

2.3.1 ‘Fundamental Laws’Turchin (2003)

Are there ‘fundamental laws’ that constrain or guide the formulation of the evolution equa-
tions?

Note:

e Such ‘fundamental laws’ are idealizations; real systems do not satisfy them exactly.
But the idealization makes it easier to think about the system and identify relevant
mechanisms that lead to deviations from the ‘laws’.

e Turchin [Turchin/ (2003) compares the situation with Newton’s law of motion: in re-
alistic systems the acceleration does not vanish in the absence of ‘external forces’:
there is always friction. The idealization identifies friction as an additional force. This
is useful because friction is not universally the same, but depends on the system, i.e.
it needs to be modeled as well as the other ‘external’ forces. If friction was included
in the ‘fundamental law’ one would have to have different fundamental laws for the
motion of different wheels, bearings, tires,.....

FL 1: The size of a population changes by birth, death, emigration, or immigration.
Notes:

e This applies also to food, e.g. plants growing from seeds that can be dispersed by
wind.

e We will ignore in the following the spatial aspects, i.e. we will assume that in the
spatial domain in question the species are ‘well-mixed’.

FL 2: Changes in the size of a population result from what happens with individuals.

Therefore the increase or decrease in a population is proportional to the size of the popu-

lation
IN_ v . AN
a a

Here r is the rate at which an individual propagates in the current conditions.
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For constant conditions one therefore gets exponential growth or decay
N(t) = N(0)e"™.
How can this be consistent with all the observed non-exponential behavior, like saturation,

never mind oscillations?

The current conditions can and do change with the size of the population and, of course,
with the overall availability of food and with the presence of other species.

Thus, the key modeling aspect pertains to describing deviations from the idealized case,
i.e. to finding how the growth rates r; of various species i depend on the conditions, which
include the current sizes of other populations (food, predators, prey),

r, =T; (Nj(t), .. ) .
Note:

¢ In fact, the growth rate can also depend on previous population sizes, i.e. there can
be a delayed impact, due to breeding, gestation, or maturation.
Thus, r; can depend on populations after a delay

ri(t) = ri (N;(t — 7)),

leading to delay-differential equations,
or r; can be a functional that depends on the whole functions N;(t'), —co < t' <'t,

ri =ri {N;(t)},

leading to integral equations.
We will mostly ignore such history effects, although they are very interesting. E.g. a
delay can very easily lead to oscillations within a single species.

FL 3: Populations do not blow up: populations should exhibit self-limitation.

As a minimal condition one would require that the growth rate should decrease for large
population sizes,
dr(N)
dN
A stronger condition one could require, would be

<0 for N — .

r(N) <0 for N — oc.

Note:

e The first condition does not guarantee that the population does not blow up. Con-

sider, e.g.,
r(N)=N"¢ with o > 0.
Then
LdN
N dt
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dN
Nl—a

N(t) = (a(t+0)
For o > 0 the population grows, but more slowly than exponential.

1
t+c= = —N“t
‘ ! ®)

In view of our aim to study oscillations we will focus on populations that interact ‘trophi-
cally’, i.e. one population represents food for the other, we have consumers and resources.

FL 4: In the limit of low densities of the resource (prey) the functional response of the
predator is linear in the prey density.

Notes:

e The functional response of the predator is defined as the rate at which 1 predator
kills prey.

e This expresses something similar to the law of mass action in chemical reactions:
the probability that a given predator will find and kill a prey is proportional to the
density of the prey.

N
d—:...—NPk(N,P)... k(N, P) — const. for N — 0, P — 0.
dt ———

trophic term

e Deviations (k(XV, P) # const.) that need to be modeled then are, e.g.,

— Strength in Numbers: for higher prey densities the prey may be able to defend
themselves in a density-dependent fashion and the predator may not be able to
catch all of the prey (cf. in schools of fish only a fraction of the fish get caught,
i.e. k would decrease with increasing N).

— for higher predator densities the predators may cooperate or compete.

FL 5: The amount of energy extracted from a resource is limited by the amount of the
resource captured.

Notes:

e The law makes sense in terms of the biomass available.

e The fraction of energy used may not be constant. It could decrease with the density
of the resource, e.g. a predator eats less of the prey (only the good parts) if there is
a lot of prey to be had (‘surplus killing’).

e We need the numerical response of the predator, which is defined as the rate of
change of the predator population.

e Often the reproduction rate of the predator is assumed to be proportional to the
energy extracted from the prey,

P
=+ g(N\)NPE(N,P)...
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e But:

— The fraction of the energy needed for reproduction could represent only a small
fraction of the total energy needed (heat generation, locomotion, predation).
The reproduction rate would then not directly reflect the energy extracted (could
involve, e.g., a threshold).

— The reproduction rate could also be limited by other factors than food (maximal
size of litter, gestation time).

FL 6: There is a maximal consumption rate.
Notes:

e Even with prey in abundance a predator can catch and digest only so much.

e Assuming food consumption and reproduction rates are directly related, this leads to
a maximal reproduction rate.

2.3.2 The Lotka-Volterra Model|

Start with a minimal model for the trophic interaction of a predator with a prey.
The prey/resource gets its food from an abundant source and is consumed by the predator

ﬂ =rN—-—kENP
dt
Dimensions:
o [r] = %, [N] = prey, [P] = predator, [k] = %predlator

e  combines the reproduction and death rates in the absence of a predator.
r > 0 to have the prey population grow in the absence of a predator

The predator can only reproduce if it catches prey

dP

— = —dP kNP
dt X
Dimensions:
o [d] = %, x| = [ﬁ] = %5 predator prley = p—r;fZ;Or

e Y\ gives the conversion from the rate at which prey is being killed to the rate at which
predators propagate: how much does each prey contribute to the propagation of
each predator.

Lotka points out that a large part of Volterra’s results had already appeared earlier in Lotka’s book [Lotkal
(1920); |Volterral (1926); |Lotka| (1927, [1925)
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To reduce the number of relevant parameters make the equations dimensionless:

LN _
rodt
Introduce I
f=rt P=2P
,
to get
AN
and X
rf dP B
kdf
dp d~r k- ,
~=——P+x—-NP with
dt T r
Introduce p
0=- N =y=-N
T
We are then left with
-
di
P
i

[x—]

k

N—-—-NP
r

with [f{j=1 [P]=1

N - NP

dr -~ T A
“Tp kNP
g TR

k.  predator S 1
B ~ prey

r prey s X predator

—6P+ NP

Thus, we used a rescaling of the 3 variables of the equations to get rid of 3 parameters.

Notes:

e Only a single parameter determines the behavior of this system.

e Since we only allow positive populations and the dimensionless time is to increase
with time, this reduction is only valid for a specific combination of the signs of the 4

coefficients.

e 1, k, and x cannot be 0, in fact, they need to be positive (since ¢ should advance with

time and populations are positive).

For simplicity drop the " from the variables

dN
dt

dP
dt

Note:
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e Itis somewhat dangerous to 'drop the hat’, because in subsequent results one has to
remember that one is working with the rescaled variables and one has to remember
which equations are using which variables.

How well do these equations match the ‘fundamental laws’ ?

e FL 1: yes
e FL 2: yes. r.h.s. of each each equation can be divided by the respective population

e FL 3: no. r.h.s are both linear in the respective populations, no decrease in the
growth rate with increasing population

e FL 4: yes. itis linear in N for all N
e FL 5: yes. that is the factor y.

e FL 6: no. the reproduction rate of the predator becomes arbitrarily large when the
prey population becomes large.

Thus, from a biological perspective the model needs to be modified or extended. See
below.

What dynamics does this model exhibit?

As for any nonlinear system, look first for simple solutions and then try to find suitable
approximations to gain additional insight.

Steady States:
i) trivial state

ii) For Ny # 0 it follows that
Py=1

For Py # 0 it follows that
Ny=290 foro >0

Thus, the only non-trivial fixed point is (N = 4, P = 1).
Consider the linear stability of the fixed points with ¢ < 1,

N(t) = Ny+en(t)
P(t) = Py+ep(t)

i) (No=0,F =0)

dn

t
— = n n = npe
dt 0
dp
A _5 — efét
7 P D=Do
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Thus, the trivial fixed point is a saddle point and linearly unstable with the unstable mani-
fold given by the n-direction and the stable manifold by the p-direction.

ii) (No =0, Py = 1)
L) - (% ) 0)
(d_g; - P, —6+N, )\ p

(¢ )6)

Eigenvalues of M
(=N’ 4+0=0  Mo=1iV0

The non-trivial fixed point is a center, since the eigenvalues are purely imaginary.

e (n,p) oscillates

e Within this approximation of the linear stability analysis the amplitude of the oscil-
lations does not grow or shrink. What are the trajectories if nonlinear terms in the
distance from the fixed point are included? With the nonlinearities included the cen-
ter could turn into

— a stable spiral — no persistent oscillations
— an unstable spiral — possibly persistent oscillations if the growth saturates

One can easily see that even with the nonlinearities included there is a continuum of limit
cycles in this simple model by expressing N in terms of P. Starting from (6][7)

dP  P(=6+N)

AN~ N(1—P)
Thus, the curve P = P(N) has vertical tangents at P = 1 and horizontal slopes at N = 6.

_5+NdN:%dP

—IMN+N=InP-P+C

with C' arbitrary. Expand around the fixed point

N=i+z P=1+y

we get

—ln(d+z)+d+z=In(l+y)—1-y+C
——

n[5(1+2)]
Expand in = and y and using
1

1
1n(1+6>:€—§€2+§€3+...
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1 22 1
—mi =05 4055+ O (@) +itr=y— P+ 0 () —1-y+C
11, 1,
e Cl=C—1+5ns —
55" +2y C +0Ilnd -9

Thus

e near the fixed point the trajectories are close to an ellipse

e (' is arbitrary:
there is a continuum of ellipses (or slightly deformed ellipses) of increasing size with
increasing C

A

0™ .

-

r

Fic. 13. Course oF ParasrTic INVASION OF INSECT SPECIES, ACCORDING TO
LorrA; BELEMENTARY TREATMENT

Figure 28: The limit cycles can have arbitrary amplitude |Lotkal (1925)

Note:

e Generically, fixed points are centers only for specific parameter values, i.e. at a Hopf
bifurcation.

¢ In the Lotka-Volterra model the fixed point is a center for all values of é(which is the
only parameter in the system). This is not to be expected of a system, it is non-
generic. It turns out, these equations are structurally unstable, i.e. even infinitesi-
mally small additional terms in the equation can change the qualitative behavior of
the system:

— the center can turn into a stable or an unstable spiral, which would eliminate or
stabilize the oscillations.
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— in numerical simulations the oscillation amplitude can change steadily if the time
step is not small enough.

e Thus, we need to extend the Lotka based on

— biology: it does not have self-limitation and limited reproduction rate
— mathematics: the equations are not structurally stable

25
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Figure 29: The continuum of oscillatory solutions allows noise to make the solution drift
among solutions with different amplitudes, i.e. noise has a very strong effect.

Simple extension of Lotka-Volterra model

Include self-limitation of the prey via simple logistic term,
dN

— = N—-4yN?—- NP
dt 7

dP

— = —6P+NP

ar *

In the absence of a predator, the carrying capacity for the prey, i.e. the size of the prey
population that this environment can sustain, is

1
N, =—.
v

Now the fixed points are given by
i) trivial fixed point (0,0). Its instability is unchanged by the addition of a nonlinear term

ii) the nontrivial fixed point becomes (6,1 — 79)

Linearization
lil_? _ 1— Po — 2’7N0 _NO n
@ Py -0+ Ng p
1—(1—=7v6)—2y6 -0 n
1—~6 0 P

- (1_—7% o )(Z)

(.

M
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Now the eigenvalues are

1
A2 = 5 (tmce(M) + /trace(M)? — 4det(M)>
with
trace(M) = —v) <0 det(M) = § (1 — ~96)
For oscillatory behavior we need
trace(M)? — 4det(M) < 0 7262 — 46 (1 — 6) = 7%6% + 470° — 45 < 0

The eigenvalues become real when the equality holds

—46% + /1654 + 1663 1
= =—-2+£24/1+ =
V1,2 252 + 5

/ 1
7<7152< 1+5—1>

the eigenvalues are complex and the fixed point is some kind of spiral. For v > ~; the fixed
point becomes a node =- no oscillatory behavior (not even decaying oscillations)

Since v, < 0 we get for

In the oscillatory regime the fixed point is linearly stable for

trace(M) = —v6 < 0
This is the case for any finite carrying capacity the fixed point becomes stable. The ap-
proach to the fixed point becomes very slow, however, when the carrying capacity is large.
Notes:

o Sufficiently small carrying capacity = all oscillatory behavior disappears
e Any, even arbitrarily large, finite carrying capacity = stabilizes the fixed point
— this reflects the structural instability of the Lotka-Volterra equations
e Structurally unstable equations are poorly suited to make reliable predictions, unless

— one knows that the real system cannot introduce perturbations to the model in
the ‘structurallly unstable direction’ or

— such perturbations are known to be small enough to not have a significant im-
pact on the time scales that are relevant for the problem.
E.g. if the carrying is so large that the decay of the oscillations occurs only over
a time scale of many periods, the model may still be useful to understand real
systems. However, to observe such oscillations they would have to be driven
by some mechanism, which could be noise, or they would have to be the result
of some special initial condition.

To get a system that spontaneously generates oscillations, i.e. not only decaying oscilla-
tions, we need to extend the Lotka-Volterra model in a different way.

How to improve the modeling of the functional and the numerical response? Simply allow
higher-order polynomials as we did in the black-box model?
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2.3.3 Modeling Functional Response. Generalist and Specialist Predators

Improve the modeling of the predation process, i.e. the functional response.

In population dynamics one tends to distinguish between specialist predators and gener-
alists. Generalist predators prey on more than one species: if one prey species is rare they
can focus on another one in their diet = the population size of such a predator species
may not vary as much with the density of a single prey species as a specialist predator
who preys only on one species.

