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1 Introduction

Oscillations and more complex dynamics arise in a wide range or biological systems,
differing widely in scale, ranging from the population dynamics of hares and voles, the
circadian rhythms in animals and humans, to the competition between ‘warfaring’ bacteria
and calcium oscillations within individual cells.
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Figure 1: 10-year lynx cycle in Northern Canada, based on fir catches/sales reported by
the Hudson’ts Bay Company (Elton and Nicholson, 1942).
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caffeine (Figure Id, replotted as the square symbols 
in Figure le after scaling by 0.5). The resemblance is 
striking, given that the immediate stimulus is high 
K+ in one case and caffeine in the other. Evidently, 
application of high K+ in the presence of caffeine pro- 
duces a combination of voltage-dependent Ca2+ entry 
and release of internal Ca*+ by the same mechanism 
that is responsible for caffeine-induced Ca*+ release, 
namely CICR. 

Involvement of CICR in the [Ca”]i Oscillations 
Block by Ryanodine 
Further support for the involvement of CICR in the 
[Ca*‘], oscillations comes from the observation that 
they are inhibited by 1 PM ryanodine (Figure 2a). This 
drug binds with high affinity and specificity to Ca2+ 
release channels from brain (McPherson et al., 1991) 
and muscle (Imagawa et al., 1987; Lai et al., 1988). Rya- 
nodine has been used widely in the study of CICR 
(Sutko et al., 1985; Marban and Wier, 1985; Meissner, 
1986; Lattanzio et al., 1987; Fill and Coronado, 1988) 
and is thought to inhibit it by either preventing chan- 
nel opening (McPherson et al., 1991) or stabilizing an 
open subconductance state (Imagawa at al., 1987; 
Rousseau et al., 1987; Bezprozvanny et al., 1991), pre- 
venting net Ca*+ accumulation by the store and 
thereby net Ca*+ release. The blocking effect of rya- 
nodine was very consistent (9/9 cells at 1 PM; l/l cell 
at 10 PM), but somewhat variable in rate (spike ampli- 
tude declined over l-8 cycles before [Ca*+], stabilized). 
The observation that at least one cycle occurred be- 
fore any indication of block is consistent with use 

(nM) 

Figure2. Involvement of CICR in Caf- 
feine-Induced [Ca2+], Oscillations 

(a] [CaZ+], oscillations are blocked by 1 uM 
ryanodine, after which [Ca2+], stabilizes at a 
level UCa*+lrr.ryan, dashed line) that falls be- 
tween the intracycle minimum and maxi- 
mum. Cell BIZJ. 
(b) Sudden caffeine removal at different 
points in the oscillatory cycle caused a 
rapid fall in [Ca2+],. This occurred either 
when caffeine was removed following a 
peak (b, top, 2), or just before a peak while 
[Ca*+], was still rising (b, bottom, 3). Note 
that the latency for resumption of oscilla- 
tions after caffeine was restored depended 
on where in the cycle it was initially re- 
moved. 
(c] Comparison between phase trajectories 
from records l-3 in(b). Following each per- 
turbation, [Ca2+], declined approximately 
exponentially, as revealed by a linear por- 
tion of the phase trajectory (dashed line). 
The slope of this line gives a time constant 
of -3 s (linear regression). In this cell (BO9P) 
[Ca*‘], oscillated in the presence of 10 mM 
caffeine with normal [K+], (2 mM). 

dependence of ryanodine’s inhibitory effect (Rous- 
seau et al., 1987; Thayer et al., 1988). Since control 
experiments show that 1 PM ryanodine inhibits caf- 
feine-induced release of internal Ca2+ but does not 
inhibit voltage-dependent Ca2+ channel current (Friel 
and Tsien, 1992), we attribute this action of ryanodine 
to inhibition of CICR. 

In the presence of ryanodine, [Ca*+], stabilized at a 
level (Ka2+15s,ryan; Figure 2, dashed line) that fell be- 
tween the extremes of [Ca2+], reached during the oscil- 
latory cycle. Since [Ca*‘], did not drift under these 
conditions, we regard [Ca2+]ss,n/an as a steady-state level 
at which Ca2+ entry and extrusion across the surface 
membrane balance one another under the prevailing 
experimental conditions of [K+],, [Ca2+10, and [caff],. In 
the Discussion, we will consider extending this inter- 
pretation of [Ca2+]sS,ryan to the case in which [Ca2+], is 
oscillating. For now, [Ca2+]5r,lyan will be used simply as 
a reference level for describing [Ca2+]i changes during 
the oscillatory cycle. 
Effect of Sudden Caffeine Removal 
Caffeine is thought to release internal Ca2+ by increas- 
ing the potency with which Ca2+ opens intracellular 
Ca2+ release channels. If this is true, then the Ca2+ 
permeability of the store at a given [Ca2+], should be 
elevated in the presence of caffeine. If caffeine re- 
moval reduces this permeability, then it should be 
possible to assess the activity of CICR while [Ca2+l, is 
oscillating by removing caffeine: reducing the Ca*+ 
permeability of the store should create an imbalance 
between internal Ca2+ uptake and release, a sudden 
outward net Ca2+ flux, and a drop in d[Ca’+]i/dt. 

Figure 2: Calcium oscillations in bullfrog sympathetic neuron Friel and Tsien (1992).
These oscillations arise in response to caffeine.

ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).
When ecological processes were local in the simulation, coex-

istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.
To test this conclusion, we used three strains of the bacterium E.

coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C

Figure 2 Community dynamics in the experimental treatments: a, Static Plate; b, Flask;
and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has
decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.
We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The
changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.
The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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Fig. 3: (Colour on-line) Typical time evolution of the stochas-
tic system in the SA phase. Same parameters and initial condi-
tions as in fig. 1 with ζ = 0. Top: spiral annihilation at different
stages, for time t= (234, 310, 386) from left to right. Bottom:
the oscillatory dominance of each species at t= (955, 967, 980)
after relaxation into the homogeneous state (no species
extinction).

described by linear diffusion, with an effective diffusion
constant δ depending on δD and δE (3). When reproduc-
tion dominates over selection (β≫ σ), the lack of empty
spaces leads to prevalence of pair-exchanges (δ→ δE),
while in the opposite case (β≪ σ), movement occurs
mostly via hopping (δ→ δD). As the effective linear diffu-
sive term in (7) affects only the size of the patterns but
not their stability, for our purpose here δ can be always
rescaled to 1 via x→x/

√
δ. In addition, one of the three

parameters (β, σ, ζ) can always be set to 1 by an appro-
priate rescaling of time (we have here chosen to set β = 1),
while µ≈µH since we consider an expansion near the HB.
Therefore, the phase diagram around the HB (represented
in fig. 2) can comprehensively be described in terms of σ
and ζ with β = 1.
The system’s phase diagram near the HB (fig. 2, see also

the movies of [20]) is the main result of this work and has
been inferred from (7) and (8) by referring to the well-
known properties of the two-dimensional CGLE [29]. This
phase diagram is characterised by four phases with three
critical values of c, as illustrated in fig. 2. In the “spiral
annihilation” (SA) phase, when 0< c< cBS , the dynamics
is characterised by unstable spiralling patterns that collide
and vanish. In the “bound state” (BS) regime cBS < c<
cEI , pairs of stable spirals are formed and coevolve, with
their properties described by the CGLE (7) [22]: e.g.,
the speed and wavelength of the spiral waves grow ∝√
δ. When cEI < c< cAI , the spirals become convectively
unstable due to the Eckhaus instability (EI) which limits
their size and distorts their shape. It is noteworthy that EI
has been reported in [14] for a model without mutations
(µ= 0). Finally, there is the “absolute instability” (AI) of
spiral waves when cAI < c, where there are no coherent
patterns since the cores are not able to sustain spiral
arms. By substituting the explicit values cBS ≈0.845,
cEI ≈1.25 and cAI ≈1.75 [29] into (8), one obtains the
system’s phase diagram in the σ-ζ plane as shown in

Fig. 4: (Colour on-line) Stochastic simulations with the same
initial conditions and same parameters as in fig. 1, but with
a low mutation rate µ= 0.001. While the AI, EI and BS are
still present in agreement with the phase diagram of fig. 2
(see caption of fig. 2 for the order of the phases), no spiral
annihilations occur and the SA phase of fig. 1 is now replaced
by the BS phase.

fig. 2. This phase diagram sheds light on the results of
fig. 1 where the values ζ = (1.8, 1.2, 0.6, 0) correspond to
c= (1.9, 1.5, 1.0, 0.6), which lie in the four phases AI, EI,
BS and SA, respectively. A description of the evolution in
each phase can be found in the accompanying movies [20].
The SA phase (see fig. 3), which was not found in
refs. [13–16,18], is characterised by the annihilation of all
spiralling patterns and is particularly interesting since it
is the only possible phase near the HB when ζ = 0 (see
fig. 2), i.e., for the models of [13,16] supplemented by
mutations. In this novel SA phase, spiral annihilation leads
to a spatially homogeneous oscillating state dominated
in turn by each species, without any of them going
extinct, as described by the mean-field dynamics (4). This
deterministic phenomenon (different from the EI) is driven
by nonlinearity and not by demographic noise. In the
regime c≪ cBS , it typically occurs on a short time scale, as
illustrated in fig. 3. This is markedly different from the loss
of spiralling patterns driven by noise after a time growing
exponentially with the system size as found in [13,16].
While our analysis in terms of the CGLE (7) relies on

a perturbative treatment around the HB where ϵ≪ 1, it
is still found to faithfully describe the system’s properties
relatively far from the HB. For instance, when β = σ= 1
and ζ = 0 (µH = 0.042), the system is still in the SA phase
even for µ= 0.02 (ϵ≈0.26) as predicted by our theory (see
figs. 1 and 3). We have also found that the predictions for
the existence of the AI, EI and BS phases still hold even
for quite low mutation rates, as illustrated in fig. 4: when µ
is much smaller than the rates σ and β (e.g., µ= 0.001 and
σ= β = 1), the system lies in the AI, EI and BS phases as
predicted by the phase diagram of fig. 2. However, no spiral
annihilation occurs in such a regime (ϵ≈0.35) and instead
one finds stable spiralling patterns (rightmost panel of
fig. 4). In agreement with the phase diagram of fig. 2, the
system is in the AI phase when 0< σ≪ ζ (leftmost panel
of fig. 4), including when σ and µ are small and ζ is finite.
It is interesting to note that no stable spiralling patterns
have been found in a two-dimensional zero-sum variant of
the model, with N = 1,σ= µ= β = 0 and ζ = 1 [15].
We have also checked that our analysis is robust against

simultaneous random perturbations (up to ±5%) of all the

28012-p4

Figure 3: Competition between three strains of bacteria: killer bacteria, resistant bacteria,
and susceptible bacteria Kerr et al. (2002); Szczesny et al. (2013).
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fig. S3A). By contrast, the average life span of cKOs was just 9 months
(fig. S3B) (6). Except for ocular abnormalities, the iKO mice generally
exhibit no gross morphological defects, and body weight was con-
served in both genders (Fig. 2B and fig. S2C). Similarly, the weight
of organs examined in the iKOs did not differ from controls, except
for the liver at 2 months after Bmal1 deletion (Fig. 2C). Although iKO
mice are less fertile than normal mice (tamoxifen untreated), the fer-
tility percentage was comparable to their tamoxifen-treated littermate
controls (36% versus 30% in male, and 22% versus 27% in female; Fig.
2D), suggesting that the defect in fertility resulted from the tamoxifen
treatment, not the consequent gene deletion or disruption of circadian
rhythms. In contrast, the cKOs were completely sterile (fig. S2D). Glu-
cose tolerance tests (GTTs) and insulin tolerance tests (ITTs) did not
differ between Ctrls and iKOs (Fig. 2E).

Hair growth and arthropathy
Loss, graying, and growth inactivity of hair (telogen) are hallmarks of
aging (11, 12). Indeed, conventional Bmal1 and Clockmutant mice dem-
onstrate an increase in telogen follicles compared to controls (6, 13).
Here, in an assay to assess hair follicle cycling in which hair is shaved

and new hair regrowth is assessed (Fig. 3A), cKOs were shown not to
enter the hair growth phase (anagen) as frequently as did wild-type mice
(Fig. 3C), as previously reported. Unexpectedly, however, hair follicles in
iKO mice entered anagen more frequently than did controls (Fig. 3B)
even in aged (6 months and 1.5 years) mice (Fig. 3D). In young cKO
mice, anagen follicles were absent 7 weeks after shaving (Fig. 3B), indi-
cating that the follicles stayed in telogen. Anagen was also rare in wild-
type and Ctrl mice; however, two-thirds of the iKO mice entered anagen
at 7 weeks after shaving (Fig. 3B). Similarly, 12 weeks after shaving, all
wild-type, Ctrl, and iKOmice had entered anagen, but more than half of
the cKOs still had not done so (Fig. 3C). Expression of genes associated
with anagen (Ccnd1 and Mki67) was up-regulated in iKOs compared
with controls (fig. S4).

Accelerated age-related arthropathy has been reported in cKOs
and was studied here using Alizarin Red–stained ribcages and hind-
limbs, as previously described (4, 5). As expected, we observed ab-
normal calcification in the costosternal junctions and calcaneal
tendons of all cKOs (n = 5) at 24 weeks of age (Fig. 3E). By contrast,
abnormal calcification was not evident in any 30-week-old iKOs (n =
5, 24 weeks after Bmal1 deletion). Calcification of the calcaneal tendon

Fig. 1. Loss of circadian rhythms in iKO mice. (A) Representative double-
plotted actograms of wheel-running activity of 3-month-old Bmal1f/f and
Bmal1f/f-EsrCremice (red dots, tamoxifen treatment). Similar results were ob-
tained in n = 8 to 9mice per group. (B) Counts of wheel revolutions per hour
from control mice (Ctrls) and iKO mice under conditions of DD (n = 8 to 9,
Student’s t test; ns, no significant difference). (C) Representative double-
plotted actograms of wheel-running activity from 18-month-old Ctrl and
iKOmice under DD. Similar results were obtained in n= 6 to 7mice per group.

(D) Counts of wheel revolutions from 18-month-old Ctrls and iKOs under DD
(n = 6 to 7; Student’s t test). (E) Representative radiotelemetry results of loco-
motor activity, systolic BP (SBP), and HR in Bmal1f/f and Bmal1f/f-EsrCre mice
(red inverted triangles, tamoxifen treatment). Similar results were obtained
in n = 3 mice per group. (F) Hepatic mRNA levels of canonical clock genes
and clock-controlled geneDbpwere determined by qRT-PCR [n= 4 per geno-
typeper timepoint; x axis, circadian time (CT); y axis, relativemRNA levels; *P<
0.05; **P < 0.01; ***P < 0.001, two-way analysis of variance (ANOVA)].
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Figure 4: Circadian rhythms in mice (and other animals) are driven by genetic oscillators.
Mutants lacking the Bmal1 ‘clock gene’ (gene loss triggered at red bars) lose the circadian
rhythm (Yang et al., 2016).

2 Population Oscillations5

2.1 General Considerations

Population dynamics is one of those examples that are always used in introductory classes
on differential equations. How useful is mathematical modeling for population dynamics
beyond that very basic level? Can it capture convincingly more complex dynamics than
exponential growth and saturation?

Quite a few ecological systems exhibit non-trivial dynamics like oscillations:

• lynx-hare

• voles preyed upon by weasels and birds

• competition between bacteria

• ciliate Didinium nasutum preying on ciliate Paramecium 6

5(Turchin, 2003), online version at (after logging in): https://ebookcentral.proquest.com/lib/northwestern/detail.action?docID=1113399
6By Barfooz at the English Wikipedia. - Originally uploaded to the English Wikipedia, where it was made

by Barfooz., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172055
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Autumn 1973 COEXISTENCE IN A PREDATOR-PREY SYSTEM 1325 
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FIG. 5. Increasing oscillations are stabilized and 
extinction is prevented by prey. Transplants of this 
system were made on days 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 11.5, 
13.5, 15.5, 18.5, 19.5, 22.0, 24.0, 26.0, 28.0, 30.0, and 
32.0. The control for this experiment, at upper left, 
shows the increase in Paramecium in the absence of 
Didinium. No transplants of this system were made. 

system persisted for 7 oscillations over more than 32 
days, or approximately 100 generations of P. aurelia. 
The system did not become extinct by itself but 
was terminated. The control for this system, P. 
aurelia grown alone in the experimental medium, 
is the upper line of Fig. 5. 

Fig. 6 compares this control with the control pop-
ulation of Fig. 1a, showing that the maximum den-
sity of P. aurelia in full-strength Cerophyl is ap-
proximately twice that attained by Paramecium in 
half-strength medium. The other two calculations, the 
average peak density of Paramecium in half-strength 
and in full-strength Cerophyl, are the peak densities 
reached by Paramecium in predator-prey systems 
with Didinium present. This value was calculated 
for half-strength medium by averaging the peak den-
sity attained by Paramecium in the last five oscilla-
tions of the experimental system in Fig. 5. For 
predator-prey systems having full-strength medium 
this value was calculated by averaging the peak 
density in each of five such systems (Fig. 1a, b, 3b, c, 
4a). 

The hypothesis is that Paramecium were severely 
affected by a shortage of bacterial food when at their 
peak density in half -strength medium. 

Fig. 6 shows that Paramecium in full-strength 
medium predator-prey systems, reaches an average 
peak density that is approximately 20% of the density 
reached by the control population of prey grown 
alone. In the half-strength medium predator-prey 
system, however, P. aurelia reaches 60%. of the 
density attained by the control population for that 
medium. Therefore, at their peak density in half-
strength medium, P. aurelia are much closer to the 
saturation density attainable· by Paramecium in that 
medium. 

The fission rates of P. aurelia at their average peak 
densities in full-strength and half-strength media were 
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FIG. 6. The growth of control populations, without 
Didinium, and the approximate upper limits they reach 
(dashed line), are shown for full-strength and half-
strength media. The average peak density of prey in 
predator-prey systems (solid lines) are shown for the 
two media. · 

estimated from the growth rates of control popula-
tions in the appropriate interval. These intervals 
were, respectively, day 0.5 to day 1.0 and day 1.0 to 
day 1.5, for the two media. The fission rate of P. 
aurelia is equivalent to 5.0 fissions per day at its 
average peak density in full-strength Cerophyl, but 
only 2.42 fissions per day at the average density in 
half-strength Cerophyl. 

Table 2 shows a statistical comparison of the 
estimated individual volumes of P. aurelia sampled 

TABLE 2. A comparison by t-test (Welch) for individual 
P. aurelia grown in full-strength and half-strength 
media. Reproduction of D. nasutum fed P. aurelia 
grown in the two media is compared by the Mann 
Whitney U-test 

P. aurelia 
Density of popula-

tion when sampled 

Full-strength 
experimental 

medium 

(number/ml) 200 

Average volume (f.L3
) 

of a P. aurelia 1.648 X 10' 

Standard deviation 5.31 X 10• 

df 44.1 

8.43 

Half -strength 
experimental 

medium 

230 

0.722 X 105 

2.82 X 10• 

p < .001 

D. nasutum 
Total offspring 

after 24 hours 

u 
67 38 

1.5 
.008 < p < .016 

Figure 5: a) Didinium nasutum preying on Paramecium LUCKINBILL (1973).

What types of models might be useful in population modeling?

• Agent based modeling:
Since all population dynamics consist of a change in the number and possibly age
and other properties of individual animals one could aim at model each of these
individuals

– interactions like predation or competition for food can be modeled quite explicitly

– agents age with time. This can capture aspects like

∗ delay in reproduction, change in fertility
∗ change in resilience with respect to environmental changes or predators

(pups vs. mature vs. old animals)

– spatial dependence: allows migration of the agents

– when the biological system has relatively small popluations, the discreteness of
the number of agents can be important

∗ an individual cannot ‘die partially’, at the time of its death the population
suddenly changes
∗ the timing of that death is typically not deterministic: the discreteness intro-

duces noise into the system
∗ when the last individuum of a population dies, that population goes extinct.
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– when the biological system consists of a large number of individuals, the com-
putational effort may be too large.

– analytical methods are of limited use

• Population models: describe only the density or total population size

– need the continuum limit in the number of agents by assuming a large number
of individuals

– continuum limit allows the use of differential equations

– spatial aspects can be captured with partial differential equations: migration,
’clumping’

– to capture age structure one would need multiple coupled differential equations,
one for each age group

– interactions like predation have to be treated using some effective interaction
like mass action: assume the probability of an interaction is proportional to the
density. The classic Lotka-Volterra model is a minimal model of that from.

– Temporal evolution

∗ assuming smooth changes in the densities: differential equation
∗ population dynamics can be seasonal: e.g. hatching every spring. Then

discrete maps from one year to the next could be more suitable.
∗ if the available data are only semi-annually (e.g. spring/fall), it may more

appropriate to map spring→ spring or fall→ fall.

General conditions for oscillations

• Autonomous differential equations:

– in 1 dimension the solution either converges to a fixed points or goes to infinity
during an oscillation the time derivative has to have opposite signs when the
solution goes through any specific value ŷ sequentially

11
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Figure 6: Sketch of phase line: impossibility of oscillations. For any

– we need at least 2 dimensions, i.e. 2nd-order differential equation or a system
of 2 1st-order equations

• Maps:
yn+1 = f(yn)

– a fixed point in the map need not correspond to a fixed point in the full system:
it could be periodic with a period that is a fraction of the time between iterates
of the map.

– in 1 dimension the solution need not go to a fixed point: it can jump between
multiple points.
If there are only a finite number of such points, the solution of the underlying
system has a period that is rationally related to the time between iterates of the
map.
The solution can also be chaotic with infinitely many such points.

0 x1 x2 1
Cobweb diagram

⇒
shortcut

x2

Figure 7: Sketch of cobweb diagram for period 2.
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2.2 Time-Series Methods for Oscillations

We will first look at a number of ways to represent dynamical behavior and characterize
oscillations.

200 220 240 260 280 300 320 340 360 380 400

Time

0

0.5

1

1.5

2

2.5

3
Prey

Predator

Figure 8: Temporal evolution of prey and predator in a model (Rosenzweig-MacArthur
model).

April 1991 TURCHIN ET AL.: POPULATION OSCILLATIONS IN SOUTHERN PINE BEETLE 403

Variable df Mean F H2
square

Heating degree-days 1,12 12.749 2.81 NS 0.19
Days above 90"F I, 12 2.744 0.51 NS 0.04
Water deficit, em I, 12 1.699 0.13 NS 0.02

The theoretical PACF of the first-order autore-
gressive process is characterized by a single spike
at lag 1, and is zero everywhere else (Box & Jenkins
1976). The PACF of the time series, however, has
two spikes (at lags 1 and 2) that are significantly
different from zero. Such a pattern is consistent
with the theoretical PACF of the second-order au-
toregressive process (Box & Jenkins 1976). Note
that PACF at lag 2 is negative. The presence in
the model (2) of a negative term containing Nt-2
implies delayed density regulation. The ACF of
the time series (Fig. 2) behaved as a damped sine
wave, which suggests that there is an oscillatory
deterministic component in beetle population dy-
namics (Nisbet & Gurney 1982).
Regression Analysis. The conclusion that D.

frontalis populations in Texas are regulated by a
delayed density-dependent mechanism was rein-
forced by results of the regression analysis. There
was a highly significant regression of r, on N'-2
(F'26 = 31.79, P < 0.001, R2 = 0.550). However,
thi~ analysis did not detect any evidence of direct
(nonlagged) density dependence (F'.26 = 4.06, P >
0.05, R2 = 0.135). While surprising, the absence of
direct density-dependence is not inconsistent with
the occurrence of a significant PACF spike at lag
1 (see above), because the regression analysis was
performed on the realized per-capita rate of pop-
ulation change r, whereas time-series analysis ex-
amined lag correlations between N,'s. If we accept
that r, is a function of N'_2 only, then

Table 1. Regression analysis of per-capita rate of in-
crease, r •• on the climate variables. NS, P > 0.05

Discussion

N, = N'_lexp r, = N,_,exp[ro + (t2N'-2].

In other words, N, is a function of both N'_l and
N'_2' and there should be significant PACF spikes
at both lags 1 and 2.
Influence of Climate. Visual comparison of time-

series plots reveals no consistent patterns in the
association between climate variables and beetle
numbers (Fig. 3). Furthermore, regression analysis
detected no significant effects of variation in cli-
mate on beetle population change (Table 1). Fi-
nally, including climatic variables in the analysis
in a stepwise fashion after accounting for the effect
of N'-2 yielded no significant results.

and

Our results contradict the hypothesis that D.
frontalis population outbreaks in east Texas are

6560
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Years (1957-1987)
Fig. 1. The total number of spot infestations de-

tected in southeasternTexas, 1958-1987.

Results

Time-Series Analysis. Between 1958 and 1987
the D. frontalis population in southeastern Texas
went through four cycles (Fig. 1). The time-series
analysis provided strong evidence of delayed den-
sity-dependent regulation of beetle populations.
(Identical results were obtained with both number
of spots and number of infested trees as alternative
dependent variables, so only results for number of
spots are given.) PACF graph (Fig. 2) is the most
useful diagnostic tool for determining the order of
an autoregressive process (Box & Jenkins 1976).

matic Data Center, Asheville, N.C.). A heating
degree-day is accumulated for each whole de-
gree that the daily mean temperature is below
65°F.

(2) The number of days above 900F during the
months of June through August, also taken from
NOAA monthly summaries. We were unable
to use cooling degree-days because NOAA did
not begin reporting them until 1980.

(3) Cumulative annual water balance deficits.
NOAA data were used to calculate Thorn-
thwaite monthly potential evapotranspiration
for each of the years 1973-1987 (Thornthwaite
& Mather 1957). Deficits of monthly rainfall
to meet PE were then determined for each
month and totaled for each year.

The effect of these variables on the rate of pop-
ulation change, r, was analyzed by linear regres-
sions. Because temperature and, especially, amount
of rainfall vary widely over large geographic areas
such as east Texas, we selected one county for this
analysis, Hardin County. This county was selected
because it is located in the center of the area af-
fected by beetle outbreaks, and because the results
obtained would be directly comparable with those
obtained by Kalkstein (1981), who had also studied
beetle fluctuations in Hardin County. The rainfall
data was collected at Warren weather station, while
temperature data was taken from Town Bluff Dam
data (both stations are located in Tyler County, to
the north of Hardin County).

Downloaded from https://academic.oup.com/ee/article-abstract/20/2/401/2480600
by guest
on 31 March 2018

Figure 9: Time series. a) Oscillations in the larch budmoth (larva/kg of larch branches)
Turchin (2003). b) Oscillatory behavior in the population of the Southern Pine beetle
Turchin et al. (1991).

Notes

• Aspects that often arise in the data for population dynamics:

– not many oscillations are captured: the periods are often on the order of a few
years

– data are quite noisy, since the investigated populations are under the influence
of many environmental factors (other species, weather,...)

– the hares are eaten by predators: often only a single species is measured,
although oscillations typically require more than a single species.

– how reliable and precise are the measurements?
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∗ counting lynx via counting number of furs returned for sale is a relatively
indirect measurement

Fourier Spectrum

For oscillations given by y(t) it is very natural to characterize them using their Fourier
spectrum

ŷ(ω) =

ˆ +∞

−∞
y(t) e−iωtdt.

However, we have data only for a finite time interval, which implies a lowest non-zero
frequency of 2π

tmax
,

ŷn =

ˆ tmax

0

y(t) e−i
2π

tmax
ntdt n integer,

and therefore the Fourier spectrum consists of a discrete set Fourier modes with frequen-
cies given by 2π

tmax
n.

The Fourier decomposition effectively assumes that the data y(t) have a period of tmax,
i.e. the Fourier decomposition of y(t) is the same as that of a function that is a periodic
continuation of y(t) with period tax.

However:

• the experimental data will in general not have a period that is an integer fraction of
the duration of the experiment⇒ the periodic continuation that the Fourier decompo-
sition automatically assumes generates in general a function that is not continuous
from t = tmax to t = 0.

Consider a simple example y(t) = cosωt

ŷn =

ˆ tmax

0

cosωt e−i
2π

tmax
ntdt

For ω = 2π
tmax

m one has the orthogonality of the Fourier modes ei
2π
T
nt and ei

2π
T
mt when

n 6= m yielding only a single non-zero Fourier component,

ŷn =

{
1
2
tmax for n = m
0 for n 6= m

For general frequencies ω this is not the case, even though y(t) is a simple trig function:
its periodic continuation beyond the interval [0, tmax] is not continuous.

For simplicity consider ω = 2π
tmax

(
m+ 1

2

)
ŷn =

1

2

ˆ tmax

0

ei(
2π

tmax
m+ π

tmax
− 2π
tmax

n)tdt+
1

2

ˆ tmax

0

ei(−
2π

tmax
m− π

tmax
− 2π
tmax

n)tdt

= . . .

=
4in

−4n2 + (1 + 2m)2

tmax
π

Notes:
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• all Fourier modes are now non-zero, even though the true signal only has a single
Fourier mode.

• the magnitude of the Fourier modes decays like 1
n

for large n, which represents a
relatively slow decay (compared to an exponential decay, say).

0 5 10 15 20
n

2

4

6

8

10

12

Figure 10: Fourier spectrum of y(t) = cos
(

2π
tmax

(
m+ 1

2

)
t
)

showing the broadening of the
spectral peak due to the mismatch between the period of the oscillation and the duration
of the time series.
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Figure 11: Prey evolution and Fourier spectrum of its mean-subtracted time series. a) no
noise, tmax = 194.6. b) no noise. tmax = 208.6. c) σζ = 0.1, tmax = 188.6, d) σζ = 0.1,
tmax = 202.6. Mismatch and noise both lead to a broadening of the spectral peaks, making
it difficult to assess whether a peak is ‘real’ or only due to the finite duration of the time
series.

Notes:

• In real data one could omit data at the end points, but when the data are not very
clean it is not clear how many to drop.

• It is typically useful to compute the spectrum after subtracting the mean to avoid a
large peak at ω = 0.
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Autocorrelation Function

A quantitative measure for the duration over which oscillations are coherent or persist is
the autocorrelation function

Cyy(τ) =

´∞
−∞ y(t′) y(t′ − τ) dt′´∞

−∞ y(t′)2 dt′
≡ 〈y(t)y(t− τ)〉.

The autocorrelation function can also be obtained from the Fourier spectrum
ˆ ∞
−∞

y(t′) y(t′ − τ) dτ =

ˆ
dt′
ˆ
dω′
ˆ
dω′ y(ω) y(ω′) eiωt

′+iω′(t′−τ)

=︸︷︷︸
orthogonality

2π

ˆ
dω y(ω) y(−ω)︸ ︷︷ ︸

y∗(ω)

eiωτ

2π

ˆ
dω |y(ω)|2 eiωτ

The orthogonality used is ˆ +∞

−∞
eiωtdt = 2πδ(ω)

where δ(ω) is the Dirac δ-function defined via

δ(x) = 0 for x 6= 0

ˆ +ε

−ε
δ(x) dx = 1.

Thus, the autocorrelation function is essentially given by the Fourier transform of the power
spectrum (Wiener-Khinchin theorem).

For discrete, finite data set

Ĉyy(m) =
1

N − |m|

N−m−1∑
n=0

yn+myn |m| ≤ N − 1 (1)

Cyy(m) =
Ĉyy(m)

Ĉyy(0)
.

Note:

• The normalization in the discrete version takes into account that with increasing
values of m the number of terms in the sum decreases.

• In Matlab the discrete version (1) is obtained with xcorr with option ‘unbiased’

• For a strictly periodic function with period T the autocorrelation function is also peri-
odic with that period.

• For irregular/noisy oscillations the envelope of Cyy(t) decays with time. The amount
by which it decays in one period is a quantitative measure of the irregularity of the
oscillations.
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• When calculating the autocorrelation using the Fourier transform on the finite inter-
val, the duration of the interval can significantly affect the results. When using the
direct sum, changing the finite length has less of an impact.
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Figure 12: Autocorrelation function without and with noise from simulation data. a) For
different durations via (1) and via FFT for tmax = 194.6 and tmax = 204.6. c) Autocorrelation
with noise σζ = 0.05 with tmax = 250 and tmax = 5000.

More generally, it is also useful to introduce the cross-correlation function between two
different variables

Cxy(τ) =

´
x(t′) y(t′ − τ) dt′√´
x(t′)2 dt′

√´
y(t′)2 dt′

.
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Figure 13: The cross-correlation between predator and prey shows how the predator dy-
namics is lagging that of the prey. σζ = 0.05.

Phase Plane Analysis

In dynamical systems it is often very useful to visualize the dynamics geometrically. For
simple oscillations in 2 variables this can be done in the phase plane.
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Figure 14: Prey-predator phase plane.

Goal of a phase plane/space representation

• Representation in which the evolution of the system is represented as a flow.

– This requires, in particular, that for any point in that phase space the future
evolution is unique. Thus, at each point a vector is defined that shows the time
derivative of that point, i.e. the dynamics is to define a vector field.

– Trajectories cannot intersect in phase space. Trajectories can come together
only at fixed points: the vector field vanishes at those points and the dynamics
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do not go through the fixed point.

However

• In population dynamics often only data on one species are available, i.e. only a
single variable is measured.

As a motivation, consider instead of n first-order equations a single nth-order equation.
Then any initial condition (y(ti), ẏ(ti), ÿ(ti), . . . ,

dny
dtn

∣∣
ti

) defines a unique solution. Instead of
using n variables one could imagine using y and its first n − 1 derivatives as the coordi-
nates for the phase space. From any point in this space a unique solution would arise.
Starting from experimental data, we have only y(tj) at discrete time points, but no deriva-
tives. If the time points were sufficiently close one could obtain the derivatives approxima-
tively using finite differences. To obtain the point in phase space that corresponds to the
solution at time t0 this would involve not only y(ti) but also y at time points around ti. This
suggests using directly y(ti) and y at a number of earlier times, y(ti−k), k = 1 . . . n− 1.

Takens Embedding Theorem

• Floris Takens: a d-dimensional attractor of a dynamical system can always be em-
bedded in Euclidean space using at most k = 2d+ 1 time-delay coordinates.
For a periodic orbit therefore k ≤ 3.

Therefore we can in general represent the dynamics of the system by using sufficiently
many delay coordinates.

How should the delay be picked?

• To approximate derivatives one would need to pick a short delay, the shorter the
better the approximation.
However, then y(t) and y(t − τ) are very close: the points fall very close to the
diagonal, amounting to poor visualization of the attractor.

• For long delays y(t) will have ‘forgotten’ the value of y(t − τ) and y(t) will depend
very little on y(t− τ)

We want:
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• Compared to y(t) the earlier value y(t − τ) should provide additional information
about the current state
⇒ y(t) and y(t− τ) should not be correlated or anti-correlated
Pick the smallest value of τ for which

Cyy(τ) = 0.

• If the oscillations are about a large value, Cyy may not vanish for any delay:

– Need to subtract the mean before computing the correlation, i.e. compute the
covariance.
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Figure 15: Time delay embedding of model data for different values of the delay. a)
Autocorrelation function. b) τ = 0.1. c) τ = 5. d) τ = 13, e) τ = 5, logarithmic scale,
f) τ = 13, logarithmic scale; note that in this 2-dimensional embedding the trajectory
intersects itself!
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Figure 16: The self-intersections of the trajectory in the 2d embedding are removed in
3d (cf. Takens embedding theorem). (cf. movieFigures/attractor_video_etaexp0.8_
delta0.15_psi2_delay13.mp4)
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Notes:

• In general, even if Cyy(τ) = 0 higher-order correlations like Cyyy(τ1, τ2) can be non-
zero. To implement the notion that y(t − τ) should provide as much additional infor-
mation about the current state as possible it would therefore be better to minimize
the mutual information between y(t) and y(t − τ) Fraser and Swinney (1986). The
measurement of mutual information requires, however, a large amount of data, which
are usually not available for population dynamics.

• If the data are strongly affected by seasonal effects, it is good to consider the strobo-
scopic map and take the delay a multiple of a year. But this is only reasonable if the
generation time of the population is at least a year. Otherwise one needs to include
the seasonal effects in the model.

2.2.1 Black-Box Models

One important goal of modeling is to predict the future state of the system. Can we directly
predict the state based on the time series without prior knowledge of the workings of the
system and without building a mechanistic model, i.e. purely ‘data-driven’?

If we have data only at multiples of τ we would want to determine F such that

y(t) = F (y(t− τ), y(t− 2τ), . . .) .

If the attractor reconstruction works well in 2 dimensions, we would expect that plotting
y(t) vs y(t− τ) and y(t− 2τ) should give a reasonable response surface.
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Figure 17: Response surface in terms of the delayed coordinates S1 ≡ S(t − 2τ), S2 ≡
S(t− τ), S3 = S(t) for the signal S(t).

How to quantify the response surface?
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A simple approach is to approximate the surface with low-order polynomials

F (y1, y2) =

q∑
n=0

n∑
m=0

am,n−my
m
1 y

n−m
2

with y1 = y(t− τ) and y2 = y(t− 2τ). Using the data y(ti) we get then

y(ti) =

q∑
n=0

n∑
m=0

am,n−my(ti−1)my(ti−2)n−m i = 1 . . . N

Notes:

• Notation: q is the maximal order of the polynomial

• This is a linear system in the unknown coefficients amn.

• For N large enough these equations can be solved by linear regression

Example

q = 1
y(ti) = a00 + a10y(ti−1) + a01y(ti−2)

Write this as 
1 y(t2) y(t1)
1 y(t3) y(t2)
. . . . . . . . .

1 y(tN−1) y(tN−2)


 a00

a10

a01

 =


y(t3)
y(t4)
. . .

y(tN)


i.e.

Mx = b.

To get a least-squares approximation we minimize the residual R,

R = ‖Mx− b‖2 =
∑
i

(∑
j

Mijxj − bi

)2

,

i.e.

0 =
1

2

∂R

∂xl
=

∑
i

(∑
j

Mijxj − bi

)
∂

∂xl

(∑
k

Mikxk − bi

)

=
∑
i

(∑
j

Mijxj − bi

)∑
k

Mikδlk

=
∑
i

(∑
j

Mijxj − bi

)
Mil

=
∑
ij

(
Mt
)
li
Mijxj −

∑
i

(
Mt
)
li
bi.
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Here δlk is the Kronecker δ

δlk =

{
1 for l = k
0 for l 6= k

.

Thus, the equation for x becomes

MtMx = Mtb.

Note:

• Instead of a polynomial approximation one can also do non-parametric fits, e.g. ker-
nel regression

F (y1, y2) =

∑
j e
− 1
σ2

((y1−y(tj−1))2+(y2−y(tj−2))2)y(tj)∑
j e
− 1
σ2

((y1−y(tj−1))2+(y2−y(tj−2))2)

The only parameter is σ, which characterizes the smoothing done by this fit.
With many data points the evaluation of the sum can become slow.

In this procedure we made two fundamental choices:

• embedding dimension: so far we chose p = 2 assuming that the attractor is well
embedded that way.

• order q of the polynomial approximation of the response surface

How do we choose p and q? How well should we approximate the data points?

Issues

• If p is too small the attractor cannot be captured adequately.

• If p is too large, the number of coefficients in the approximation of the response
surface becomes too large.

• Large q also leads to too many unknowns.

Moreover, in general there are two issues:

• High-order polynmials oscillate between data points→ predictions are bad for inter-
mediate times
in a map this may not be so much of an issue, since the intermediate times are never
included. E.g. mapping populations from 1 spring to the next do not need to be able
to predict summer populations.

• The data are noisy and we are assuming that the deterministic aspect of the system
is smooth

– the response surface should also be smooth and should not follow the data in
all its noisy aspects
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– do not use polynomials of high order q to capture the noisy details

– Do not fit the noise.

How do we know whether our approximation is already fitting the noise rather than the
underlying dynamics?

If we ran the system another time with different noise but identical parameters otherwise,
we would get a different solution. Our approximate model should capture that solution with
similar quality as the solution on which it was based:

• the model should generalize beyond the specific data that were used in building the
model.

Cross-Validation of the Black-Box Model

How do we assess the quality of the prediction based on the response surface?

We can measure the error in the prediction of the data that were used for obtaining the
model. But this does not address the possibility that the model is fitting the noise rather
than the underlying system. We need to use new data to test the model.

When given experimental data, we may not have the option to ask for another set of data
with the same parameters, i.e. another trial.

Instead, to test the ability of the model generalize, do not use all the available data for
building the model and use the left-out data to validate it.

Omitting data in building the model will, in principle, deteriorate the model:

• If we have a lot of data, we can simply omit half of them and will still have enough to
get a good model, while using the other half for validation.

• If we have only few data, we do not want to omit that many data points. Instead we
can omit a single data point and test the model on that data point. Performing only
one such test is not very conclusive. Instead:

– repeatedly omit one data point, obtain the corresponding model and measure
its prediction error for this one data point.

– each omitted data point leads to a different model, i.e. a different approximation
for the response surface

∗ if these models differ substantially from each other, the models cannot really
be trusted.
∗ if these models are similar it is good to take the ‘average’ model, i.e. aver-

age the coefficients across the different models.
∗ Averaging over the different models may improve the model.

Since the averaged model is using effectively all data points in its training
data, one cannot assess its predictive power based on these data. One
would have to use a new set of data for that.
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Even if overfitting the data is not an issue, one may be interested in obtaining a model that
matches the data ‘optimally’ in a sense that compares the number of unknown parameters
that need to be fitted and the quality of the resulting fit.

Often one is interested in a ‘parsimonious’ model, i.e. a model that captures the essential
aspects of the system with only few assumptions, i.e. few unknowns:

• if adding further terms leads only to a marginal improvement in the fit the additional
terms presumably are not essential

A quantitative measure for the balance between fit quality and complexity of the model is
the Akaike information criterion

AIC = 2k − lnLmax

where k is the number of parameters of the model and Lmax is the likelihood of the pa-
rameters of the best fit given the data. Broadly speaking, in a least-squares approach the
likelihood of the parameters decreases with increasing residual.
Thus, to justify an increase in the number of parameters k the residual has to decrease
sufficiently to decrease AIC.

The overall procedure is then:

• measure average prediction error across a set of test data for increasing values of
p and q and compare it with a default prediction: if the system had no significant
deterministic dynamics and all variability was just coming from noise a reasonable
prediction would be simply the temporal average ȳ = 1

N

∑N
j=1 yj of the signal. There-

fore measure

R2 = 1−
∑N

j=1 (yfit(tj)− yj)2∑N
j=1 (ȳ − yj)2

,

where yfit(tj) is the prediction obtained from the fit (model) to the data that had
omitted y(tj).

Note:

• Here we consider situations where we only have a single time series, i.e. we have
no direct way of measuring the variability of y at a given time. Therefore we cannot
compare the quality of the prediction at a given time point with the variance in the
data at that time point.

Thus,

• if R2 is close to 1 the prediction is good.

• if R2 is close to 0 the prediction is no better than just taking the overall average of
the data

• if R2 is negative the prediction is utmost bad.
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Investigate the black-box approach using a non-trivial model for a prey N and a predator
P (see Sec.2.4.1),

dN

dt
= N (1−N)− 1

1 + ηN
N P (2)

dP

dt
= −δP + ψ

N

1 + ηN
P (3)

In these simulations we can generate a lot of data. For the cross-validation we therefore
simply take half of the data y2i, i = 1 . . . N/2, to fit the model and the other half of the data,
y2i+1, i = 1 . . . N/2, to test the generalization of the model.
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Figure 18: η = e0.35, initial conditions (0.3, 0.8), δ = 0.25, ψ = 2, tmax = 300. a) Noiseless
trajectoy. b) Autocorrelation function.
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Figure 19: Embedding via delay coordinates and a response surface. a) τ = 0.2 b) τ = 4
c) τ = 8, d) τ = 12, e) τ = 15, f) τ = 17.
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Figure 20: Response surface and predictions 1, 5, and 9 steps ahead for τ = 4, η = e0.35.
a) linear approximation to the response surface, b) quadratic, c) cubic. Initial conditions
(0.3, 0.8), δ = 0.25, ψ = 2. The resulting error R2 is listed as the title. Note: the period of
the oscillations is about 15, i.e. a 9-step prediction with τ = 4 predicts 2 periods. Note that
the estimate of the prediction error is not precise enough to warrant 5 digits; there should
be at most 2 digits.

30



Modeling Biological Oscillations H. Riecke, Northwestern University

200 210 220 230 240 250

Time

0.1

0.2

0.3
S

ig
n

a
l 
&

 P
re

d
ic

ti
o

n

R
2
 = 0.99924  0.99814  0.99638

1 steps

5 steps

9 steps

 Signal

200 210 220 230 240 250

Time

0.1

0.2

0.3

S
ig

n
a

l 
&

 P
re

d
ic

ti
o

n

R
2
 = 0.99746  0.99405  0.99321

1 steps

5 steps

9 steps

 Signal

200 210 220 230 240 250

Time

0.1

0.2

0.3

S
ig

n
a

l 
&

 P
re

d
ic

ti
o

n

R
2
 = 0.99994  0.99549  0.98184

1 steps

5 steps

9 steps

 Signal

200 210 220 230 240 250

Time

0.1

0.2

0.3

S
ig

n
a

l 
&

 P
re

d
ic

ti
o

n

R
2
 = 0.99968  0.9964  0.98351

1 steps

5 steps

9 steps

 Signal

Figure 21: Prediction for different delays with cubic response surface. No noise. τ = 4,
τ = 12, τ = 15, τ = 17. The predictions are slightly worse for τ = 15 than for τ = 12 and
τ = 17, reflecting possibly the worse reconstruction of the attractor for τ = 15.

Increasing η increases the impact of the denominator, the nonlinearity of the differential
equation bercomes ‘less polynomial’. The approximations for the response surface are
not as good for larger η and the predictions become quite bad. In fact, for yet larger
η the predictions often diverge. Possibly, higher-order polynomials would still improve
the approximation. Given the nonlinearity in the differential equations a more general
nonlinearity might be better or using a kernel regression.
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Figure 22: Cubic response surface and prediction. Initial condition (0.3, 0.8), δ = 0.25,
ψ = 2, τ = 4. a) η = e0.5 b) η = e0.6, c) η = e0.67. Note the anharmonicity of the oscillation
for η = e0.67.

The real system is most likely noisy

dN

dt
= N (1−N)− 1

1 + ηN
N P +NζN (4)

dP

dt
= −δP + ψ

N

1 + ηN
P + PζP (5)
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with ζα being a Gaussian random variable satisfying

〈ζα(t)〉 = 0 〈ζα(t)ζβ(t′)〉 = σ2
ζδ(t− t′)δαβ withα, β ∈ {N,P} .

Note:

• The noise in (4,5) is multiplicative to avoid that the populations become negative.
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Figure 23: Noisy system σξ = 0.02. Initial condition (0.3, 0.8), δ = 0.25, ψ = 2, τ = 4.
η = e0.35, tmax = 1000.

The noise leads to strongly varying oscillation amplitudes and correspondingly a decaying
autocorrelation function.

Of course, the prediction cannot take the noise into account that is different in each future
step. This will impact particularly multi-step predictions. To assess the quality of the pre-
diction one would also have to average the results over noise realizations. The response
surface will also depend on the noise, since only a finite number of data point are available.
To alleviate this, a longer time series is used in Fig.24 (tmax = 2000).

To assess the impact of the embedding delay on the prediction one needs to compare
predictions for similar prediction times, i.e. the 1-step for τ = 12 should be compared with
the 3-step prediction for τ = 4. Based on the individual examples in the figure, it seems
that the 1-step predictions for larger τ are worse than the 3-step prediction for τ = 4.
However, no significant difference is apparent between the predictions for τ = 12, τ = 15,
and τ = 17, despite the worse embedding for τ = 15 (cf. Fig.19).
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Figure 24: Noisy system σξ = 0.02. Initial condition (0.3, 0.8), δ = 0.25, ψ = 2. η = e0.35,
tmax = 2000. top: τ = 4, bottom: τ = 12.
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Figure 25: Noisy system σξ = 0.02. Initial condition (0.3, 0.8), δ = 0.25, ψ = 2, τ = 4.
η = e0.35, tmax = 2000. top: τ = 15, bottom: τ = 17.

These simulations suggest that the (slightly) worse embedding for τ = 15, compared to
τ = 12, does not play a big role here (to assess in detail we would have to measure the
error over many noise realizations and take the average).
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Consider also the presence of measurement noise. Assume δ-correlated Gaussian noise

N(t)→ N(t) + ξ(t) 〈ξ(t)〉 = 0 〈ξ(t)ξ(t′)〉 = σ2
ξδ(t− t′)
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Figure 26: a) Prey with measurement noise (but no system noise). Embedding and re-
sponse surface for data with measurement noise. b) τ = 4 c) τ = 8, d) τ = 12, e) τ = 15,
f) τ = 17.

With this noise the limit cycle is still much better defined for τ = 4, 12, 17 than it is with

35



Modeling Biological Oscillations H. Riecke, Northwestern University

system noise (4,5), where the attractor was quite ‘washed out’ (Figs.24,25). However, for
τ = 8 and τ = 15 no ‘hole’ is visible, which may lead to ‘confusion’ in the predictions.
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Figure 27: Prediction and error for data with measurement noise. Right column shows all
n steps of the prediction starting from a fixed time point. a) τ = 4 b) τ = 8, c) τ = 12, d)
τ = 15, e) τ = 17. σξ = 0.005.

Notes

• The predictions based on the poorly embedded attractor are substantially worse than
for delays for which the autocorrelation function is close to 0.

• In the n-step prediction figures (right column in Fig.27) the individual oscillations are
not resolved; their period is around 15.

Usefulness of the Black-Box Model Approach
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• Predictions are possible without any detailed knowledge of the system at hand.

• Quantification of the type of dynamics observed by identification of optimal q

– q = 0:

∗ deterministic component in the mapping not significant
∗ noisy fixed point
∗ noisy periodic orbit with a period that is equal to the sampling time
∗ to discriminate between these two possibilities: are data available with finer

sampling time?

– q = 1:

∗ fixed point
∗ oscillations with a period that is commensurate with the sampling time (e.g.

oscillations in lock-step with seasonal changes)
∗ certain type of chaotic dynamics, cf. the logistic map

– q = 2:

∗ fixed point
∗ oscillations
∗ chaotic dynamics

• Knowing q provides some guidance for developing mechanistic models

– how many dynamical variables are needed? how many species are interacting?

• Interpolation between different parameter values if data are available for multiple
sets of parameters.

– possibly one could identify transition points between different types of dynamics,
e.g. fixed point to oscillations.

Drawbacks of the Black_Box Model Approach

• In themselves the models do not provide mechanistic, intuitive insight into the sys-
tem.

Notes:

• The same approach can be used to develop mechanistic models:

– if data are available for multiple components participating in the dynamics

– if functional forms for the evolution equations are suggested by the mechanistic
framework
(cf. Mangan’s research on chemical reactions)

– if the terms in the differential equations are to be recovered data are needed
with fine time resolution.
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2.3 Mechanistic Models: Introduce ’The Biology’

To really understand what is going on in the system we would like to have mechanistic
models, i.e. we would like to udnerstand the mechanisms that are at work in the system:

• the dynamical variables include all the relevant ‘players’ of the system, e.g. food
(grass), prey, predators

• the equations describe

– the actions of the players, e.g. birth, death, movement

– the interaction between the players, e.g. grazing, hunting

2.3.1 ‘Fundamental Laws’Turchin (2003)

Are there ‘fundamental laws’ that constrain or guide the formulation of the evolution equa-
tions?

Note:

• Such ‘fundamental laws’ are idealizations; real systems do not satisfy them exactly.
But the idealization makes it easier to think about the system and identify relevant
mechanisms that lead to deviations from the ‘laws’.

• Turchin Turchin (2003) compares the situation with Newton’s law of motion: in re-
alistic systems the acceleration does not vanish in the absence of ‘external forces’:
there is always friction. The idealization identifies friction as an additional force. This
is useful because friction is not universally the same, but depends on the system, i.e.
it needs to be modeled as well as the other ‘external’ forces. If friction was included
in the ‘fundamental law’ one would have to have different fundamental laws for the
motion of different wheels, bearings, tires,.....

FL 1: The size of a population changes by birth, death, emigration, or immigration.

Notes:

• This applies also to food, e.g. plants growing from seeds that can be dispersed by
wind.

• We will ignore in the following the spatial aspects, i.e. we will assume that in the
spatial domain in question the species are ‘well-mixed’.

FL 2: Changes in the size of a population result from what happens with individuals.

Therefore the increase or decrease in a population is proportional to the size of the popu-
lation

dN

dt
= r N ⇔ d lnN

dt
= r.

Here r is the rate at which an individual propagates in the current conditions.
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For constant conditions one therefore gets exponential growth or decay

N(t) = N(0)ert.

How can this be consistent with all the observed non-exponential behavior, like saturation,
never mind oscillations?

The current conditions can and do change with the size of the population and, of course,
with the overall availability of food and with the presence of other species.

Thus, the key modeling aspect pertains to describing deviations from the idealized case,
i.e. to finding how the growth rates ri of various species i depend on the conditions, which
include the current sizes of other populations (food, predators, prey),

ri = ri (Nj(t), . . .) .

Note:

• In fact, the growth rate can also depend on previous population sizes, i.e. there can
be a delayed impact, due to breeding, gestation, or maturation.
Thus, ri can depend on populations after a delay

ri(t) = ri (Nj(t− τ)) ,

leading to delay-differential equations,
or ri can be a functional that depends on the whole functions Nj(t

′), −∞ < t′ ≤ t,

ri = ri {Nj(t)} ,

leading to integral equations.
We will mostly ignore such history effects, although they are very interesting. E.g. a
delay can very easily lead to oscillations within a single species.

FL 3: Populations do not blow up: populations should exhibit self-limitation.

As a minimal condition one would require that the growth rate should decrease for large
population sizes,

dr(N)

dN
< 0 for N →∞.

A stronger condition one could require, would be

r(N) < 0 for N →∞.

Note:

• The first condition does not guarantee that the population does not blow up. Con-
sider, e.g.,

r(N) = N−α with α > 0.

Then
1

N

dN

dt
= N−α
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t+ c =

ˆ
dN

N1−α =
1

α
Nα(t)

N(t) = (α (t+ c))
1
α

For α > 0 the population grows, but more slowly than exponential.

In view of our aim to study oscillations we will focus on populations that interact ‘trophi-
cally’, i.e. one population represents food for the other, we have consumers and resources.

FL 4: In the limit of low densities of the resource (prey) the functional response of the
predator is linear in the prey density.

Notes:

• The functional response of the predator is defined as the rate at which 1 predator
kills prey.

• This expresses something similar to the law of mass action in chemical reactions:
the probability that a given predator will find and kill a prey is proportional to the
density of the prey.

dN

dt
= . . .−N P k(N,P )︸ ︷︷ ︸

trophic term

. . . k(N,P )→ const. for N → 0, P → 0.

• Deviations (k(N,P ) 6= const.) that need to be modeled then are, e.g.,

– Strength in Numbers: for higher prey densities the prey may be able to defend
themselves in a density-dependent fashion and the predator may not be able to
catch all of the prey (cf. in schools of fish only a fraction of the fish get caught,
i.e. k would decrease with increasing N ).

– for higher predator densities the predators may cooperate or compete.

FL 5: The amount of energy extracted from a resource is limited by the amount of the
resource captured.

Notes:

• The law makes sense in terms of the biomass available.

• The fraction of energy used may not be constant. It could decrease with the density
of the resource, e.g. a predator eats less of the prey (only the good parts) if there is
a lot of prey to be had (‘surplus killing’).

• We need the numerical response of the predator, which is defined as the rate of
change of the predator population.

• Often the reproduction rate of the predator is assumed to be proportional to the
energy extracted from the prey,

dP

dt
= . . .+ g(N)N P k(N,P ) . . .
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• But:

– The fraction of the energy needed for reproduction could represent only a small
fraction of the total energy needed (heat generation, locomotion, predation).
The reproduction rate would then not directly reflect the energy extracted (could
involve, e.g., a threshold).

– The reproduction rate could also be limited by other factors than food (maximal
size of litter, gestation time).

FL 6: There is a maximal consumption rate.

Notes:

• Even with prey in abundance a predator can catch and digest only so much.

• Assuming food consumption and reproduction rates are directly related, this leads to
a maximal reproduction rate.

2.3.2 The Lotka-Volterra Model7

Start with a minimal model for the trophic interaction of a predator with a prey.

The prey/resource gets its food from an abundant source and is consumed by the predator

dN

dt
= rN − k NP

Dimensions:

• [r] = 1
s
, [N ] = prey, [P ] = predator, [k] = 1

s
1

predator

• r combines the reproduction and death rates in the absence of a predator.
r > 0 to have the prey population grow in the absence of a predator

The predator can only reproduce if it catches prey

dP

dt
= −dP + χkNP

Dimensions:

• [d] = 1
s
, [χ] = [ 1

t k N
] = 1

s
s predator 1

prey
= predator

prey

• χ gives the conversion from the rate at which prey is being killed to the rate at which
predators propagate: how much does each prey contribute to the propagation of
each predator.

7Lotka points out that a large part of Volterra’s results had already appeared earlier in Lotka’s book Lotka
(1920); Volterra (1926); Lotka (1927, 1925)
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To reduce the number of relevant parameters make the equations dimensionless:

1

r

dN

dt
= N − k

r
NP

Introduce
t̂ = rt P̂ =

k

r
P with [t̂] = 1 [P̂ ] = 1

to get
dN

dt̂
= N −NP̂

and

r
r

k

dP̂

dt̂
= −dr

k
P̂ + χk

r

k
NP̂

dP̂

dt̂
= −d

r
P̂ + χ

k

r
NP̂ with [χ

k

r
] =

predator

prey

s

s× predator
=

1

prey

Introduce
δ =

d

r
N̂ = χ

k

r
N with ]δ] = 1 [N̂ ] = 1

We are then left with

dN̂

dt̂
= N̂ − N̂P̂

dP̂

dt̂
= −δP̂ + N̂P̂

Thus, we used a rescaling of the 3 variables of the equations to get rid of 3 parameters.

Notes:

• Only a single parameter determines the behavior of this system.

• Since we only allow positive populations and the dimensionless time is to increase
with time, this reduction is only valid for a specific combination of the signs of the 4
coefficients.

• r, k, and χ cannot be 0, in fact, they need to be positive (since t should advance with
time and populations are positive).

For simplicity drop theˆ from the variables

dN

dt
= N −NP (6)

dP

dt
= −δP +NP (7)

Note:
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• It is somewhat dangerous to ’drop the hat’, because in subsequent results one has to
remember that one is working with the rescaled variables and one has to remember
which equations are using which variables.

How well do these equations match the ‘fundamental laws’ ?

• FL 1: yes

• FL 2: yes. r.h.s. of each each equation can be divided by the respective population

• FL 3: no. r.h.s are both linear in the respective populations, no decrease in the
growth rate with increasing population

• FL 4: yes. it is linear in N for all N

• FL 5: yes. that is the factor χ.

• FL 6: no. the reproduction rate of the predator becomes arbitrarily large when the
prey population becomes large.

Thus, from a biological perspective the model needs to be modified or extended. See
below.

What dynamics does this model exhibit?

As for any nonlinear system, look first for simple solutions and then try to find suitable
approximations to gain additional insight.

Steady States:

i) trivial state
N0 = 0 = P0

ii) For N0 6= 0 it follows that
P0 = 1

For P0 6= 0 it follows that
N0 = δ for δ ≥ 0

Thus, the only non-trivial fixed point is (N = δ, P = 1).

Consider the linear stability of the fixed points with ε� 1,

N(t) = N0 + εn(t)

P (t) = P0 + εp(t)

i) (N0 = 0, P0 = 0)

dn

dt
= n n = n0e

t

dp

dt
= −δp p = p0e

−δt
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Thus, the trivial fixed point is a saddle point and linearly unstable with the unstable mani-
fold given by the n-direction and the stable manifold by the p-direction.

ii) (N0 = δ, P0 = 1) (
dn
dt
dp
dt

)
=

(
1− P0 −N0

P0 −δ +N0

)(
n
p

)
=

(
0 −δ
1 0

)
︸ ︷︷ ︸

M

(
n
p

)

Eigenvalues of M
(−λ)2 + δ = 0 λ1,2 = i

√
δ

The non-trivial fixed point is a center, since the eigenvalues are purely imaginary.

• (n, p) oscillates

• Within this approximation of the linear stability analysis the amplitude of the oscil-
lations does not grow or shrink. What are the trajectories if nonlinear terms in the
distance from the fixed point are included? With the nonlinearities included the cen-
ter could turn into

– a stable spiral→ no persistent oscillations

– an unstable spiral→ possibly persistent oscillations if the growth saturates

One can easily see that even with the nonlinearities included there is a continuum of limit
cycles in this simple model by expressing N in terms of P . Starting from (6,7)

dP

dN
=
P (−δ +N)

N (1− P )

Thus, the curve P = P (N) has vertical tangents at P = 1 and horizontal slopes at N = δ.