How to model the difference in the functional response? What do the data show?

NO. OF FLIES EATEN

Il 1 L 1 |
.0l L02 .03

NO. OF FLIES /SQ. CM.

Figure 30: Praying mantis. Functional response of mantids to house flies. Plotted is the
number of flies eaten within 8 hours by a mantis in a cage 119x58cm after having been
deprived of food for 36 hours. Each captured fly was replaced. At each fly density 3
experiments were performed |Holling (1965).

F

Consider the number of prey attacked by a predator. A minimal model would be [Holling

(1965, [1966)
N, =aTp N

with N, =number of prey attacked by a predator, a =rate of successful search, 7'y =time
predator is exposed to prey, N =prey density.

Consider units

[No| = prey [Tr] =time [N]|= prey = |a] = —
area time

Thus, a includes the range at which the predator strikes.
This minimal model leads to the Lotka-Volterra functional response term.

Possible refinements/extensions

8Photo of praying mantis by Shiva shankar - Taken at karkala, Karnataka as a praying mantis, CC BY-SA
2.0, https://commons.wikimedia.org/w/index.php?curid=244227
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e the predator cannot spend all the time hunting, even if prey is available:

— handling prey
— digesting prey

e the rate of successful search depends on

— the predator’s range
— the predator’s ‘motivation’=hunger: satiated, a predator may search/strike less

Assume predator needs a time Ty to handle each prey ([Ty] = ZTZ;) i.e. each prey
handled takes away time from the hunting,

Na =a (TT - THNa) N

a TTN

© = 1 ¥ aTyN. (8)

Using this functional response one gets then (written in dimensioned quantities again)

AN aTy N

- — ¢y N—_—_—*" p 9
dt A (9)
aP aTy N

W _gp T 1
dt X ATy N (10)

Note:

e This model has a functional response that is hyperbolic in N,.
e It has a maximal reproduction rate.

e Only one type of resource/prey is available to the predator in this model: specialist
predator.

In the spirit of the derivation (rational motivation) of (8) Holling has measured parameters
in the predator-prey interaction extensively in mantids and included also a way of quan-
tifying satiation/hunger and its impact on predator behavior. The resulting model is quite
complicated, but gives a quite reasonable account of certain aspects of the predating
behavior of mantids, considered as a model animal |Holling| (1966).
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Figure 31: Measuring satiation/hunger in mantis in terms of the amount of food needed for
satiation as a function of time after previous feeding to satiation. Satiation is modeled as
decaying exponentially, which allows the introduction of a hunger variable that increases

linearly in time. [Holling (1966)
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Fig. 7. FEffect of hunger on the maximum distance that H. crassa stalked or struck at flies

(average of 12 replicates).
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Fig. 25. The effect of hunger on the number of strikes that can be elicited from M.
religiosa by a fly dangled behind a glass barricr.

Figure 32: With increasing hunger the mantis is willing to strike at flies at a larger distance
and more often (when the fly is unreachable behind a glass barrier) Holling| (1966)
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Fig. 29. Number of flies attacked by H. crassa at various prey densities and times. The
points are actual data (averages of 3 replicates) and the lines are gencrated by the model.

16

Figure 33: Based on measurements like those in Figs[31][32] (and measurements of other
quantities like mantid’s prey awareness, striking success, and eating speed and their de-

pendence on hunger) Holling comes up with a model that provides quite reasonable pre-
dictions for the number of flies attacked at a given time after the mantid has been fed to

satiation (points are measurements, the surface is generated by the model Holling| (1966).
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How does the functional response change when multiple food sources are available?

) WB = —,02378 +2375
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Figure 34: a) Functional response of deer mouse on sawfly prepupae. Sawfly cocoons
are buried in the cage in a grid pattern and in addition dog biscuits are freely available. b)
Dog biscuits vs prepupae of sawflies eaten |Holling (1965).
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Figure 35: Palatibility of alternate food modifies fraction of prey (prepupae of sawflies)
eaten by deer mouse. Low palatability food = dog biscuits, higher palatability food = sun-
flower seeds. Higher palatibility of alternate food — saw fly consumption saturates at lower
value: mixed diet. Holling| (1965)

Experiments suggest a sigmoidal functional response if an alternate abundant, but less
palatable food source is available. Holling gives a detailed model for this scenario including
effect of hunger and learning of the palatability Holling| (1965).

One can motivate a sigmoidal-like form by assuming that the rate of successful searches
increases with N, e.g. the predator weighs the additional effort required to get the better
food compared to the easily available less palatable food,

bN
AN =1
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This successful search rate saturates for large N. Inserting into N, yields

TrN bTr N*

&+ TuN 1+ gN +bTyN?

N, =

The parameter g does not have a strong influence on the overall shape of N,: often it is
simply set to 0 and one gets for the sigmoidal functional response mode for a generalist
predator
_ VIpN?
¢ 1+ bTyN?

Notes:

e ltis difficult to show that this is indeed the cause of the sigmoidal functional response.

e This model of the generalist predator does not model the alternate food source ex-
plicitly. Therefore within this framework the reproduction rate of this predator cannot
really be modeled, since the amount of alternate food consumed is not known. This
approach is reasonable if the amount of alternate food that is available is abundant
and therefore the population of this predator is essentially constant, in particular, it
does not vary with V.

2.4 Generalized Lotka-Volterra Models
2.4.1 Rosenzweig-MacArthur Model
Include the hyperbolic functional response function together with the finite carrying capac-

ity N, in the Lotka-Volterra equations ROSENZWEIG and MACARTHUR| (1963); Harrison
(1999)

AN N aTrN

— = rN|(l—— | - ——— 11
dt " ( NC) 1+ alyN (1)
P aTrN

i 12
dt XN (12)

Note:

e This is the model used for the discussion of the black-box approach.

e This model was first discussed in the context of graphical analysis of linear stabil-
ity by Rosenzweig and MacArthur ROSENZWEIG and MACARTHUR (1963) and
was later the starting point for Harrison’s detailed analysis of Luckinbill’s data on Di-
dinium nasutum preying on Paramecium LUCKINBILL (1973) and his sequence of
improved models Harrison (1995). Harrison’s paper is worth looking at; it proceeds
quite systematically in testing what changes of the model improve the agreement
with the data. He finds the best agreement with a model that includes an additional
differential equation for the energy acquired by eating (cf. satiation).
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Introduce dimensionless quantities

. . N
t=rt N =—
r NC
N . . T N
dA:N<1—N>—aT e
dt " 14+ alygN.N
using
A T
p-%“Tp
T
we get A
dN - . 1 A
: :N<1—N>——ANP
dt 1—|—CLTHNCN
and . .
n TrN.N .
P = AP e p
14+ aTyN.N
d? _ _C_lp_'_ XCLTTNC N i p
dt r r 1—|—CLTHNCN
Introduce TN
0= - n = alyN, ZD:XGTT :
to get
N . . 1 .
v _ N(1—N>— _NP
dt 14+nN
dp R N .
— = —0P+7 — P
dt 1+nN
Again, dangerously omitting the ", we get
dN 1
— = N(1-N)-
dt 1+nN
dP N
— = 4P P
dt Jr¢1+77N

Notes:

e Here the prey density was made dimensionless in terms of its carrying capacity,
whereas in the original Lotka-Volterra we used the conversion rate x. Therefore the
equations contain now a dimensionless conversion rate .

Obtain the nontrivial fixed point:
For Py # 0 we get
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and

What happens at ¢ — on = 0? There Ny — oo. Why that?

In the limit of large IV, this solution becomes biologically meaningless, since P, becomes
negative.

In fact, V; cannot exceed 1, i.e. the prey cannot exceed its carrying capacity. To reach
Ny = 1 the predator has to be extinct.

Ny increases with increasing o7, i.e. when

¢ the death rate of the predator (relative to that of the prey) increases

e when the predator’s hunting becomes ineffective, i.e. n large, because the handling
time Ty, is large

An increase in the search rate a, which also enters n does not increase N, since a also
enters 1; in fact, it decreases N,.

Linear Stability of the fixed point (Ny, I%):

Writing the equations as

%ZF(N,P) %ZG(N,P)
we get
% S <1+177N0 o +]7V7(}Vo)2n) o= =2 (1+1;N0)2P0
T
g_g:_(s—i_wl"‘]\i;]vo

Usually, we would at this point insert the expressions for N, and F, into this Jacobian and
evaluate the eigenvalues. This looks like it is becoming very unwieldy. Instead, use N,
and P, as independent parameters and solve the fixed-point equations for § and 7, since
they show up only linearly in the equations,

P ¥ Ny No (1 — No)
TN = TN A 2
We get then
OF (1— No)® 1 2
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aF_ Ny
9P —(1—]\70)?0
oG 9 1
a—N—¢(1—N0) 2
oG
a_P_O

Thus, we get for the trace and determinant of the Jacobian M

oF 0G 1
trace(M) = 8_N+6_P = FO(P()(]_—2N0)—(1—NO)2)
oF 0G 5 No

Since Ny < 1 we have det(M) > 0, which implies that for ¢trace(M) = 0 we would get a
Hopf bifurcation

(1—Np)?

1—2N,
For a given fixed N, the fixed point becomes unstable to oscillations when the trace be-
comes positive,

trace(M) =0 = PéHOpf) =

Py > pytory)

Taking Ny as a free parameter, we can insert PéH"”f )into § and n we obtain a parametriza-
tion of the Hopf bifurcation in the (4, n)-plane

2
(Hopf) _ <(1—No) 1 1) 1 1 (1—N0—1+2N0) 1

" 1-2N, 1-N, | Ny N, 1— 2N, ~ 12N,
I+ 155 1= No
- 0

On which side of the Hopf-bifurcation line is the fixed point unstable? We need to increas-
ing P, beyond P\"**") at fixed Ny. This implies that both 5 and § need to be changed:
n=n(F)and é = 6(F). We have

dn 1 dd

1
- 0 L U Ny(1=Ny) <0
dPy ~ No(1—Ny) ap, = Vg

Since the growth rate increases with increasing P, at fixed N, the fixed point becomes
unstable as the Hopf bifurcation line is crossed from ‘south-east’ to ‘north-west’.
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Figure 36: a) Phase diagram for the Rosenzweig-MacArthur model. b) Predator-prey
dynamics for, § = 0.1, § = 0.3, § = 0.35 with n = €%, ¢ = 2.

Notes:

e As predicted by the linear stability analysis, oscillations arise at the stability limit as
0 is decreased.

e Close to the onset of the oscillations they are harmonic. In this regime they can be
described in a weakly nonlinear analysis

(]]\D[):(];S)jte(rgi)Aeth—l—c.c.+(’)(62) ek 1,

m ) is the complex eigenvector associated with the eigenvalue A = iw and

where ( »
1
A is a complex amplitude. The weakly nonlinear analysis yields a nonlinear (cubic)

differential equation for A.
e Further above they become very anharmonic.

e The Rosenzweig-MacArthur model is consistent with our general rules and gener-
ates oscillations in a structurally stable way.
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2.4.2 Brief Discussion of Other Models

Yodzis Model. The Rosenzweig-MacArthur model with its hyperbolic functional response
assumes a specialist predator. How about introducing a generalist predator as in [Yodzi
(1989) (as cited in|Turchin| (2003)),

dN N2

— = N{1-N)——P
dt ( ) 1+nN?
dpP N?

— = =P P

dt +¢1~|—17N2

It models that for low prey densities the predator reduces its effort to search for that prey
and kills fewer of them.

But: Its reproduction rate is based purely on the intake from this prey and becomes very
small for low N. If the predator really has no other food source, this reduction in effort
would amount to the predator ‘giving up on eating’, which is not very realistic.

Possible changes

e include another food source

— if that food source is abundant, the predator density may become relatively
independent of NV and its dynamics would not have to be modeled

— if the alternate food source is scarce, it could be included in the model.

e predator goes into hibernation: reduce ¢ for low predation rate

Leslie Model. Motivated by the logistic population growth model one could argue that
the influence of the prey density on the predator population is via the predator’s carrying
capacity, making the carrying capacity proportional to the prey density. That would lead in
the simplest form to |LESLIE| (1948)

AN
— = N(1-N)-NP
o ( )

dP P
bl — 1—k—
i (TP( HN)

What could be a mechanistic motivation for the logistic term in the predator equation?

Assume that there is competition between individual predators and that each dominating
predator can defend an area A;.,.ory that is large enough to sustain it, Asritory N = K.
Then the density of predators, i.e. the carrying capacity, is 1/Aerritory = N/ K.

But: If the predator density is small compared to the prey density the reproduction rate of
the predator would be independent of the functional response, i.e. independent of the food
intake of the predator, even if the amount of prey is very small. Where does the biomass
come from to provide the growth when there is almost no food? The amount of biomass
generated per P by reproduction is constant, while that available is proportional to V.
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A constant reproduction rate of the predator would be obtained in a systematic way, if the
numerical response was in the saturating regime of the hyperbolic function

P—1-P for N>n

1+nN

In that case the functional response should, however, also be independent of N. A sys-
tematic version would then be

dN
— = N(1-N)-P
o ( )

dP P
% = O'P (1—KJN>

This model would be valid as long as N is sufficiently large.
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Figure 37: a) Density of wolves as a function of density of ‘deer-equivalents’. b) Rate of
predation of moose and caribou per wolf is quite independent of the prey density Eberhardt
(1997).
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2.5 Case Study: Vole Dynamics®|

“The affair runs always along a similar course. Voles multiply. Destruction reigns. [...] The
experts advise a Cure. The Cure can be almost anything: [...] a Government Commission,
a culture of bacteria, poison, prayers denunciatory or tactful, a new god, a trap, a Pied
Piper. The Cures have only one thing in common: with a little patience they always work.
They have never been known entirely to fail. Likewise they have never been known to
prevent the next outbreak. For the cycle of abundance and scarcity has a rhythm of its
own, and the Cures are applied just when the plague of voles is going to abate through its
own loss of momentum.” (Charles Elston (1942) cited in (Barraquand et al,|2017) )
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Figure 38: a) Pooled small rodent abundance at Kilpisjarvi, Finnish Lapland. Open
symbols (spring), closed symbols (fall), dashed/solid lines denote changes during win-
ter/summer (Henttonen and Hanski, 2000). Measured by trapping. b) Dependence of the
oscillations on latitude.

The dynamics of vole populations in Scandinvia show interesting behavior:

e substantial oscillations in areas further north

e almost steady populations in areas further south

One key goal of the modeling is to identify or at least suggest what the key mechanism is
that drive the oscillations and why the oscillations die out as one goes south.

Turchin and Hanski Turchin and Hanski (1997) hypothesized this observation is related to
the different impact of predation by specialists and by generalists for different latitudes.

9(Turchin and Hanski, 1997; Turchin and Ellner, [2000; [Turchin, [2003)
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Presumably the abundance of alternative prey depends on snow cover (duration and
depth).
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Figure 39: Small rodent abundance at Pallasjarvi for open habitats (lower panel) and

forested habitats (upper panel) showing different degree of oscillation Henttonen and Han-
ski| (2000).

Development of the Model
V‘oles reproduce 'continuously’, no discrete generations =~ ODE model

Experiments in enclosed fields (40mx40m) in which the density of the voles was con-
troled and varied artificially by removing subadult individuals biweekly Turchin and Ostfeld
(1997). They support the assumptions (Fig[40)

e logistic reduction of growth rate with population size

e sort-of sinusoidal variation of growth rate with time of the year (as compared to a
discontinuous variation)
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Figure 40: Rate of change of the population depends reasonably linearly on the density
and varies with season [Turchin and Ostfeld| (1997).

Motivated by the change in oscillation amplitude with geography two types of predators
are included in the model

e generalists (nomadic avian predators), which tend to stabilize steady states

e specialists (weasels), which tend to induce oscillations through the delay in their

population size

AN
dt
dP
dt

Notes:

) N N? NP
rN(l—e&nwt—E)—GH2+N2—AD+N

P
P(1—-esinwt—Q—
B ( esinw QN)

e Generalist population is not modeled explicitly, since it is assumed that it is relatively
constant due to the abundance of other food soureces.

e The carrying capacity of the predator is taken to be proportional to NV, since weasels
are territorial, which can lead to an N-dependent carrying capacity (cf. discussion of

Leslie model in Sec{2.4.2).

e The linear reproduction rate of the predator is taken to be a constant, even though a
hyperbolic form for the functional response is taken. They argue

— weasels produce litters of relatively constant size independent of prey density

as long as that

density is above a threshold|Hanski and Korpimaki (1995); in that

regime then reproduction rate would not depend much on food intake. However,

no threshold u

sed in the model discussed here = to be a convincing model N

has to be large enough.

— weasels are small: most food may be needed to generate heat [also for preda-
tion and competition?]
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e seasons assumed to affect both reproduction rates equally and sinusoidally (equality
later eased). This term is meant to capture the lack of weasel births when N is too
small.

Dimensionless equations:
Introduce

N .
n = ﬁc p= %P 2t = wt
Because of the seasonal variation it is better to make the time dimensionless in terms of

that modulation than in terms of the growth rate r of the prey

dn ) n? np
E = rn(l—ebIHQWt—n)_gh2+n2_ad+n
dp B . p
= sp (1 — esin 2mt E>
with a H D A
g NC Nc Nc ¢ Q
Note:

e Drop again the ~ on the dimensionless time and the growth rates » > 0 and s > 0

Estimates for the Parameters

These estimates are all quite rough and robustness with respect to changing the param-
eters is an important aspect. The estimates are pulling in as much information as can
be brought to bear on the problem. To make progress it is essential that one has a good
overview of a wide range of experimental facts of the system. This is often a quite chal-
lenging task.

e Intrinsic growth rate of voles r: averaged over seasons from [Turchin and Ostfeld
(1997) 6year!

e Amplitude of seasonal forcing e: 0.5 — 1 Turchin and Ostfeld| (1997)
for weasels the reproduction rate should be negative during the winter, suggesting
e > 1 for them.

e Carrying capacity N.: typically observed peak densities 300 voles/ha = N, =~ 150
voles/ha.

e Growth rate s of weasels: under good conditions 2 litters per year with 5 pups each
per female = per weasel 5 pups/year s =In5=1.6 = take s =1...1.5.

e Maximum consumption per predator, A:
Weasels consume food corresponding to 60% of their body weight per day = 1 vole
per day. Pregnant weasels eat three times that much.
Estimate 400 voles per year. In addition, there is some surplus killing. Assume

A =~ 600voles per year per weasel.

Estimate does not include that weasels may also kill lactating mothers which induces
additional death.
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e Saturation constant D: for weasels to reproduce the vole density has to be above a

threshold of V.., = O(10voles/ha) Erlinge (1974). To barely survive without repro-

duction, a weasel needs to eat about A...;; = 1 vole/day = 365 voles/year (see above:

pregnant weasels need =3 voles/day). These two minimal values for marginal re-

production should match (per weasel)
Ncrit

Acri =A— 1
' Ncrit + D .

D =~ 6 voles/ha.

Predator-prey ratio constant Q. In steady-state one has P = N/Q, i.e. Q = N/P.
Thus, @ gives essentially the number of voles that are needed to reproduce enough
voles to sustain one weasel.

Voles reproduce about every 20-30 days. In 20 days the vole population needs to
produce 20 voles to sustain 1 weasel. At low vole densities each litter produces 5-7
offspring, at intermediate densities about 2. To produce 20 voles one needs then 10
females (each producing 2 voles per 20 days), i.e. 20 voles per weasle = @ ~ 20.
Weasels are also preyed upon by other predators = () should probably be chosen
larger.

Generalist predation parameters G, H:

Generalist predators are mostly nomadic avian predators (owls,...). Estimates are
based on proportion of voles in the measured predator diet and on the correlation
between number of breeding pairs of the avian predators and the vole density (with
a 2 month lag, which showed the strongest correlation)
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Figure 41: Predation rate of voles by avian predators (generalists) as a function of vole
density at Alajoki (latitude 63°) and Revinge (latitude 56°). The predation rate is measured
via the breeding rate (2 months delayed) and the fraction of voles in the diet Turchin and

Hanski (1997).

Data along these lines are available for two locations, Revinge (latitude 56°) and
Alajoki (latitude 63°). They roughly estimatem the density G of generalist predators
as a function of the latitude L,

G =700 — 10L.

0There is a typo in their equation.

65



Modeling Biological Oscillations H. Riecke, Northwestern University

The assumption is that the effect of the latitude comes from changes in seasonal
snowcover. But vegetation - fields vs woods - will also have its impact on the popu-
lation dynamics.

They cross-check this linear assumption with two other locations, Grimso and Kilpis-
jarvi HANSKI et al.| (1991). Kilpisjarvi agrees reasonably, but Grimso is quite far
off. They argue that the change in landscape from agriculture- to forest-dominated
makes a sigificant difference.

They also estimate the switching threshold H from the data in Figl41]to be H = 13.8
and H = 13.5, respectively.

Note: It can be discussed whether the data (and their quality) allow to determine H
to 3 digits. At Revinge it is not even clear to what extent the data support a sigmoidal
rather than a hyperbolic response.

¢ In the simulations they let the parameters p fluctuate from year to year
pi =p(l+ 0 in year i

with ¢ Gauss distributed with variance 1.

Dependence of Behavior on Parameters found in Simulations Turchin and Hanski
(1997)

Increasing

e a: = specialist predator more important

— oscillation amplitude increases
— Lyapunov exponent increases

e d: = reduces impact of specialist predator

— oscillation amplitude decrease
— Lyapunov exponent decreases (for larger a that trend is not so clear).

e s: = predator growth faster (but not carrying capacity)
— period of oscillation decreases
e ¢. = increases impact of generalist predator

— oscillation become weaker (see Fig/42)
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Figure 42: The Hopf bifurcation is subcritial: there is hysteresis when G is varied sinu-
soidally (top, the hysteresis is exaggered due to temporal ramp in G via a delayed bi-
furcation). G = 37.6 (growing), G = 37.7 (decaying), G = 60.1 (persisting), G = 60.14
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Figure 43: With increasing seasonal modulation the oscillations become more complex.
G = 35 (fixed point unstable). e = 0.2 (not phase-locked), e = 0.4 (phase-locked), e = 0.68
(complex oscillations only transient), e = 1.0 (complex oscillations, persistent chaos)
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Figure 44: Noise can trigger oscillations repeatedly. G = 50 (fixed point linearly stable,
without modulation bistable with oscillations) e = 0.8. @) ¢, = 0 = ¢,. b) ¢, = 0.05 = (..
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Comparison with field data:

¢ Oscillations have roughly the correct frequency and are increasing with increasing G

e Without noise poor agreement: when increasing G in the model the system goes
to the fixed point already at an lower value than corresponds to the field data. This
suggests that noise repeatedly excites the oscillations in that regime.

e Oscillation amplitude varies strongly near latitude 60°
most likely because of subcritical Hopf bifurcation.

e Experimental data suggest a positive Lyapunov exponent.
noise chaotic dynamics due to forcing. Lyapunov exponents tend to increase with
decreasing G.
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Figure 45: Dependence of oscillations on generalist predator. a) Field data (temporal
evolution of vole population and its autocorrelation function) with latitude decreasing from
top to bottom (same figure as Fig[38). b) Results from the model with the estimated
parameters (and noise added) Turchin and Hanski| (1997).
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LYAPUNOV EXPONENT
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Figure 46: Dependence of oscillation amplitude and Lyapunov exponent on latitude
Turchin and Hanski| (1997).

Note on Lyapunov Exponents

The key element of chaotic systems is the sensitive dependence of the trajectories on the
initial condition. This is quantified via the Lyapunov exponent.

Consider the dynamical system
x = f(x)

and two trajectories that start very close to each otheratt =0

x(t;%0) x(t; %0 + 0xp)

At later times the two trajectories are separated by Az (t),
Ax(t) = x(t; %0 + 0%¢) — x(t;%0)
Measure the distance between these trajectories
IA%()]| = [|x(t; X0 + 6x0) — x(t; o) |

If Ax(t) is very small one can linearize the differential equation around x(¢; %, ty) at the
time ¢

iAx(t) = £ (x(t;x0 + 0%¢)) — £ (x(t; %))

dt
f(x(t;x0) + Ax(t)) — f (x(t;%0))
J (x(t;x0)) Ax(t)

where J (x(¢;x)) is the Jacobian of f(x) at time ¢ and position x().
Notes:

e If the Jaocbian was constant in time one would expect Ax to grow or decay expo-
nentially

¢ In general the Jacobian depends on time through the position x(¢) on the attractor
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e Over long times x(t) explores the whole attractor and one could imagine that the
growth of Ax is determined by something like an ‘average Jacobian’.

Numerically one finds in the limit of long times and small initial distance
[Ax(t)|| ~ [[Ax(0)] *
Motivated by this observation one defines

o - 1 |Ax(t)||
A=lm e <|IAX(0)II \=

Note:

e To stay in the linear regime the limit Ax(0) — 0 is to be taken first before the limit
t — 00.

e In principle, in an n-dimensional system there are n Lyapunov exponents. Each
exponent describes the stretching or compression in different directions transverse
to the trajectory. results in the largest Lyapunov exponent.

Time Horizon:

The exponential growth of the difference between nearby trajectories limits predictions
severely.

Assume we can measure the initial condition with a precision §, = ||Ax(0)|| . If we need
to make a prediction with an accuracy d,,.., i-e. we require ||Ax(t)|| < dnaz> then we can
predict the system up to a time ¢,

Omaz = [[A%(th)[| = [[Ax(0) ]| ¥

1 5m(zm
th(do) = Xln ( 5 )
0

The duration for valid predictions grows only logarithmically with the accuracy §,,..., which
is very slow.

Discrete Time Series

How to obtain reasonable estimates for the (maximal) Lyapunov exponent when only a
single noisy time series at discrete times is available?

e We cannot compare multiple trajectories starting with slighly different initial condi-
tions.
Using actually many such trajectories would be needed, because of the limit
Ax(0) — 0. One can follow a given pair of trajectories only as long as they are very
near to each other. Once the distance becomes too large, one has to replace one of
the trajectories by another one that is again close to the other trajectory.
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Having only the time series at discrete time points, we should be considering a map in-
stead of a differential equaion
Xpi1 = £(x5)

Consider the evolution of a slightly perturbed x,,
Xpi1 + Axppq = f(x, + Ax,) = f(x,) + J(x,)Ax,

Thus

Ax, 1 = J(x,) A%, = J(x,) I (x21) A%, 1 = J(x0) T (x21)J (x0-2) A,

Therefore we consider the eigenvalues of the matrix

n

I =T]3x)

j=1
It has eigenvalues u;, i = 1... N if the system is N-dimensional. They represent Lyapunov
multipliers.
The Lyapunov exponents are then given by

1
Ai = lim —In |

n—oo 1N

and the Lyapunov exponent of interest is max; \;.
Note:

e Consider the 1-dimensional case of a constant map

Tpil = ax, = a" x; = e"nag,

I3

But: we do not have these Jacobian’s for the experimental data.
However:

e If the black-box model gives reasonable predictions, we can use it to obtain J(x;) at
arbitrary points, since we have an analytic form{""| for the function F.

¢ In particular, we can compute J at all the data points of the time series.
e Use the data points x;

— if the black-box model was iterated repeatedly, the error in its approximation
of the orbit would accumulate and the orbit could diverge from the true orbit
substantially - in some cases the iterates actually blow up.