−δ +N

N
dN =

1− P
P

dP

−δ lnN +N = lnP − P + C

with C arbitrary. Expand around the fixed point

N = δ + x P = 1 + y

we get
−δ ln (δ + x)︸ ︷︷ ︸

ln[δ(1+x
δ )]

+δ + x = ln (1 + y)− 1− y + C

Expand in x and y and using

ln (1 + ε) = ε− 1

2
ε2 +

1

3
ε3 + . . .
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−δ ln δ − δx
δ

+ δ
1

2

x2

δ2
+O

(
x3
)

+ δ + x = y − 1

2
y2 +O

(
y3
)
− 1− y + C

1

2

1

δ
x2 +

1

2
y2 = C − 1 + δ ln δ − δ

Thus

• near the fixed point the trajectories are close to an ellipse

• C is arbitrary:
there is a continuum of ellipses (or slightly deformed ellipses) of increasing size with
increasing C

90 ELEMENTS OF PHYSICAL BIOLOGY

The course of events represented by these curves is evidently
a cyclic or periodic process, corresponding to a circulation around

the closed curves. The period of oscillation, near the origin,
8

is

given by

T = 27r/Vr1d2 (36)

FIG. 13. COURSE OF PARASITIC INVASION op INSECT SPECIES, ACCOEDINQ TO

LOTKA; ELEMENTARY TREATMENT

This finding accords well with the observation made by L. 0. Howard :

With all very Injurious lepidopterous larvae .... we constantly see

a great fluctuation in numbers, the parasite rapidly increasing immediately
after the increase of the host species, overtaking it numerically, and. reducing
it to the bottom of another ascending period of development.

8 The purely periodic solutions have been discussed by the author in Proe.

Natl. Acad. Sci., 1920, vol. 7, p. 410. The writer, however, at that time over-

looked the existence also of the other types of solution, and also stated that

the period of oscillation is independent of initial conditions. This is an error

which he takes the present opportunity to correct. The expression given
by him loc. cit. for the period of oscillation holds only in the neighborhood of

x = y = 0. See also note 10 below.

Figure 28: The limit cycles can have arbitrary amplitude Lotka (1925)

Note:

• Generically, fixed points are centers only for specific parameter values, i.e. at a Hopf
bifurcation.

• In the Lotka-Volterra model the fixed point is a center for all values of δ(which is the
only parameter in the system). This is not to be expected of a system, it is non-
generic. It turns out, these equations are structurally unstable, i.e. even infinitesi-
mally small additional terms in the equation can change the qualitative behavior of
the system:

– the center can turn into a stable or an unstable spiral, which would eliminate or
stabilize the oscillations.
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– in numerical simulations the oscillation amplitude can change steadily if the time
step is not small enough.

• Thus, we need to extend the Lotka based on

– biology: it does not have self-limitation and limited reproduction rate
– mathematics: the equations are not structurally stable
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Figure 29: The continuum of oscillatory solutions allows noise to make the solution drift
among solutions with different amplitudes, i.e. noise has a very strong effect.

Simple extension of Lotka-Volterra model

Include self-limitation of the prey via simple logistic term,
dN

dt
= N − γN2 −NP

dP

dt
= −δP +NP

In the absence of a predator, the carrying capacity for the prey, i.e. the size of the prey
population that this environment can sustain, is

Nc =
1

γ
.

Now the fixed points are given by

i) trivial fixed point (0, 0). Its instability is unchanged by the addition of a nonlinear term

ii) the nontrivial fixed point becomes (δ, 1− γδ)
Linearization (

dn
dt
dp
dt

)
=

(
1− P0 − 2γN0 −N0

P0 −δ +N0

)(
n
p

)
=

(
1− (1− γδ)− 2γδ −δ

1− γδ 0

)(
n
p

)
=

(
−γδ −δ

1− γδ 0

)
︸ ︷︷ ︸

M

(
n
p

)
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Now the eigenvalues are

λ1,2 =
1

2

(
trace(M )±

√
trace(M)2 − 4 det(M)

)
with

trace(M ) = −γδ < 0 det(M ) = δ (1− γδ)
For oscillatory behavior we need

trace(M )2 − 4 det(M) < 0 γ2δ2 − 4δ (1− γδ) = γ2δ2 + 4γδ2 − 4δ < 0

The eigenvalues become real when the equality holds

γ1,2 =
−4δ2 ±

√
16δ4 + 16δ3

2δ2
= −2± 2

√
1 +

1

δ

Since γ2 < 0 we get for

γ < γ1 ≡ 2

(√
1 +

1

δ
− 1

)
the eigenvalues are complex and the fixed point is some kind of spiral. For γ > γ1 the fixed
point becomes a node⇒ no oscillatory behavior (not even decaying oscillations)

In the oscillatory regime the fixed point is linearly stable for

trace(M ) ≡ −γδ < 0

This is the case for any finite carrying capacity the fixed point becomes stable. The ap-
proach to the fixed point becomes very slow, however, when the carrying capacity is large.

Notes:

• Sufficiently small carrying capacity⇒ all oscillatory behavior disappears

• Any, even arbitrarily large, finite carrying capacity⇒ stabilizes the fixed point

– this reflects the structural instability of the Lotka-Volterra equations

• Structurally unstable equations are poorly suited to make reliable predictions, unless

– one knows that the real system cannot introduce perturbations to the model in
the ‘structurallly unstable direction’ or

– such perturbations are known to be small enough to not have a significant im-
pact on the time scales that are relevant for the problem.
E.g. if the carrying is so large that the decay of the oscillations occurs only over
a time scale of many periods, the model may still be useful to understand real
systems. However, to observe such oscillations they would have to be driven
by some mechanism, which could be noise, or they would have to be the result
of some special initial condition.

To get a system that spontaneously generates oscillations, i.e. not only decaying oscilla-
tions, we need to extend the Lotka-Volterra model in a different way.

How to improve the modeling of the functional and the numerical response? Simply allow
higher-order polynomials as we did in the black-box model?
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2.3.3 Modeling Functional Response. Generalist and Specialist Predators

Improve the modeling of the predation process, i.e. the functional response.

In population dynamics one tends to distinguish between specialist predators and gener-
alists. Generalist predators prey on more than one species: if one prey species is rare they
can focus on another one in their diet ⇒ the population size of such a predator species
may not vary as much with the density of a single prey species as a specialist predator
who preys only on one species.

How to model the difference in the functional response? What do the data show?
HOLLING : FUNCTIONAL RESPONSE OF PREDATORS TO PREY DENSITY
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Fig. 3.1. Functional response of individual mantids, Hierodula c-rdrrd Giglio-Tos, to
densitf of atlult female houseflies. Each point represents the avcrage of three rePlicates and
the vertical lines demonstrate the ranges.

exhaustively analyzed experimenrall\-. Onlv one ncw comPon_ent seems.impor-
ranr. and a'considerable body of infbrmation erists to suggest.the rvay.thit,.o-,-
ponenr operares. Hence. applying the. less rigorous approach is a valid though
-preliminaiy step in the analysis of vertebrate Predadon.

3. Characteristics of Attack by fnvertebrates
one of the simplesr \vays to espress rhe effecrs of prgy densiry is. to presunre

that the number of prev atracl<ed 
-in a given tinre is a linear functiotr of Prey

densltv. I nat ls.

Ns:aTrNo " "'(3'1)
number of prey attacked,
rate of successful search,
time the predator is exposed to Prey:
Prey densrty.

This assumption has been u'idely adopted, first by l":\". (1923) and Volterra
(1911), ,nd'I"t", bv Nicholson 1il::1.' f,4ore recehtl-v_Tinbergen (1960) utilized
th* poitnl*te in hi's studies of vertebrate Predation, catling it fhe "probabjlitv of
enco-unter hypothesis". He fully realized, hou'ever. that it was a gfos.s simpltfica-
tion and as a'result used it onlv as a base to colnPare real data' Alrhough the
hypothesis intuitively seems ro be so simple- es to be greatly misleading, until v"ery
ric'entlv no adequatL information u'as aiailable to s6o.r' horv closely it described
real events. Nolv, however. data are available to describe adequately the charac-
teristics of the functional responses to prey densitv of several species of inver-
tebrate predators.

Oni example is shown in Fig" 3.1" These data rvere obtairred by exposing
inclividual aduli female mantids (Flieroduta crassa Giglio-Tos) to female housefly

where

and

Ne:
a:'T.-IT 

-No:
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Figure 30: Praying mantis. Functional response of mantids to house flies. Plotted is the
number of flies eaten within 8 hours by a mantis in a cage 119×58cm after having been
deprived of food for 36 hours. Each captured fly was replaced. At each fly density 3
experiments were performed Holling (1965).

8

Consider the number of prey attacked by a predator. A minimal model would be Holling
(1965, 1966)

Na = a TT N

with NA =number of prey attacked by a predator, a =rate of successful search, TT =time
predator is exposed to prey, N =prey density.

Consider units

[Na] = prey [TT ] = time [N ] =
prey

area
⇒ [a] =

area

time

Thus, a includes the range at which the predator strikes.

This minimal model leads to the Lotka-Volterra functional response term.

Possible refinements/extensions
8Photo of praying mantis by Shiva shankar - Taken at karkala, Karnataka as a praying mantis, CC BY-SA

2.0, https://commons.wikimedia.org/w/index.php?curid=244227
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• the predator cannot spend all the time hunting, even if prey is available:

– handling prey

– digesting prey

• the rate of successful search depends on

– the predator’s range

– the predator’s ‘motivation’=hunger: satiated, a predator may search/strike less

Assume predator needs a time TH to handle each prey ([TH ] = time
prey

), i.e. each prey
handled takes away time from the hunting,

Na = a (TT − THNa) N

i.e.
Na =

a TTN

1 + aTHN.
(8)

Using this functional response one gets then (written in dimensioned quantities again)

dN

dt
= rN − a TTN

1 + aTHN
P (9)

dP

dt
= −dP + χ

aTTN

1 + aTHN
P (10)

Note:

• This model has a functional response that is hyperbolic in Na.

• It has a maximal reproduction rate.

• Only one type of resource/prey is available to the predator in this model: specialist
predator.

In the spirit of the derivation (rational motivation) of (8) Holling has measured parameters
in the predator-prey interaction extensively in mantids and included also a way of quan-
tifying satiation/hunger and its impact on predator behavior. The resulting model is quite
complicated, but gives a quite reasonable account of certain aspects of the predating
behavior of mantids, considered as a model animal Holling (1966).
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Figure 31: Measuring satiation/hunger in mantis in terms of the amount of food needed for
satiation as a function of time after previous feeding to satiation. Satiation is modeled as
decaying exponentially, which allows the introduction of a hunger variable that increases
linearly in time. Holling (1966)
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lo=ll.73H-4.33

.5.6.7.89
HUNGER (H )

Fig. 7. Effect of hunger on the maximum distance thar FI. crl/.r-rd sralked or struck at flies(average of l2 replicates).

ic should become apparent when the predictive po\\,'ers of the final model are
tested.

. Since a straight line does satisfactor-ilv describe the relation in Fig. 7 rve may
tv-rlte

r-:GM(H-HT), H>HT (S)
and

r.vhere 
r* : o' H < HT (6)

rn : maximum distance of stalk or strike,
GNI : the slope, a constanr,

and
H I : the attack threshold.

In the pre3enr case GA.,I :11.73 and HT:0.169. i\,Ioreover. since the relation
between H and TF is provided by the hunger equation (equation 3) the maximum
distance of stalk or strike can-be .rpr.rr""d in ierms of'time of food deprivation
by substituting (3) in (5). Thus

r- : GM(HK - HT :- (HKle-aotrr:;, TF >"fFT (7)

(8)
and

r'" : 0,

c

IJ.J

o3a
zI
FiU
IIJ
E,
Lo
F
U)
al
x

o

IF < TFl
where

'fFT : the 1-F *n"r_:_: 
"ti :tican 

be derived frorn cquation (-l):

TFT : Ar,1,, (HK. _,H1.)
The line drawn in Fig. 6 rvas derived from equarions (i) and (g).
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Fie.25. Tl-re effect of hunger illl the number of srrikes that can be elicited from,4'f.
rctiyio\o br a fl1'drngled bchind a glass barrier.

minLrtes at the most. 'I'hey rermcd this "stimulus satiation" after Thorpe (1963)
and the same behavioul has been repo,rted for othel PIedatoIS (e.g. the back-
s\r-immer, Nltonecta gldLrcn) lVolda 1961).

lnhibition of' atiack bV contact with Prey therefore is probably a common
feature of many attack syitems, and the e{Tect could confusi the data Presented
earlier. Its effLct was eiplored in more detail using the Mantis religirtsn indivi-
duals that provided the iara for the hunger cur\z; in Fig. 5A. As described
before, the 11 mantids used in these erperi-.nt, or'"t" satiaied and then deprived
of food for various inten-als of titne, efier u'hich the amount of food recluired to
terurn the animal to a fully satiarcd condition was measured. Imrnediately before
the animals were fed: hori'eler, a d)- \ras dangled behind a glass 'nvindorv r'vithin
striking distance of the mantid. The n-rantid.s struch readily- but could not, of
coursei capture the fly. 'fhe nunrber rif strikes were counted until they refused
to strike frir 30 seconds. This number is termed the number of strikes to cessation
(s") and its relation rvith hungcr level is shol,n in Fig. 25. The form of this rela-
tion is verv similar to that sh<iwn for the efiects of hunger on distance of reaction
(Fig. 7).' The relation is ar least approrinrately linear and very rrrelv is..a
,.riunr. elicited belou, an attack threshold. Orrce the hunger rises above chis
threshold the mantid r,vill strike, and tire hungrier it is the more it will strike.
Ultirnately, horvever, the response -stops, presumably because.each strike inhibits
a small amount and these inhibitions accumulate until the animal becomes com-
plerelv unresponsive.

If t,e assume that each strike inhibits bv a constant amount' then the arnount
of inhibition, I, call be given by

I : I,s, (40)
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Figure 32: With increasing hunger the mantis is willing to strike at flies at a larger distance
and more often (when the fly is unreachable behind a glass barrier) Holling (1966)
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HOLLING: RESPONSE OF IN\/ERTEtsRATE PREDATORS TO PREY DENSITY 5S
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hunger was measured, however, betu'een 2300 and 2345 hours after the full 16-hour
feeding period. It r,vas shown earlier in Fig. 3 that consumption drops suddenlr.
at this point as part of a diurnal rhythrrr of feeding that is independent of hunger.
Therefore it is perfecrly reasonatrle that the level of hunger measured at this time
r'r'ould be lower than expecte<i. If the lorverecl consumption triggered by the
diurnal rhythm is caused by a u'stop-eating" hunger" threshold being raised a.

constant amount, independent of hunger, then the plot of observed against pre-
dicted should yiekl a straight line parallel to the 45" line (slope -- 1.0) in Fig. 30,
but displaced to the right. This is exactly whar occurs and the slope of the
regression line, 1.07, is not significantlv different from 1.00 (t:0.618, P:0..5
to 0.6). If the slope is then fixed at 1.00, the line of best fit runs 0.222 hunser
units below the expected prediction. Thar is, irrespective of the hunger leiel.
after the normal feeding period the mantids can tre satiated rvith 0.222 g. less focid
than is required during the normal feeding period. This strongly suggests that
thc diurnal changes in rate of feeding are caused by changes in a "stop-eating"
threshold. During the normal feeding period the mantids stop eating iorce-fEd
flies when H - Ofand during the non-'feeding period stop wheir H ---0.222.

The foregoing comparisons betrveen a simulated and a real system shovr that
the model haslool predicrive po\vers. It rccuratelv predicted. bbrh qualitarivelr
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Figure 33: Based on measurements like those in Figs.31,32 (and measurements of other
quantities like mantid’s prey awareness, striking success, and eating speed and their de-
pendence on hunger) Holling comes up with a model that provides quite reasonable pre-
dictions for the number of flies attacked at a given time after the mantid has been fed to
satiation (points are measurements, the surface is generated by the model Holling (1966).
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How does the functional response change when multiple food sources are available?
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Fig. a.1. Weight of dog biscuits eaten in an experiment vs. the number of sarvflies eaten
in the same experiment by a deer mouse, P. leucopus.

I have shown elsewhere (Holling 1959a) that the magnitude of these responses
can be markedly changed by the strength of the stimulus from the prev. When
the strength of stimulus detected from cocoons is decreased, for exampl6, both the
rate.of rise of rhe response curve and-the plateau are lowered. In stich cases the
maximum consumption never rises so high that sawflies cornprise most of the diet,
and the predator therefore seems to maintain a mixed diet. It was shown in the
same paper that changes in the palatabilitv of alternate food could produce a
similar effect. These data are replotted in Fig. 4.3 for direct comparison with the
preceding figure. The experiments were similar to those alieady described
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Figure 34: a) Functional response of deer mouse on sawfly prepupae. Sawfly cocoons
are buried in the cage in a grid pattern and in addition dog biscuits are freely available. b)
Dog biscuits vs prepupae of sawflies eaten Holling (1965).
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except that both male and female sawflies rvere provided. The low palatabilitv
alternate food was dog biscuits and the high palatability food was sunflower seeds,
(When both are provided together deer mice show a marked preference for the
sunflower seeds.) ^ Again botTr response curves are S-sl-raped. 'When the palata-
bility of the alternate food was increased, however, the rate of rise of the response
decreased markedly. Moreover, the plateau was lowered so that the proportion
of sawflies in the diet never exceeded 61"1. This proportion did not increase r,vith
further increase in the density of sarvfiies, so thaC the predators, under some
condirions, seem to maintain a mixcd diet.

T'hese three features-an S-shaped functional response to prey density, the
maintenance of a mixed diet under some conditions, and the effects of the palata-
bility of alternate foods-are not restricted to small mammals. Tinbergen's i tSOO I
remarkable study of predation by insectivorous birds shows that these same attri-
butes are shared by the great tit in nature. Since Tinbe-rgen's study deservedly
had a marked influence 5n European studies of bird predition (de Ruiter 195ti;
Cibb 1959. 1962; and IIook er il.- 1960) the similarities'rnd dissimilarities benveen
bird predation as sho'nvn by Tinbergen and small mammal predation as described
in this paper and elsewhere (Holling 1959a) merit discussion"

The major difficulty in comparing the two studies arises frorn the different
measurement used to express predation. In the field study involving small
mammals, each prey rvas encased in a cocoon so that when a sau'flv \\ras eaten,
a sign-the opened cocoon-remained as an indication of the aiteck. Since
measurements of small mammal density as well as sawfly densitv were obtained,
predation rhercfore could be erpressed as a number attacked plr unit time. per
predator at various prev densities. Tinbergen u.'as faced with a more difficult
task, hou'evet, since no sign rvas left r.vhen a bird rernoved an insect larva. As a
result, his data rvere oblained b1' observing, identifying, and counting pre,v
brought by parent birds to their nestlings. 

* 
Since it'rvJs scarcely possint-e tb

observe the birds for long uninterrupted periods, he expressed the amount of
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Figure 35: Palatibility of alternate food modifies fraction of prey (prepupae of sawflies)
eaten by deer mouse. Low palatability food = dog biscuits, higher palatability food = sun-
flower seeds. Higher palatibility of alternate food→ saw fly consumption saturates at lower
value: mixed diet. Holling (1965)

Experiments suggest a sigmoidal functional response if an alternate abundant, but less
palatable food source is available. Holling gives a detailed model for this scenario including
effect of hunger and learning of the palatability Holling (1965).

One can motivate a sigmoidal-like form by assuming that the rate of successful searches
increases with N , e.g. the predator weighs the additional effort required to get the better
food compared to the easily available less palatable food,

a(N) =
bN

1 + gN
.
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This successful search rate saturates for large N . Inserting into Na yields

Na =
TTN

1
a(N)

+ THN
=

bTTN
2

1 + gN + bTHN2

The parameter g does not have a strong influence on the overall shape of Na: often it is
simply set to 0 and one gets for the sigmoidal functional response mode for a generalist
predator

Na =
bTTN

2

1 + bTHN2

Notes:

• It is difficult to show that this is indeed the cause of the sigmoidal functional response.

• This model of the generalist predator does not model the alternate food source ex-
plicitly. Therefore within this framework the reproduction rate of this predator cannot
really be modeled, since the amount of alternate food consumed is not known. This
approach is reasonable if the amount of alternate food that is available is abundant
and therefore the population of this predator is essentially constant, in particular, it
does not vary with N .

2.4 Generalized Lotka-Volterra Models

2.4.1 Rosenzweig-MacArthur Model

Include the hyperbolic functional response function together with the finite carrying capac-
ity Nc in the Lotka-Volterra equations ROSENZWEIG and MACARTHUR (1963); Harrison
(1995)

dN

dt
= rN

(
1− N

Nc

)
− a TTN

1 + aTHN
P (11)

dP

dt
= −dP + χ

aTTN

1 + aTHN
P (12)

Note:

• This is the model used for the discussion of the black-box approach.

• This model was first discussed in the context of graphical analysis of linear stabil-
ity by Rosenzweig and MacArthur ROSENZWEIG and MACARTHUR (1963) and
was later the starting point for Harrison’s detailed analysis of Luckinbill’s data on Di-
dinium nasutum preying on Paramecium LUCKINBILL (1973) and his sequence of
improved models Harrison (1995). Harrison’s paper is worth looking at; it proceeds
quite systematically in testing what changes of the model improve the agreement
with the data. He finds the best agreement with a model that includes an additional
differential equation for the energy acquired by eating (cf. satiation).

53



Modeling Biological Oscillations H. Riecke, Northwestern University

Introduce dimensionless quantities

t̂ = rt N̂ =
N

Nc

dN̂

dt̂
= N̂

(
1− N̂

)
− a TT

r

N̂

1 + aTHNc N̂
P

using

P̂ =
aTT
r
P

we get
dN̂

dt̂
= N̂

(
1− N̂

)
− 1

1 + aTHNc N̂
N̂ P̂

and

r
dP̂

dt̂
= −dP̂ + χ

aTTNcN̂

1 + aTHNcN̂
P̂

dP̂

dt̂
= −d

r
P̂ +

χaTTNc

r

N̂

1 + aTHNcN̂
P̂

Introduce
δ =

d

r
η = aTHNc ψ =

χaTTNc

r

to get

dN̂

dt̂
= N̂

(
1− N̂

)
− 1

1 + ηN̂
N̂ P̂

dP̂

dt̂
= −δP̂ + ψ

N̂

1 + ηN̂
P̂

Again, dangerously omitting theˆ, we get

dN

dt
= N (1−N)− 1

1 + ηN
N P (13)

dP

dt
= −δP + ψ

N

1 + ηN
P (14)

Notes:

• Here the prey density was made dimensionless in terms of its carrying capacity,
whereas in the original Lotka-Volterra we used the conversion rate χ. Therefore the
equations contain now a dimensionless conversion rate ψ.

Obtain the nontrivial fixed point:

For P0 6= 0 we get

−δ (1 + ηN0) + ψN0 = 0 N0 =
δ

ψ − δη
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and
P0 = (1−N0) (1 + ηN0) = 1− (1− η)N0 − ηN2

0

What happens at ψ − δη = 0? There N0 →∞. Why that?

In the limit of large N0 this solution becomes biologically meaningless, since P0 becomes
negative.

In fact, N0 cannot exceed 1, i.e. the prey cannot exceed its carrying capacity. To reach
N0 = 1 the predator has to be extinct.

N0 increases with increasing δη, i.e. when

• the death rate of the predator (relative to that of the prey) increases

• when the predator’s hunting becomes ineffective, i.e. η large, because the handling
time Th is large

An increase in the search rate a, which also enters η does not increase N0 since a also
enters ψ; in fact, it decreases N0.

Linear Stability of the fixed point (N0, P0):

Writing the equations as

dN

dt
= F (N,P )

dP

dt
= G(N,P )

we get

∂F

∂N
= 1− 2N0 −

(
1

1 + ηN0

− N0

(1 + ηN0)2η

)
P0 = 1− 2N0 −

1

(1 + ηN0)2P0

∂F

∂P
= − 1

1 + ηN0

N0

∂G

∂N
= ψ

1

(1 + ηN0)2P0

∂G

∂P
= −δ + ψ

N0

1 + ηN0

Usually, we would at this point insert the expressions for N0 and P0 into this Jacobian and
evaluate the eigenvalues. This looks like it is becoming very unwieldy. Instead, use N0

and P0 as independent parameters and solve the fixed-point equations for δ and η, since
they show up only linearly in the equations,

1 + ηN0 =
P0

1−N0

δ =
ψN0

1 + ηN0

= ψ
N0 (1−N0)

P0

We get then

∂F

∂N
= 1− 2N0 −

(1−N0)2

P 2
0

P0 =
1

P0

(
P0 (1− 2N0)− (1−N0)2)
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∂F

∂P
= − (1−N0)

N0

P0

∂G

∂N
= ψ (1−N0)2 1

P0

∂G

∂P
= 0

Thus, we get for the trace and determinant of the Jacobian M

trace(M ) =
∂F

∂N
+
∂G

∂P
=

1

P0

(
P0 (1− 2N0)− (1−N0)2)

det(M) = −∂F
∂P

∂G

∂N
= ψ (1−N0)3 N0

P 2
0

Since N0 < 1 we have det(M) > 0, which implies that for trace(M ) = 0 we would get a
Hopf bifurcation

trace(M ) = 0 ⇒ P
(Hopf)
0 =

(1−N0)2

1− 2N0

For a given fixed N0 the fixed point becomes unstable to oscillations when the trace be-
comes positive,

P0 > P
(Hopf)
0

Taking N0 as a free parameter, we can insert P (Hopf)
0 into δ and η we obtain a parametriza-

tion of the Hopf bifurcation in the (δ, η)-plane

η(Hopf) =

(
(1−N0)2

1− 2N0

1

1−N0

− 1

)
1

N0

=
1

N0

(
1−N0 − 1 + 2N0

1− 2N0

)
=

1

1− 2N0

δ(Hopf) = ψ
N0

1 + N0

1−2N0

= ψ
N0 (1− 2N0)

1−N0

On which side of the Hopf-bifurcation line is the fixed point unstable? We need to increas-
ing P0 beyond P

(Hopf)
0 at fixed N0. This implies that both η and δ need to be changed:

η = η(P0) and δ = δ(P0). We have

dη

dP0

=
1

N0 (1−N0)
> 0

dδ

dP0

= −ψ 1

P 2
0

N0 (1−N0) < 0

Since the growth rate increases with increasing P0 at fixed N0 the fixed point becomes
unstable as the Hopf bifurcation line is crossed from ‘south-east’ to ‘north-west’.
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Figure 36: a) Phase diagram for the Rosenzweig-MacArthur model. b) Predator-prey
dynamics for , δ = 0.1, δ = 0.3, δ = 0.35 with η = e0.8, ψ = 2.

Notes:

• As predicted by the linear stability analysis, oscillations arise at the stability limit as
δ is decreased.

• Close to the onset of the oscillations they are harmonic. In this regime they can be
described in a weakly nonlinear analysis(

N
P

)
=

(
N0

P0

)
+ ε

(
n1

p1

)
Aeiωt + c.c.+O(ε2) ε� 1,

where
(
n1

p1

)
is the complex eigenvector associated with the eigenvalue λ = iω and

A is a complex amplitude. The weakly nonlinear analysis yields a nonlinear (cubic)
differential equation for A.

• Further above they become very anharmonic.

• The Rosenzweig-MacArthur model is consistent with our general rules and gener-
ates oscillations in a structurally stable way.

57



Modeling Biological Oscillations H. Riecke, Northwestern University

2.4.2 Brief Discussion of Other Models

Yodzis Model. The Rosenzweig-MacArthur model with its hyperbolic functional response
assumes a specialist predator. How about introducing a generalist predator as in Yodzi
(1989) (as cited in Turchin (2003)),

dN

dt
= N (1−N)− N2

1 + ηN2
P

dP

dt
= −δP + ψ

N2

1 + ηN2
P

It models that for low prey densities the predator reduces its effort to search for that prey
and kills fewer of them.

But: Its reproduction rate is based purely on the intake from this prey and becomes very
small for low N . If the predator really has no other food source, this reduction in effort
would amount to the predator ‘giving up on eating’, which is not very realistic.

Possible changes

• include another food source

– if that food source is abundant, the predator density may become relatively
independent of N and its dynamics would not have to be modeled

– if the alternate food source is scarce, it could be included in the model.

• predator goes into hibernation: reduce δ for low predation rate

Leslie Model. Motivated by the logistic population growth model one could argue that
the influence of the prey density on the predator population is via the predator’s carrying
capacity, making the carrying capacity proportional to the prey density. That would lead in
the simplest form to LESLIE (1948)

dN

dt
= N (1−N)−N P

dP

dt
= σP

(
1− κP

N

)
What could be a mechanistic motivation for the logistic term in the predator equation?

Assume that there is competition between individual predators and that each dominating
predator can defend an area Aterritory that is large enough to sustain it, AterritoryN = κ.
Then the density of predators, i.e. the carrying capacity, is 1/Aterritory = N/κ.

But: If the predator density is small compared to the prey density the reproduction rate of
the predator would be independent of the functional response, i.e. independent of the food
intake of the predator, even if the amount of prey is very small. Where does the biomass
come from to provide the growth when there is almost no food? The amount of biomass
generated per P by reproduction is constant, while that available is proportional to N .
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A constant reproduction rate of the predator would be obtained in a systematic way, if the
numerical response was in the saturating regime of the hyperbolic function

N

1 + ηN
P → 1 · P for N � η

In that case the functional response should, however, also be independent of N . A sys-
tematic version would then be

dN

dt
= N (1−N)− P

dP

dt
= σP

(
1− κP

N

)
This model would be valid as long as N is sufficiently large.

59



Modeling Biological Oscillations H. Riecke, Northwestern University1942 Can. J. Zool. Vol. 75, 1997 

Fig. 1. Biomass in deer-equivalents plotted against wolf densities, using data from Fuller (1989, Appendix B) (A) and Messier (1994, 
Table 2) (B). The lines show ratio estimates of the relationship between prey biomass and wolf density. 

No. of wolves/I 000 km2 

No. of wolves/I 000 km2 

Table 1. Rates of consumption of moose by 
wolves in winter, calculated from data in the 
literature. 

No. killedlday 
by each wolf Reference 

0.020 Fuller and Keith 1980 (Table 6) 
0.023 Keith 1983 (Table 10) 
0.021 Peterson et al. 1984 (Table 5) 
0.022 Ballard et al. 1987 (Table 14) 
0.022 Messier 1991 (Table 1) 
0.019 Messier 1994 (Table 2) 
0.021 (avg.) 

These several sets of data thus support the use of eqs. 1 
and 2 as a model for predator-prey interactions. The evi- 
dence (Fig. l )  for ratio dependence argues that wolf numbers 
tend to be proportional to the available prey, and data assem- 

bled by Keith (1983) reinforce this evidence, inasmuch as he 
found significant correlations between rates of increase of 
wolf populations and prey density and showed similar results 
for proportions of pups in wolf populations. Packard and 
Mech (1980) reported that the adjustment of wolf numbers 
to prey abundance very likely results from social factors 
associated with the densities of wolves and prey. 

It thus seems evident that wolf numbers tend to adjust to 
prey abundance, but also influence prey numbers. If so, it 
would seem that wolves can be said to have a regulatory 
effect on their prey. This will, however, depend on the cur- 
rent impact of wolf predation on the prey population. If only 
small fractions of the prey population are removed by wolves, 
the regulatory effect may be weak until wolf numbers increase 
towards their asymptotic value. The definition of regulation 
used by Packard and Mech (1980) seems to be supported by 
the data given here, and useful in general: "The term 'regu- 
lation' . . . describes two-way feedback between compo- 
nents of the predatorlprey system. Prey density affects wolf 
numbers, and wolves affect prey populations. " 

O 1997 NRC Canada 
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Notes 1943 

Fig. 2. (A) Rate of predation by wolves on moose (Messier 1991, 1994). (B) Rate of predation by wolves on caribou (Dale et al. 1994). 
Solid lines indicate mean rates; broken lines show the curve fitted for the statistical test. See the text for details. 