"If a non-parametric fit of the response surface is used that would not be so straightforward
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— this captures some aspect of the noise in the system. E.g. if the noise is needed
to kick the system every so often onto the slowly decaying oscillatory orbit one
would have a chance to characterize that dynamics rather than that of the stable
fixed point that would be reached in the absence of noise (cf. Fig/44).

Note:
e The model would be more convincing, if the agreement with the data was compared

for different models, e.g. replace ratio for carrying capacity of weasels by hyperbolic
numerical response.
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2.6 Diversity via Non-Hierarchical Fitness

The ‘Paradox of the Plankton’ HUTCHINSON (1961): Why are there so many different
species? With many of them quite similar, why does not simply the fittest among them win
out?

e Extreme case: it has been estimated that in 30g of soil there can be 500,000 different
species of bacterigd'

There are many different ecological niches. But why does the ‘best’ species not win in a
given niche?

e The environmental conditions could keep varying, making different predators best at
different times and keeping the system from reaching a ‘optimal’ state.

¢ Niches are not only determined by the physical environment (temperature, light, hu-
midity,....), but also by the other species around, with different species contributing
to the niche. Niches can be created by other species, which then can change the
niches again.

Glucose

Glycerol @ Acetate

800 Generations Later

/ | \
Glucose Acetate Glycerol
Specxallst Spemahst Spemahst
Glucose Glucose Glucose

& &

Glycerol Acetate Glycerol Acetate Glycerol Acetate

80% 8%

Figure 47: New ecological niches can be created by populations evolving. [Dykhuizen
(1998)

e There could be no ‘best’ species: non-transitive competition

— Overgrowth of sponges and ectoprocts on coral.

2Bacteria may be special, since they do not go starve to death and have a high rate of speciation
Dykhuizen| (1998).
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Figure 48: Ectoprocts (bryozoan, moss animals) consist of colonies of individual zooids,
which are filterfeeders (Kunstformen der Natur (1904), plate 23: Bryozoa (see here, here
and here), Public Domain, https://commons.wikimedia.org/w/index.php?curid=566772. )

Figure 49: Non-transitive overgrowth patterns of three species of ectoprocts: Rep-
tadeonella — Steginoporella — Stylopoma — Reptadeonlla BUSS and JACKSON (1979).
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Figure 50: a) Interaction matrix of ectoprocts and sponges on coral. In each square
the arrow points to the dominating species in the pair. b) Two cycles of non-transitive

interactions. BUSS and JACKSON| (1979)

— Interaction of side-blotched lizards hat exhibit throat-color polymorphism.
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Figure 51: a) Population has lizards with three different morphs, having orange, blue, and
yellow throats. They differ in behavior: orange are agressive and defend large territories,
blue less so, yellow do not defend territories (look similar to females). b) Indications of
an oscillation in the populations of lizards with orange, blue, and yellow throats (loop in
the OBY-triangle of population sizes, 0-100% from base to the respectively marked apex
Sinervo and Lively| (1996)).
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— Bacterial warfare:
interaction between bacteria via toxins: some produce the toxin and are resis-
tant to it, some are only resistant, and others are susceptible

x The resistant strain R that does not produce toxin has lower metabolic cost
than a killer bacterium K. R therefore beats K by faster growth.

* Susceptible strains S have yet lower metabolic cost since they do not need
to invest metabolic cost in the resistance. S beats R by faster growth.

x The Killer strain simply kills the susceptible strain (K beats S) rather than
outcompetes it with regard to resource.

These cyclic interactions resemble a rock-paper-scissors game.

We consider here simple models of non-transitive competition. It is, however, not clear
whether this plays a significant role in the abundance of species (e.g. |Goyal and Maslov

(2018))

2.6.1 ODE Model
As a minimal start consider a general rock-paper-scissors game of agents on a lattice:

e two sites are picked at random

¢ the individual i on the first site invades the individual j on the second site with a
probability P,;; that depends on the species of the respective occupants

|R P S
R0 0 Pg
P|P, 0 0 (16)
S| 0 Ps 0

Since the sites are picked at random, the probability that a certain species is found is
proportional to the density of that species. One then obtains the mean-field equations

dr

% = T(PTS—Ppp) (17)
dp

- — _ 1
L = (B P) (18)
ds

R — _ 1
o s (Psp — Pr) (19)

Notes:

e For any pair there is always only invasion in one direction, the opposite probability
vanishes.

3The attractiveness of ‘cool dynamics’ may be getting in the way of assessing the actual relevance of
models.
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¢ In general the invasion probabilities P, , ; can be different from each other.

o If P, = P, = P, the system has a cyclical (rotation) symmetry in that the equations
remain unchanged if one replaces » — p, p — s, s — 1.

e Even for P, = P, = P,, however, the equations break the chiral symmetry: the
interaction between P. and P, is different than between P, and P;: the invasion
matrix is not symmetric.

> P
L
q

Figure 52: The RPS-dynamics are confined to the blue hyperplane r +p+ s = const. They
break the chiral symmetry in that surface.

Analyze these equations:

The total number of individuals n = r + p + s is constant

d

% (?" +p+ 8) =0

The total number is therefore a free parameter depending on the initial conditions. All of
the dynamics are limited to the two-dimensional hyperplane

r+p+s=n.
Correspondingly, the population size (rg, po, so) at any fixed point is only determined up to
a factor.
Trivial fixed pointr =0,p=0,s=0
Linear stability:
Writing r» = ro + er(t) etc., with o = 0 the fixed point leads to

d?"l

- =0
dt

dpy .

dt 0
d81
w0
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Thus, all eigenvalues of the linearization vanish: the ftrivial fixed point is marginally sta-
ble for all values of the parameter. This is not generic. The system is most likely not
structurally stable; even small additional terms may be able to change the dynamics qual-
itatively.

Non-trivial fixed points:
Consider first fixed points in which one population vanishes

r=0 :>{s:O = p=n
p=0 = s=n

Thus, there are three fixed points
(r =n,0,0) (0,p =n,0) (0,0,s =n).

Linear stability:
consider (1o = n,0,0)

dr

d_tl = n(P.s1 — Pyp1)
dp;

u b

d

% = sP.n

i.e. the Jacobian is
0 —FPn +Pmn
M=|0 Pn 0
0 0 —Pn

with eigenvalues and eigenvectors

1 —1 —1
A =0 0 Ao = PF,n >0 1 A3 =—-FPn<0 0
0 0 1

Thus, rock is unstable in the paper-direction, but stable in the scissors-direction. The total
population is conserved and arbitrary = perturbations that change »n do not relax back,
nor do they grow: the eigenvalue in the rock-direction vanishes.

Fixed points with no vanishing component:
b, P P,

S
DPo To = -5 50 Po = —To
I8

=P P, P,

Solve the first two equations for r usingn =r+p+s
P.rog=— (P, + P.)po + Py (Py+ Ps) 1o = Psng — Pspy
Eliminating r between the two equations yields then

Po . 1
— =abf, with =
n @ @ P. + P, + P,
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Analogously for the other populations by cyclic permutation

Note:

e The size of a population is not determined by its own ability to invade the other
population, but rather by the invasion ability of the population that it invades:

— Rock invades scissors and rock’s population size is given by the ability of scis-
sors to invade paper:
The rock-population is large if the scissor-population strongly invades the paper-
population, because then there is little invasion by the paper-population into the
rock-population.

e Alternatively:
The population size of species i is proportional to the invasion ability of species i — 2
in the cycle.
A large population requires weak invasion into it, which is achieved by strong invasion
into that species.

Consider the logarithmic derivatives

dlnr
prli P.s — BPyp
dlnp
0 Pyr — Pss
dlns
= Ps — P,
dt Pt

and note that il Jl Jl
p HT+P np p ns

s r =0
dt dt 5 dt
Thus dinr?>  dlnp  dlnsh d
nrte npr nsr P. P. P
= —1 spfrsf?) =0
@ a & g (s
and

r(t)™ p(t)" s(t) = C

For a given total population size n, different initial conditions lead to different orbits. These
orbits differ in the value of C, which is constant along each orbit. Writing the equation as

() () ()"

one has A\ =1 at the fixed point and A = 0 when one of the species is extinct.
Note:
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e Thus, both n and X are conserved during the temporal evolution. That is not expected
in general: the equations are not structurally stable; adding small further terms is
likely to destroy these invariances. Nevertheless we will stick to this model for now.

¢ In principle, one should also do a linear stability analysis of this fixed point. However,
the continuum of orbits described by encloses the fixed point at an arbitrary
distance: this fixed point must be a center, i.e. there must be complex pair of eigen-
values with vanishing real part.

(@) p

ny ng

Figure 53: Examples of trajectories and fixed point. [Frean and Abraham (2001)

Extinction:

e Within this continuous population model no population will ever go extinct for A > 0;
they will only oscillate, possibly reaching very small values during part of the cycle.
The population will always recover, even after having reached an infinitesimally small
value.

¢ If one species is identically zero, another will go extinct quickly thereafter and the
system goes to one of the single-species fixed points. E.g. » = 0 = s will grow
rapidly and drive p into extinction.

2.6.2 Discrete Models

For a population to go extinct in the RPS-system, it has to reach 0 exactly. While in
the ODE Model this happens only for very special initial conditions (on the edges of the
triangle in Fig/53), it will often be the case if discrete populations are considered with
invasion probabilities like (16).

For large populations the mean number evolves close to the orbits of the mean-field equa-

tions (17][18|[19).
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However, the discrete dynamics does not preserve the invariant A (cf. (20)). Therefore
under the discrete dynamics X - and with it the orbits - can grow or shrink (cf. Fig/54) and
eventually hit one of the three boundaries » = 0, p = 0, or s = 0, which then yields to the
survival of a single species.

(b)

Figure 54: a) RPS-evolution under the discrete dynamics. b) RPS survival: for large sys-
tem size the weakest species survives best, i.e. the population with the smallest invasion
probability. Red: rock survives, blue: scissors survives, yellow: paper survives. The tri-
angle gives the invasion probabilities chosen wth the constraint P. + P, + P, = const.(cf.
Fig/52) |[Frean and Abraham| (2007).

How does the survival probability of a population depend on its invasion probability?

The species that is most likely to go extinct is the one that reaches the smallest population
size during the oscillations. For the fixed point we have

To Po S0
— = abF; — =aP, — =ab,
n

n n

One can show [Frean and Abraham (2001) that the smallest population size during the
oscillation occurs for the population with the smallest size at the fixed point.

How does the survival depend on the invasiveness?

e Species i is smallest and has the highest probability to go extinct, if species i —2 has
the lowest invasion probability.

e |f species i goes extinct, species i+ 1, which is the same as i — 2, grows, suppressing
species i — 1.

e Species i — 2 survives.

Thus, the weakest population, i.e. the least invasive species, survives.
Is then the non-transitive fitness not able to lead to the co-existence of multiple species?

81



Modeling Biological Oscillations H. Riecke, Northwestern University

Figure 55: RPS in a large system with only local dispersal sustains persistent multi-
species states (P, = 0.1, P, = 0.1, P, = 0.8) [Frean and Abraham (2001).

For local rather than global dispersal patches of different species arise and persist.

Experimentally, this was tested using E. coli bacteria that interact via toxins: K>S>R>K
(see above).

e When the bacteria were grown undisturbed, i.e. unmixed, the interaction was local
and the populations persisted for a long time. Patches with different species arise
that invade each other.

e When the solutions were mixed in a flask or transferred from one plate to the other
twice at different orientation angles, one population went extinct quite quickly, fol-
lowed by the second, leaving only the resistant strain.
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Figure 56: Experimental results for RPS-like dynamics of E. coli bacteria Kerr et al.| (2002).
Left: population sizes. Right: Inoculation with different strains in a hexagonal pattern.
Letter markings the same at the three times, C-S (C=K) fronts in yellow, C-R fronts in pink.

Note:

e Frean and Abraham| (2001) also has interesting results about systems in which the
invasion rate of a species was allowed to evolve. This leads to an increase in its
competitiveness (invasiveness) and at the same timer a reduction in its size, because
its stronger invasiveness reduces the population : — 2, which enhances population
i — 1, which then invades the evolved species more strongly. .

2.6.3 Continuum Systems with Dispersal

To understand why the patches of different species persist for so long, it is useful to look
at continuum systems with dispersal. For that it is better to look at a more general model
that is structurally stable and in which the transition to the oscillations can be controled by
a bifurcation parameter.

For instance consider a grid of patches where each patch has N sites on which three
species S;, ¢ = 1...3, interact with each other in a well-mixed fashion Szczesny et al.
(2013). The transitions between the different states occur randomly with probabilities
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indicated above the reactions,

o ¢ B 7
Sit S S+ 0, S+ S T2 Si+07TN2S ST S

e 0: S; kills S;;; and leaves and empty site
e (: S, transforms S;,; to S;
e (3. S, propagates itself if there is an empty site

e 1 S; mutates into S;,; or S; 4

In addition there is motion between neighboring patches at locations r and r’

dp oE

[Se [0 D[S [Sile[Si)er NS ][ Sl

e 0p: hopping into an empty spot

e Op: interchange of individuals.

Assuming again that locally the species are well mixed, so that the probability to encounter
another individuum of a given species is proportional to its density, one can derive mean-
field equations

dSZ‘
pr si{B(1—r)—0si—1+((Sit1 — Si—1) + p (Si—1 + Sit1 — 28;) } + (21)

+0pAs; + (0p — dg) (s;Ar — rAs;)

where
r=3:51 -+ S92 -+ S3

is the total density.
Notes:

¢ In this model all three species are equivalent, i.e. ‘rotating’ the index i cyclically,
i — i + 1 with 4 being equivalent to 1, does not change the equations.

e As is the case in the RPS-model (16), the system breaks the chiral symmetry
and the terms that break the chiral symmetry, o and ¢, drive the RPS-dynamics.

e The mutation term is a term that couples the different species without breaking the
chiral symmetry. It amounts to ‘diffusion’ in ‘species space’ (finite-difference approx-
imation for second derivative). It is expected to stabilize the fixed point against the
oscillations: p cannot be too large for oscillations to occur.