No. of moose/km2 

No. of caribou/km2 

The impact of wolves on prey numbers can be considered 
in terms of the equilibrium condition given by eq. 3, which 
indicates the equilibrium position of the prey population ( V )  
relative to its asymptotic value (K) in the absence of preda- 
tion. The most extensive data available are for moose. The 
equilibrium ratio (a), expressed in terms of moose (rather 
than deer-equivalents as in Fig. l ) ,  is about 34 moose per 
wolf (pooling the data of Fuller and Messier). Given a preda- 
tion rate (c), we can obtain an approximate notion of the 
impact of wolves on a moose population. The most exten- 
sive data on moose predation by wolves have been obtained 
under winter conditions and indicate very little variation in 
predation rates (Table 1). 

Summer predation rates on moose are less well estab- 
lished. Fuller and Keith (1980) indicated that adult moose 
provided 74% of the biomass taken in summer. Keith (1983) 
used the same rate year-round, "assuming any tendency for 
the moose kill to drop in summer . . . is offset by the much 
smaller size of moose killed (mainly calves).'' Peterson et al. 

(1984) reported that moose "comprised an estimated 97 % of 
ingested prey biomass" in summer, with adult moose con- 
stituting 79 % and calf moose 18 % of prey biomass consumed 
in summer. Ballard et al. (1987, Table 1 1) calculated a sum- 
mer rate of about 77 % of their winter rate. These reports thus 
indicate that summer rates of moose killing are somewhat 
less than winter rates. If we use a conservative estimate of 
75 % of the winter rate and assume 5 months of summer rates, 
then the annual rate may be about 0.019, or 365(0.019) = 
6.9 moose per year. If the equilibrium ratio is taken as 34 
moose, as suggested above, then the product ca = 6.9134 = 
0.20. Note that c is in terms of the number of moose per wolf 
per year and a is calculated as the number of wolves per 
moose, so that the product is a proportion of the moose popu- 
lation killed per year. This high rate supports the concerns 
expressed by hunters and wildlife managers over wolf numbers, 
particularly if additional predation by bears (Ursus spp.) and 
hunter harvests of moose are also considered. If such a high 
removal rate is correct, it seems clear that wolves can regu- 

O 1997 NRC Canada 
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Figure 37: a) Density of wolves as a function of density of ‘deer-equivalents’. b) Rate of
predation of moose and caribou per wolf is quite independent of the prey density Eberhardt
(1997).
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2.5 Case Study: Vole Dynamics9

“The affair runs always along a similar course. Voles multiply. Destruction reigns. [...] The
experts advise a Cure. The Cure can be almost anything: [...] a Government Commission,
a culture of bacteria, poison, prayers denunciatory or tactful, a new god, a trap, a Pied
Piper. The Cures have only one thing in common: with a little patience they always work.
They have never been known entirely to fail. Likewise they have never been known to
prevent the next outbreak. For the cycle of abundance and scarcity has a rhythm of its
own, and the Cures are applied just when the plague of voles is going to abate through its
own loss of momentum.” (Charles Elston (1942) cited in (Barraquand et al., 2017) )

MODELING VOLE OSCILLATIONS 863

Fig. 6.—The dynamical shift in vole population dynamics in the data. Left graphs, time-
series data from five locations. All data are plotted using identical X and Y scales (only the
first 20 points are shown). Right graphs, autocorrelation functions for each trajectory.

exactly the same way as the actual data to derive estimates of S and Λ. The dis-
tribution of these statistics for each value of G was summarized by its mean and
90% confidence interval (obtained by discarding 5% of the highest and 5% of
the lowest values). Next, we plotted the mean and the confidence interval as a
function of ‘‘latitude’’ (assuming that G increases linearly from 0 at 70° N to
200 at 50° N) together with the data-derived values (fig. 7). An additional test
of the model is provided by a comparison between the predicted shift in S and

This content downloaded from 129.105.215.146 on Sat, 27 Jan 2018 14:26:53 UTC
All use subject to http://about.jstor.org/terms

Figure 38: a) Pooled small rodent abundance at Kilpisjarvi, Finnish Lapland. Open
symbols (spring), closed symbols (fall), dashed/solid lines denote changes during win-
ter/summer (Henttonen and Hanski, 2000). Measured by trapping. b) Dependence of the
oscillations on latitude.

The dynamics of vole populations in Scandinvia show interesting behavior:

• substantial oscillations in areas further north

• almost steady populations in areas further south

One key goal of the modeling is to identify or at least suggest what the key mechanism is
that drive the oscillations and why the oscillations die out as one goes south.

Turchin and Hanski Turchin and Hanski (1997) hypothesized this observation is related to
the different impact of predation by specialists and by generalists for different latitudes.

9(Turchin and Hanski, 1997; Turchin and Ellner, 2000; Turchin, 2003)
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Presumably the abundance of alternative prey depends on snow cover (duration and
depth).

Figure 39: Small rodent abundance at Pallasjarvi for open habitats (lower panel) and
forested habitats (upper panel) showing different degree of oscillation Henttonen and Han-
ski (2000).

Development of the Model

V‘oles reproduce ’continuously’, no discrete generations⇒ ODE model

Experiments in enclosed fields (40m×40m) in which the density of the voles was con-
troled and varied artificially by removing subadult individuals biweekly Turchin and Ostfeld
(1997). They support the assumptions (Fig.40)

• logistic reduction of growth rate with population size

• sort-of sinusoidal variation of growth rate with time of the year (as compared to a
discontinuous variation)
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 this state, as heavy predominance of mature adults

 during the first month, should be eliminated. Thus, the

 first month's data were omitted. Second, a severe

 drought (<40% of long-term monthly mean rainfall)
 occurred in the summer of 1992, depressing both popu-
 lation growth rates and densities of voles in enclosures.

 To avoid a negative estimation bias due to such a rare

 event, the data for 12 weeks starting with week 51 were

 excluded from the analysis. This left 162 data points for
 analysis.

 Estimated r, (for each 4-week period in each enclo-
 sure) were the dependent variable in all analyses. We

 explored the influence of population density by regres-
 sion, and combined effects of density and season were
 investigated with the analysis of covariance. Next, a

 model of seasonally affected population growth was

 fitted to the data using nonlinear methods (see below).
 Possible effects of serial correlation between sequential

 values of rt from the same enclosure were investigated by
 submitting residuals from the fitted model to time-series
 analysis. Autocorrelation coefficient between subsequent

 values of residuals was estimated as 0.146. Because this

 correlation coefficient was small (and not significantly
 different from zero), our statistical analyses treated each

 rt as an independent data point. All the analyses were
 performed using the software package Statistica.

 Results

 A linear regression of r, on N, provided strong evidence
 for density-dependent regulation of vole populations in

 enclosures (Fig. 1). However, although the effect of
 population density was statistically highly significant
 (F= 54.13, P < 0.000001), this factor alone explained

 only one-quarter of variation in r,. The unexplained
 variation is due to demographic stochasticity, observa-
 tion errors, and environmental influences. Demographic
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 Fig. 1. A plot of realized rates of population change vs
 population density, combining all seasons. The straight line
 is fitted by linear regression, r, = 6.20 - O.092N1, (R2 = 0.25,
 P - 0.001).
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 Fig. 2. The relationship between the realized rates of popula-
 tion change and population density during the most favorable
 (August-October) and least favorable (January-March) sea-
 sons. Straight lines are fitted by linear regression (the propor-
 tion of variance explained by linear regression is R2 = 0.47 and
 0.34 for the most favorable and least favorable season, respec-
 tively). The difference between the slopes of the two regres-
 sions is not statistically significant.

 effects are expected to be a prominent source of vari-
 ability, since many values of rs were based on popula-
 tions consisting of only 10-20 individuals (note how
 variance around the regression line appears to decrease

 as N, increases). On the other hand, measurement er-
 rors probably were not a large source of variation, since
 the experimental technique ensured that > 80% of post-
 weaning voles present in enclosures were captured dur-
 ing biweekly trapping censuses, and this high capture
 probability did not change seasonally (R. S. Ostfeld,
 unpubl.).

 One systematic environmental factor affecting popu-
 lation growth is seasonality, as suggested by annual
 increases and decreases in vole populations (see Fig. 1
 in Ostfeld and Canham 1995). This potential influence
 was investigated by the analysis of covariance (AN-
 COVA), with r, as the dependent variable, time (or
 season) as the independent variable, and Nt as the
 covariate. "Season" was a qualitative (class) variable
 that varied from 1 to 13. It corresponded to each
 4-week period, starting in January, and ending in De-
 cember.

 The results of this analysis indicated that both the
 effects of season (F== 10.01, P < 0.001) and population
 density (F= 45.04, P < 0.001) were highly significant.
 Peak increase rates were observed during late summer-
 early fall, and r, was lowest during late winter-early

 spring. Plotting r, vs N. for these two seasons separately
 shows a cleaner relationship between these two vari-
 ables (Fig. 2).

 Our next step was to fit a seasonally modified logistic
 model to the data:

 r, = rmax[l + c sin 21n(t + o)] - gNt. (3)
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 The independent variables in this model are time t (in

 units of yr) and N, (voles in the enclosure). Estimated
 parameters are rmax, the rate of increase at low popula-
 tion density averaged over all seasons (this parameter

 corresponds to the natural rate of population increase

 in the unmodified logistic equation); c, the amplitude of

 seasonal oscillation in the rate of population increase;

 co, the phase; and g, the strength of density dependence.

 Fitting model (3) to the data by nonlinear least-squares,

 we found that both the seasonal (c) and density-depen-

 dent (g) effects were highly significant (in both cases

 P < 0.001). The least-squares estimates (+standard

 errors) of parameters were as follows:

 rmax = 6.0(? 0.4) yr1, ? = 0.53(? 0.08),

 o= 0.08(? 0.02) yr, and g = 0.08 (+0.01) yr- vole-l.

 The model explained 48% of variance in rim

 The model (3) assumes that the slope of density

 dependence, g, does not vary with season. To test this

 assumption, we fitted to data the model (3) with an

 additional term [1 + c sin 2n(t + zo)]N, expressing the

 interaction between seasonal and density-dependent ef-

 fects. However, this term increased the proportion of

 explained variance only to 49%, and was not statistically
 significant (P = 0.18), suggesting that the model (3)

 provides an adequate description of the data (this is

 further supported by approximate parallelism of slopes

 in Fig. 2). The consequence of the constant slope g is that

 the "carrying capacity" will oscillate with season, since

 K(t) = rmax[l + c sin 2t(t + o)]/g

 (this can be seen in Fig. 2 by observing how the
 intersect of the fitted line with the abscissa shifts with

 season). K(t) is the population equilibrium density set

 by a combined effect of resource limitation and social

 interactions. In the seasonal logistic model, population

 density eventually converges to K (and fluctuates

 around it, if the system is subject to density-indepen-

 dent perturbations). In the seasonal model (3), by con-

 trast, K(t) changes with time, and the population

 density never converges to it. Instead, population den-
 sity is tracking a "moving target", attempting to catch

 up to K(t) as it is increasing, and overshooting it when

 it starts to decrease. The seasonally averaged K(t) is

 estimated as g/rmax= 75.7 voles per enclosure, or 473
 vole ha-'.

 Another assumption of model (3) is that the effect of

 NA on r, is linear. This assumption was tested by fitting
 a model in which Nt was transformed using the Box-
 Cox transformation (Sokal and Rohlf 1981). The eff ect

 of including an extra parameter on the proportion of

 variance explained by the model was minimal (it in-

 creased from 48% to 52%), suggesting that the linear

 form provides a reasonable approximation.

 Model (3) also assumes that a sine function is an

 appropriate description of the effects of seasonality on

 the intrinsic rate of increase. Smooth trigonometric

 functions are often used in the mathematical literature

 (e.g., Rinaldi et al. 1993). By contrast, Hanski et al.

 (1993, Hanski and Korpimaki 1995) employed a discon-

 tinuous step-function. The adequacy of these two choices

 as functional forms for seasonal effects can be visually

 assessed by subtracting density-dependent effects from

 each data point, and then plotting each resulting estimate

 of the rate of increase at Nt = 0, ro = r, + gNt, against
 time (Fig. 3). A discontinuous change in r? with season

 appears not to be supported (Fig. 3), although the
 amount of variation present in the data precludes any

 strong conclusions. Similarly, although some other

 smooth function may provide a better fit to the data than

 the sine, given the degree of scatter in the data such an

 improvement is likely to be marginal. Since the sine form
 has a virtue of simplicity and is widely used in modeling

 literature, there appears to be little reason to reject it in

 favor of some other more complicated alternative.

 Discussion

 Our major results can be summarized as follows. Two

 factors, density-dependent regulation and seasonal in-
 fluences, together accounted for one-half of variance in
 realized per capita rate of population growth exhibited
 by vole populations. A population model assuming
 simple functional forms, linear for population density
 and sine for seasonality, provided an adequate descrip-

 tion of the data, since more complex functional forms
 yielded minimal improvements in the proportion of

 variance explained. The unexplained variance is proba-

 bly due to the effects of demographic stochasticity and
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 Fig. 3. The relationship between the intrinsic rate of popula-
 tion change and season. Each point corresponds to a trans-
 formed data point r? = r, + gNf, plotted against time. The
 curve is the sine function fitted to the data using nonlinear
 least squares.
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Figure 40: Rate of change of the population depends reasonably linearly on the density
and varies with season Turchin and Ostfeld (1997).

Motivated by the change in oscillation amplitude with geography two types of predators
are included in the model

• generalists (nomadic avian predators), which tend to stabilize steady states

• specialists (weasels), which tend to induce oscillations through the delay in their
population size

dN

dt
= rN

(
1− e sinωt− N

Nc

)
−G N2

H2 +N2
− A NP

D +N

dP

dt
= sP

(
1− e sinωt−QP

N

)
Notes:

• Generalist population is not modeled explicitly, since it is assumed that it is relatively
constant due to the abundance of other food soureces.

• The carrying capacity of the predator is taken to be proportional to N , since weasels
are territorial, which can lead to an N -dependent carrying capacity (cf. discussion of
Leslie model in Sec.2.4.2).

• The linear reproduction rate of the predator is taken to be a constant, even though a
hyperbolic form for the functional response is taken. They argue

– weasels produce litters of relatively constant size independent of prey density
as long as that density is above a threshold Hanski and Korpimaki (1995); in that
regime then reproduction rate would not depend much on food intake. However,
no threshold used in the model discussed here⇒ to be a convincing model N
has to be large enough.

– weasels are small: most food may be needed to generate heat [also for preda-
tion and competition?]
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• seasons assumed to affect both reproduction rates equally and sinusoidally (equality
later eased). This term is meant to capture the lack of weasel births when N is too
small.

Dimensionless equations:

Introduce
n =

N

Nc

p =
Q

Nc

P 2πt̂ = ωt

Because of the seasonal variation it is better to make the time dimensionless in terms of
that modulation than in terms of the growth rate r of the prey

dn

dt
= rn (1− e sin 2πt− n)− g n2

h2 + n2
− a np

d+ n
dp

dt
= sp

(
1− e sin 2πt− p

n

)
with

g =
G

Nc

h =
H

Nc

d =
D

Nc

a =
A

Q

Note:

• Drop again the ˆ on the dimensionless time and the growth rates r > 0 and s > 0

Estimates for the Parameters

These estimates are all quite rough and robustness with respect to changing the param-
eters is an important aspect. The estimates are pulling in as much information as can
be brought to bear on the problem. To make progress it is essential that one has a good
overview of a wide range of experimental facts of the system. This is often a quite chal-
lenging task.

• Intrinsic growth rate of voles r: averaged over seasons from Turchin and Ostfeld
(1997) 6 year−1

• Amplitude of seasonal forcing e: 0.5− 1 Turchin and Ostfeld (1997)
for weasels the reproduction rate should be negative during the winter, suggesting
e > 1 for them.

• Carrying capacity Nc: typically observed peak densities 300 voles/ha ⇒ Nc ≈ 150
voles/ha.

• Growth rate s of weasels: under good conditions 2 litters per year with 5 pups each
per female⇒ per weasel 5 pups/year s = ln 5 = 1.6⇒ take s = 1 . . . 1.5.

• Maximum consumption per predator, A:
Weasels consume food corresponding to 60% of their body weight per day⇒ 1 vole
per day. Pregnant weasels eat three times that much.
Estimate 400 voles per year. In addition, there is some surplus killing. Assume

A ≈ 600voles per year per weasel.

Estimate does not include that weasels may also kill lactating mothers which induces
additional death.
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• Saturation constant D: for weasels to reproduce the vole density has to be above a
threshold of Ncrit = O(10 voles/ha) Erlinge (1974). To barely survive without repro-
duction, a weasel needs to eat about Acrit = 1 vole/day = 365 voles/year (see above:
pregnant weasels need ≈3 voles/day). These two minimal values for marginal re-
production should match (per weasel)

Acrit = A
Ncrit

Ncrit +D
× 1 ⇒ D ≈ 6 voles/ha.

• Predator-prey ratio constant Q. In steady-state one has P = N/Q, i.e. Q = N/P .
Thus, Q gives essentially the number of voles that are needed to reproduce enough
voles to sustain one weasel.
Voles reproduce about every 20-30 days. In 20 days the vole population needs to
produce 20 voles to sustain 1 weasel. At low vole densities each litter produces 5-7
offspring, at intermediate densities about 2. To produce 20 voles one needs then 10
females (each producing 2 voles per 20 days), i.e. 20 voles per weasle⇒ Q ≈ 20.
Weasels are also preyed upon by other predators ⇒ Q should probably be chosen
larger.

• Generalist predation parameters G, H:
Generalist predators are mostly nomadic avian predators (owls,...). Estimates are
based on proportion of voles in the measured predator diet and on the correlation
between number of breeding pairs of the avian predators and the vole density (with
a 2 month lag, which showed the strongest correlation)

MODELING VOLE OSCILLATIONS 853

Fig. 3.—Relationship between the generalist predator pressure and vole density. A, Data
from Korpimäki and Noordahl (1991c); B, data from Erlinge et al. (1983).

per year per hectare of farmland (the primary vole habitat at Korpimäki and
Norrdahl’s study site).
The breeding densities of the three predators, and therefore their predation

rate on vole populations, were most closely correlated with the vole densities in
the spring preceding the breeding season (Korpimäki 1994). Thus, the generalist
predation was actually operating with a short lag, about 2 mo. To estimate the
generalist predation function, we plotted the estimated predation rate against the
spring density of voles in farmland (fig. 3A). The observed pattern supports
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per year per hectare of farmland (the primary vole habitat at Korpimäki and
Norrdahl’s study site).
The breeding densities of the three predators, and therefore their predation

rate on vole populations, were most closely correlated with the vole densities in
the spring preceding the breeding season (Korpimäki 1994). Thus, the generalist
predation was actually operating with a short lag, about 2 mo. To estimate the
generalist predation function, we plotted the estimated predation rate against the
spring density of voles in farmland (fig. 3A). The observed pattern supports
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Figure 41: Predation rate of voles by avian predators (generalists) as a function of vole
density at Alajoki (latitude 63◦) and Revinge (latitude 56◦). The predation rate is measured
via the breeding rate (2 months delayed) and the fraction of voles in the diet Turchin and
Hanski (1997).

Data along these lines are available for two locations, Revinge (latitude 56◦) and
Alajoki (latitude 63◦). They roughly estimate10 the density G of generalist predators
as a function of the latitude L,

G = 700− 10L.

10There is a typo in their equation.
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The assumption is that the effect of the latitude comes from changes in seasonal
snowcover. But vegetation - fields vs woods - will also have its impact on the popu-
lation dynamics.
They cross-check this linear assumption with two other locations, Grimso and Kilpis-
jarvi HANSKI et al. (1991). Kilpisjarvi agrees reasonably, but Grimso is quite far
off. They argue that the change in landscape from agriculture- to forest–dominated
makes a sigificant difference.
They also estimate the switching threshold H from the data in Fig.41 to be H = 13.8
and H = 13.5, respectively.
Note: It can be discussed whether the data (and their quality) allow to determine H
to 3 digits. At Revinge it is not even clear to what extent the data support a sigmoidal
rather than a hyperbolic response.

• In the simulations they let the parameters p fluctuate from year to year

pi = p (1 + σξ) in year i

with ξ Gauss distributed with variance 1.

Dependence of Behavior on Parameters found in Simulations Turchin and Hanski
(1997)

Increasing

• a: ⇒ specialist predator more important

– oscillation amplitude increases

– Lyapunov exponent increases

• d: ⇒ reduces impact of specialist predator

– oscillation amplitude decrease

– Lyapunov exponent decreases (for larger a that trend is not so clear).

• s: ⇒ predator growth faster (but not carrying capacity)

– period of oscillation decreases

• g: ⇒ increases impact of generalist predator

– oscillation become weaker (see Fig.42)
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Figure 42: The Hopf bifurcation is subcritial: there is hysteresis when G is varied sinu-
soidally (top, the hysteresis is exaggered due to temporal ramp in G via a delayed bi-
furcation). G = 37.6 (growing), G = 37.7 (decaying), G = 60.1 (persisting), G = 60.14
(collapsing).
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Figure 43: With increasing seasonal modulation the oscillations become more complex.
G = 35 (fixed point unstable). e = 0.2 (not phase-locked), e = 0.4 (phase-locked), e = 0.68
(complex oscillations only transient), e = 1.0 (complex oscillations, persistent chaos)
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Figure 44: Noise can trigger oscillations repeatedly. G = 50 (fixed point linearly stable,
without modulation bistable with oscillations) e = 0.8. a) ζn = 0 = ζp. b) ζn = 0.05 = ζp.
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Comparison with field data:

• Oscillations have roughly the correct frequency and are increasing with increasing G

• Without noise poor agreement: when increasing G in the model the system goes
to the fixed point already at an lower value than corresponds to the field data. This
suggests that noise repeatedly excites the oscillations in that regime.

• Oscillation amplitude varies strongly near latitude 60◦

most likely because of subcritical Hopf bifurcation.

• Experimental data suggest a positive Lyapunov exponent. Simulations: without
noise chaotic dynamics due to forcing. Lyapunov exponents tend to increase with
decreasing G.

MODELING VOLE OSCILLATIONS 863

Fig. 6.—The dynamical shift in vole population dynamics in the data. Left graphs, time-
series data from five locations. All data are plotted using identical X and Y scales (only the
first 20 points are shown). Right graphs, autocorrelation functions for each trajectory.

exactly the same way as the actual data to derive estimates of S and Λ. The dis-
tribution of these statistics for each value of G was summarized by its mean and
90% confidence interval (obtained by discarding 5% of the highest and 5% of
the lowest values). Next, we plotted the mean and the confidence interval as a
function of ‘‘latitude’’ (assuming that G increases linearly from 0 at 70° N to
200 at 50° N) together with the data-derived values (fig. 7). An additional test
of the model is provided by a comparison between the predicted shift in S and
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Fig. 5.—The dynamical shift in vole population dynamics predicted by the model. Left
graphs, sample trajectories for five values of G and median values of other parameters. Right
graphs, autocorrelation functions for each trajectory.

tion, and they had at least 16 yr of uninterrupted annual censuses. Although
some data sets contain both spring and fall estimates of vole densities, we only
used the latter, since the fall numbers are measured with a greater degree of ac-
curacy (see fig. 1 in Hanski et al. 1994) and better reflect the differences in the
observed dynamical patterns between northern and southern populations (Hent-
tonen et al. 1985). We found 16 data sets that fit our criteria, ranging in latitude
from 51° N to 69° N (table 2). One long data set (Kilpisjärvi) was split into two
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Figure 45: Dependence of oscillations on generalist predator. a) Field data (temporal
evolution of vole population and its autocorrelation function) with latitude decreasing from
top to bottom (same figure as Fig.38). b) Results from the model with the estimated
parameters (and noise added) Turchin and Hanski (1997).
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Fig. 7.—Predicted (solid lines) and observed (points) relationship between latitude and
(A) the amplitude of fluctuations and (B) the trajectory stability. The solid triangles indicate
the estimates for the Grimsö area. Dotted lines indicate 90% confidence intervals.

the S values for Clethrionomys and Microtus populations reported by Hansson
and Henttonen (1985, apps. A and B) (fig. 8).
Not all details in the data patterns were correctly predicted by the model (see

figs. 7 and 8). In particular, there appears to be more scatter than expected
around the predicted S curve (fig. 7A). Additionally, at northern sites the data-
based estimates of Λ are more positive than are the predicted ones, suggesting
that the dynamics of northern populations may be more chaotic than those pre-
dicted by the model. Despite these minor deviations, the degree of match be-
tween the model and the data is striking. What is especially interesting is that
the model predicts a rather abrupt shift from stable, low-amplitude dynamics to
chaotic, high-amplitude dynamics, even though the ‘‘tuning’’ parameter G is
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Figure 46: Dependence of oscillation amplitude and Lyapunov exponent on latitude
Turchin and Hanski (1997).

Note on Lyapunov Exponents

The key element of chaotic systems is the sensitive dependence of the trajectories on the
initial condition. This is quantified via the Lyapunov exponent.

Consider the dynamical system
ẋ = f(x)

and two trajectories that start very close to each other at t = 0

x(t; x0) x(t; x0 + δx0)

At later times the two trajectories are separated by ∆x(t),

∆x(t) = x(t; x0 + δx0)− x(t; x0)

Measure the distance between these trajectories

‖∆x(t)‖ = ‖x(t; x0 + δx0)− x(t; x0)‖

If ∆x(t) is very small one can linearize the differential equation around x(t; x0, t0) at the
time t

d

dt
∆x(t) = f (x(t; x0 + δx0))− f (x(t; x0))

= f (x(t; x0) + ∆x(t))− f (x(t; x0))

≈ J (x(t; x0)) ∆x(t)

where J (x(t; x0)) is the Jacobian of f(x) at time t and position x(t).

Notes:

• If the Jaocbian was constant in time one would expect ∆x to grow or decay expo-
nentially

• In general the Jacobian depends on time through the position x(t) on the attractor
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• Over long times x(t) explores the whole attractor and one could imagine that the
growth of ∆x is determined by something like an ‘average Jacobian’.

Numerically one finds in the limit of long times and small initial distance

‖∆x(t)‖ ∼ ‖∆x(0)‖ eλt

Motivated by this observation one defines

λ ≡ lim
t→∞

lim
‖∆x(0)‖→0

1

t
ln

(
‖∆x(t)‖
‖∆x(0)‖

)
(15)

Note:

• To stay in the linear regime the limit ∆x(0) → 0 is to be taken first before the limit
t→∞.

• In principle, in an n-dimensional system there are n Lyapunov exponents. Each
exponent describes the stretching or compression in different directions transverse
to the trajectory. (15) results in the largest Lyapunov exponent.

Time Horizon:

The exponential growth of the difference between nearby trajectories limits predictions
severely.

Assume we can measure the initial condition with a precision δ0 = ‖∆x(0)‖ . If we need
to make a prediction with an accuracy δmax, i.e. we require ‖∆x(t)‖ < δmax, then we can
predict the system up to a time th

δmax = ‖∆x(th)‖ = ‖∆x(0)‖ eλth

i.e.
th(δ0) =

1

λ
ln

(
δmax
δ0

)
The duration for valid predictions grows only logarithmically with the accuracy δmax, which
is very slow.

Discrete Time Series

How to obtain reasonable estimates for the (maximal) Lyapunov exponent when only a
single noisy time series at discrete times is available?

• We cannot compare multiple trajectories starting with slighly different initial condi-
tions.
Using (15) actually many such trajectories would be needed, because of the limit
∆x(0) → 0. One can follow a given pair of trajectories only as long as they are very
near to each other. Once the distance becomes too large, one has to replace one of
the trajectories by another one that is again close to the other trajectory.
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Having only the time series at discrete time points, we should be considering a map in-
stead of a differential equaion

xn+1 = f(xn)

Consider the evolution of a slightly perturbed xn

xn+1 + ∆xn+1 = f(xn + ∆xn) ≈ f(xn) + J(xn)∆xn

Thus

∆xn+1 = J(xn)∆xn = J(xn)J(xn−1)∆xn−1 = J(xn)J(xn−1)J(xn−2)∆xn−2

Therefore we consider the eigenvalues of the matrix

J(n) =
n∏
j=1

J(xj)

It has eigenvalues µi, i = 1 . . . N if the system is N -dimensional. They represent Lyapunov
multipliers.

The Lyapunov exponents are then given by

λi = lim
n→∞

1

n
ln |µi|

and the Lyapunov exponent of interest is maxi λi.

Note:

• Consider the 1-dimensional case of a constant map

xn+1 = axn = an︸︷︷︸
µ

x1 = en ln ax1

But: we do not have these Jacobian’s for the experimental data.

However:

• If the black-box model gives reasonable predictions, we can use it to obtain J(xi) at
arbitrary points, since we have an analytic form11 for the function F.

• In particular, we can compute J at all the data points of the time series.

• Use the data points xi

– if the black-box model was iterated repeatedly, the error in its approximation
of the orbit would accumulate and the orbit could diverge from the true orbit
substantially - in some cases the iterates actually blow up.

11If a non-parametric fit of the response surface is used that would not be so straightforward
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– this captures some aspect of the noise in the system. E.g. if the noise is needed
to kick the system every so often onto the slowly decaying oscillatory orbit one
would have a chance to characterize that dynamics rather than that of the stable
fixed point that would be reached in the absence of noise (cf. Fig.44).

Note:

• The model would be more convincing, if the agreement with the data was compared
for different models, e.g. replace ratio for carrying capacity of weasels by hyperbolic
numerical response.
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2.6 Diversity via Non-Hierarchical Fitness

The ‘Paradox of the Plankton’ HUTCHINSON (1961): Why are there so many different
species? With many of them quite similar, why does not simply the fittest among them win
out?

• Extreme case: it has been estimated that in 30g of soil there can be 500,000 different
species of bacteria12.

There are many different ecological niches. But why does the ‘best’ species not win in a
given niche?

• The environmental conditions could keep varying, making different predators best at
different times and keeping the system from reaching a ‘optimal’ state.

• Niches are not only determined by the physical environment (temperature, light, hu-
midity,....), but also by the other species around, with different species contributing
to the niche. Niches can be created by other species, which then can change the
niches again.

30

Figure 2. Evolution of one species into three. The width of the uptake and excretion arrows shows the evolutionary changes in the derived
species. The dark circles at the bottom give the approximate proportion of each type in the mixed culture. This figure is derived from the data
of Helling et al. (1987) and Rosenzweig et al. (1994).

ent species can not: each species has an advantage on
certain parts of the resource base and consequently
remains extant for some extended period of time. If
this time is long enough, the species become geneti-
cally distinct enough that one can apply a DNA based
rule to define species.
It is often assumed that speciesmultiply to fill avail-

able niches, so that there can be no more species than
there are available niches. By this assumption, nich-
es are given in the environment and then species fill
them. However, niches are not out there in the environ-
ment waiting to be filled. Originally an environment
is undivided, but as species develop, they divide the
environment into separate niches. Species create nich-
es. Different niches have different amounts of resource
and are differentially stable. If a new niche occupied
by an incipient species is too small or too unstable, the
species will go extinct and the niche will disappear. Its

resources will be incorporated into other niches occu-
pied by other species. This will be clarified by the
discussion of the experiments discussed below.

Three niches from one; three species from one

Helling, Vargas and Adams (1987) did a simple exper-
iment. They grew a single strain of Escherichia coli
in a glucose-limited chemostat for a long time. The
chemostat provides a homogeneous constant environ-
ment with only one nutrient limiting. The cells are
competing only for glucose, and all other nutrients are
in excess. The cultures transferred periodically into
fresh chemostats to make sure that the glass walls of
the chemostat did not provide another niche. Thus they
grew a single strain in a zero dimensional niche, the
least complicated environment anyone could imagine.
A zero dimensional niche can be thought of as a point

Figure 47: New ecological niches can be created by populations evolving. Dykhuizen
(1998)

• There could be no ‘best’ species: non-transitive competition

– Overgrowth of sponges and ectoprocts on coral.

12Bacteria may be special, since they do not go starve to death and have a high rate of speciation
Dykhuizen (1998).
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Figure 48: Ectoprocts (bryozoan, moss animals) consist of colonies of individual zooids,
which are filterfeeders (Kunstformen der Natur (1904), plate 23: Bryozoa (see here, here
and here), Public Domain, https://commons.wikimedia.org/w/index.php?curid=566772. )
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Figure 49: Non-transitive overgrowth patterns of three species of ectoprocts: Rep-
tadeonella→ Steginoporella→ Stylopoma→ Reptadeonlla BUSS and JACKSON (1979).
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Figure 50: a) Interaction matrix of ectoprocts and sponges on coral. In each square
the arrow points to the dominating species in the pair. b) Two cycles of non-transitive
interactions. BUSS and JACKSON (1979)

– Interaction of side-blotched lizards hat exhibit throat-color polymorphism.

© 1996 Nature  Publishing Group

© 1996 Nature  Publishing Group
Figure 51: a) Population has lizards with three different morphs, having orange, blue, and
yellow throats. They differ in behavior: orange are agressive and defend large territories,
blue less so, yellow do not defend territories (look similar to females). b) Indications of
an oscillation in the populations of lizards with orange, blue, and yellow throats (loop in
the OBY-triangle of population sizes, 0-100% from base to the respectively marked apex
Sinervo and Lively (1996)).
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– Bacterial warfare:
interaction between bacteria via toxins: some produce the toxin and are resis-
tant to it, some are only resistant, and others are susceptible

∗ The resistant strain R that does not produce toxin has lower metabolic cost
than a killer bacterium K. R therefore beats K by faster growth.
∗ Susceptible strains S have yet lower metabolic cost since they do not need

to invest metabolic cost in the resistance. S beats R by faster growth.
∗ The killer strain simply kills the susceptible strain (K beats S) rather than

outcompetes it with regard to resource.

These cyclic interactions resemble a rock-paper-scissors game.

We consider here simple models of non-transitive competition. It is, however, not clear
whether this plays a significant role in the abundance of species (e.g. Goyal and Maslov
(2018)13)

2.6.1 ODE Model

As a minimal start consider a general rock-paper-scissors game of agents on a lattice:

• two sites are picked at random

• the individual i on the first site invades the individual j on the second site with a
probability Pij that depends on the species of the respective occupants

R P S
R 0 0 PR
P Pp 0 0
S 0 PS 0

 (16)

Since the sites are picked at random, the probability that a certain species is found is
proportional to the density of that species. One then obtains the mean-field equations

dr

dt
= r (Prs− Ppp) (17)

dp

dt
= p (Ppr − Pss) (18)

ds

dt
= s (Psp− Prr) (19)

Notes:

• For any pair there is always only invasion in one direction, the opposite probability
vanishes.

13The attractiveness of ‘cool dynamics’ may be getting in the way of assessing the actual relevance of
models.
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• In general the invasion probabilities Pr,p,s can be different from each other.

• If Pr = Pp = Ps the system has a cyclical (rotation) symmetry in that the equations
remain unchanged if one replaces r → p, p→ s, s→ r.

• Even for Pr = Pp = Ps, however, the equations break the chiral symmetry: the
interaction between Pr and Pp is different than between Pr and Ps: the invasion
matrix (16) is not symmetric.

Figure 52: The RPS-dynamics are confined to the blue hyperplane r+p+s = const. They
break the chiral symmetry in that surface.

Analyze these equations:

The total number of individuals n = r + p+ s is constant

d

dt
(r + p+ s) = 0

The total number is therefore a free parameter depending on the initial conditions. All of
the dynamics are limited to the two-dimensional hyperplane

r + p+ s = n.

Correspondingly, the population size (r0, p0, s0) at any fixed point is only determined up to
a factor.

Trivial fixed point r = 0, p = 0, s = 0

Linear stability:

Writing r = r0 + εr1(t) etc., with r0 = 0 the fixed point leads to

dr1

dt
= 0

dp1

dt
= 0

ds1

dt
= 0
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Thus, all eigenvalues of the linearization vanish: the trivial fixed point is marginally sta-
ble for all values of the parameter. This is not generic. The system is most likely not
structurally stable; even small additional terms may be able to change the dynamics qual-
itatively.

Non-trivial fixed points:

Consider first fixed points in which one population vanishes

r = 0 ⇒
{
s = 0 ⇒ p = n
p = 0 ⇒ s = n

Thus, there are three fixed points

(r = n, 0, 0) (0, p = n, 0) (0, 0, s = n).

Linear stability:

consider (r0 = n, 0, 0)

dr1

dt
= n (Prs1 − Ppp1)

dp1

dt
= p1Ppn

ds1

dt
= −sPrn

i.e. the Jacobian is

M =

 0 −Ppn +Prn
0 Ppn 0
0 0 −Prn


with eigenvalues and eigenvectors

λ1 = 0

 1
0
0

 λ2 = Ppn > 0

 −1
1
0

 λ3 = −Prn < 0

 −1
0
1


Thus, rock is unstable in the paper-direction, but stable in the scissors-direction. The total
population is conserved and arbitrary ⇒ perturbations that change n do not relax back,
nor do they grow: the eigenvalue in the rock-direction vanishes.

Fixed points with no vanishing component:

s0 =
Pp
Pr
p0 r0 =

Ps
Pp
s0 p0 =

Pr
Ps
r0

Solve the first two equations for r using n = r + p+ s

Prr0 = − (Pp + Pr) p0 + Prn0 (Pp + Ps) r0 = Psn0 − Psp0

Eliminating r between the two equations yields then

p0

n
= αPr with α =

1

Pr + Pp + Ps
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Analogously for the other populations by cyclic permutation

r0

n
= αPs

s0

n
= αPp

Note:

• The size of a population is not determined by its own ability to invade the other
population, but rather by the invasion ability of the population that it invades:

– Rock invades scissors and rock’s population size is given by the ability of scis-
sors to invade paper:
The rock-population is large if the scissor-population strongly invades the paper-
population, because then there is little invasion by the paper-population into the
rock-population.

• Alternatively:
The population size of species i is proportional to the invasion ability of species i− 2
in the cycle.
A large population requires weak invasion into it, which is achieved by strong invasion
into that species.

Consider the logarithmic derivatives

d ln r

dt
= Prs− Ppp

d ln p

dt
= Ppr − Pss

d ln s

dt
= Psp− Prr

and note that
Ps
d ln r

dt
+ Pr

d ln p

dt
+ Pp

d ln s

dt
= 0

Thus
d ln rPs

dt
+
d ln pPr

dt
+
d ln sPp

dt
=

d

dt
ln
(
rPspPrsPp

)
= 0

and
r(t)Ps p(t)Pr s(t)Pp = C

For a given total population size n, different initial conditions lead to different orbits. These
orbits differ in the value of C, which is constant along each orbit. Writing the equation as(

r(t)

r0

)Ps (p(t)
p0

)Pr (s(t)
s0

)Pp
= λ (20)

one has λ = 1 at the fixed point and λ = 0 when one of the species is extinct.

Note:
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• Thus, both n and λ are conserved during the temporal evolution. That is not expected
in general: the equations are not structurally stable; adding small further terms is
likely to destroy these invariances. Nevertheless we will stick to this model for now.

• In principle, one should also do a linear stability analysis of this fixed point. However,
the continuum of orbits described by (20) encloses the fixed point at an arbitrary
distance: this fixed point must be a center, i.e. there must be complex pair of eigen-
values with vanishing real part.
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Figure 53: Examples of trajectories and fixed point. Frean and Abraham (2001)

Extinction:

• Within this continuous population model no population will ever go extinct for λ > 0;
they will only oscillate, possibly reaching very small values during part of the cycle.
The population will always recover, even after having reached an infinitesimally small
value.

• If one species is identically zero, another will go extinct quickly thereafter and the
system goes to one of the single-species fixed points. E.g. r = 0 ⇒ s will grow
rapidly and drive p into extinction.

2.6.2 Discrete Models

For a population to go extinct in the RPS-system, it has to reach 0 exactly. While in
the ODE Model this happens only for very special initial conditions (on the edges of the
triangle in Fig.53), it will often be the case if discrete populations are considered with
invasion probabilities like (16).

For large populations the mean number evolves close to the orbits of the mean-field equa-
tions (17,18,19).
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However, the discrete dynamics does not preserve the invariant λ (cf. (20)). Therefore
under the discrete dynamics λ - and with it the orbits - can grow or shrink (cf. Fig.54) and
eventually hit one of the three boundaries r = 0, p = 0, or s = 0, which then yields to the
survival of a single species.
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Figure 54: a) RPS-evolution under the discrete dynamics. b) RPS survival: for large sys-
tem size the weakest species survives best, i.e. the population with the smallest invasion
probability. Red: rock survives, blue: scissors survives, yellow: paper survives. The tri-
angle gives the invasion probabilities chosen wth the constraint Pr + Pp + Ps = const.(cf.
Fig.52) Frean and Abraham (2001).

How does the survival probability of a population depend on its invasion probability?

The species that is most likely to go extinct is the one that reaches the smallest population
size during the oscillations. For the fixed point we have

r0

n
= αPs

p0

n
= αPr

s0

n
= αPp

One can show Frean and Abraham (2001) that the smallest population size during the
oscillation occurs for the population with the smallest size at the fixed point.

How does the survival depend on the invasiveness?

• Species i is smallest and has the highest probability to go extinct, if species i−2 has
the lowest invasion probability.

• If species i goes extinct, species i+1, which is the same as i−2, grows, suppressing
species i− 1.

• Species i− 2 survives.

Thus, the weakest population, i.e. the least invasive species, survives.

Is then the non-transitive fitness not able to lead to the co-existence of multiple species?
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Figure 55: RPS in a large system with only local dispersal sustains persistent multi-
species states (Pr = 0.1, Ps = 0.1, Pp = 0.8) Frean and Abraham (2001).

For local rather than global dispersal patches of different species arise and persist.

Experimentally, this was tested using E. coli bacteria that interact via toxins: K>S>R>K
(see above).

• When the bacteria were grown undisturbed, i.e. unmixed, the interaction was local
and the populations persisted for a long time. Patches with different species arise
that invade each other.

• When the solutions were mixed in a flask or transferred from one plate to the other
twice at different orientation angles, one population went extinct quite quickly, fol-
lowed by the second, leaving only the resistant strain.
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ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).
When ecological processes were local in the simulation, coex-

istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.
To test this conclusion, we used three strains of the bacterium E.

coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C

Figure 2 Community dynamics in the experimental treatments: a, Static Plate; b, Flask;
and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has
decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.
We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The
changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.
The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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ecological processes in our C–S–R community (see Box 1). When
dispersal and interaction were local, we observed that ‘clumps’ of
types formed (Fig. 1a). These patches chased one another over the
lattice—C patches encroached on S patches, S patches displaced R
patches and R patches invaded C patches (Fig. 1a, b). Within this
fluid mosaic of patches, the local gains made by any one type were
soon enjoyed by another type. The result of this balanced chase was
the maintenance of diversity (Fig. 1c). However, this balance was
lost when dispersal and interaction were no longer exclusively local
(that is, in the ‘well-mixed’ system—see Box 1). In the mixed
system, continual redistribution of C rapidly drove S extinct, and
then R outcompeted C (Fig. 1d). Durrett and Levin6 describe a
qualitatively similar effect of spatial scale in their model of
colicinogenic, sensitive, and ‘cheater’ strains (where a cheater was
defined as a strain producing less colicin at a lower competitive
cost).
When ecological processes were local in the simulation, coex-

istence occurred over a substantial range of model parameter values
(Fig. 1e), suggesting that the result was not very sensitive to the
specific choice of parameter values. In the case of the mixed system,
coexistence never occurred for the region of parameter space shown
in Fig. 1e. In agreement with Durrett and Levin6, our simulation
results suggested that three strains with the abovementioned non-
hierarchical relationship could coexist when dispersal and inter-
action are local, whereas one strain excludes the others when the
community is well mixed.
To test this conclusion, we used three strains of the bacterium E.

coli: a colicin-producing strain (C), a sensitive strain (S), and a

resistant strain (R), which satisfied a rock–paper–scissors competi-
tive relationship (see Methods). We placed the C–S–R community
in the following three environments: (1) ‘Flask’ (a well-mixed
environment in which dispersal and interaction are not exclusively
local); (2) ‘Static Plate’ (an environment in which dispersal and
interaction are primarily local); and (3) ‘Mixed Plate’ (an environ-
ment intermediate between these two extremes).

For the Flask environment, the bacteria were grown in shaken
flasks containing liquid media. We transferred an aliquot of the
community to fresh media every 24 h. In the Static Plate environ-
ment, the bacteria were grown on the surface of solid media in
Petri plates. Every 24 h, we pressed each plate onto a platform
covered with a sterile velveteen cloth and then placed a fresh plate
on the velvet. This method transferred a small sample of the
community and allowed the transferred sample to retain the spatial
pattern that developed on the previous plate. The Mixed Plate
environment was identical to the Static Plate environment, except
that at each transfer the fully-grown community plate was pressed
on the velvet several times, each time rotated at a different angle
(see Methods).

Figure 2a shows that C, S and R strains were maintained at high
densities in the Static Plate environment throughout the exper-
iment. Photographs of the plates show the spatial pattern that
developed over the experiment (Fig. 3a). The pink and yellow inter-
strain boundaries in Fig. 3b show clearly that R chased C, and C

Figure 2 Community dynamics in the experimental treatments: a, Static Plate; b, Flask;
and c, Mixed Plate. Dashed lines indicate that the abundance of the relevant strain has
decreased below its detection limit. Data points are the mean of three replicates, and bars

depict standard errors of the mean. Consecutive data points are separated by 24 h,

approximately 10 bacterial generations.

Figure 3 Time series photographs of a representative run of the Static Plate environment.
We initiated the plate environments by depositing small droplets from pure cultures in a

hexagonal lattice pattern, where the strain at each point was assigned at random. a, The
changing spatial configuration of the experimental community is shown in this first panel

of photographs. Patches inhabited by C cells were less dense and consequently easily

distinguished from S and R patches. The dense growing ‘spots’ that appear inside the C

clumps were determined to be resistant cells generated de novo from S cells. An empty

layer existed between C clumps and S clumps, where diffused colicin had prevented the

growth of S cells, but where C cells had not yet colonized. The border between C and R

lacked this empty layer. b, ‘Chasing’ between clumps is highlighted in this second panel.
The letters giving the initial spatial distribution of the strains are preserved for reference.

The borders between C and S are coloured in yellow and the borders between C and R in

pink.
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Figure 56: Experimental results for RPS-like dynamics of E. coli bacteria Kerr et al. (2002).
Left: population sizes. Right: Inoculation with different strains in a hexagonal pattern.
Letter markings the same at the three times, C-S (C=K) fronts in yellow, C-R fronts in pink.

Note:

• Frean and Abraham (2001) also has interesting results about systems in which the
invasion rate of a species was allowed to evolve. This leads to an increase in its
competitiveness (invasiveness) and at the same timer a reduction in its size, because
its stronger invasiveness reduces the population i − 2, which enhances population
i− 1, which then invades the evolved species more strongly. .

2.6.3 Continuum Systems with Dispersal

To understand why the patches of different species persist for so long, it is useful to look
at continuum systems with dispersal. For that it is better to look at a more general model
that is structurally stable and in which the transition to the oscillations can be controled by
a bifurcation parameter.

For instance consider a grid of patches where each patch has N sites on which three
species Si, i = 1 . . . 3, interact with each other in a well-mixed fashion Szczesny et al.
(2013). The transitions between the different states occur randomly with probabilities

83



Modeling Biological Oscillations H. Riecke, Northwestern University

indicated above the reactions,

Si + Si+1

σ︷︸︸︷→ Si + Ø, Si + Si+1

ζ︷︸︸︷→ 2Si Si + Ø
β︷︸︸︷→ 2Si Si

µ︷︸︸︷→ Si±1

• σ: Si kills Si+1 and leaves and empty site

• ζ: Si transforms Si+1 to Si

• β: Si propagates itself if there is an empty site

• µ: Si mutates into Si+1 or Si−1

In addition there is motion between neighboring patches at locations r and r′

[Si]r[Ø]r′
δD︷︸︸︷→ [Ø]r[Si]r′ [Si]r[Si±1]r′

δE︷︸︸︷→ [Si±1]r[Si]r′

• δD: hopping into an empty spot

• δE: interchange of individuals.

Assuming again that locally the species are well mixed, so that the probability to encounter
another individuum of a given species is proportional to its density, one can derive mean-
field equations

dsi
dt

= si {β (1− r)− σsi−1 + ζ (si+1 − si−1) + µ (si−1 + si+1 − 2si)}+ (21)

+δD∆si + (δD − δE) (si∆r − r∆si)

where
r = s1 + s2 + s3

is the total density.

Notes:

• In this model all three species are equivalent, i.e. ‘rotating’ the index i cyclically,
i→ i+ 1 with 4 being equivalent to 1, does not change the equations.

• As is the case in the RPS-model (16), the system (21) breaks the chiral symmetry
and the terms that break the chiral symmetry, σ and ζ, drive the RPS-dynamics.

• The mutation term is a term that couples the different species without breaking the
chiral symmetry. It amounts to ‘diffusion’ in ‘species space’ (finite-difference approx-
imation for second derivative). It is expected to stabilize the fixed point against the
oscillations: µ cannot be too large for oscillations to occur.

Due to the cyclical symmetry i→ i+ 1, the system must have a solution that reflects
that cyclical symmetry, i.e. there must be a fixed point with si = s0, i = 1 . . . 3. It is
given by

β (1− 3s0)− σs0 = 0
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s0 =
β

3β + σ
.

One can show that this fixed point becomes unstable to oscillations in a Hopf bifur-
cation for

µ < µh ≡
βσ

6 (3β + σ)
.

Thus, as expected the oscillations are suppressed by the mutation term µ; for µ = 0
the fixed point is always unstable.

For small oscillation amplitudes one can, in general14, derive systematically a simpler
equation to describe the oscillations by expanding around the fixed point s1(x, t)

s2(x, t)
s3(x, t)

 =

 s0

s0

s0

+ εA(x, t)eiωt

 v1

v2

v3


︸ ︷︷ ︸

eigenvector v

+εA∗(x, t)e−iωt

 v∗1
v∗2
v∗3

+O(ε2).

Here ω is the imaginary part of the eigenvalue of the Jacobian obtained by linearizing (21)
around the fixed point and v is the associated, complex eigenvector.

Expanding (21) to cubic order in ε one obtains then a condition for the expansion to be
valid, which results in a PDE for the complex amplitude A(x, t),

∂A

∂t
= (1 + iδi) ∆A+ A− (1 + ic) |A|2A. (22)

Here, scaling of time, space, and the amplitude A has been used to set coefficients to 1.

Note:

• This equation is the complex Ginzburg-Landau equation, which is the universal
equation for generic small-amplitude oscillations

In general, δi 6= 0, which leads to interesting dynamics Aranson and Kramer (2002). Ac-
cording to Szczesny et al. (2013) δi = 0 for (21).

Important for the current system is the fact that (22) allows spiral waves that rotate clock-
wise or counterclockwise

Aclockwise ∼ f(r)eiωt−iφ−iψ(r) or Acounter ∼ f(r)eiωt+iφ+iψ(r),

where (r, φ) are polar coordinates centered at the spiral core.

Spirals are relevant for the dynamics for topological reasons:
14See, for instance, 322 Applied Dynamical Systems [Lecture Notes], Strogatz (2015)
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• The phase of the oscillation increases or decreases by 2π when the core of a spiral
is encircled once⇒ the phase cannot be defined at the core r = 0⇒ f(0) = 0.

• Since f(0) = 0, the core of a spiral represents a 0 of the complex field A, which is
given by the intersection between the zero-contours of the real part Ar of A and of
its imaginar part Ai.

• ⇒ at the core of the spiral the system is at the (unstable) fixed point, i.e. in the
vicinity of the core all three species meet.

• ⇒ spirals are topologically stable: an intersection between two lines in the plane can
only disappear by ‘colliding’ with another intersection of those lines. ⇒ spirals can
only be generated and annihilated in pairs (unless they leave the system through the
boundaries).

Dynamically, depending on parameters

• spiral pairs can arise from instabilities of the homogeneously oscillating state or of
traveling waves

• spirals can disappear in pairs

• the waves emitted by spirals can be unstable, triggering the creation of additional
spirals⇒ complex, chaotic dynamics Chaté and Manneville (1996).

– The instability of the spirals can be weak enough that it is swept along by the
outward propagating waves, leaving the core of the spiral untouched and lead-
ing to disorder only away from the cores (convective instability).

– If the instability if stronger it can propagate ‘upstream’ against the outward trav-
eling waves and destroy also the spiral core (absolute instability).

When does cyclic dominance lead to stable spiral waves?

Fig. 1: (Colour on-line) Reactive steady states in stochastic
Gillespie simulations of reactions (1)–(3). Here, L2 = 1282,
N = 64, β = σ= δD = δE = 1, µ= 0.02<µH = 0.042 (ϵ≈ 0.26)
and, from left to right, ζ = (1.8, 1.2, 0.6, 0). Each pixel describes
a patch with normalized RGB representation (red, green,blue) =
(s1, s2, s3) of its state. The rightmost panel shows an oscillatory
homogeneous state in which each of the species dominates the
whole population in turn (see fig. 3 for time evolution). Initially
s≈ s∗ with small random perturbations, see [20].

size expansion in N of the Markov chain associated with
the processes (1)–(3) [5,22].
Here, we aim to unravel the combined influence of

nonlinearity, mobility and noise on the system’s dynamics
and the formation and stability of coherent patterns. To
gain some insight into these questions, we report some
typical lattice simulations (performed using the Gillespie
algorithm [22,25]) obtained in the regime where there is
a limit cycle (µ< µH). As shown in fig. 1, this parameter
regime is characterised by spiralling patterns found in four
different phases (i.e., four parameter regimes), whereas
we have found no patterns when µ> µH (see [20]). We
have checked that the PDEs (5) faithfully reproduce the
behaviours obtained with Gillespie lattice simulations of
the metapopulation model (1)–(3) as shown in fig. 2 (top)
and [20].

Asymptotic expansion. – The main goal of this work
is to obtain an analytical description of the metapopu-
lation model’s phase diagram and an understanding of
the circumstances under which the spiralling patterns
of fig. 1 are stable or unstable. Our approach relies on
the description of the metapopulation system by the
PDEs (5) whose properties near the HB will be stud-
ied perturbatively (see below). For this, it is convenient
to perform the linear transformation s− s∗→ (u, v, w),
with u=−(r+ s3)/

√
6, v= (s2− s1)/

√
2 and w= r/

√
3.

In these variables, the linear part of (4) can be written
in the Jordan normal form ∂t(u+ iv) = (ϵ2+ iωH)(u+ iv)
and ∂tw=−βw. To make analytical progress and follow-
ing a classic asymptotic approach, see, e.g., [26,27], we
perform a space and time perturbation expansion in the
parameter ϵ around the HB. For this, we introduce the
multiple scale coordinates T = ϵ2t andX = ϵx with ∆X ≡
∂2X1 + ∂

2
X2
, and expand the densities in powers of ϵ. This

yields

u(x, t) =
3∑

n=1

ϵnU (n)(t, T,X) (6)

and, similarly, v=
∑3
n=1 ϵ

nV (n) and w=
∑3
n=1 ϵ

nW (n),
where the functions U (n), V (n),W (n) are of order O(1).

Fig. 2: (Colour on-line) Top: typical snapshots from the
PDEs (5) in phases AI, EI, BS, SA from left to right (compare
with fig. 1, same parameters used). Bottom: system’s phase
diagram around the HB with contours of c= (cAI , cEI , cBS)
and β = 1. As a comprehensive feature, we distinguish four
phases: spiral waves are unstable in AI, EI and SA, but are
stable in BS (see text).

Substituting (6) into (5) and, using the definition of
(u, v, w), we obtain a hierarchy of PDEs and analyse
them at each order of ϵ. Since the variables u and v
are decoupled from w at linear order, one writes U (1)+
iV (1) =A(T,X)eiωHt, where A is the complex modulation
amplitude. The decoupled equations for w give W (1) =
0 and W (2)∝ |A|2, which is the leading term in the
equation for the centre manifold [28]. To obtain a sensible
expansion all secular terms are removed. A first such
term arises at order O(ϵ3) and its removal yields the
complex Ginzburg-Landau equation (CGLE) [29] with a
real diffusion coefficient δ,

∂TA= δ∆XA+A− (1+ ic)|A|2A, (7)

where δ= 3βδE+σδD3β+σ andA has been rescaled by a constant
to give

c=
12ζ(6β−σ)(σ+ ζ)+σ2(24β−σ)

3
√
3σ(6β+σ)(σ+2ζ)

. (8)

We emphasize that the CGLE (7) has been derived
here in a controlled perturbative expansion and describes
the system’s dynamics to order ϵ near the HB. This
treatment, therefore, differs from that of refs. [13–15,18],
where CGLEs were obtained by heuristically treating
heteroclinic cycles as limit cycles.

Phase diagram and CGLE. – According to the
CGLE (7), the movement in the vicinity of the HB is

28012-p3
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N = 64, β = σ= δD = δE = 1, µ= 0.02<µH = 0.042 (ϵ≈ 0.26)
and, from left to right, ζ = (1.8, 1.2, 0.6, 0). Each pixel describes
a patch with normalized RGB representation (red, green,blue) =
(s1, s2, s3) of its state. The rightmost panel shows an oscillatory
homogeneous state in which each of the species dominates the
whole population in turn (see fig. 3 for time evolution). Initially
s≈ s∗ with small random perturbations, see [20].
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the processes (1)–(3) [5,22].
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nonlinearity, mobility and noise on the system’s dynamics
and the formation and stability of coherent patterns. To
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algorithm [22,25]) obtained in the regime where there is
a limit cycle (µ< µH). As shown in fig. 1, this parameter
regime is characterised by spiralling patterns found in four
different phases (i.e., four parameter regimes), whereas
we have found no patterns when µ> µH (see [20]). We
have checked that the PDEs (5) faithfully reproduce the
behaviours obtained with Gillespie lattice simulations of
the metapopulation model (1)–(3) as shown in fig. 2 (top)
and [20].
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PDEs (5) in phases AI, EI, BS, SA from left to right (compare
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Substituting (6) into (5) and, using the definition of
(u, v, w), we obtain a hierarchy of PDEs and analyse
them at each order of ϵ. Since the variables u and v
are decoupled from w at linear order, one writes U (1)+
iV (1) =A(T,X)eiωHt, where A is the complex modulation
amplitude. The decoupled equations for w give W (1) =
0 and W (2)∝ |A|2, which is the leading term in the
equation for the centre manifold [28]. To obtain a sensible
expansion all secular terms are removed. A first such
term arises at order O(ϵ3) and its removal yields the
complex Ginzburg-Landau equation (CGLE) [29] with a
real diffusion coefficient δ,

∂TA= δ∆XA+A− (1+ ic)|A|2A, (7)

where δ= 3βδE+σδD3β+σ andA has been rescaled by a constant
to give

c=
12ζ(6β−σ)(σ+ ζ)+σ2(24β−σ)

3
√
3σ(6β+σ)(σ+2ζ)

. (8)

We emphasize that the CGLE (7) has been derived
here in a controlled perturbative expansion and describes
the system’s dynamics to order ϵ near the HB. This
treatment, therefore, differs from that of refs. [13–15,18],
where CGLEs were obtained by heuristically treating
heteroclinic cycles as limit cycles.

Phase diagram and CGLE. – According to the
CGLE (7), the movement in the vicinity of the HB is

28012-p3

Figure 57: Spiral waves in the stochastic discrete system (a) and in
the continuum system (b) for 4 different parameter sets. From left to
right: spirals are absolutely unstable, convectively unstable, stable but
bound, annihilate each other Szczesny et al. (2013). See also movies at
https://figshare.com/articles/Supplementary_material:_When_does_cyclic_dominance_lead_to_stable_spiral_waves_/96949
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Thus

• For local interaction between the species patches form in which

– at a given time one of the three species dominates

– the dominating species cycle in time

• Patches meet at spiral cores ⇒ as long as there is a spiral all three species are
present somewhere in the system and can invade the others, none is extinct.

• For extinction all spirals have to annihilate each other. Whether they tend to do that
or not depends on the parameters c and δi in (22) (for other underlying models δi 6= 0
possible)

• Coexistence of the species does not require the oscillations: in more general models
than the minimal model (17,18,19) the coexistence fixed point can simply be stable.
See, for instance, the model (21) for sufficiently large mutation rate µ.

Note:

• The topological stability of the spirals requires the existence of continuous 0-contourlines
of the oscillation amplitude. In the discrete system there are, strictly speaking, no
continuous contourlines.

– In the (stochastic) discrete systems spirals are not topologically stable and in-
dividual spirals can dissolve.

– For sufficiently strong dispersal and interaction between adjacent individuals
the continuous oscillation amplitude with continuous contourlines can, however,
be a good approximation.
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3 Genetic Oscillators and Circadian Clocks

Already in 1729 Jean-Jacques d’Ortous de Mairan observed that certain plants (presum-
ably mimosas) open and close their leaves in a circadian fashion even in the absence of
light.