Due to the cyclical symmetry ¢ — i + 1, the system must have a solution that reflects
that cyclical symmetry, i.e. there must be a fixed point with s; = so, i = 1...3. Itis
given by

B(1—3sy) —asog=0
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So = 6 .
38 +0o
One can show that this fixed point becomes unstable to oscillations in a Hopf bifur-
cation for
_ o
WS =3B 10)

Thus, as expected the oscillations are suppressed by the mutation term p; for u =0
the fixed point is always unstable.

For small oscillation amplitudes one can, in general’¥ derive systematically a simpler
equation to describe the oscillations by expanding around the fixed point

s1(x,t) 50 ‘ U . vy
so(x,t) | = | so | +e€A(x,t)e™ g +eA*(z, t)e ™ | vy | + O().
s3(z,t) So U3 v3

——

eigenvector v

Here w is the imaginary part of the eigenvalue of the Jacobian obtained by linearizing
around the fixed point and v is the associated, complex eigenvector.

Expanding to cubic order in ¢ one obtains then a condition for the expansion to be
valid, which results in a PDE for the complex amplitude A(z,t),
0A

S = (L) AA+ A - (14 ic)|A]* A. (22)

Here, scaling of time, space, and the amplitude A has been used to set coefficients to 1.
Note:

e This equation is the complex Ginzburg-Landau equation, which is the universal
equation for generic small-amplitude oscillations

In general, §; # 0, which leads to interesting dynamics Aranson and Kramer (2002). Ac-
cording to Szczesny et al. (2013) ¢; = 0 for (21).

Important for the current system is the fact that allows spiral waves that rotate clock-
wise or counterclockwise

Actockwise ™~ f(r)eiwtfi¢>fiw(r) or Acounter ~ f(r) giwttidtiv(r)

where (r, ¢) are polar coordinates centered at the spiral core.

\ ¢+4(«>=cw*'

Spirals are relevant for the dynamics for topological reasons:

4See, for instance, 322 Applied Dynamical Systems [Lecture Notes], |Strogatz| (2015)
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e The phase of the oscillation increases or decreases by 27 when the core of a spiral
is encircled once = the phase cannot be defined at the core r = 0 = f(0) = 0.

e Since f(0) = 0, the core of a spiral represents a 0 of the complex field A, which is
given by the intersection between the zero-contours of the real part A, of A and of
its imaginar part A;.

e = at the core of the spiral the system is at the (unstable) fixed point, i.e. in the
vicinity of the core all three species meet.

e = spirals are topologically stable: an intersection between two lines in the plane can
only disappear by ‘colliding’ with another intersection of those lines. =- spirals can
only be generated and annihilated in pairs (unless they leave the system through the
boundaries).

Dynamically, depending on parameters

e spiral pairs can arise from instabilities of the homogeneously oscillating state or of
traveling waves

e spirals can disappear in pairs

e the waves emitted by spirals can be unstable, triggering the creation of additional
spirals = complex, chaotic dynamics |Chaté and Manneuville| (1996).

— The instability of the spirals can be weak enough that it is swept along by the
outward propagating waves, leaving the core of the spiral untouched and lead-
ing to disorder only away from the cores (convective instability).

— If the instability if stronger it can propagate ‘upstream’ against the outward trav-
eling waves and destroy also the spiral core (absolute instability).

Figure 57: Spiral waves in the stochastic discrete system (a) and in

the continuum system (b) for 4 different parameter sets. From left to
right: spirals are absolutely unstable, convectively unstable, stable but
bound, annihilate each other Szczesny et al| (2013). See also movies at

https://figshare.com/articles/Supplementary_material:_When_does_cyclic_dominance_lead_to_stable_spiral_waves_/96949
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Thus

e For local interaction between the species patches form in which

— at a given time one of the three species dominates
— the dominating species cycle in time

e Patches meet at spiral cores =- as long as there is a spiral all three species are
present somewhere in the system and can invade the others, none is extinct.

e For extinction all spirals have to annihilate each other. Whether they tend to do that
or not depends on the parameters ¢ and 9, in (22) (for other underlying models ¢; # 0
possible)

e Coexistence of the species does not require the oscillations: in more general models
than the minimal model (17][18][19) the coexistence fixed point can simply be stable.
See, for instance, the model for sufficiently large mutation rate .

Note:

e The topological stability of the spirals requires the existence of continuous 0-contourlines
of the oscillation amplitude. In the discrete system there are, strictly speaking, no
continuous contourlines.

— In the (stochastic) discrete systems spirals are not topologically stable and in-
dividual spirals can dissolve.

— For sufficiently strong dispersal and interaction between adjacent individuals
the continuous oscillation amplitude with continuous contourlines can, however,
be a good approximation.
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3 Genetic Oscillators and Circadian Clocks

Already in 1729 Jean-Jacques d’Ortous de Mairan observed that certain plants (presum-
ably mimosas) open and close their leaves in a circadian fashion even in the absence of
light.

This was one of several reasons why Henri-Louis Duhamel du Monceau (1700-1782) re-
peated Mairan’s experiments in 1758. He went as far as installing his plants in a deep wine
cellar where the temperature was very stable and absolutely no sunlight could penetrate,
oreven in large leather trunks wrapped in blankets. The plants’ leaf movements continued,
despite the fact that they were far more effectively cut off from daylight.(Klarsfeld, 2013)

DE MAIRAN.

Figure 58: Mimosa plant opens and closes leaves in a circadian fashion even at con-
stant light and constant temperature. Movies at Figures/silk_tree_circadian.mov and
mimosa movie

(59

SArticle in the Scienfitic American on circadian rhythm in plants: https://blogs.scientificamerican.com/a-
blog-around-the-clock/clock-classics-it-all-started-with-the-plants/
16TedSMU talk by J. Takahashi at https://www.youtube.com/watch?v=ocqn3wYTCRM
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Vor rund 100 Jahren erschien in der Familienzeit-
schrift , ,Gartenlaube (Jahrgang 1860) unter der
Uberschrift ,,Aus dem Leben eines Orang-Outang”
der Bericht iiber ein drei Jahre altes Affen-Weibchen,
das auf einem Segelschiff von Java nach Hamburg
gebracht werden sollte. Zu Beginn der Reise erwachte
die auf dem Verdeck lebende Affin bei Sonnenaufgang
um 6 Ubr und legte sich gegen 18 Uhr schlafen. Auf
dem Wege nach Westen hielt das Tier 12 Std Schlaf-
zeit bei, jedoch unter steter leichter Phasenverschie-
bung gegen die jeweilige Ortszeit, so daBl am Kap der
Guten Hoffnung das Erwachen auf 2 Uhr und das
Zuruhegehen auf 14 Uhr fiel. Der ,,physiologische
Tag* der Affin hatte sich gegen Ortszeit 4 Std ver-
fritht, gegen Heimatszeit 2 Std verspatet. Mit diesem
kurzen Bericht, der wegen des vorzeitigen Todes des
Tieres (nach GenuB einer Flasche Rum) unvollstindig
bleiben muBte, beginnt gewissermalen die Erforschung
der Tagesperiodik bei Primaten — mehr als 100 Jahre
nach den ersten Experimenten an Pflanzen, tiber die
BUNNING kiirzlich berichtet hat [3].

Figure 59: Referring to a description in a family magazine in 1860 of the shift in daily

rhythm in an orang-utan traveling on a ship westward. The observation came to an end as
the orang-utan drank a bottle of rum and passed on (Aschoff and Wever, (1962).
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Figure 60: Circadian rhythm in humans. Experiment in sub-basement of University Hospi-

tal Munich: ‘...an important component of the furniture turned out to be a record player...".
After three days the subjects had to remove their watches (Aschoft and Wever, 1962).
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Figure 61: Chronomedicine: the impact, effectiveness, and side effects of medication can
depend strongly on the circadian time. E.g. the duration of sleep induced by fixed dosis of
anesthetic in rat varies circadianly (Reinberg and Halberg, [1971).

How can the oscillations of the circadian rhythm be so slow? The circadian rhythm is
maintained by oscillators built from gene transcription and protein synthesis.

3.1 Negative Feedback during mRNA Synthesis

A key element of the genetic machinery comprising the circadian clocks is negative feed-
back in the gene transcription. Consider a minimal model for protein synthesis with nega-
tive feedback by a repressor.

The proteins are produced by translation from the mRNA, which, in turn, is produced by
transcription from the DNA.

For genes to be turned on the RNA polymerase needs to be able to bind to the corre-
sponding promoter site in order to produce the mRNA. This is only possible if there is no
repressor bound to the operator.
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Figure 62: Lac operon controling the genes necessary to process lactose. lacZ — enzyme
to cleave lactose, lacY — enzyme to allow absorption of lactose through cell membrane,
... When a repressor binds to the operator site the polymerase cannot bind to the promoter
site and the downstream genes cannot be transcribed. (Sketch from khanacademy.org)

Assuming that p repressor molecules are needed for the repression of the transcription
one has for the repressor R and the operator D

Ky
pR+D = DR,
kg
where DR, is the complex formed by the repressor bound to the operator.
In equilibrium one has then
[DRy] _ kg _ 1
[R]P[D]  kp  Kp

with K the dissociation constant of the complex.

The total number of operators [D]r is conserved
[Dlr = [D] + [DR,)]
Inserting in the equilibrium condition

Dlr—[D] _ 1 __ [Dlr
mol TR T Py

In a large ensemble of cells [D] represents the concentration (fraction) of cells in which
the operator is free of repressor. Since the process is stochastic, for a single cell [D]/[D]r
is the probabiility that its operator is free. The time-averaged rate of mRNA production is
then

where [ is the production rate without repressor.
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3.2 The Goodwin Oscillator

The minimal model Goodwin considered first is

d[Xl] _ %0} _
dt 14 Xl
R
d| X
% = Vl[Xl] — by

M- — |~ | Figure 63: Sketch
v : u | reaction net-

(Goodwin,

Sobbyists

Figure 65: Analogue computer results for Goodwin’s minimal model (Goodwin), [1965).

Since the X;-equation only depends on X, and the X,-equation only
on X; one can combine the two equations by multiplying with the right-
hand sides
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which allows a separation of variables

o
Xo
1+ e

(X1 — by) d[X)] = ( - b1> d[Xo]

This implies for all times ¢

1 Xo(t
§V1[X1<t)]2 — bQ[Xl(t)] = VQKm lIl (1 + %) — bl[XQ(t)] + C
R
Here C' is an arbitrary integration constant, which depends on the ini-
tial conditions =- the solutions do not approach a limit cycle attractor,

but there is a continuum of solutions corresponding to the continuum
of C.

Thus, this model is structurally not stable. Need to include also an
approach to the limit cycle.

The degradation can reasonably depend on the concentration

d[Xl] %0}

—_— = — k[ Xy]
X2

dt 1+ B2
d[X
% 141 [Xl] — ]{?Q[XQ]
However, this system cannot support any oscillations. Write it as

dx
dy
o = 9@y

and assume there is a periodic solution (z(t), y(t)). It describes a closed contour C in the
phase plane. Use Green’s theorem for that contour

//—+—dasdy—/—gdx+fdy
c

Along the contour we have

dx

— = dr = fdt
i f = x=f
dy

= = dy = gdt
dt g = y=4g

implying
/—gdw + fdy = /—gfdt + fgdt = 0.
C
Therefore we have the Bendixson-Dulac Theorem:

If af + 89 has the same sign everywhere in a two-dimensional domain D, the dynamical
system cannot have a periodic orbit that lies completely in D.
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In the model above
of , dg

O ay:—k’l—k’2<0.

Notes:

e The Bendixson-Dulac theorem is valid only in 2 dimensions.
e It can be generalized. It is sufficient if

d(o(z,y)f) N 9 (¢(z,y)g)
ox Jy

does not change sign for some ¢(x, y).

Goodwin considered then the model

d[Xl[ . 140
— = —1 . <%>p — k[ X4]
dlXy]
7 = Vl[Xl] - /fz[X2]
diXs]

di = 1/2[X2] - ka[X3]

The analysis of this model is a bit more involved. One can show that the fixed point is
asymptotically stable and no oscillations arise unless p > 8 (Griffith, 1968). Such high
values for the cooperativity of the reaction are unrealistic; it would require that at least 8
molecules are needed to form the activated complex leading to the mRNA.

What does the additional linear equation % = 11[X1] — k2[X,] do compared to the 2-
dimensional model? For illustration purposes assume that [X;]| oscillates harmonically,

[X1] = cost. Then the equation is like

dy

— = —\y + cost.
dt 4

We showed before that after a transient the solution approaches

cos (t — @)

cost + sint =

A 1 1
N VI | 221 Novnm

¢ = arctan (%)

Thus, y(t) lags behind cost. The lag increases the smaller the decay rate \; in the opposite
limit, A — oo, y follows the driving adiabatical.

Analogously, [X5] lags behind [X;] and [X3] in turn lags behind [X]. The additional equa-
tion therefore increases the delay with which the suppression on [X}] acts.

with

In general, delayed inhibition tends to foster oscillations:
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e large [X;] implies large suppression at later time
e the resulting reduced [X;] leads in turn to reduced suppression yet later

e which allows large [X;] later again.

Increasing the ‘delay line’ by adding further intermediate steps [X;] reduces the degree p
of cooperativity needed to get oscillations (Fall et al., 2002).

Goodwin got periodic oscillations with p = 1. He must have an error in his simulations.
Never trust your computer results blindly.

The model can be modified to obtain oscillations much more generally, particularly even
for p = 1 (Bliss et al.,[1982; [Fall et al., 2002)"7]

dXi] Vo

dt - 1 [KX_:L] — k1 [Xl]
% = 1[Xy] — ko[ Xy]
dXs] k3| X3]
KR T3P

Note:

e How does the nonlinear reaction term in the equation for X5 come about?

3.3 Michaelis-Menten Kinetics

Consider an enzymatic reaction that irreversibly produces a product P from an abundant
substrate S via a complex ES

kY kF

E+S= ES ES™P+E E
~~

ki S P
The reaction step from the complex to the product is
assumed to be irreversible.
This leads to the mass-action equations

d|s ES
W~k 1m11s) + w7 129)

diES] KHES] — ko [ES] — ki [ES] Figure 66: Sketch of enzymatic re-
dt action.

In principle, there are also equations for [E] and [P]
dF] _ dip] _
da dt

In (Bliss et al., [1982) the equations also include delays.
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However, in this reaction the total amount of enzyme
E is converved,
[E]r = [E] + [ES] = const.

Therefore [E] can be expressed in terms of [E]r

(E] = [E)r — [ES).

This leads to
% — K B[]+ (K + ki [S)) [ES]
ABSL _ ertmels) - (k5 + k5 -+ &71S]) 18]

The total amount of substrate - combined with the product - is also conserved
[S]r = [S] + [ES] + [P] = const.

This would allow us to express [P] in terms of [S], [ES] and and [S]r. However, because
of the irreversibility the product concentration does not appear in the evolution equations
for [S] and [ES]. We therefore do not need an equation for P.

We would like to have an equation only for [S] (and [P]) without [E'S], i.e. without referring
to the enzyme any more.

The key assumption in the Michaelis-Menten kinetics is that the enzyme concentration is
much smaller than the concentration of the substrate,

Elr
— =K1
Slr ~
Nondimensionalize the concentrations with [E]r and [S]r, respectively,
5] . _ [BS]
§ = —— €s =
[S]r [E]r

ds 1 .
E = —kif_ [E]TS + <I€1 E + kf_8> [E]TGS
des n _ n n .

The rate of change of s is set by [E], while that for €s is set by [S]r > [E]r. We are
interested in the rate at which s is produced, which is much slower than the change in é€s.
We therefore introduce a dimensionless time associated with the slower time scale

t =tk [E]r

and get

des - _ 1{3—<k1+k2++3)65}
i € kF[S)r ‘
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Since ¢ < 1 ¢s evolves much faster than s and will very quickly reach its nullcline, i.e.

which is given by {} =0 =
S

~

o5 = ek
kY [S)r
Inserting this into the equation for s
ds - (k‘l_ 1 —|—5> s
di K [S]r Rk
! (Bl g s
B —s+(k1_+k2+i+s— ky ) $
Ko S WISl ) B
+ s ks °
= —S —_
ky (Sl by +ky
‘/}TNL(L(L' ki‘r[s}T
——
IA{"L
- oy 5
K, +s
Going back to the original variables
L dS) kg [5]
+ Tt i
[Sloky [E]r dt ki [S]r S [S)r + 19)
d|s S
LN
1k1+ 2 4 [S]
ds| __,, 18]
dt " Ko + 5]
with N
Vma:p = k;{E]T Km =2 t 2
kl
Thus,

e Anirreversible enzymatic reaction that is limited by the availability of the enzyme has
a sigmoidal reaction rate.

e The reaction saturates already at low substrate concentrations (K, small), if the
complex lives long and therefore a lot of the enzyme is bound in the complex, i.e. for
ki + ki small compared to k.

3.4 Circadian Oscillator

Now more specifically: what are the genes that are involved in the circadian oscillator?
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A. normal

- 24 hours
B. arrhythmic mutant

C. short-period mutant

19 hours
D. long-period mutant

proe—

28 hours

Figure 67: Drosophila: circadian locomotor behavior. Mutations resulting in arrhythmia or
rhythms with longer or shorter period. The rhythm seems to depend on a single gene, per.

(Konopka and Benzer, [1971).
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Figure 68: Drosophila eclosion rhythms: circadian emergence of adults from their pupal
cases (population of pupae was synchronized by 12:12 light-dark cycle) (bottom, axis is
time in days). The same mutations that lead to changes in locomotor rhythm lead to
corresponding changes in eclosion rhythms (Konopka and Benzer, [1971).

Experimental findings

e per (=period) gene is a key element of the circadian oscillator. It is found to be nec-
essary for circadian locomotor behavior and for the emergence of adult flies from
their pupal cases and for the entrainment to the light cycle = this suggests a rela-
tively centrally positioned clock that controls many different functions of the organism
or at least functions as a central pacemaker that entrains other clocks.

e PER protein - resulting from translation based on per messenger RNA (mRNA) and
transfer RNA (tRNA) - becomes multiply phosphorylated by kinases. The phospho-
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rylation is reversible (reverse via phosphatases) (Edery et al., [1994).
Phosphorylation of proteins is a key mechanism to switch specific functions of pro-
teins on or off. The attached phosphate group changes the conformation of the
protein and with it its function. A protein can have many different phosphorylation
sites.

¢ the degradation and the entry into the cell nucleus depends on the degree of phos-
phorylation of PER.

e in the nucleus PER represses the transcription of per mRNA (Hardin et al., [1990)

—B: NH,
Adenosine triphosphate N
0 (ATP) ¢ ] J
n, ov 0 0 NN
P_ _|

0N L

HN 00 0 0
NG 0H OH
Serine Mg?+

l NH,

N
N

<
Ny

L\"q )Y\ 0 0 N
0- P 0- E—O 0
0 0
Phosphoserine OH OH

Adenosine diphosphate
(ADP)

Figure 69: Serine becomes phosphorylated by transfer of the ~-phosphate group on ATP.
The reaction is catalyzed by an enzyme (marked -B:). Breaking the phosphate-phosphate
bond in ATP releases a large amount of energy and makes the reaction unidirectional. ATP
needs to be regenerated, which requires metabolic energy. Figure from ThermoFisher

*
A ZT: 02 06 12 15 18 22 24 24

PER—[“W& ”“'?‘
il

-

1 2 3 4

Figure 70: Western blot of PER protein at different circadian times (‘Zeitgeber’ time ZT,
ZT=0 corresponds to onset of light) shows different expression levels (darkness) and
increase in size (vertical shift) from ZT12 to ZT02. Western blots measure the size of
molecules via electrophoresis in a gel using the dependence of the molecule mobility on
its size. Using phosphatase that completely dephosphorylizes the PER showed that the
change in molecular size is due to phosphorylation. (Edery et al., [1994)
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Figure 71: Reaction scheme underlying the Goldbeter model (Goldbeter, [1995). The
subscript on PER, ; » indicates the phosphorylation level of the PER protein.

Based on the experimental evidence Goldbeter proposed the following ‘simple’ model

dM K M
da W_me

% - ksM_VlKiPo+V2K2iP1

% - VlKlpTOPo_VQKﬁPl %KPP1+‘/4K4PjP2
T Vi”KgiPl V“Kﬁpg_klP?*k?PN_”d%
dc% — Py — kyPy

where M is the per mRNA, I, » represents the concentration of the PER protein at dif-
ferent phosphorylation levels, Py is the concentration of nuclear PER protein.

Notes:

e The enzymatic phosphorylation is modeled by Michaelis-Menten kinetics.

The model is in some sense an elaborated Goodwin model

— negative feedback: repression of the first step (MRNA transcription) by the prod-
uct (PER protein)

— multiple phosphorylation steps lead to delay

Only the doubly-phosphorylated PER degrades.

Only the doubly-phosphorylated PER enters the nucleus. This introduces an addi-
tional delay compared to the case in which nuclear entry is also possible for monophos-
phorylated PER.

As in the Goodwin model, the cooperativity of the negative feedback (n > 1) widens
the parameter regime in which oscillations arise.
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PER forms or M
total PER (P,)

time / h

Figure 72: Circadian oscillations in the Goldbeter model (using n = 4). Note the delays
with which concentrations of the phosphorylated PER rise. P, = By + P, + P, + Py.
(Goldbeter, [1995).

Mutations:

e One possible interpretation of the variation of the period with mutations of the per
gene is via the degradation of the PER protein (by changing its structure):

— with faster degradation it will take longer for enough per to accumulate to re-
press the transcription of its MRNA =- the period goes up in the model

e Other interpretations are possible. It is not clear whether the mechanism how the
mutations change the period is understood yet.

More genes are involved in the circadian rhythm (e.g. tim (‘timeless’)) and other models
capturing other aspects have been developed (e.g. Tyson model (Tyson et al., [1999)).
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Figure 73: The period of the oscillation in the model increases with increasing degradation
rate of PER. The arrows indicate putative values for the various mutants (Goldbeter, 1995).

If PER is a key part of the circadian clock it has to reflect the impact of the day-night cycle,
its expression has to depend on light.
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c
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Figure 74: Western blot of PER protein at different circadian times and the impact of a
1-hour light pulse. A) Without light an increase in molecular weight is seen between T15
and T22 (upper border shifted up) and disappearance of smaller PER at T22 (bottom
border disappears). Arrow head shows cross-reaction standard. B) Relative migration
(in % of the distance between size standard and PER marks) for control (solid bars) and
light-pulsed flies (open bars), showing the delay induced by the light pulse given at ZT15.
E) A light pulse ZT 21.5 induces an advance of the phase (earlier disappearance of the
band). (Lee et al., |[1996).

How does the circadian clock know about daylight? How does it get entrained? TIM
(=timeless), which interacts with PER, is degraded by light.
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Figure 75: TIM is expressed circadianly and is degraded by light. (A) Solid arrow points
to tim showing circadian expression. In tim null-mutant TIM is expressed neither at ZT19
nor at ZT7. (B) TIM is expressed also in per null-mutant. Its abundance is reduced with
light (L vs. D), probably by degradation. (C) Even in the absence of per (in per’-mutant),
TIM is degraded by light (constant dark up to the starred numbers, which indicate the time
since brief light exposure). Recovery from degradation within 5 hours (Myers et al., 1996).

Leloup and Goldbeter developed an enhanced model based on the reactions shown in
Fig[76] which involve PER/TIM dimers. It is assumed that

TIM is also phosphorylated in two steps with similar rates

only the biphosphorylated forms of TIM and of PER are degraded

only the biphosphorylated forms of PER and TIM dimerize

only the PER-TIM complex enters the nucleus

LIGHT

Venr

,/ tim transcription ‘\‘
| 4 nuclear :k .
| b PER-TIM o L PER-TIM 42
' i complex 1> complex |
Loy © 1©

- ]
~ per transcription ,

~. ——

Vimp

Figure 76: Model for circadian rhythm for Drosophila including TIM and PER. Light re-
sponse via rapid degradation of TIM by light (Leloup and Goldbeter, [1998).
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Figure 77: Comparison of model oscillations in PER and TIM without (c) and with
L:D=12:12 light modulation. Note the faster degradation of TIM in the morning (Leloup
and Goldbeter, |1998).

The impact of light on the circadian oscillator is commonly measured in terms of a phase-
response curve A¢(¢y):

e a brief light stimulus is given to the system at a given phase ¢, during the oscillation

e the shift A¢ in the oscillation phase induced by the stimulus is measured as a func-
tion of ¢q

6 6
A D
4 + - 4r
g s & 5
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o o per® ~ \
7] 7] / ~
® -2 L « 2 b
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a 4 [ 4
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.6 i | i 1 L 1 i L L 1 L _6 " 1 " 1 L L i 1 n | 1
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Initial phase (h) Initial phase (h)

Figure 78: Phase-resetting curves for wildtype Drosophila (solid) and per® Drosophila
(open) (Hall and Rosbash, 1987) and in the PER-TIM model (solid/dashed) (Leloup and
Goldbeter, 1998). Phase 0 corresponds to the beginning of the subjective night. Light
early in the night (TIM is rising during that phase) delays the rhythm, later at night (TIM
decreasing) it advances the rhythm; during the free-running subjective day (i.e. no light)
light stimuli have little effect (TIM is close to its minimum anyway).

3.4.1 JetlLag

The adjustment to a shift in the light-dark cycle takes time during which the different cir-
cadian rhythms of the body can get out of synchrony to some extent. This affects not only
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travelers, but also shift workers and weekend party animals (social jet lag).

TABLE 1 Home team winning percentage depends on the
direction of visitor's transcontinental travel

Visitor's direction of No. of Games Winning
travel games won %
No travel 712 385 54.1
East—west 194 109 56.2
West—east 175 110 62.9
Totals 1,081 604 55.9
Home jet lag Away jet lag
West P East P West P East P
Offense West value Average East value West value Average East value
Winning, % —0.02 + 0.016 0.112 0.539 + 0.002 —0.035 + 0.019 0.0335* —0.01 + 0.013 0.2295 0.461 + 0.002 —0.021 + 0.015 0.075
Runs scored -0.098 + 0.104 0.173 4.787 + 0.015 —0.15 +0.121 0.1065 -0.018 + 0.087 0.4165 4.652 + 0.015 —0.011 + 0.096 0.456
Batting —0.001 + 0.003 0.372 0.265 + 0.0004 —0.004 + 0.003 0.074  —0.001 + 0.002 0.2425 0.254 + 0.0003  —0.001 + 0.002 0.408

average
On-base, % -0.001 + 0.003 0.419 0.334 + 0.0004 -0.003 + 0.003 0.191 —0.002 + 0.002 0.195 0.319 + 0.0004 —0.00009 + 0.002 0.486
Slugging, % -0.002 + 0.005 0.327 0.420 + 0.0007 -0.01 + 0.006 0.0415* -0.002 + 0.004 0.3215 0.400 + 0.0007  -0.001 + 0.004 0.412

Figure 79: Jet lag and baseball. a) Eastward travel reduces number of home runs (data
1991-1993) (Recht et al., 1995). b) Impact of jetlag on winning different for home and
away jet lag (Song et al., 2017)

Japanese passenger cars sold in the US
correlates with

Suicides by crashing of motor vehicle

Baseball and jet lag: Correlation does not
imply causation

Etienne Joly *'

1 Song A, Severini T, Allada R (2017) How jet lag impairs Major League Baseball performance. Proc Natl Acad Sci USA 114:1407-1412
2 Recht LD, Lew RA, Schwartz WJ (1995) Baseball teams beaten by jet lag. Nature 377:583.