This was one of several reasons why Henri-Louis Duhamel du Monceau (1700–1782) re-
peated Mairan’s experiments in 1758. He went as far as installing his plants in a deep wine
cellar where the temperature was very stable and absolutely no sunlight could penetrate,
or even in large leather trunks wrapped in blankets. The plants’ leaf movements continued,
despite the fact that they were far more effectively cut off from daylight.(Klarsfeld, 2013)

           
2 

 
Figure 1: Jean-Jacques d’Ortous de Mairan (1678–1771). Portait by Louis Tocque 
(1696–1772), engraving by Pierre-Charles Ingouf (1746–1800). (Dibner Library of the 

History of Science and Technology, Smithsonian Institute). 

 

Figure 58: Mimosa plant opens and closes leaves in a circadian fashion even at con-
stant light and constant temperature. Movies at Figures/silk_tree_circadian.mov and
mimosa movie

1516

15Article in the Scienfitic American on circadian rhythm in plants: https://blogs.scientificamerican.com/a-
blog-around-the-clock/clock-classics-it-all-started-with-the-plants/

16TedSMU talk by J. Takahashi at https://www.youtube.com/watch?v=ocqn3wYTCRM
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DIE NATURWISSENSCHAFTEN 
49. J ah rgang  Heft  t 5 (Erstes Augustheft)  t962 

Spontanperiodik des Menschen bei Ausschluf~ aller Zeitgeber 
Von Jf3RGEN ASCt~OFI~ und  t~f3TGER NEVER, Ef l ing-Andechs/Obb.  

1. Einleitung 
Vor rund  100 Jahren  erschien in  der Famil ienzei t -  

schrift ,,Gartenlaube" ( Jahrgang 1860) un te r  der 
(]berschrift  ,,Aus dem Leben eines Orang-Outang"  
der Bericht fiber ein drei Jahre  altes Affen-Weibchen,  
das auf einem Segelschiff yon J a v a  nach H a m b u r g  
gebracht  werden sollte. Zu Beginn der Reise erwachte 
die auf dem Verdeck lebende Affin bei Sonnenaufgang  
um 6 Uhr  u nd  legte sich gegen t8  Uhr  schlafen. Auf 
dem Wege nach Westen  hielt das Tier 12 Std Schlaf- 
zeit bei, jedoch un te r  steter leichter Phasenverschie-  
bung  gegen die jeweilige Ortszeit, so dab am Kap  der 
Guten  Hoffnung das Erwaehen auf 2 Uhr  u n d  das 
Zuruhegehen auf 1 4 U h r  tiM. Der ,,physiologische 
Tag"  der ~f f in  ha t te  sich gegen Ortszeit 4 Std ver- 
frfiht, gegen Heimatszei t  2 Std verspiitet.  Mit diesem 
kurzen Bericht, der wegen des vorzeitigen Todes des 
Tieres (nach Genul3 einer Flasche Rum) unvolls t / indig 
bleiben mul3te, beg innt  gewissermagen die Erforschung 
der Tagesperiodik bei P r ima ten  - -  mehr  als 100 Jahre  
nach den ersten Exper imen ten  an Pflanzen, fiber die 
gUNNING kfirzlich ber ichtet  hat  [3]. 

Die yon  dem a n o n y m e n  Autor  angeschni t tene  
Frage nach den Ursachen des Schlaf -Waeh-Rhythmus  
ist ffir den Menschen bis heute nicht  e indeut ig beant -  
wortet  worden. W~re die Periodik dem Organismus 
nu r  von auBen aufgeprfigt, etwa dutch den Wechsel 
yon Licht  u n d  Dunkel ,  so sollte sic sich bei Reisen 
ent lang einem Brei tengrad unmi t t e lba r  mi t  der Orts- 
zeit verschieben (exogene Periodik). Tats/~chlich haben  
eine Reihe yon Untersuchern  am Menschen auf Schiffs- 
reisen eine an die Ortszeit gebundene  Periodik (z.B. 
der K6rper tempera tur )  gefunden. Auf Grund  dieser 
Beobach tung  sowie der Tatsache,  daI3 die periodischen 
physiologischen F u n k t i o n e n  yon Nachtarbe i te rn  nicht  
um t80 ° gegen die yon Tagarbe i te rn  verschoben 
sind ~2~, [6!, ist in der medizinischen Li te ra tur  frfiher 
vorwiegend die Hypothese  ver t re ten  worden, dab die 
Ursache der Periodik in meteorologischen (kosmi- 
schen ?) Umwel t fak toren  zu suchen sei (Li teratur  bei 
[lc~). Andererseits  haben  Biologen an Pf lanzen und  
Tieren experimentel l  nachgewiesen, dab die Periodik 
im Organismus auch ohne/iul3eren periodischen Anstol3 
nach Art  einer selbsterregten Schwingung andauer t  
(endogene Periodik). Es w~tre fiberraschend, wenn der 
Mensch diese selbst am Einzeller  feststellbare Eigen-  
schaft n icht  besitzen sollte. 

Die physiologische Periodik eines Reisenden ist 
nur  bei langsamen Segeischiffreisen genau ,,ortszeit- 
getreu".  Bei schnellem Transpor t  en t lang einem Brei- 
tengrad t re ten  Phasenverschiebungen auf, fiber die 
als erster NOgARA nach einer Fahr t  mi t  dem Sibirien- 
express berichtet  hat  [7]. Heute  macht  jeder Flug- 
reisende/ ihnl iche Er fahrungen  in welt st/irkerem ~al3e, 
wenn er z. 13. nach e inem Je t -F lug  zwischen F rank -  
furt  a.M. u nd  Chicago mit  seiner inneren  Periodik u m  
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rund  7 Std gegen die Ortszeit  verschoben ist;  racist 
dauer t  es mehrere Tage, bis er die normale  Phasenlage 
zur Umwel tper iodik  wieder erreicht hat  [41, [10]. 
Diese Beobach tungen  ef lauben allerdings keinen 
SchluB darauf, dab die Periodik im Sinne einer selbst- 
erregten Schwingung endogen ist. Hierftir gibt  es n u r  
ein entscheidendes Expe r imen t :  Die For tdauer  der 
Periodik un te r  kons t an t en  Umgebungsbed ingungen  
mit  einer v o n d e r  Erddrehung  mehr  oder weniger ab-  
weichenden Frequenz  ~Ia~, [1el, ~8]. Derart ige Spon-  
tanf requenzen [ld] sind an einer Reihe yon  Tieren 
festgestellt worden ~8~. Unte r  natf ir l ichen Bedingun-  
gen wird die spontane,  im Organismus ents tehende  
Periodik durch ~ugere Zeitgeber [ lb]  (z. B. den Licht-  
Dunkel-Wechsel)  mi t  der Erddrehung  synchronis ier t  
i8~, ~lla 1. Die vofliegende Arbei t  b r ing t  erstmals  
Beispiele yon Spontanfrequenzen am Menschen. 

2. Versuchsanordnung und Mei3technik 
Die Versuehe fanden in einem bunkerartigen Tiefkeller start, 

den der Direktor der chirurgischen Universit~tsklinik Mtinchen, 
Prof. Dr. R. ZE~t~E~, freundlicherweise zur Verffigung gestellt hatte. 
In den abseits des Hauptbaues liegenden Bunker drang weder yon 
der Klinik Iloeh vorl der Strafle das geringste Ger/iuseh. Der ffir die 
Versuchsperson gew~hlte Teil war dutch eine Sehleuse voln Keller- 
gang getrermt. Der Wohn-Sehlaf-Raum (21 In S) enthielt Bett, 
Sehrank, Tiseh, Sehreibtiseh, Kfihlsehrank und elektrische Koch- 
platte~; zwei ansehlieBende Kammern dienten als Wasehraum und 
Klosett. Alle R/iume wurde~l durch eine mit Thermostat steuerbare 
Heiztruhe aus dem Kellergang belfiftet*). Die Versuehsperson 
konnte eine Reihe yon Liehtquellen (z.B. Deekenlampen, Sehreib- 
tiseh, Bett-Leselampe) nach Belieben ein- oder ausscbalten. Der 
Versuehsraum war dutch eine nut naeh augen benutzbare Spreeh- 
anlage mit dem Raunl des Versuehsleiters verbunden; der yon der 
Versuehsperson gesproehene Text konnte auf Tonband aufgenommen 
werden. Nachrichten an die Versuehsperson muBten sehriftlich 
fiber die SchIeuse vermittelt werden. Auf diese Weise war aueh der 
psyehoIogisehe Kontakt mit der Umwelt auf ein Mindestmag herab- 
gesetzt. Als wiehtiger Teil der Einriehtung erwies sieh ein Sehall- 
plattenspieler **). 

Die Versuehspersonen betraten den Bunker abends nnd wurden 
nach Abliefern ihrer Uhr und SehlieBen der Sehleuse fiir wenigsterls 8, 
h6chstens 19 Tage sieh selbst fiberlassen. Sie waren angewiesen, 
,,regehn~Ng" zu leben und fiber physisehes wie psychisehes Befinden 
Tagebueh zu ft~hren. Beim Zubettgehen war das Deckenlieht zu 
16schen, beim Aufstehen anzuschalten. Auf einem Zeitmarken- 
sehreiber tier Firma Metrawatt wurden die Sehaltvorgfinge ftir das 
Deekenlieht, das Bettlieht und das Klosettlieht fortlaufend registriert. 
Vier weitere Kan/ile konnten durch KontaktknSpfe v-on der Ver- 
suchsperson bedient werden; sic bezeiehneten die Einnahme yon 
Mahlzeiten, Abgabe einer Urinprobe, jeweiliges Aufwaehen der im 
Bett liegenden Versuehsperson und spezielle Signale (z.B. Messen 
des Pulses). Auf dem 8. Kanal wurden die Bewegungen der Ver- 
suchsperson im Bert registriert. Zum ~essen der K6rpertemperatur 
(mit Punktsehreiber yon Hartmann und Braun) legte die Versuchs- 
person ffir die Dauer der Schlafzeit rektal einen Thermolfihler ein; 
w~hrend der Wachzeit maB sie in mSglichst kurzen Zeitabst~nden 
oral mit kleinerem Ffihler. Des weiteren muBte die Versuehsperson 
mSglichst oft wiihrend der ~Vachzeit Ham lassen. Ftir die Analyse 
der Elektrolyte stand dutch Vermittlung von Prof. Dr. Tm HELL- 

*) Die Firma Meissner und \Vurst (Stuttgart) stellte die Truhe 
leihweise zur Verfiigmlg. 

**) Wit dankei1 den Firmen Telefunken GmbH, Deutsche 
Philips GmbH und Deutsche Grammophon-GeseIlschaft ftir Sehall- 
platten. 
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Figure 59: Referring to a description in a family magazine in 1860 of the shift in daily
rhythm in an orang-utan traveling on a ship westward. The observation came to an end as
the orang-utan drank a bottle of rum and passed on (Aschoff and Wever, 1962).
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BROaGE das chemisehe Laboratorium der Kiilder-PoliMiilik zur Ver- 
ftiguilg; die Ketosteroide und Cortieoide wurden in dankeilswerter 
Weise iln physiologisch-chemisehen Ins t i tu t  der Universit~it Giegen 
(Prof. Dr. Hj.  STAUDING~R) bestimmt.  
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April M~/ 
Fig. 1. Periodisches Verhalten der Vp. Nr. I im Bunker. Abilahme 
der Uhr am Abend des 27. April. Pfeile am oberen Abbildungsrand: 

12 Uhr MEZ 

Bislang wurden seehs mfinnliehe und drei weibliehe Pers0nen 
im Alter voil 19 bis 48 Jahreil geprtift. Sic konnten ihre Zeit im 
Builker ilaeh eigenem Ermessen einteilen; die meisten arbeiteten 
wissenschaftlich. Speisen wareil selbst zuzubereiten; Lebeilsmittel 
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Fig. 2. Gleicher Versuch wie Fig. 1. Die dick gezeichneten Balkeil stellen die 
Wachzeiteil  dar;  sic sind rechts und links im Abstand yon 24 Std gestriehelt noeh 

einmal eingezeiehnet. (Vgl. Text) 

und Getr~inke wurden auf Aufforderung hin nachgeliefert. Alle Ver- 
suehspersonen ertrugen den Aufenthalt  ohne Ilaehteilige Folgeil. 

3. Ergebni s se  

3.1. Ablau[ eines Versuches 
Das einfachste und zugleich deutlichste Zeichen 

fiir das Fortbestehen der Periodizit~it unter konstanten 
Bedingungen ist der Wechsel zwischen Schlafengehen 

und Aufstehen, verfolgt an den vonder Versuchsperson 
gew~ihlten Beleuchtungsarten. In dem in Fig. 1 dicht 
fiber der Abszissenachse eingezeichneten Balken bedeu- 
tet der Beginn eines weiBen Feldes: Einschalten der 
Deckenbeleuchtung, der Beginn eines schwarzen Fel- 
des: Ausschalten der Bettbeleuchtung (bei bereits 
gel6schtem Deckenlicht), Der Versuch beginnt mit 
einer Schlafzeit (nach Abgabe der Uhr) in der Nacht 
vom 27. auf 28, April. Am ersten Morgen im Bunker 
steht die Versuchsperson knapp vor ihrer iihlicheu 
Zeit auf, am n~ichsten und den darauffolgenden Tagen 
jedoch jeweils etwas sp~tter, so dab sic nach 8 Tagen 
Bunkeraufenthalt (am 6. Mai) das Bett erst am friihen 
Nachmittag verl~iBt. Die Verschiebung der Periodik 
gegen mitteleurop~tische Zeit wird deuflich, wenn man 
die im Aufwachpunkt errichteten Ordinatenlinien mit 
den Pfeilen am oberen Abbildungsrand vergleicht, die 
jeweils bei t2 Uhr mittags (ME:) eingezeichnet sind. 
Gemessen am Schlaf-Waeh-Rhythmus bleibt diese 
Versuchsperson trotz Fehlens jeglicher Zeitgeber klar 
periodisch, jedoch nicht mit 24, sondern mit rund 
25,t Std Periodendauer. Die vegetativen Funktionen 
verhalten sich entspreehend. Das Maximum der Harn- 
produktion I~illt j eweils in den aufsteigenden Ast der 
Temperaturkurve und damit in die erste H~tlfte der 
Waehzeit, etwa gleichzeitig mit dem Maximum der 
Elektrolytausscheidung. Einen im allgemeinen ~thn- 
lichen Gang zeigen die 17-Keto-Steroide und die Corti- 
coide. 

Um eine Reihe von Einzelheiten klarer hervor- 
treten zu lassen, ist in Fig. 2 eine andere Darstellungs- 

weise gew~thlt. Hier bildet die Tageszeit 
die Abszisse (in MEZ), und die ein- 
zelnen Versuchstage sind, yon oben be- 
ginnend, untereinander aufgetragen. Das 
Diagramm kann wie ein Buchtext yon 
links oben nach rechts unten gelesen 
werden. Als dicker Balken ist jeweils die 
Wachzeit (Aktivit~itszeit) der Versuchs- 

>~ person eingezeichnet. Im Abstand von 
24 Std ist rechts der Balken der n~ichst- 
folgenden, links der Balken der vorher- 
gehenden Aktivit~itszeit gestrichelt wie- 
derholt. Aus dem Abstand zwischen 
ausgezogenen und gestrichelten Balken 
l~13t sich die der jeweiligen Aktivit~its- 
zeit vorhergehende bzw. nachfolgende 
Ruhezeit (Schlafzeit) ablesen. In jedem 
Balken sind die drei t/tglichen Mahl- 
zeiten als schwarze B16eke eingezeich- 
net; der Kreis unter dem Balken be- 
deutet Stuhlgang. Die schwarzen Drei- 
ecke vermitteln einen Eindruck yon der 
Phasenlage der Temperaturkurve; das 
auf der Spitze stehende Dreieck ent- 
spricht dem Maximum, das auf der Basis 
stehende dem Minimum der Temperatur. 

Die ersten drei Zeilen der Fig. 2 zeigen das Ver- 
halten der Versuchsperson unter Normalbedingungen 
mit Uhr (aul3erhalb des Bunkers): Aufstehen kurz 
nach 7 Uhr, regelm~iBig verteilte Mahlzeiten, Stuhl- 
gang gegen 9 Uhr, Maximum der K6rpertemperatur 
um 20 Uhr und deren Minimum bei 4 Uhr. Nach Ab- 
nahme der Uhr am Abend des 27. April steht die 
Versuchsperson am ersten Morgen im Bunker 1,5 Std 
frtiher auf als gew6hnlich. FriJhstiick, Mittagessen 

Figure 60: Circadian rhythm in humans. Experiment in sub-basement of University Hospi-
tal Munich: ‘...an important component of the furniture turned out to be a record player...’.
After three days the subjects had to remove their watches (Aschoff and Wever, 1962).
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Figure 61: Chronomedicine: the impact, effectiveness, and side effects of medication can
depend strongly on the circadian time. E.g. the duration of sleep induced by fixed dosis of
anesthetic in rat varies circadianly (Reinberg and Halberg, 1971).

How can the oscillations of the circadian rhythm be so slow? The circadian rhythm is
maintained by oscillators built from gene transcription and protein synthesis.

3.1 Negative Feedback during mRNA Synthesis

A key element of the genetic machinery comprising the circadian clocks is negative feed-
back in the gene transcription. Consider a minimal model for protein synthesis with nega-
tive feedback by a repressor.

The proteins are produced by translation from the mRNA, which, in turn, is produced by
transcription from the DNA.

For genes to be turned on the RNA polymerase needs to be able to bind to the corre-
sponding promoter site in order to produce the mRNA. This is only possible if there is no
repressor bound to the operator.

90



Modeling Biological Oscillations H. Riecke, Northwestern University

Figure 62: Lac operon controling the genes necessary to process lactose. lacZ → enzyme
to cleave lactose, lacY → enzyme to allow absorption of lactose through cell membrane,
... When a repressor binds to the operator site the polymerase cannot bind to the promoter
site and the downstream genes cannot be transcribed. (Sketch from khanacademy.org)

Assuming that p repressor molecules are needed for the repression of the transcription
one has for the repressor R and the operator D

pR +D

k+R︷︸︸︷

︸︷︷︸
k−R

DRp

where DRp is the complex formed by the repressor bound to the operator.

In equilibrium one has then

[DRp]

[R]p[D]
=
k+
R

k−R
=

1

Kp
R

with KR the dissociation constant of the complex.

The total number of operators [D]T is conserved

[D]T = [D] + [DRp]

Inserting in the equilibrium condition

[D]T − [D]

[R]p[D]
=

1

Kp
R

⇒ [D] =
[D]T

1 +
(

[R]
KR

)p
In a large ensemble of cells [D] represents the concentration (fraction) of cells in which
the operator is free of repressor. Since the process is stochastic, for a single cell [D]/[D]T
is the probabiility that its operator is free. The time-averaged rate of mRNA production is
then

VmRNA = β
[D]

[D]T
= β

1

1 +
(

[R]
KR

)p
where β is the production rate without repressor.
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3.2 The Goodwin Oscillator

Chapter 4

THE DYNAMICS OF THE EPIGENETIC SYSTEM

The Control Circuits

Our primary concern in this chapter is to derive differential equations which

describe the dynamic properties of a certain class of control mechanisms for

macromolecular synthesis in cells. As we proceed with the argument, the

limitations of a strictly classical analysis in terms of differential equations and
integrals will become evident. The procedure will be to select an idealized

model of a metabolic feed-back control cycle which, however, incorporates

what are believed to be the essential features of the real system. The type of

unit component which we will study is that shown in Fig. 1 . L,- represents a

genetic locus which synthesizes mRNA in quantities represented by the

variable Xi. This specific "signal" encounters a cellular structure R (a ribo-

some), where its activity results in the synthesis ofa particular species of protein

in quantities denoted by the variable 7,-. The protein then travels to some
cellular locus, C, where it exerts an influence upon the metabolic state

either by enzyme action or by some other means (we will usually assume that

Yi is an enzyme). The result of this activity by the protein is the generation of a

metabolic species in quantity Mj, a fraction of which closes the control loop

by returning to the genetic locus, L,-, where it is assumed to act as a repressor

either alone or as a "co-repressor" coupled with another molecule, the

"aporepressor". If a separate operator locus exists for the control of genetic

activity at L,- then it is included for the purposes of the present discussion as part

of the locus Li itself.

This is the simplest type of unit which will be considered, and in it the

2 23

Figure 63: Sketch
of reaction net-
work (Goodwin,
1963)

The minimal model Goodwin considered first is

d[X1]

dt
=

ν0

1 + [X2]
KR

− b1

d[X2]

dt
= ν1[X1]− b2

He solved these equations on a Philbrick Analogue Computer at MIT.

Figure 64: Philbrick analog computer at MIT (www.analogmuseum.org).

FIG. 2. 

FIG. 3. 

[.facing p. 42~ 

Figure 65: Analogue computer results for Goodwin’s minimal model (Goodwin, 1965).

Since the X1-equation only depends on X2 and the X2-equation only
on X1 one can combine the two equations by multiplying with the right-
hand sides

(ν1[X1]− b2)
d[X1]

dt
−

(
ν0

1 + X2

KR

− b1

)
d[X2]

dt
= 0,
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which allows a separation of variables

(ν1X1 − b2) d[X1] =

(
ν0

1 + X2

KR

− b1

)
d[X2]

This implies for all times t

1

2
ν1[X1(t)]2 − b2[X1(t)] = ν0Km ln

(
1 +

[X2(t)]

KR

)
− b1[X2(t)] + C

Here C is an arbitrary integration constant, which depends on the ini-
tial conditions ⇒ the solutions do not approach a limit cycle attractor,
but there is a continuum of solutions corresponding to the continuum
of C.

Thus, this model is structurally not stable. Need to include also an
approach to the limit cycle.

The degradation can reasonably depend on the concentration

d[X1]

dt
=

ν0

1 + [X2]
KR

− k1[X1]

d[X2]

dt
= ν1[X1]− k2[X2]

However, this system cannot support any oscillations. Write it as

dx

dt
= f(x, y)

dy

dt
= g(x, y)

and assume there is a periodic solution (x(t), y(t)). It describes a closed contour C in the
phase plane. Use Green’s theorem for that contour

ˆ ˆ
D

∂f

∂x
+
∂g

∂y
dxdy =

ˆ
C
−gdx+ fdy

Along the contour we have

dx

dt
= f ⇒ dx = fdt

dy

dt
= g ⇒ dy = gdt

implying ˆ
C
−gdx+ fdy =

ˆ
−gfdt+ fgdt = 0.

Therefore we have the Bendixson-Dulac Theorem:

If ∂f
∂x

+ ∂g
∂y

has the same sign everywhere in a two-dimensional domain D, the dynamical
system cannot have a periodic orbit that lies completely in D.
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In the model above
∂f

∂x
+
∂g

∂y
= −k1 − k2 < 0.

Notes:

• The Bendixson-Dulac theorem is valid only in 2 dimensions.

• It can be generalized. It is sufficient if

∂ (φ(x, y)f)

∂x
+
∂ (φ(x, y)g)

∂y

does not change sign for some φ(x, y).

Goodwin considered then the model

d[X1[

dt
=

ν0

1 +
(

[X3]
Km

)p − k1[X1]

d[X2]

dt
= ν1[X1]− k2[X2]

d[X3]

dt
= ν2[X2]− k3[X3]

The analysis of this model is a bit more involved. One can show that the fixed point is
asymptotically stable and no oscillations arise unless p ≥ 8 (Griffith, 1968). Such high
values for the cooperativity of the reaction are unrealistic; it would require that at least 8
molecules are needed to form the activated complex leading to the mRNA.

What does the additional linear equation d[X2]
dt

= ν1[X1] − k2[X2] do compared to the 2-
dimensional model? For illustration purposes assume that [X1] oscillates harmonically,
[X1] = cos t. Then the equation is like

dy

dt
= −λy + cos t.

We showed before (36) that after a transient the solution approaches

y =
λ

λ2 + 1
cos t+

1

λ2 + 1
sin t =

1√
λ2 + 1

cos (t− φ)

with
φ = arctan

(
1

λ

)
Thus, y(t) lags behind cos t. The lag increases the smaller the decay rate λ; in the opposite
limit, λ→∞, y follows the driving adiabatical.
Analogously, [X2] lags behind [X1] and [X3] in turn lags behind [X2]. The additional equa-
tion therefore increases the delay with which the suppression on [X1] acts.

In general, delayed inhibition tends to foster oscillations:
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• large [X1] implies large suppression at later time

• the resulting reduced [X1] leads in turn to reduced suppression yet later

• which allows large [X1] later again.

Increasing the ‘delay line’ by adding further intermediate steps [Xj] reduces the degree p
of cooperativity needed to get oscillations (Fall et al., 2002).

Goodwin got periodic oscillations with p = 1. He must have an error in his simulations.
Never trust your computer results blindly.

The model can be modified to obtain oscillations much more generally, particularly even
for p = 1 (Bliss et al., 1982; Fall et al., 2002)17,

d[X1]

dt
=

ν0

1 + [X3]
Km

− k1[X1]

d[X2]

dt
= ν1[X1]− k2[X2]

d[X3]

dt
= ν2[X2]− k3[X3]

K + [X3]

Note:

• How does the nonlinear reaction term in the equation for X3 come about?

3.3 Michaelis-Menten Kinetics

Consider an enzymatic reaction that irreversibly produces a product P from an abundant
substrate S via a complex ES

Figure 66: Sketch of enzymatic re-
action.

E + S

k+1︷︸︸︷

︸︷︷︸
k−1

ES ES

k+2︷︸︸︷→ P + E

The reaction step from the complex to the product is
assumed to be irreversible.

This leads to the mass-action equations

d[S]

dt
= −k+

1 [E][S] + k−1 [ES]

d[ES]

dt
= k+

1 [E][S]− k−1 [ES]− k+
2 [ES]

In principle, there are also equations for [E] and [P ]

d[E]

dt
= . . .

d[P ]

dt
= . . .

17In (Bliss et al., 1982) the equations also include delays.
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However, in this reaction the total amount of enzyme
E is converved,

[E]T = [E] + [ES] = const.

Therefore [E] can be expressed in terms of [E]T

[E] = [E]T − [ES].

This leads to

d[S]

dt
= −k+

1 [E]T [S] +
(
k−1 + k+

1 [S]
)

[ES]

d[ES]

dt
= k+

1 [E]T [S]−
(
k−1 + k+

2 + k+
1 [S]

)
[ES].

The total amount of substrate - combined with the product - is also conserved

[S]T = [S] + [ES] + [P ] = const.

This would allow us to express [P ] in terms of [S], [ES] and and [S]T . However, because
of the irreversibility the product concentration does not appear in the evolution equations
for [S] and [ES]. We therefore do not need an equation for P .

We would like to have an equation only for [S] (and [P ]) without [ES], i.e. without referring
to the enzyme any more.

The key assumption in the Michaelis-Menten kinetics is that the enzyme concentration is
much smaller than the concentration of the substrate,

[E]T
[S]T

≡ ε� 1

Nondimensionalize the concentrations with [E]T and [S]T , respectively,

s =
[S]

[S]T
ês =

[ES]

[E]T

ds

dt
= −k+

1 [E]T s+

(
k−1

1

[S]T
+ k+

1 s

)
[E]T ês

dês

dt
= k+

1 [S]T s−
(
k−1 + k+

2 + k+
1 [S]T s

)
ês.

The rate of change of s is set by [E]T , while that for ês is set by [S]T � [E]T . We are
interested in the rate at which s is produced, which is much slower than the change in ês.
We therefore introduce a dimensionless time associated with the slower time scale

t̂ = t k+
1 [E]T

and get

ds

dt̂
= −s+

(
k−1
k+

1

1

[S]T
+ s

)
ês

dês

dt̂
=

1

ε

{
s−

(
k−1 + k+

2

k+
1 [S]T

+ s

)
ês

}
.
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Since ε � 1 ês evolves much faster than s and will very quickly reach its nullcline, i.e.
which is given by {} = 0⇒

ês =
s

k−1 +k+2
k+1 [S]T

+ s

Inserting this into the equation for s

ds

dt̂
= −s+

(
k−1
k+

1

1

[S]T
+ s

)
s

k−1 +k+2
k+1 [S]T

+ s

= −s+

(
k−1 + k+

2

k+
1

1

[S]T
+ s− k+

2

k+
1 [S]T

)
s

k−1 +k+2
k+1 [S]T

+ s

= −s+ s− k+
2

k+
1 [S]T︸ ︷︷ ︸
V̂max

s

k−1 + k+
2

k+
1 [S]T︸ ︷︷ ︸
K̂m

+s

= −V̂max
s

K̂m + s

Going back to the original variables

1

[S]Tk
+
1 [E]T

d[S]

dt
= − k+

2

k+
1 [S]T

[S]
k−1 +k+2
k+1 [S]T

[S]T + [S]

d[S]

dt
= −k+

2 [E]T
[S]

k−1 +k+2
k+1

+ [S]

d[S]

dt
= −Vmax

[S]

Km + [S]

with

Vmax = k+
2 [E]T Km =

k−1 + k+
2

k+
1

Thus,

• An irreversible enzymatic reaction that is limited by the availability of the enzyme has
a sigmoidal reaction rate.

• The reaction saturates already at low substrate concentrations (Km small), if the
complex lives long and therefore a lot of the enzyme is bound in the complex, i.e. for
k−1 + k+

2 small compared to k+
1 .

3.4 Circadian Oscillator

Now more specifically: what are the genes that are involved in the circadian oscillator?
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2114 Genetics: Konopka and Benzer

A. normal

< - 24 hours =

B. arrhythmic mutant

C. short-period mutant

CW-= 19 hours - >
D. long-period mutant

< --- 28 hours 3

Fig. 2. Locomotor activity rhythms, monitored in infrared light, for individual rhythmically normal or mutant flies previously ex-
posed to LD 12:12. Activity registered by event recorder. Records read from left to right, each new line representing the start of a suc-
cessive interval. For visual continuity, each successive interval is also replotted to the right of the immediately preceding interval. The
traces for normal and arrhythmic are plotted modulo 24 hr; for the short-period mutant modulo 19 hr is used; the long-period mutant is
plotted modulo 28 hr. T = 250C.

0.5 hr for the short-period mutant and 28.5 + 0.5 hr for the
long-period mutant, while no arrhythmic male showed any
evident periodicity. Eight normal C-S males showed an
average period of 23.8 i 0.5 hr. Thus, in every case, the
rhythm of ongoing locomotor activity in the adult corresponds
to the rhythm of eclosion for the population.

Genetic mapping of rhythm mutants
To locate the mutant genes on the X chromosome, recombina-
tion was measured with respect to morphological markers with
known position. Eclosion profiles were determined for various
recombinant types and compared to the normal parental type.
Fig 3 illustrates the method for the short-period mutant. The
result is that recombinants lacking the portion of the marked
chromosome carrying the genes for yellow-2 and scute (and,
hence, having obtained this portion from the rhythm-mutant
chromosome) display the mutant period. The reciprocal re-
combinants (not shown) have a normal period. Thus, this
rhythm mutation would appear to be located toward the left
end of the X chromosome (the centromere being at the right
end). The same procedure was also followed for the arrhythmic
mutant; it also mapped to the same portion of the chromo-
some. The mapping was repeated for both mutants using the
X-linked visible markers white, singed, and miniature; the re-
sults confirmed the assignment of both mutations to the left
end of the X chromosome.
As a further check on all three rhythm mutants, recom-

binant males were recovered from crosses using the markers
white, singed, miniature, or yellow, white, split. Each male was
mated to virgin attached-X females to produce a stock of
identical males, and the eclosion profile or locomotor rhythm
of the stock was determined. The results in all 27 cases tested
(9 for each rhythm mutant) were consistent with location of
all three mutations to the left of white.