Figure 80: a) ‘It is actually quite remarklable to me that the word “correlation” does not ap-
pear even once in the paper..... writes (Joly, 2017) about (Song et al., 2017). b) Spurious
Correlations by Tyler Vigen http://www.tylervigen.com/spurious-correlations

Worldwide non-commercial space launches Age of Miss America
orrelates with correlates

Sociology doctorates awarded (US) Murders by steam, hot vapours and hot objects

Figure 81: Correlations:
space launches/sociolgy PhD r = 0.79; Miss America/murders r = 0.87.
Spurious Correlations by Tyler Vigen.

Issue

e to what extent can other factors, i.e. non-circadian factors, be controled for?
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e can one see a mechanism that could account for the correlation?

e can one modify that mechanism and confirm that this modifies the outcome as pre-
dicted?
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Figure 82: Effect of persistent jet lag on survival in mice. a) Weekly shift by 6 hours. b)
Increased stress for more frequent shifts by 6 hours (every 4 days) (Davidson et al., 2006).

Other aspects

¢ the circadian clock is quite robust

e the period of the clock is quite independent of the temperature, even though all
reaction rates vary with temperature; i.e. the circuit somehow compensates for tem-
perature changes.

How is this robustness achieved?

3.5 Repressilator

To understand the behavior of natural genetic circuits is difficult, since they can involve
many components, not all of which may be known. What are there design principles?
What are the key elements? A different approach is to design synthetic circuits that involve
only components that are not naturally present in the cell and study their properties.

An influential early example of this is the repressilator (Elowitz and Leibler, |2000), which
consists of 3 sets of repressor-protein systems with the protein i + 1 repressing the mRNA
of protein i cyclically

dmy; «

o —m; + 110, + ap (23)
dp;

o= —Bi—my). (24

The principle is quite similar to that of the rock-paper-scissors system.
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Figure 83: Repressilator designed in E. coli. Visualization of oscillations with GFP; signal
from a single cell in bottom graph (Elowitz and Leibler, 2000).

In it is assumed, for simplicity, that all three mRNA-protein sets are equivalent.
In that case there is a fixed point with m; = m© and p; = p(?. lts linear stability can be
determined relatively easily, because the Jacobian is cyclical, i.e. it does not change when
indices are cyclically rotated.

Consider first a simpler case: for 5 — oo the p-equation yields p; = m; and the m-equation
becomes

dmy; N « n
=-m;+ —+t«
dt T+my,
with linearization
-1 —a 0
L>* = 0 -1 —-a&
-a 0 -1
where .
na (%)) . .
- (0 _ 0

o= oz <0 Pifn = My
1+ (p¥
pz+1

Because of the rotation symmetry shifting the eigenvector components cyclically must
result in an eigenvector with the same eigenvalue, i.e. it must be a multiple of the unshifted
vector

x Y x
y |l =1 # |=#|VY
z x z

The eigenvector therefore has the form

T 1
Y = K
2 2
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For the eigenvector one gets then the conditions

—1l—ap = A
—p—dp? = A
_d_MQ — )\/,LZ

Eliminating A one gets
A 2 __ A 2 3 o d%my o
—a— = (-1—au)p = =1 p=e37;j=0,1,2

and o
\j=—1—aes? j=1...3

With ¢'5 = —% + @‘/73 the fixed point is unstable to oscillations for

For finite 5, the full system is also cyclic and the linearization and the eigenvector have
the form

-1 0 0 —a 0 0 U
B -8 0 0 0 0 v
_ o 0 -1 0 0 «a B 0
L=1 909 0o 58 =5 0 o VT w
0O a« 0 0 -1 0 i
o 0 0 0 B =B 1
leading to
ph=1
and

CENCER) (_1i\/l_45(1+aé¢j)>
o2 (5+1)

which recovers for 5 — oo the three eigenvalues above, while the other three eigenvalues
diverge.

(7]
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8_ 16500 1,000 107500 21,000
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C
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o
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Figure 84: Simulations of the ODEs and of a stochastic version (using Gillespie algorithm),
showing strong fluctuations (Elowitz and Leibler, 2000).
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Figure 85: Oscillation period (160 + 40 minutes) is longer than the cell cycle (50 — 70 min-
utes) and oscillations often remain correlated for some time in daughter cells (cf. Fig[83)
before they diverge in phase and/or amplitude (Elowitz and Leibler, 2000).

Note:

e The oscillations in the repressilator are quite noisy

— circadian oscillators seem to be more robust: what additional design elements
do they have?
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4 Calcium Oscillations8

Calcium in the cytoplasm plays an important role in controling a wide range of cell func-
tions. It controls many aspects of cell dynamics

muscle contractions

gene transcription

— plasticity in neuronal cells for learning and memory

enzyme secretion

apoptosis

In many cases it does so by binding to proteins and modifying their enzymatic properties.
Its concentration within a cell is therefore very low most of the time to avoid interference
with those enzyme functions. Signaling with calcium is achieved with well-controled, very
brief changes in calcium concentration that are also quite localized within the cell. An
important component of that control is binding of calcium to buffers and sequestering it
into intra-cellular stores like the encoplasmatic reticulum (ER) (sarcoplasmatic reticulum
in muscle cells).

Stimulus >
T ~ Cas* 1 mM Plasma membrane Ca?* channels
PIBEVBC(
membrane —— —T —_
R R RTK R AV k
= ) e _ (G P o
Cytoplasm ? 7” PtdIns(4,5)P, PLCP Ca2+ sensitive processes
) C Contraction
- nC Sontractior
NADP PLCY
Sphingosine =
pPTNg N Ins(1,4,5)P3 Proliferation
el atio
ADP ribosyly CADPR | ;
cyclase NAADP memor
( Sphingosine
kinase
PMCA [SERCA] < =
— 745\ ™~ ey & Ca2*
La - N 5 e ~1,000 nM
~ 100 uM
L InsP3R, RYR,
~ ER/SR SCaMPER,
-, NAADPR
[Ca- Buffers/chaperones
S 10A2 >
e Ca?* buffers )
exchanger $100 family
Mitochondrion

Nat/Ca2+ | @™
(NaF)==
exchanger O ( | |
S ' | Ca2+ Mitochondial ATP sy
] | - enzymes Steroic

PTP ¢’ Cytochrome ¢ Caspases Apoptosis

Figure 86: Very busy overview of the multiple functions of calcium in cells [Berridge et al.
(2000). One central feature is the storage of calcium in the endoplasmatic reticulum (ER)
or the sarcoplasmic reticulum (SR) with calcium being pumped by SERCA and PCMCA
pumps and released from the stores via RyR and other receptors.

8(Fall et al., 2002) Ch.5
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Figure 87: Some more details of specific functions of calcium Berridge et al.| (2000).

Calcium can also be involved in communication between cells Leybaert and Sanderson|

(2012).

Calcium often exhibits oscillatory dynamics that reflect the release of calcium from the in-
tracellular stores in response to an increase of the calcium concentration (calcium-induced

calcium release).
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Figure 88: Oscillations in calcium concentration can take the form of spiral waves. a) Time
sequence of waves within Xenopus oocyte cells, also shown as 3d image at the bottom
(original paper) |Lechleiter et al. (1991). b) Snapshots in later paper McGeown| (2010).

To model calcium dynamics we need to model the buffering and the sequestering. The
latter involves receptors (IP3R and RyR) that release calcium from the stores and pumps
that pump it into the stores against a strong concentration gradient.

Consider a cell that contains a cytosolic compartment and an ER. We want to model the
calcium dynamics in these interacting cell components
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4.1 Rapid Buffering and Flux Balance

The cytosol of a cell as well as the ER contain buffers to which the calcium binds quickly.
Therefore, when calcium enters that compartment a certain fraction of that calcium gets
bound and only the remaining calcium is free calcium that is available for other reactions.
We aim to get a relationship between the change in total calcium and in free calcium.

Consider the cytosol first (subscript i for inside the cytosol)

[Ca?t); + [Ca?t B]; = [Ca®T]i (25)
[Bl; + [Ca®* Bl; = [BJ" (26)
The buffer reaction is given by
kt+

(Ca**]i + [Bl: = [Ca** B,
>

leading to the equations

d[Ca**]; 2+ 1,24
o = ka7 Bl = kT[Ca™i[B]:
d[dB;]z — kT [Ca?* B — K [Ca?),[Bl;
W = —k"[Ca® B); + k*[Ca®" ;[ B);

Being linear, these equations have a single fixed point (steady state), at which the con-
centrations satisfy

or, K [Ca®* B, . [Ca®*Bj;
[Ca +]z‘ = FW = KZW (27)
with .

the dissociation constant of that reaction.
Note:

e For K; > 1 the affinity of calcium to the buffer is small.

This fixed point is reached from any initial condition. The time it takes to do so depends
on k*: for large k= and k* that time is short. If calcium influxes, say, are small, the
concentrations can adjust fast enough to satisfy the equilibrium condition very well at
all times. Using (27) to eliminate [Ca?" B]; from yields then

cartp = (14 1Bl ) (00
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Using

one then gets

1 1 [B]tet
2+1tot __ tot 2+, — % 247
[C(l ]z - <1 + Kz‘ 1+ KLI-[CCL2+]Z' [B]z ) [CCL ]l (1 + Ki + [C«a2+]i [Ca ]z

The evolution of the calcium concentration is given by conservation laws for the total
amount of calcium
-out

d[Ca2+]§Ot mn out m out -in -out 4N
v (JPM —Jpv — JEr + JER) =Jpm —Jpm — JER T JER
where V; is the volume of the cytosol and jp,, is the normalized flux across the cell mem-
brane and jzr the normalized flux across the ER membrane.

Analogously, for the concentration in the ER

d[Ca’2+]tOt 1 in ou ‘71 10 cOU
dt 2R — Vir (JER - JEJ—%) = @ (]ER - ]E}é) 5

normalizing the fluxes also by the cytosol volume rather than by the ER volume.

Through the fast buffering approximation the derivative of the total calcium can be ex-
pressed in terms of that of the free calcium

d[Ca**]tet B d[Ca*)let d[Ca?T]; B 1 d[Ca*");
dt N d[C(Z2+]i dt N fl([CCLQ—F]z) dt

with

diCa® e _ Bl [BI[Ca*) _ Ki[B]"

d[Ca?]; Ki+[Ca®];  (K; + [Ca2t];)” (K; + [Ca**];)”

24y Ki[B )‘1
fl([Ca ]Z> - <1 + (Kz + [Ca2+]i>2

Notes:

e Low affinity buffers have large dissociation constants. For K; > [Ca*'] one gets
then

1
fi=

1 _I_ [B]](Eot
independent of [Ca®+].

e For large buffer concentrations f; is small. Typical values are f; = 0.01...0.05.

The flux equation can then be written as

d[Ca?*];
at

= fi([Ca®*];) (jzi;LM — Py — Jen+ jgﬁ) (28)
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and analogously B
d[C’a2+]ER o V;
dt ~ Ver

fer((Ca* | gr) (J5r — I%R) - (29)
Note:
e With increasing buffer concentration the calcium dynamics become slower.

It is useful to introduce

_ Vewh
Vifer
and write as
d[Ca*"|gr _ é (]m B -out)
a5 VER JER

Note:

e The buffering reduces the increase in the free calcium concentration arising from an
influx. The compartment behaves as if it had a larger effective volume y— and ‘f/g—g
respectively.

e o gives the ratio between the effective volumens of the cytosol and the ER.

Combining and o times yields

d ) -OU
— ([Ca’")i +0[Ca®™]mr) = i (FPar — J7ir) -

Thus, the total free calcium concentration can be written as
[Ca2+]T = [CCL2+]1 + O'[CCL2+]ER.

If there are no fluxes across the membrane [Ca*"|r is constant and [Ca**]zr can be
eliminated in favor of [C'a®];.

Note:

e To complete the dynamics we need to relate the fluxes to concentrations. For that
we need models of pumps, leaks and receptors that drive the fluxes.
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4.2 Model of the Ryanodine Receptor

The RyR is a key player in calcium-induced calcium release.

1 uM Ryanodine

30 K + 5 Caff

Figure 89: Oscillations in bullfrog sympathetic ganglion neuron involve calcium-induced
calcium release (CICR), since they are blocked by applying ryanodine, which blocks the
ryanodine receptor. The oscillations require that the ryanodine receptors are activated by
caffeine (Friel and Tsien| [1992).
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Figure 90: A) RyR respond to a step increase in the calcium concentration with a transient
current and a plateau current. B) Dependence of the peak and plateau currents on the
step size. (Friel and Tsien, 1992)
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Figure 91: Response of RyR to two sequential puffs of calcium. Traces in A show opening
events of a single channel. B: Calcium current averaged over many trials. C: calcium
concentration. (Friel and Tsien, [1992)
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The transient response of the current to an increase in calcium suggests that the Ryan-
odine receptor activates quickly but then adapt slowly and becomes inactivated with time.

Keizer and Levine developed a model of the ryanodine receptor that is based on 2 open
states and 2 closed states (Keizer and Levine, [1996)™° The transitions in and out of the
second closed state are slow and represent an inactivation of the receptor.

Figure 92: Sketch of the 2 open and 2 closed states of the ryanodine receptor and their
transition probabilities (Fall et al., 2002).

Mass action yields equations for the probability of the receptor to be in that state or, equiv-
alently, the mean fraction of the receptors to be in that state,

PO~ k0w Pe, + b Po,

dgfl = +k[[Ca*"]"Po, — k; Po, — k' [Ca®"|" Po, + k; Po,
—k}Po, + k, Pc,

dg% =k [Ca* ™ Po, — k; Po,

% = +kI Py, — k. Pc,

The probabilities have to add up to 1 and the equation conserves that sum

d
PCl+PCE+POl+P02:]' E(PC1+PC2+P01+P02):O

This allows to us to eliminate one variable, e.g. Pc,, from the equations

Pe, =1—Po, — Po, — Pp,.

Determine the fixed point for a given constant calcium concentration from the equations
for Po,, Po,, and Pp,; the equation for P, is then automatically satisfied because of the

®The paper arose from the undergraduate honors thesis of Leslie Levine
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conservation of the probability.

dPo, n - m —
dto = +k2_[0a2+] <1_P01_P02_P02)_kapo1_k;[ca2+] P01+ka02
_k:PO1 + kgPCz (30)
dP,
S0~ W (Cw" Po, — ki Po, (31)
dP,
dtCZ = —Hﬁjpol — k. P, (32)

Straightforward algebra gives the unique solution to this linear 3 x 3 system. It is more
compact to write the solution in terms the dissociation constants instead of the respective
reaction rates k=

a,b,c?
k k;

n_ ka m k.
K=o szﬁ =

KC—E.

Consider the dimensions of the dissociation constants (using {} instead of [| to denote
dimensions)

. 1 A . [k w [k
{kppe} = s {E} = [Ca®*] {é} = [Ca*] {kj} =1

C

Thus
{K.} = {Kp} = [Ca®"].

Note:

e Consider equilibrium between O; and O,

ky ([Ccﬂ*])m
, = 2 [Ca* " Py, = Po,.
k;[ ["Fo K, ©

Po

Thus, K, gives the calcium concentration for which O; and O, are equally populated.

One then obtains

1
Po, = ] (33)
(i) + (o) m+ 14
(%)
Ky
Py, = (34)
(o) e ()i
1
Po, = Ke (35)

118



Modeling Biological Oscillations H. Riecke, Northwestern University

Important:

e The transitions to and from the inactivated state C are slow, it therefore takes quite
a while to reach this fixed point. That fixed point depends on [Ca®*].

e Does one have to solve the full 4 equations to describe the approach to this fixed
point when [Ca®*"] changes?

e Since the transition rates among O;, O,, and C; are fast, one can obtain a simpli-
fied description of the dynamics that results from changes in [Ca®+] using the rapid
equilibrium approximation.

Consider explicitly the limiting situation
by [Ca*f]" ~ kg ~ kT [Ca® )™ ~ k> b~ kL

Then P, evolves much more slowly than Py, and Py, (and Pg,).

Eq.(30) shows that P,, depends also on the slowly evolving P, although it has high
reaction rates. To get an idea of how to make use of this consider first a much simpler
situation p

d—iz—)\y—l—cost A> 1. (36)

Calculate the exact solution

y=uyn+y, yn=ae

and
yp = Acost + Bsint

—Asint + Beost = —AAcost — ABsint + cost

A 1

A=XB B=-M+1 A= B=

+ = N+l N1
For any fixed time ¢
My cost + ! sint — 1cost—|—(’) !
= ae —— - —
Y 1 2+l =~ N2
—00

Thus, after the decay of the exponentially decaying transient, i.e. for t > % the solution
is given to leading order by the balance between the terms on the r.h.s of (36), i.e. by the
quasi-static fixed point

Ay = cost.

After a short transient of duration O (1/k; ), the fast variables P, and P, will reach the
quasi-static fixed point given by
dPo, _  _ dPo,

dt dt
with P, fixed.

Note that includes also reaction terms £, which are small compared to the rest. We
can ignore those terms when calculating the fixed point.
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Simple algebra then gives

1 1 Ca?>*\™
Pé(i): C 2+] " P 7w Pé(;): < 2+] " P ) ([; ]) W
1 (570" + () 1+ (570" + () '
(37)
with

w(t) =1- Pcz
the fraction of receptors that are not inactivated.
We still need to determine w(t) = 1 — Pg,(t) = Po, + Po, + Po,. From (32) we get

dw
—=k7(1—- — kP,
dt c( U)) c 101

Since w evolves much more slowly than Py,, Pp, is essentially always at the fixed point
given by (37).

dw 1

- = ko (1—w)—kF A —— W
1+ (%) + ()
k. <1 1+ ! !
_ _ _ w
¢ K, [Ca2] )"
1+ (1%5)" + (i)
[Ca®*] .\
Lo () ()
1+ (S20)" + ()
This can be written as
dw — Weo —w
dt T
with .
[Ca?t] )" -
H( % ) +([015“1) + % Wes
Weoo = T = .
> [Ca2+] K, \" k;
1+ (1557)" + (i)
The probability for the ryanodine receptor to be open is then given by
1+ <[C“2ﬂ>
Po(t) = Po,(t) + FPo,(t) = L ~w(t) (38)

1+ ([C“Zb”) n (—[ ifsﬂ)

where [Ca®T] is in general also a function of time.

Fitting to the experiments (Gyorke and Fill, 1993) leads to n = 4 and m = 3 and values for
the reaction constants.

Dependence of the receptor on [Ca?*]; in the steady state (33)[34}35)
e For low [Ca)?*
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— most receptors closed, very few inactivated since very few in O,
Po, ~ [Ca® ]} Po, ~[Ca®}*™ P, ~[Ca®]] wee ~ 1
e For high [Ca);*

— most receptors in O,-state, very few inactivated since very few in O;and C,
cannot be reached from O,

Po, ~ [Ca®"|;™  Po,~1  Poy~[Ca®" ;™  we~1
e Intermediate [Ca)?t
— significant fraction of receptors in O,and therefore also significant fraction in Cs,
Woo < 1

Dependence of adaptation on [Ca®T];

e Steps to large [C'a®T]; should not lead to significant adaptation since w., ~ 1

e Steps to intermediate [Ca*"|; will lead to adaptation (i.e. overshoot in [C'a®"];-flux)
because a large fraction of receptors quickly go to O, and quickly equilibrate with O,
(the relative populations of O; and O, depend on the dissociation constant K;). The
fraction that stays in O; equilibrate with C, on a longer time scale

Note:
e The rapid equilibrium approximation is valid as long as [Ca**] does not change too
fast to allow the fast variables to be close to the quasi-static fixed point (33]34]35).

e After brief, rapid changes in [Ca®"] there will be a transient during which the fast
variables reach the fixed point (33|[34][35) .
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Figure 93: Keizer-Levine model for the RyR: response of Ryanodine receptor model to
step increases in [Ca?*] Keizer and Levine| (1996).
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4.3 Bullfrog Sympathetic Ganglion Neuron Model: Closed Cell

The sympathetic ganglia are part of the autonomous (non-conscious) nervous system,
which deals with food and breeding (para-sympathetic nervous system) and with stress
response ‘fight or flight’ (sympathetic nervous system).

Many aspects of these basic functions are conserved among species. The bullfrog sym-
pathetic ganglion neuron was apparently a good model system top study the effect of
caffeine on neurons in the sympathetic nervous system Kuba and Nishi (1976).

The calcium concentration in the cytosol satisfies (cf. (28))

d[Ca”]i
dt

= fi | JryR ([C@2+]i, w) + Jicak ([Oa2+]i) — jSERCA ([OG%]Z')

pump

The flux through the leak is driven simply by diffusion, i.e. by the difference in concentra-
tion in the cytosol and the ER,

Jieak = Vieak ([0a2+]ER - [Ca2+]i) .
The ryanodine receptor releases calcium from the ER when its channel is open
jryr = VryrPo([Ca**];, w) ([Ca**]pr — [Ca®*T);)

with Po([Ca?*];,w) given by (38).

Here it is assumed that the RyR acts symmetrically , i.e. calcium is transported as easily
out of the ER as into the ER. That results in the flux being proportional to the concentration
gradient (difference).

The SERCA pump pumps calcium into the ER against a very large concentration differ-
ence. lts flux can well fitted by a Hill function

, [Ca**]}
JSERCA = VSERCA .
[Ca®*]? + Kippea

Together with
dw  wy ([Ca®t];) —w
dt 7 ([Ca?t];)
and the conservation of calcium
1
[CCL2+]ER = ; ([C’a2+]T — [CCL2+]Z‘)

we have a closed system of equations for w and [Ca*"];

d[C;t - = fo(ICa®];;[Ca™r) +w- fi ([Ca®]i; [Ca®]r)
% = g ([Ca®];) + w- g1 ([Ca®T);)
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with f, 1 depending on [C'a**]r as a control parameter.
Having 2 coupled ODEs allows a phase plane analysis.

The nullclines are given by

0 = fot+twhf
0 = got+wg

The intersections of the nuliclines give fixed points of the dynamics.

Depending on [C'a*T]7 the equations have 1 or 3 fixed points with saddle-node bifurcations
changing the number of fixed points.

In particular, for intermediate [C'a®"|7 there is bistability:

o for low [Ca®T]; only few RyR are open

e increasing [Ca®"]; opens more RyR, which leads to more release of calcium from
the ER, increasing [C'a®T; further, opening yet more RyR.

A linear stability analysis of the fixed points shows the stability as indicated in the bifurca-
tion diagram.

There is also an oscillatory instability (Hopf bifurcation) near the lower saddle-node bifur-
cation point leading to unstable oscillations. For somewhat different parameters (of the
SERCA pump) they can be made stable.

However

e The oscillations exist only over a very small range of [Ca?']r.

e The period of the oscillations tends to be too short. It is controlled by 1/k; = O(10s)
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Figure 94: Phase plane and bifurcation diagram for the closed-cell model |Fall et al. (2002).
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4.4 Bullfrog Sympathetic Ganglion Neuron Model: Open Cell

Consider extension of the model to obtain robust oscillations.

Figure 95: Oscillations require some depolarization of the cell (by reducing the impact
of the hyperpolarizing K-conductance) and the application of caffeine. The membrane
voltage is held constant |Friel and Tsien| (1992).

Since the oscillations require some depolarization of the cell, voltager-dependent calcium
channels in the external cell membrane could play a role. Since the oscillations persist,
when the membrane voltage is fixed (voltage clamp), it may be sufficient to allow a steady
influx of calcium.

Consider the total calcium concentration

d[Ca*)y . .
. fi Jin — JPMCA
~~~ N——

calcium channel pump

The PMCA pump (plasma membrane Ca**-ATPases) can reasonably modeled like the
SERCA pump

[Ca®
Kpyoa + [Ca®T]7

jPMCA = VpPMCA

For fixe membrane voltage j;, is just a fixed current.

The equation for [Ca**]; needs to be extended to include the membrane fluxed

d[Ca**]; , , . . .
i = fi (JrRyr + Jieak — JsErcA + Jin — jPMcA)

Together with the equation for w(t) one has then three equations. Can they be simplified?

Experimentally, the oscillations have a period of O(1min). The time constant for w(t) is
O(10s). It is therefore reasonable to assume that w(t) relaxes to w,, and follows it quite
closely = replace w(t) by w,.,

Jryr = VeyrPo([Ca*" i, wee) ([Ca*t]gr — [Ca®];) .
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The bifurcation diagram for [Ca?*]; as a function of [C'a®>"]|7 can now be considered as the
phase plane with the nullclines

Ca*t)?

Ca*tp i — [ . =0 = [Ca*"]; = const.
[Ca™"|r Jin — VPMCA K2, o 4 [Ca ] [Ca"]

[Ca*™]; - JRyR + Jieak — JSERCA + Jin — Jpmca = 0

The fixed-point branch of Fig/94] amounts to the nullcline of [Ca**];.

When the nullcline of [Ca®"]7 intersects that of [Ca*™]; on the intermediate branch one
obtains a periodic orbit as indicated

e On the lower branch [Ca®*]r increases and state follows the lower branch until that
branch turns around (saddle-node bifurcation)

e Then [C'a®T]; increases rapidly and the system goes to the upper branch.

e Since the upper branch is on the other side of the nulicline for [Ca®"|7, [Ca®T]; de-
creases until it reaches the end of that branch

e There [Ca®"]; decreases rapidly and the system goes back to the lower branch.

Note:

e Since vpova < vserca the evolution along the branches is much slower than the
jumping between the branches.

e Such Oscillations are called relaxation oscillations.

e The separation of time scales of the evolution along the branches and between
branches allows an understanding of the oscillations based on the quasi-static bi-

furcation diagram.
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Figure 96: Relaxation oscillations in the open-cell model. a) Nullclines and periodic orbit
in the phase plane Keizer and Levine (1996). b) As typical for relaxation oscillations, the
oscillations are strongly nonlinear (anharmonic) [Fall et al.| (2002).

125



	Introduction
	Population OscillationsTu03, online version at (after logging in): https://ebookcentral.proquest.com/lib/northwestern/detail.action?docID=1113399  
	General Considerations
	Time-Series Methods for Oscillations 
	Black-Box Models

	Mechanistic Models: Introduce 'The Biology'
	`Fundamental Laws'Tu03
	The Lotka-Volterra ModelLotka points out that a large part of Volterra's results had already appeared earlier in Lotka's book Lo20,Vo26,Lo27,Lo25
	Modeling Functional Response. Generalist and Specialist Predators

	Generalized Lotka-Volterra Models
	Rosenzweig-MacArthur Model
	Brief Discussion of Other Models

	Case Study: Vole DynamicsTuHa97,TuEl00,Tu03
	Diversity via Non-Hierarchical Fitness
	ODE Model
	Discrete Models
	Continuum Systems with Dispersal


	Genetic Oscillators and Circadian Clocks
	Negative Feedback during mRNA Synthesis
	The Goodwin Oscillator
	Michaelis-Menten Kinetics
	Circadian Oscillator
	Jet Lag

	Repressilator

	Calcium OscillationsFaMa02 Ch.5
	Rapid Buffering and Flux Balance 
	Model of the Ryanodine Receptor
	Bullfrog Sympathetic Ganglion Neuron Model: Closed Cell
	Bullfrog Sympathetic Ganglion Neuron Model: Open Cell