Complementation tests on rhythm mutants

The recombination experiments indicated similar positions
on the X chromosome for the 3 rhythm mutations, raising
the question whether these mutations represent changes in
the same functional gene (cistron). This can be tested by
constructing females bearing a different rhythm mutation on
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Fig. 3. Genetic recombination of the short-period gene with
marker genes on the X chromosome. The eclosion profile is
shown for one recombinant type emerging from the cross, com-
pared to the normal and mutant parental types.

each of the two X chromosomes, and observing the resultant
rhythms. This has been done for all combinations of the 3
rhythm mutant genes with each other and with the normal
gene, measuring the activity rhythm on individual flies.
Table 1 gives the results. Note the cases of heterozygotes
with a mutant gene on one X chromosome and a normal gene
on the other. For both the arrhythmic and the long-period
mutants, the result is a rhythm with period close to normal.
Thus, these mutant genes may be regarded as recessive to
the normal one. In the case of the short-period mutant, how-
ever, the period of the heterozygote is intermediate between
short and normal. This gene can, therefore, influence the
rhythm even in the presence of a normal gene; it is only
partially recessive. When the short-period mutant gene is
opposed to the arrhythmic one, the rhythm displays a short
period. Similarly, the arrhythmic gene is overshadowed by
the long-period one. When the short-period and long-period
mutants are tested together the result is a period close to

...

.........

01 -4T- m a^2
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1

Figure 67: Drosophila: circadian locomotor behavior. Mutations resulting in arrhythmia or
rhythms with longer or shorter period. The rhythm seems to depend on a single gene, per.
(Konopka and Benzer, 1971).

Clock Mutants of Drosophila 2113

F2 progeny were raised in LD 12:12 at 250C, collected in the
pupal stage, and transferred to "bang boxes," as above. The
morphological phenotype of each male fly was scored by
microscopic examination, and the eclosion profile was plotted
for each parental and recombinant class.
Complementation tests on rhythm mutants
Flies heterozygous (in the trans arrangement) for two rhythm
mutations were constructed as follows. Males bearing one of
the mutations were crossed to females carrying the balancer
X chromosome FM 7, which contains multiple inversions to
suppress crossingover between the two X chromosomes, as
well as the dominant marker Bar for identification (22).
Virgin progeny females (mutant/FM 7) were crossed to males
bearing the second rhythm mutation, and the double hetero-
zygotes (identified by lack of the Bar marker) were selected.
These were tested individually in the locomotor-activity meter.
The same procedure was used for constructing flies hetero-
zygous for rhythm mutations and various X-chromosome
deletions.

RESULTS
Eclosion rhythms of normal and mutant strains
Fig. 1A shows the normal circadian rhythm of eclosion of
adults. The data shown are for attached-X females (carrying
the genetic markers yellow and forked), which were routinely
used as internal controls in experiments involving mu-
tants (see Methods). Their rhythm was indistinguishable
from that of the C-S males from which the rhythm mu-
tants were isolated. These eclosion peaks are somewhat
broader than those reported for D. pseudoobscura (23). In
pseudoobscura, the period of the eclosion rhythm has usually
been determined with reference to the median point of each
successive eclosion peak. For melanogaster, a more sharply de-
finable point is the time at which the peak rises to half its
maximum value. The average period for normal flies (Fig. 1A)
is about 24 hr.

Figs. 1B, 1C, and 1D show the rhythms for males of three
mutant types, each isolated by one-step mutation from the
normal C-S strain. One mutant is essentially arrhythmic;
another has a short period of about 19 hr; the third has a long
period of about 28 hr. These profiles are reproducible in re-
peated runs for each strain and the properties of the mutants
have been hereditarily transmitted over many generations.
Effect of temperature on the eclosion rhythms
Between 18'C and 250C, the period of the eclosion rhythm
of normal D. melanogaster remains constant to about 1 hr
(the interval used in collecting fractions). The same is true
for the short- and long-period mutants. The arrhythmic
mutant remains arrhythmic in this temperature range.
Locomotor activity rhythm in individual flies
Eclosion occurs only once in a fly's lifetime; to study the clock
that controls eclosion, one must observe an entire population.
This raises a question for the apparently arrhythmic mutant:
Is the absence of an eclosion rhythm due to lack of expression
of the clock or simply desynchronization of the various in-
dividual flies? To answer this, it is necessary to assay somew
ongoing phenomenon in a single fly. We chose to measure /
locomotor activity, using the photoelectric device described
in Methods. Earlier studies have demonstrated the exis-
tence of a rhythm of locomotor activity in Drosophila
(24-26).
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FIG. 1. Eclosion rhythms, in constant darkness, for popula-
tions of rhythmically normal and mutant flies, previously ex-
posed to LD 12:12. T = 20° C.

Fig. 2A shows the activity, as registered on an event recorder,
for a rhythmically-normal female (yellow, forked, attached-X).
The fly was raised in LD 12:12, then placed in the monitoring
device at the end of a light cycle. In these records, the offset
of activity was typically more abrupt than the onset, so that
the free-running period could be best determined by measure-
ment of the average drift in time of offset per day. The rhythm
shown in Fig. 2A, therefore, has a period of about 25 hr.
For 8 females studied, the average period was 24.5 4 0.4 hr.
Fig. 2B shows the activity of a female homozygous for the
arrhythmic mutation. The activity appears, by comparison,
random in time. Thus, this mutation has indeed abolished the
locomotor rhythm in individual flies. Four females studied
gave similar results, with no evident periodicity.

Fig. 2C shows the activity for a homozygous short-period
female. To better illustrate the short period, these records are
displayed using a modulus of 19 hr. The locomotor activity
rhythm for 5 short-period females was 19.5 ± 0.4 hr. Fig. 2D
is for a homozygous long-period female, presented modula
28 hr. The average period for 4 females was 28.6 ± 0.5 hr.
Males of each mutant strain were also monitored (7 ar-

rhythmic, 6 short-period, 4 long-period). The results were
similar to those for females, giving average periods of 19.2 ±
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F2 progeny were raised in LD 12:12 at 250C, collected in the
pupal stage, and transferred to "bang boxes," as above. The
morphological phenotype of each male fly was scored by
microscopic examination, and the eclosion profile was plotted
for each parental and recombinant class.
Complementation tests on rhythm mutants
Flies heterozygous (in the trans arrangement) for two rhythm
mutations were constructed as follows. Males bearing one of
the mutations were crossed to females carrying the balancer
X chromosome FM 7, which contains multiple inversions to
suppress crossingover between the two X chromosomes, as
well as the dominant marker Bar for identification (22).
Virgin progeny females (mutant/FM 7) were crossed to males
bearing the second rhythm mutation, and the double hetero-
zygotes (identified by lack of the Bar marker) were selected.
These were tested individually in the locomotor-activity meter.
The same procedure was used for constructing flies hetero-
zygous for rhythm mutations and various X-chromosome
deletions.

RESULTS
Eclosion rhythms of normal and mutant strains
Fig. 1A shows the normal circadian rhythm of eclosion of
adults. The data shown are for attached-X females (carrying
the genetic markers yellow and forked), which were routinely
used as internal controls in experiments involving mu-
tants (see Methods). Their rhythm was indistinguishable
from that of the C-S males from which the rhythm mu-
tants were isolated. These eclosion peaks are somewhat
broader than those reported for D. pseudoobscura (23). In
pseudoobscura, the period of the eclosion rhythm has usually
been determined with reference to the median point of each
successive eclosion peak. For melanogaster, a more sharply de-
finable point is the time at which the peak rises to half its
maximum value. The average period for normal flies (Fig. 1A)
is about 24 hr.

Figs. 1B, 1C, and 1D show the rhythms for males of three
mutant types, each isolated by one-step mutation from the
normal C-S strain. One mutant is essentially arrhythmic;
another has a short period of about 19 hr; the third has a long
period of about 28 hr. These profiles are reproducible in re-
peated runs for each strain and the properties of the mutants
have been hereditarily transmitted over many generations.
Effect of temperature on the eclosion rhythms
Between 18'C and 250C, the period of the eclosion rhythm
of normal D. melanogaster remains constant to about 1 hr
(the interval used in collecting fractions). The same is true
for the short- and long-period mutants. The arrhythmic
mutant remains arrhythmic in this temperature range.
Locomotor activity rhythm in individual flies
Eclosion occurs only once in a fly's lifetime; to study the clock
that controls eclosion, one must observe an entire population.
This raises a question for the apparently arrhythmic mutant:
Is the absence of an eclosion rhythm due to lack of expression
of the clock or simply desynchronization of the various in-
dividual flies? To answer this, it is necessary to assay somew
ongoing phenomenon in a single fly. We chose to measure /
locomotor activity, using the photoelectric device described
in Methods. Earlier studies have demonstrated the exis-
tence of a rhythm of locomotor activity in Drosophila
(24-26).
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FIG. 1. Eclosion rhythms, in constant darkness, for popula-
tions of rhythmically normal and mutant flies, previously ex-
posed to LD 12:12. T = 20° C.

Fig. 2A shows the activity, as registered on an event recorder,
for a rhythmically-normal female (yellow, forked, attached-X).
The fly was raised in LD 12:12, then placed in the monitoring
device at the end of a light cycle. In these records, the offset
of activity was typically more abrupt than the onset, so that
the free-running period could be best determined by measure-
ment of the average drift in time of offset per day. The rhythm
shown in Fig. 2A, therefore, has a period of about 25 hr.
For 8 females studied, the average period was 24.5 4 0.4 hr.
Fig. 2B shows the activity of a female homozygous for the
arrhythmic mutation. The activity appears, by comparison,
random in time. Thus, this mutation has indeed abolished the
locomotor rhythm in individual flies. Four females studied
gave similar results, with no evident periodicity.

Fig. 2C shows the activity for a homozygous short-period
female. To better illustrate the short period, these records are
displayed using a modulus of 19 hr. The locomotor activity
rhythm for 5 short-period females was 19.5 ± 0.4 hr. Fig. 2D
is for a homozygous long-period female, presented modula
28 hr. The average period for 4 females was 28.6 ± 0.5 hr.
Males of each mutant strain were also monitored (7 ar-

rhythmic, 6 short-period, 4 long-period). The results were
similar to those for females, giving average periods of 19.2 ±
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Figure 68: Drosophila eclosion rhythms: circadian emergence of adults from their pupal
cases (population of pupae was synchronized by 12:12 light-dark cycle) (bottom, axis is
time in days). The same mutations that lead to changes in locomotor rhythm lead to
corresponding changes in eclosion rhythms (Konopka and Benzer, 1971).

Experimental findings

• per (=period) gene is a key element of the circadian oscillator. It is found to be nec-
essary for circadian locomotor behavior and for the emergence of adult flies from
their pupal cases and for the entrainment to the light cycle ⇒ this suggests a rela-
tively centrally positioned clock that controls many different functions of the organism
or at least functions as a central pacemaker that entrains other clocks.

• PER protein - resulting from translation based on per messenger RNA (mRNA) and
transfer RNA (tRNA) - becomes multiply phosphorylated by kinases. The phospho-
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rylation is reversible (reverse via phosphatases) (Edery et al., 1994).
Phosphorylation of proteins is a key mechanism to switch specific functions of pro-
teins on or off. The attached phosphate group changes the conformation of the
protein and with it its function. A protein can have many different phosphorylation
sites.

• the degradation and the entry into the cell nucleus depends on the degree of phos-
phorylation of PER.

• in the nucleus PER represses the transcription of per mRNA (Hardin et al., 1990)
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Phosphorylation

Reversible protein phosphorylation, principally on serine, threonine or tyrosine residues, is one of
the most important and well-studied post-translational modifications. Phosphorylation plays
critical roles in the regulation of many cellular processes including cell cycle, growth, apoptosis
and signal transduction pathways.

Phosphorylation is the most common mechanism of regulating protein function and transmitting
signals throughout the cell. While phosphorylation has been observed in bacterial proteins, it is
considerably more pervasive in eukaryotic cells. It is estimated that one-third of the proteins in
the human proteome are substrates for phosphorylation at some point. Indeed,
phosphoproteomics has been established as a branch of proteomics that focuses solely on the
identification and characterization of phosphorylated proteins.

Mechanism of phosphorylation
While phosphorylation is a prevalent post-translational modification (PTM) for regulating protein function, it only occurs at the side chains of three amino

acids, serine, threonine and tyrosine, in eukaryotic cells. These amino acids have a nucleophilic (–OH) group that attacks the terminal phosphate group

(γ-PO ) on the universal phosphoryl donor adenosine triphosphate (ATP), resulting in the transfer of the phosphate group to the amino acid side chain.

This transfer is facilitated by magnesium (Mg ), which chelates the γ- and β-phosphate groups to lower the threshold for phosphoryl transfer to the

nucleophilic (–OH) group. This reaction is unidirectional because of the large amount of free energy that is released when the phosphate–phosphate

bond in ATP is broken to form adenosine diphosphate (ADP).

Diagram of serine phosphorylation. Enzyme-catalyzed proton transfer from the (–OH) group on serine stimulates the nucleophilic attack of the γ-phosphate group on ATP,

3
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Phosphorylation | Thermo Fisher Scientific https://www.thermofisher.com/us/en/home/life-science/protein-b...
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Figure 69: Serine becomes phosphorylated by transfer of the γ-phosphate group on ATP.
The reaction is catalyzed by an enzyme (marked -B:). Breaking the phosphate-phosphate
bond in ATP releases a large amount of energy and makes the reaction unidirectional. ATP
needs to be regenerated, which requires metabolic energy. Figure from ThermoFisher
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luted 1:3000 in blocking solution. After a further wash in
TBST, visualization of PER was performed by chemilumi-
nescence (Amersham) and autoradiography. Typically, ex-
posures were for 10-30 min.

Immunoprecipitation. Head extracts were prepared as de-
scribed above except that solution HP was used instead of
HE [HP: HE containing 1% Triton X-100 (final concentra-
tion) and 0.1% SDS]. All subsequent steps were performed at
4TC. Nonspecific interactions were removed by incubating
homogenates with 15 /l4 of a 1:1 slurry of Gammabind
Sepharose (Pharmacia). Following a 15-min incubation with
constant agitation, samples were centrifuged for 5 min and
the clarified supernatant was removed to a fresh tube. Equal
amounts (mg) of protein (-1.5 mg total) were incubated with
a 1:3000 dilution ofanti-HA (12CA5, Babco, Emeryville, CA)
monoclonal antibody. After 4 hr of incubation, 15 gl of a 1:1
slurry ofGammabind-plus Sepharose (Pharmacia) was added
for an additional 1 hr. Beads were washed three times with 1
ml of HP, subsequently resuspended in 15 1A of 2x SDS
sample buffer, boiled, and analyzed by Western blotting.

Bacterial and Heat-Inducible Expression of PER. Bacterial
expression of PER (pET/PER) was done essentially as
described (9), except that the entire PER coding region was
used. Briefly, a plasmid encompassing the entire coding
region of the major form of per mRNA (pCDA; ref. 17) was
subjected to partial Nco I (5' site; start of translation) and
complete EcoRI (3' site) digestion. The released 6.2-kb
fragment was ligated directly into pET-lid (Novagen). The
resulting plasmid, pET-lldper, was transformed into BL21-
(DE3)pLysS recipient cells and induced by addition of iso-
propyl ,3D-thiogalactopyranoside to a final concentration of
0.4 mM. Pelleted cells were resuspended in 2x SDS sample
buffer and boiled. Heat-inducible expression of PER in flies
(HspPER) was achieved by generating a new set oftransgenic
lines bearing a cDNA copy of per fused downstream of the
heat shock 70 promoter (18). To induce HspPER, unen-
trained 3- to 7-day-old flies (we used the transgenic line
designated per0O ;hspc-23a) were heat shocked for 1 hr at 37° C
in a water bath and allowed to recover at 25° C for 1 hr. Head
extracts were prepared, incubated with 2x SDS sample
buffer, and boiled.

Phosphatase Treatment. Immunoprecipitation with anti-
hemagglutinin (anti-HA) antibodies was as described above.
Following the final wash in HP, the beads were equilibrated
with 2x 1-ml washes in PAP solution (100 mM Mes/0.5 mM
dithiothreitol/0.2 mM phenylmethylsulfonyl fluoride/20 Pg
of aprotinin per ml/10 pg of leupeptin per ml/10 pg of
pepstatin A per ml, pH 6.0) and resuspended in 35 ,l4 of PAP
solution. Phosphatase treatment was performed by adding 2
units of potato acid phosphatase (PAP; Boehringer Mann-
heim; resuspended in 10 pl of PAP solution) directly to the
slurry and further incubated for 30 min at 37° C. Subse-
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quently, samples were placed on ice and washed with 2x 1
ml of ice-cold HP. Washed beads were resuspended in 30 ,ul
of 2x SDS sample buffer, boiled, centrifuged, and the super-
natant was directly analyzed by Western blotting using
B6PER antibodies.

RESULTS
Temporal Changes in the Apparent Size of Wild-Type PER.

Numerous past attempts to visualize wild-type PER by blot-
ting have failed (I.E. and L.J.Z., unpublished data). A likely
explanation is that PER levels are low and not biochemically
detectable by any of the previously reported anti-PER anti-
bodies. We therefore immunized rats with PER isolated from
a baculovirus expressing system in the hope of generating
better anti-PER antibodies. One such serum, termed B6PER,
was found to be at least 10 times more sensitive than a
previously reported anti-PER antibody (anti-EcoPER; ref. 9)
when assayed by Western blotting (data not shown). Based on
this initial result, we were encouraged to try the B6PER
antibody to probe homogenates prepared from wild-type fly
heads. Using the very sensitive chemiluminescent technique,
we were able to detect a specific immunoreactive band mi-
grating at -180 kDa (data not shown; see below).
Three criteria indicate that the -180-kDa band corre-

sponds to the product of the per gene. (i) No signal was
detected in extracts prepared from flies that carry the perol
mutation, which contains a stop codon within the PER open
reading frame (refs. 19 and 20; data not shown; Fig. 1A,
compare lanes 7 and 8). (ii) We assayed PER levels as a
function of ZT (time in an alternating light:dark cycle; Fig. 1
A and B). Wild-type flies were entrained in the presence of
alternating cycles of LD (where ZT12 is defined as onset of
dark period and ZTO as onset of light period), and head
extracts were directly assayed by Western blotting with
B6PER antibodies. As predicted from the earlier immuno-
histochemical results (14, 15), PER levels oscillate in a daily
manner and reach maximal levelsjust prior to the onset ofthe
light period (e.g., Fig. 1A, lane 6). Minimal levels occurred
between ZT6 (lane 2) and ZT12 (lane 3), in excellent agree-
ment with the histochemical results of Zerr et al. (15). (iii) As
an independent indication that the observed band and fluc-
tuations were due to PER, we assayed a transgenic strain
bearing an epitope-tagged version of PER (HA/C; ref. 21).
Previous studies showed that a hybrid protein containing a
HA peptide at the carboxyl terminus of PER (HA/PER) had
essentially indistinguishable biological activity from wild-
type PER with respect to circadian rhythms (21). HA/PER
was immunoprecipitated from head extracts with an anti-HA
antibody (12CA5) and visualized by incubating Western blots
in the presence of B6PER antibody (Fig. 1C). The fusion
protein undergoes oscillations similar to those of wild-type
PER (compare Fig. 1C to 1A and 1B), and no signal was

C ZT: 24 15 18 20 24 02 06

f~ s ]-HAIPER

1 2 3 4567I

1 2 3 4 5 6 7

FIG. 1. Time-dependent changes in mobility and abundance of per protein (PER). (A) Total head extracts were prepared from either
LD-entrained wild-type (lanes 1-7) or per0l (lane 8, *) flies, frozen at the indicated times, and analyzed for PER by Western blotting using
anti-PER antibodies. (B) Identical to A except an independent experiment is shown. (C) Total head extracts were prepared from either HA/C
(lanes 2-7) or wild-type (lane 1, *) flies frozen at the indicated times, immunoprecipitated with anti-hemagglutinin (anti-HA) antibodies, and
subsequently analyzed by Western blotting in the presence of anti-PER antibodies. The Zeitgeber time (ZT, hours) of fly collection is shown
at the top and the size range of PER (A and B) and HA/PER (C) is indicated to the left and right of each panel, respectively. Comparisons of
head extracts prepared at the different time points (A and B) did not reveal any differences in total protein staining (I.E., unpublished data).

Neurobiology: Edery et al.

I

Figure 70: Western blot of PER protein at different circadian times (‘Zeitgeber’ time ZT,
ZT=0 corresponds to onset of light) shows different expression levels (darkness) and
increase in size (vertical shift) from ZT12 to ZT02. Western blots measure the size of
molecules via electrophoresis in a gel using the dependence of the molecule mobility on
its size. Using phosphatase that completely dephosphorylizes the PER showed that the
change in molecular size is due to phosphorylation. (Edery et al., 1994)
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 I per transcription nuclear PER (PN)I

 k ~~~~~~~~~~~~~Vd
 per mRNA (M) - k oPER, PERI2

 (Po) (P1 (P2

 Figure 1. Scheme of the model for circadian oscillations in PER and per mRNA (see text). per mRNA (M) is

 synthesized in the nucleus and transfers to the cytosol, where it accumulates at a maximum rate vs; there it is degraded
 by an enzyme of maximum rate vm and Michaelis constant Km. The rate of synthesis of the PER protein, proportional

 to M, is characterized by an apparent first-order rate constant ks. Parameters Vi and Ki (i = 1,... 4) denote the
 maximum rate and Michaelis constant of the kinase(s) and phosphatase(s) involved in the reversible phosphorylation

 of PO into P1 and P1 into P2, respectively. The fully phosphorylated form (A2) is degraded by an enzyme of maximum
 rate vd and Michaelis constant Kd, and transported into the nucleus at a rate characterized by the apparent first-order
 rate constant k1. Transport of the nuclear, bisphosphorylated form of PER (PN) into the cytosol is characterized by
 the apparent first-order rate constant k2. The negative feedback exerted by nuclear PER on per transcription is
 described by an equation of the Hill type (see first term in equation (la)), in which n denotes the degree of
 cooperativity, and KI the threshold constant for repression.

 complicated oscillatory dynamics might nevertheless

 occur with a much higher number of variables remains
 to be seen).

 The role of PER phosphorylation is still unclear. It

 has been suggested (Edery et al. 1994) that
 phosphorylation may control nuclear localization

 and/or degradation of PER. Here we assume that the
 fully phosphorylated form (P2) is marked both for
 degradation and for reversible transport into the

 nucleus. In the absence of more detailed information,

 alternative assumptions could, at this stage, be
 retained. Thus, degradation of PER could also be

 directed at the nuclear form of PER (PN), or at the
 unphosphorylated or monophosphorylated forms of
 the protein, both of which could also be transported
 into the nucleus. Such changes would probably
 produce only minor modifications in dynamic be-
 haviour, but delaying PER entry into the nucleus and

 degradation until the protein is fully phosphorylated -
 as considered here - should favour the occurrence of

 sustained oscillations (see ?5). The assumption that
 only the fully phosphorylated form of PER enters the
 nucleus introduces a delay, which is consistent with

 recent observations on delayed PER nuclear entry

 (Curtin et al. 1995); such a delay could be caused, at
 least in part, by PER phosphorylation.

 Crucial to the mechanism of oscillations in the model
 is the negative feedback exerted by nuclear PER on the
 production of per mRNA. This negative feedback is
 described by an equation of the Hill type. To simplify
 the model, we consider that PN behaves directly as a
 repressor; activation of a repressor upon binding of PN
 would not significantly alter the results. The time
 evolution of the five-variable model is governed by the
 following kinetic equations, in which all parameters
 and concentrations are defined with respect to the total

 cell volume (see the figure 1 legend for a definition of
 the various parameters):

 dM KIn M

 dt VsKnPnVmK +M K la

 dPO k M-V, P +V2 Pi (lb)
 dt S 1K +PO K2K+pl

 dP V PO0 V P1 V P1 P2
 dt K- + KK2+ + pl K3 + p + K4 + P2

 (1lc)

 dt 3 PiV - V4 p -k P2+k2PN-Vd KP2
 dt 3K3 +P l K4 +P2 1d+P

 (1 d)

 dPN k p -kp P
 dt 1 2 2 N (1e)

 The total (nonconserved) quantity of PER protein, P,
 is given by:

 Pt= PO+Pl+P2+PN (2)

 3. THE PER CIRCADIAN CLOCK AS LIMIT

 CYCLE OSCILLATOR

 Numerical integration shows that in a large domain

 of parameter values, instead of evolving toward a
 stable steady state, the system governed by equations
 (1 a-e) reaches a regime of sustained, periodic
 oscillations. The temporal variation in per mRNA and
 the variation in nuclear PER are shown in figure 2;
 also shown is the periodic variation in the total amount
 of PER protein and in the unphosphorylated and

 Proc. R. Soc. Lond. B (1995)
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Figure 71: Reaction scheme underlying the Goldbeter model (Goldbeter, 1995). The
subscript on PER0,1,2 indicates the phosphorylation level of the PER protein.

Based on the experimental evidence Goldbeter proposed the following ‘simple’ model

dM

dt
= νs

Kn
1

Kn
I + P n

N

− νm
M

Km +M

dP0

dt
= ksM − V1

P0

K1 + P0

+ V2
P1

K2 + P1

dP1

dt
= V1

P0

K1 + P0

− V2
P1

K2 + P1

− V3
P1

K3 + P1

+ V4
P2

K4 + P2

dP2

dt
= V3

P1

K3 + P1

− V4
P2

K4 + P2

− k1P2 + k2PN − νd
P2

Kd + P2

dPN
dt

= k1P2 − k2PN

where M is the per mRNA, P0,1,2 represents the concentration of the PER protein at dif-
ferent phosphorylation levels, PN is the concentration of nuclear PER protein.

Notes:

• The enzymatic phosphorylation is modeled by Michaelis-Menten kinetics.

• The model is in some sense an elaborated Goodwin model

– negative feedback: repression of the first step (mRNA transcription) by the prod-
uct (PER protein)

– multiple phosphorylation steps lead to delay

• Only the doubly-phosphorylated PER degrades.

• Only the doubly-phosphorylated PER enters the nucleus. This introduces an addi-
tional delay compared to the case in which nuclear entry is also possible for monophos-
phorylated PER.

• As in the Goodwin model, the cooperativity of the negative feedback (n > 1) widens
the parameter regime in which oscillations arise.
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 Figure 2. Sustained oscillations generated by the model based
 on negative regulation of per mRNA synthesis by the PER
 protein in Drosophila. The temporal variation in per mRNA
 (M) and in the total amount of PER protein (Pt) is shown,
 together with the variation in nuclear PER (PN) and in
 the unphosphorylated (P0) and phosphorylated, cytosolic
 (P1 and P2) forms of the protein. The curves are obtained by
 numerical integration of equations (la-e); Pt is given by
 equation (2). Parameter values are: vs= 0.76 HtM h-1, Vm =
 0.65 HtM h-1, Km = 0.5 HtM, ks = 0.38 h-1, Vd = 0.95 HtM h-1,
 k1 = 1.9 h-1, k2 =1.3 h1, KI = 1 [M, Kd =0.2 tM, n =4,

 K1= K2 =K3 = K4 =2 tM, 71 = 3.2 tM h-1 V2 =1.58tM h-1,
 V3 = 5 HM h-1, V4 = 2.5 HtM h-1. The model can also produce
 sustained oscillations for n = 2 or n = 1, in a domain in
 parameter space smaller than for n =4. In the absence, at
 this stage, of detailed information on concentrations and
 kinetic constants, the above parameter values have been

 chosen so as to yield a period close to 24 h; the concentration

 scale is given tentatively in IIM.

 phosphorylated, cytosolic forms of PER. For a period

 close to 24 h, under the conditions of figure 2, the phase

 shift between the peaks in per mRNA and nuclear PER

 is of the order of 7 h, whereas the phase difference

 between total PER and per mRNA is shorter: about

 4.5 h. Such a result is consistent with the observation

 that the maximum total PER protein follows the peak

 in per mRNA by about 4 h (Zeng et al. 1994). The

 model should prove useful in investigating the way

 various parameters control the duration of the delay

 between the mRNA and the various forms of PER.

 The sensitivity of the model to parameter variation

 has been investigated by determining how the period

 alters when each of the parameters in turn is varied by

 + 5 00. The results show that in the conditions of figure

 2, in response to such a variation in any of the

 parameters, the largest change in period is less than

 + 2.7?0o.
 Sustained oscillations in PER and per mRNA

 correspond to the evolution toward a limit cycle, away

 from the unstable steady state. This is demonstrated in

 figure 3 where the level of per mRNA is plotted as a

 function of the total amount of PER protein for two

 different initial conditions, one located inside and the

 other outside the limit cycle. In each case, the

 projection of the trajectory followed by the five-

 variable system shows that the system evolves towards

 the same, unique closed curve in the phase plane (M,

 Pt). Limit cycle oscillations are particularly stable

 because they are characterized by a unique amplitude

 and frequency for a given set of parameter values,

 3

 0 1 2 3 4 5 6

 total PER protein (Pt)

 Figure 3. Sustained oscillations in PER protein and per

 mRNA correspond to the evolution toward a limit cycle in

 the (M, P,) plane. Starting from two different sets of initial
 conditions, the system eventually reaches a unique, closed

 curve characterized by a period and amplitude that are fixed

 for the given set of parameter values. The initial conditions,

 located outside or inside the limit cycle, are, respectively, in

 HtM (tentative scale): M = 0.1, PO = P1 = P2 = PN = 0.25 (Pt
 = 1), and M= 1.9, PO = P1 = P2 = PN = 0.8 (P, = 3.2).
 The trajectories are obtained as in figure 2, for the same set

 of parameter values.

 regardless of initial conditions (Minorsky 1962; Nicolis

 & Prigogine 1977). The limit cycle nature of the
 oscillations, long considered for circadian rhythms,
 allows for their suppression by a critical perturbation

 that brings the oscillatory system back to its singularity,
 i.e. the steady state (Winfree 1980). Limit cycle models

 of an abstract mathematical nature or borrowed from
 physical sciences, as in the case of the Van der Pol

 oscillator, have often been used to analyse properties
 of circadian clocks (Wever 1972; Pavlidis 1973;

 Kronauer et al. 1982; Lakin-Thomas et al. 1991). The
 present model provides a molecular basis for circadian

 oscillations of the limit cycle type.

 4. DEPENDENCE OF THE PERIOD ON THE

 RATE OF PER DEGRADATION

 Repression by PER is at the core of the oscillatory
 mechanism and therefore the maximum rate vd at

 which PER is degraded is a key control parameter of
 the model. The model predicts that sustained
 oscillations occur in a window bounded by two critical
 values of this parameter. In that window, under the
 conditions of figure 2, the period of the oscillations
 increases from 19.3 h up to 64 h. Such long periods
 have not been reported for Drosophila, but periods
 approaching 50 h have been found at low light
 intensity in the per' mutant (Konopka et al. 1989). The
 period range in the window of Vd values depends on
 other parameters. Thus, for a larger value of the rate of

 protein synthesis measured by parameter ks, the period
 varies as a function of vd from 15.9 to 62.1 h (see figure

 4). The period of PER oscillations rises with the rate of

 PER degradation as a result of the longer time required

 Proc. R. Soc. Lond. B (1995)
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Figure 72: Circadian oscillations in the Goldbeter model (using n = 4). Note the delays
with which concentrations of the phosphorylated PER rise. Pt = P0 + P1 + P2 + PN .
(Goldbeter, 1995).

Mutations:

• One possible interpretation of the variation of the period with mutations of the per
gene is via the degradation of the PER protein (by changing its structure):

– with faster degradation it will take longer for enough per to accumulate to re-
press the transcription of its mRNA⇒ the period goes up in the model

• Other interpretations are possible. It is not clear whether the mechanism how the
mutations change the period is understood yet.

More genes are involved in the circadian rhythm (e.g. tim (‘timeless’)) and other models
capturing other aspects have been developed (e.g. Tyson model (Tyson et al., 1999)).
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 Figure 4. Dependence of the period of PER oscillations on the

 maximum rate of PER degradation, vd. The data points are
 obtained by numerical integration of equations (la-e) for
 different values of Vd (in ztM h-1); other parameter values are

 as in figure 2, with k, = 0.78 h-1. Outside the indicated range
 of vd values, sustained oscillations do not occur and the system
 evolves toward a stable steady state. Arrows indicate the
 putative, approximate location of the mutants perT, pers and
 per', and of the wild type per' as a function of vd. In addition
 to (or instead of) changes in Vd, variations in other
 biochemical parameters of the model might underlie the
 changes in period seen in various per mutants.

 to reach the threshold beyond which the protein
 significantly represses the transcription of its gene.

 The results in figure 4 show that mutations affecting
 the structure of the PER protein (either hindering or
 enhancing its enzymic degradation), would result in a
 shortening or lengthening of the period, as in the pers
 and per' mutants, which have a period close to 19 h and
 29 h, respectively (Konopka & Benzer 1971) (see
 arrows in figure 4). The ultrashortperTmutant recently
 described (Konopka et al. 1994), which has a period
 close to 16 h, would also fall in the range shown in
 figure 4. The explanation of per mutants in terms of the
 PER degradation rate is only tentative and illustrates
 how the model may serve to pinpoint the parameters
 whose changes might cause the period alterations in
 the mutants. In the framework of the explanation in
 terms of vd, it is tempting to predict, at first view, that
 the level of PER in perT and pers should be larger than

 in the wild type, because of the reduced value of vd in
 the mutants. Such differences in PER levels are not
 observed in the experiments (see, for example,
 Konopka et al. 1994). However, the link between the
 level of PER and vd is far from straightforward: indeed,
 a counterintuitive prediction of the model is that the
 maximum level of total PER protein reached in the
 course of oscillations rises as the maximum rate of PER
 degradation increases, because the time evolutions of
 PER and per mRNA are closely intertwined.

 Another key parameter that controls the oscillations
 is the rate constant k1 related to the transport of PER
 into the nucleus. Again, there is a range of k1 values
 that produce sustained oscillations, but the period
 decreases as k, increases. If the rate of PER transport
 into the nucleus goes below a critical value, sustained

 oscillations disappear and the system evolves toward a
 stable steady state.

 5. DISCUSSION

 The model for circadian oscillations in PER protein
 and per mRNA presented here is closely related to the
 work of Goodwin (1965) who discussed the conditions
 in which a protein repressing the transcription of its
 gene can produce sustained oscillations in the levels of

 that protein and its mRNA. The equations originally
 proposed were not sufficiently nonlinear to give rise to
 limit cycle oscillations. Equations of that type were later
 investigated for limit cycle behaviour (Griffith 1968),
 and used explicitly for circadian rhythms to determine

 phase response curves with respect to transient pertur-
 bations (Drescher et al. 1982). Similar equations were
 also studied to predict how sustained oscillations occur

 in a metabolic pathway regulated by end-product

 inhibition (Morales & McKay 1967; Walter 1970;
 Hunding 1974; Rapp 1975; Tyson & Othmer 1978).
 These models showed that periodic behaviour is
 favoured, both by enlarging the length of the enzymatic
 chain that leads from the regulated step to the end-
 product, and by increasing the degree of cooperativity
 of negative feedback. These results bear on the model
 for PER oscillations. Here, as in a cascade model for
 the mitotic oscillator (Goldbeter 1991, 1995), the
 sequence of successive phosphorylations of the PER
 protein can be viewed as introducing a series of time
 delays, an effect similar to that of increasing the
 number of intermediate steps in the enzymatic chain
 regulated by end-product inhibition. Incorporating
 more than two phosphorylation steps into the model
 should therefore enlarge the domain of sustained
 oscillations. The model schematized in figure 1 can be
 seen as minimal compared with the model considered
 by Abbott et al. (1995), which treats multiple PER
 phosphorylation in a more comprehensive manner.

 With regard to the role of nonlinear feedback
 control, the periodic behaviour shown in figure 3
 occurs for a repression function characterized by a
 cooperativity coefficient n equal to 4. A value of 2, or
 even 1, for n can also give rise to sustained oscillations;
 however, the domain of oscillations in parameter space
 is then smaller than for n = 4. Thus, if the cooperativity
 of repression favours periodic behaviour, multiple
 phosphorylation of PER, by introducing a series of
 delays, reinforces, and could even substitute for the
 effect of such cooperativity in allowing for sustained
 oscillations. This conclusion supports the view (Curtin
 et al. 1995; Abbott et al. 1995) that, by gating PER
 entry into the nucleus, PER phosphorylation delays
 the negative feedback exerted by PER on per tran-
 scription, and thereby, at the same time, strengthens
 the capability of such feedback to produce robust
 oscillations and contributes to raise their period up to
 circadian values.

 The behaviour of per mutants was interpreted in
 figure 4 in terms of variations in the maximum rate of
 PER degradation. However, the variation in PER
 degradation rate may not be the only factor- or even
 the main factor-responsible for the alteration in
 period seen in per mutants. Thus, recent observations
 show that the delay in nuclear entry is normal for the
 pers mutant, but increases in the mutant pert (Curtin

 Proc. R. Soc. Lond. B (1995)
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Figure 73: The period of the oscillation in the model increases with increasing degradation
rate of PER. The arrows indicate putative values for the various mutants (Goldbeter, 1995).

If PER is a key part of the circadian clock it has to reflect the impact of the day-night cycle,
its expression has to depend on light.
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 abundance and phosphorylation of PER are
 suppressed in timo1 flies (15). The amount
 of tim mRNA cycles with a phase and am-
 plitude indistinguishable from those for per
 (16). Daily oscillations in tim transcripts
 depend on the presence of both PER and
 TIM, which suggests that a shared mecha-
 nism participates in the autoregulation of
 per and tim (16). The tim protein (TIM)
 may contribute to cyclic expression of per
 and tim (and possibly downstream output
 genes) by regulating the timing of PER
 nuclear entry (14, 16, 17).

 One prediction suggests that cycles of per
 that are integral components of the time-
 keeping mechanism should be perturbed in
 a relatively rapid manner by environmental
 signals that shift the phase of the clock. To
 determine the effects of photic stimuli on
 PER phosphorylation and abundance, we
 simultaneously entrained two identical sets
 of wild-type Canton-S (CS) flies with four
 cycles of 12 hours of light and 12 hours of
 dark [LD 12:12; here, zeitgeber time 12
 (ZT12) is lights off and ZT24 is lights on]
 and subsequently maintained them under
 constant dark conditions (DD). Light pulses
 of 5 to 60 min in duration (18) were ad-
 ministered at either ZT15 or ZT21.5, be-
 cause these times in a daily cycle yield the
 largest phase delays (approximately 3.5 to 4
 hours) and phase advances (approximately
 2.5 to 3 hours) in locomotor activity
 rhythms, respectively (19, 20). Untreated
 control and light-pulsed flies were collected
 at various times before and after the envi-
 ronmental perturbation, and head extracts
 were probed for PER by immunoblotting
 (Fig. 1) (21).

 Not only did the abundance of PER
 fluctuate (7-9) (Fig. IA), reaching peak
 levels at time 20 to 22 (T20-22, the number

 of hours since the last dark-to-light transi-
 tion at ZTO), but the mobility of PER in
 SDS-polyacrylamide gels oscillated on a
 daily basis (7, 8). There was an increase in
 the apparent molecular weight of the largest
 (slowest migrating) PER isoforms between
 T15 and T22-24, and the smaller PER spe-
 cies disappeared beginning at T20-22 (Fig.
 1, A and B) (compare the distance between
 the slowest and fastest migrating PER spe-
 cies and the internal size standard). These
 variations in the apparent molecular weight
 of PER are a result of daily changes in its
 phosphorylated state (7).

 A light pulse at ZT15 elicited delays in
 both the phosphorylation of PER and its dis-
 appearance (Fig. 1, A and B) (compare the
 mobility of PER at T22 and T24 and its
 abundance at T30). Migration of the largest
 PER species in ZT15-treated flies is most sim-
 ilar to that measured in control flies 3 to 4
 hours earlier (Fig. iB). These light-induced
 delays in PER phosphorylation and disappear-
 ance are consistent with the direction and
 magnitude of the phase shift in behavior in
 flies pulsed with light at ZT15 (19, 20) (Fig.
 IC). The earliest detectable changes in the
 mobility of PER were at T17 (22). Further-
 more, the delay in the PER biochemical cycles
 was maintained in the second day of DD after
 a light pulse at ZT15 (Fig. ID) which dem-
 onstrates that light pulses evoke a stable shift
 in the temporal regulation of PER.

 In contrast, light treatment at ZT21.5
 caused the disappearance of PER approxi-
 mately 2 to 4 hours earlier (Fig. IE). PER
 was essentially undetectable in the light-
 pulsed and control flies at T26-28 and T30,
 respectively. Although in untreated flies
 PER does not undergo large increases in
 electrophoretic mobility after T22 (Fig. 1,
 B, F, and G), the average mobility of PER is

 greater in the light-pulsed flies than in con-
 trol flies collected at the same times (Fig. 1,
 F and G). These changes in PER abundance
 and phosphorylation correlate with the
 ability of photic stimuli administered at
 ZT21.5 to cause phase advances (19, 20).
 The first detectable changes in the mobility
 of PER occurred between 30 to 60 min after
 the beginning of the light pulse (Fig. 1, F
 and G) (22). This is almost certainly a
 maximum estimate of the time required for
 light to elicit changes in PER phosphoryl-
 ation, because detectable differences in the
 electrophoretic mobility of a protein the
 size of PER (155 to 185 kD) (7) probably
 require multiple phosphorylation events
 (22). No significant changes in the PER
 biochemical cycles were observed in flies
 pulsed at T30 (Fig. 1H), a phase in the
 circadian cycle that does not elicit behav-
 ioral phase shifts in Drosophila (19, 20).

 To determine whether PER nuclear en-
 try could also be modulated by photic sig-
 nals, we collected control and ZT15 light-
 pulsed flies and probed frozen fly head sec-
 tions with antibodies to PER (Fig. 2) (23).
 PER staining in the adult fly head was
 mainly observed in the nuclei of the pho-
 toreceptor cells of the compound eye and in
 pacemaker cells termed lateral neurons
 (LNs) (Fig. 2A) (9, 10). As in the LNs of
 wild-type flies (10), cytoplasmic PER was
 first detected at ZT15-16 with no visible
 nuclear staining (Fig. 2A) (cytoplasmic
 PER is indicated by a relatively large stain-
 ing area that lacks signal in the central
 portion of the LN) (10); within a relatively
 short time window (ZT18-19), PER entered
 the nucleus and remained there for several
 hours, as indicated by its smaller and more
 condensed staining pattern (Fig. 2A) (10).

 The nuclear accumulation of PER in the

 Fig. 1. Light pulses shift cycles
 in PER phosphorylation and dis-

 appearance. During the last

 dark period of LD, a group of
 flies was exposed to a 1-hour

 light pulse beginning at (i) ZT1 5
 (A through D), (ii) ZT21.5 (E

 through G), and (iii) T30 (H); a
 second group served as con-

 trols. The hours since the last
 dark:light transition at ZTO are

 shown at the top of the panels.
 Panels (A) and (E) show a com-

 parison of PER amounts in un-
 treated control flies (top) and

 treated flies (bottom). The ar-
 rowheads show the cross-re-

 acting size standard; this band
 also reacts with oreimmune
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 sera (22). The lane containing extract from ZT1 5-pulsed flies and collected at
 T24 is underloaded. For each independent experiment (B and G), the distance

 between the largest detectable PER isoform and the middle of the size stan-
 dard for untreated flies collected at either Ti 5 (B) or T22.5 (G) was set to 100.
 The relative migration in (B) and (G) is indicated as a function of zeitgeber time
 (T) for control (closed bars) and light-pulsed (open bars) flies. The error bars

 show the standard deviation; n = 3 to 6. In (C), (D), (F), and (H), extracts from
 untreated (-) or light-pulsed (+) flies were analyzed side by side. In (D), flies
 were collected on the second day after a light pulse at ZT1 5. In (F), two
 independent experiments are shown: experiment 1 consisted of a 1 -hour light

 pulse; experiment 2, a 30-min light pulse. Each experiment was done at least

 five independent times (22), and representative examples are shown.
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 abundance and phosphorylation of PER are
 suppressed in timo1 flies (15). The amount
 of tim mRNA cycles with a phase and am-
 plitude indistinguishable from those for per
 (16). Daily oscillations in tim transcripts
 depend on the presence of both PER and
 TIM, which suggests that a shared mecha-
 nism participates in the autoregulation of
 per and tim (16). The tim protein (TIM)
 may contribute to cyclic expression of per
 and tim (and possibly downstream output
 genes) by regulating the timing of PER
 nuclear entry (14, 16, 17).

 One prediction suggests that cycles of per
 that are integral components of the time-
 keeping mechanism should be perturbed in
 a relatively rapid manner by environmental
 signals that shift the phase of the clock. To
 determine the effects of photic stimuli on
 PER phosphorylation and abundance, we
 simultaneously entrained two identical sets
 of wild-type Canton-S (CS) flies with four
 cycles of 12 hours of light and 12 hours of
 dark [LD 12:12; here, zeitgeber time 12
 (ZT12) is lights off and ZT24 is lights on]
 and subsequently maintained them under
 constant dark conditions (DD). Light pulses
 of 5 to 60 min in duration (18) were ad-
 ministered at either ZT15 or ZT21.5, be-
 cause these times in a daily cycle yield the
 largest phase delays (approximately 3.5 to 4
 hours) and phase advances (approximately
 2.5 to 3 hours) in locomotor activity
 rhythms, respectively (19, 20). Untreated
 control and light-pulsed flies were collected
 at various times before and after the envi-
 ronmental perturbation, and head extracts
 were probed for PER by immunoblotting
 (Fig. 1) (21).

 Not only did the abundance of PER
 fluctuate (7-9) (Fig. IA), reaching peak
 levels at time 20 to 22 (T20-22, the number

 of hours since the last dark-to-light transi-
 tion at ZTO), but the mobility of PER in
 SDS-polyacrylamide gels oscillated on a
 daily basis (7, 8). There was an increase in
 the apparent molecular weight of the largest
 (slowest migrating) PER isoforms between
 T15 and T22-24, and the smaller PER spe-
 cies disappeared beginning at T20-22 (Fig.
 1, A and B) (compare the distance between
 the slowest and fastest migrating PER spe-
 cies and the internal size standard). These
 variations in the apparent molecular weight
 of PER are a result of daily changes in its
 phosphorylated state (7).

 A light pulse at ZT15 elicited delays in
 both the phosphorylation of PER and its dis-
 appearance (Fig. 1, A and B) (compare the
 mobility of PER at T22 and T24 and its
 abundance at T30). Migration of the largest
 PER species in ZT15-treated flies is most sim-
 ilar to that measured in control flies 3 to 4
 hours earlier (Fig. iB). These light-induced
 delays in PER phosphorylation and disappear-
 ance are consistent with the direction and
 magnitude of the phase shift in behavior in
 flies pulsed with light at ZT15 (19, 20) (Fig.
 IC). The earliest detectable changes in the
 mobility of PER were at T17 (22). Further-
 more, the delay in the PER biochemical cycles
 was maintained in the second day of DD after
 a light pulse at ZT15 (Fig. ID) which dem-
 onstrates that light pulses evoke a stable shift
 in the temporal regulation of PER.

 In contrast, light treatment at ZT21.5
 caused the disappearance of PER approxi-
 mately 2 to 4 hours earlier (Fig. IE). PER
 was essentially undetectable in the light-
 pulsed and control flies at T26-28 and T30,
 respectively. Although in untreated flies
 PER does not undergo large increases in
 electrophoretic mobility after T22 (Fig. 1,
 B, F, and G), the average mobility of PER is

 greater in the light-pulsed flies than in con-
 trol flies collected at the same times (Fig. 1,
 F and G). These changes in PER abundance
 and phosphorylation correlate with the
 ability of photic stimuli administered at
 ZT21.5 to cause phase advances (19, 20).
 The first detectable changes in the mobility
 of PER occurred between 30 to 60 min after
 the beginning of the light pulse (Fig. 1, F
 and G) (22). This is almost certainly a
 maximum estimate of the time required for
 light to elicit changes in PER phosphoryl-
 ation, because detectable differences in the
 electrophoretic mobility of a protein the
 size of PER (155 to 185 kD) (7) probably
 require multiple phosphorylation events
 (22). No significant changes in the PER
 biochemical cycles were observed in flies
 pulsed at T30 (Fig. 1H), a phase in the
 circadian cycle that does not elicit behav-
 ioral phase shifts in Drosophila (19, 20).

 To determine whether PER nuclear en-
 try could also be modulated by photic sig-
 nals, we collected control and ZT15 light-
 pulsed flies and probed frozen fly head sec-
 tions with antibodies to PER (Fig. 2) (23).
 PER staining in the adult fly head was
 mainly observed in the nuclei of the pho-
 toreceptor cells of the compound eye and in
 pacemaker cells termed lateral neurons
 (LNs) (Fig. 2A) (9, 10). As in the LNs of
 wild-type flies (10), cytoplasmic PER was
 first detected at ZT15-16 with no visible
 nuclear staining (Fig. 2A) (cytoplasmic
 PER is indicated by a relatively large stain-
 ing area that lacks signal in the central
 portion of the LN) (10); within a relatively
 short time window (ZT18-19), PER entered
 the nucleus and remained there for several
 hours, as indicated by its smaller and more
 condensed staining pattern (Fig. 2A) (10).

 The nuclear accumulation of PER in the

 Fig. 1. Light pulses shift cycles
 in PER phosphorylation and dis-

 appearance. During the last

 dark period of LD, a group of
 flies was exposed to a 1-hour

 light pulse beginning at (i) ZT1 5
 (A through D), (ii) ZT21.5 (E

 through G), and (iii) T30 (H); a
 second group served as con-

 trols. The hours since the last
 dark:light transition at ZTO are

 shown at the top of the panels.
 Panels (A) and (E) show a com-

 parison of PER amounts in un-
 treated control flies (top) and

 treated flies (bottom). The ar-
 rowheads show the cross-re-

 acting size standard; this band
 also reacts with oreimmune

 A B E F
 |Time |15118122|2|62|01?12 ie|51||24|26|28|30| Timhie| 22+5 |24 120 Time 22. 24

 Ugtpulse -+ -
 PER t F " w Control _ 1Q_ PERT L4m CoR WEOontrol L ; H^ f z E E 60< s l s C 8 PER.P

 PER-t StZT15 4060 PER{ W tZT21-5
 ~~t 072 3 gc ~~~ ~~20 | TimTe | 22.5 |24.5 2 WRw~~~~~Tr~~~l5 ~~~~ 20IjJjJJIJjJjL ~~~~~~~~~~~~Light pulse --2

 O 0 ZT21.5 |
 15 18 22 24 26 28 30 G _

 Time 120- PER{

 0 100-.
 C D 80-

 Tim e 18 22 26 T m 4 E 64- H 5
 [Light pulse 2 Light pulse 40| Time 39 42 48

 9 ' a ~~~ ~ ~~20- |T30 | |+ - |+T-
 PER{;;;;;;ER{i~4 3 22.5 24.5 PtPER{

 Time

 sera (22). The lane containing extract from ZT1 5-pulsed flies and collected at
 T24 is underloaded. For each independent experiment (B and G), the distance

 between the largest detectable PER isoform and the middle of the size stan-
 dard for untreated flies collected at either Ti 5 (B) or T22.5 (G) was set to 100.
 The relative migration in (B) and (G) is indicated as a function of zeitgeber time
 (T) for control (closed bars) and light-pulsed (open bars) flies. The error bars

 show the standard deviation; n = 3 to 6. In (C), (D), (F), and (H), extracts from
 untreated (-) or light-pulsed (+) flies were analyzed side by side. In (D), flies
 were collected on the second day after a light pulse at ZT1 5. In (F), two
 independent experiments are shown: experiment 1 consisted of a 1 -hour light

 pulse; experiment 2, a 30-min light pulse. Each experiment was done at least

 five independent times (22), and representative examples are shown.
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Figure 74: Western blot of PER protein at different circadian times and the impact of a
1-hour light pulse. A) Without light an increase in molecular weight is seen between T15
and T22 (upper border shifted up) and disappearance of smaller PER at T22 (bottom
border disappears). Arrow head shows cross-reaction standard. B) Relative migration
(in % of the distance between size standard and PER marks) for control (solid bars) and
light-pulsed flies (open bars), showing the delay induced by the light pulse given at ZT15.
E) A light pulse ZT 21.5 induces an advance of the phase (earlier disappearance of the
band). (Lee et al., 1996).

How does the circadian clock know about daylight? How does it get entrained? TIM
(=timeless), which interacts with PER, is degraded by light.

102



Modeling Biological Oscillations H. Riecke, Northwestern University  REPORTS

 A timo B per0
 2 6 10 14 18 22 D L D L

 C
 0 1 2 3 5 7 9 1 2* 3* 5* 7* 9* 0.25*

 D
 6 -

 J5-

 _ 0

 cc 2-
 7-,

 l .,.

 0 2.5 5.0 715 10
 Circadian time (hours)

 Fig 1, Protein immunoblot analysis of TIM pro-
 tein in wild-type, tim0, and per? flies. Equivalent
 amounts of total protein from fly heads isolated at
 various times were separated by SDS-polyacryl-
 amide gel electrophoresis, blotted to nitrocellu-
 lose, and probed with antibodies to TIM (20). (A)
 Levels of TIM protein at 4-hour intervals in a LD

 cycle (12 hours light:12 hours dark). TIM, filled
 arrowhead; nonspecific band, open arrowhead.
 Lanes marked (D) (dark) and (L) (light) are extracts
 from tim? fly heads isolated from flies at ZT1 9 and
 ZT7, respectively. (B) Levels of TIM protein in per0
 fly heads under dark and light conditions. Theper?
 dark sample was prepared from dark-reared flies,
 and the light sample from ZT7 of a LD cycle. (C)
 Levels of TIM protein in extracts from control (per0
 in constant dark) and light-treated per0 flies previ-
 ously reared in constant darkness (21). Lane num-
 bering corresponds to time (in hours) from the
 start of a 1-hour light pulse. (*) Light-treated flies.
 (D) All TIM bands shown in (C) were quantified by
 densitometry with reference to a constitutively
 produced, nonspecific protein that cross-reacts
 with the antibody to TIM [see (A) and (B)]. Dashed
 profile is light-pulsed data.

 essential components of the circadian
 clock. Mutations in either of these genes
 can produce arrhythmicity or change the
 period of the rhythm by several hours (3-5).
 Molecular studies (6-9) have shown that
 per and tim are transcribed with indistin-
 guishable circadian rhythms that are influ-
 enced by an interaction between the TIM
 and PER proteins (4, 10). A physical asso-
 ciation of the two proteins appears to be
 required for accumulation and nuclear lo-
 calization of PER (4, 10, 11). It is likely
 that nuclear localization results in suppres-
 sion of per and tim transcription (8, 9).
 Cycles of gene expression are thought to be

 A
 ,3T

 ~2 -
 0 -2

 -3 0
 .~-4-

 -5

 14 17 20 23 2 5 8 11 14
 Circadian time (hours)

 B
 11 13 15 16 17 1718 18* 191* 21 21* 23 23* 1 1* 3 3 5 5*

 2123 1 3 5 1* 3*5* 7*9*

 D E

 0~~~~~~~~~00 6.0 10.0
 . 0 15 1 6 20 1 117.5

 C 4.0
 5.0

 2.5-

 cc 0 0
 10i 1'5 20 1 6 20 1 6 1

 Circadian time (hours)

 Fig. 2. Effects of light pulses on the
 phase of locomotor activity and TIM

 protein rhythms. (A) PRC of wild-
 type flies (22). The graph depicts

 the phase change of the locomotor

 activity rhythm after a 10-min light
 pulse as a function of circadian
 time. Subjective day is indicated by
 the hatched bar. (B) Response of
 TIM protein levels to a light pulse

 administered at ZT1 6 followed by
 transfer to constant darkness (21).
 (*) Light-pulsed flies. (C) Response
 of TIM protein levels to a light pulse
 administered at ZT23. Treatment as
 in (B), except that light exposure oc-
 curred at ZT23 instead of ZT1 6. Ex-
 cept as noted, methods were as
 described for light-pulsed per0 flies
 (21). (D) TIM bands shown in (B)

 were quantified by densitometry
 with reference to Hsp7O. (E) Be-
 cause Hsp7O migrated past the re-
 gion blotted, quantitation of TIM in
 (C) was performed against a non-
 specific, cross-reacting protein as
 described (Fig. 1). Dashed profiles
 are light-pulsed data.

 sustained by -6-hour differences in the
 phases of RNA and protein accumulation.
 The observed delays in PER accumulation
 may result, in part, from a requirement for
 TIM to stabilize PER by transport to nuclei
 (4, 9, 11).

 To directly characterize TIM from Dro-
 sophila heads, we raised antibodies against
 several recombinant TIM proteins ex-
 pressed in bacteria (Fig. 1). TIM, like
 PER, accumulates rhythmically in LD
 12:12 (cycles of 12 hours light:12 hours
 dark) (Fig. 1A). The time of peak TIM
 accumulation in wild-type fly heads oc-
 curred at about ZT18 (ZT, zeitgeber time;
 ZTO = lights on, ZT12 = lights off) and
 thus corresponds to the time of peak PER
 accumulation (11, 12). These rhythms
 were also observed in constant darkness
 (13). Although TIM has an apparent mo-
 lecular size of -180 to 190 kD, there was
 an increasingly upward shift in TIM mo-
 bility late at night (compare ZT14 to
 ZT22). On shorter exposures, the TIM
 signal at ZT22 was resolved into at least
 two closely migrating bands ( 13). This
 behavior is similar to that of PER ( 1, 12).
 The antisera detects bona fide TIM pro-
 tein: Extracts prepared from timo fly heads
 lacked the TIM band (Fig. 1A), and anti-

 sera raised against a different region of
 TIM protein detected the same band seen
 in Fig. 1 ( 1 3),

 Although PER protein levels are re-
 duced in a timo genetic background (4, 11),
 TIM was expressed at fairly high levels in
 pero flies reared in constant darkness (Fig.
 iB). Exposure to light also appeared to re-
 duce the amount of TIM (presumably by
 degradation), because a sample from pero
 flies maintained in LD 12:12 and harvested
 at ZT7 showed much less TIM than a sam-
 ple from dark-reared flies (Fig. iB).

 We therefore exposed per0 flies (previous-
 ly in constant darkness for 4 days) to a
 1-hour pulse of light, followed by a recovery
 period in constant darkness. The amount of
 TIM protein decreased rapidly after the light
 treatment and began to rise within the first
 hour after return to darkness (Fig. 1, C and
 D). A return to the pre-light exposure level
 occufred by - 5 hours (Fig. 1, C and D). The
 rapidity of this response was further indicat-
 ed by measurement of TIM protein amounts
 immediately after a 15-min pulse of light. A
 substantial loss of TIM was again observed
 (Fig. IC, 0.25*, and Fig. ID). Taken togeth-
 er, these data indicate that, unlike PER in a
 timo background, TIM protein is stable in
 Per0 flies. Moreover, light induces loss of
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Figure 75: TIM is expressed circadianly and is degraded by light. (A) Solid arrow points
to tim showing circadian expression. In tim null-mutant TIM is expressed neither at ZT19
nor at ZT7. (B) TIM is expressed also in per null-mutant. Its abundance is reduced with
light (L vs. D), probably by degradation. (C) Even in the absence of per (in per0-mutant),
TIM is degraded by light (constant dark up to the starred numbers, which indicate the time
since brief light exposure). Recovery from degradation within 5 hours (Myers et al., 1996).

Leloup and Goldbeter developed an enhanced model based on the reactions shown in
Fig.76, which involve PER/TIM dimers. It is assumed that

• TIM is also phosphorylated in two steps with similar rates

• only the biphosphorylated forms of TIM and of PER are degraded

• only the biphosphorylated forms of PER and TIM dimerize

• only the PER-TIM complex enters the nucleus

complex (C); the effect of phosphorylation of PER and
TIM on the occurrence of oscillations is considered
later. The PER-TIM complex is transported into the
nucleus; the latter assumption holds with the observa-
tion that the nuclear localization of PER and TIM
requires the association of the two proteins, although
the formation of a complex also may occur in the
absence of PER and TIM phosphorylation (Saez and
Young, 1996). An alternative mechanism considers
that PER and TIM form a complex and then are phos-
phorylated before entering the nucleus (Rutila et al.,

1996). The results expected from such a mechanism
should be similar to those obtained in the present
model.

Some experiments indicate (Edery et al., 1994b) that
PER continues to be phosphorylated after its entry into
the nucleus. We have verified that further phosphory-
lation of the nuclear form of the PER-TIM complex
does not significantly influence the results reported
subsequently. Thus, to avoid the introduction of addi-
tional variables, we have not considered any further
phosphorylation of PER or TIM within the nucleus,
although this could readily be done within the frame-
work of the model.

Crucial to the mechanism of oscillations in the
model is the negative feedback exerted by the nuclear
form CN of the PER-TIM complex on the synthesis of
per and tim mRNAs. This negative feedback is de-
scribed by an equation of the Hill type. To simplify the
model, we consider that CN behaves directly as a re-
pressor; activation of a repressor on binding of CN

would not significantly alter the results. Finally, all
equations contain a linear degradation term charac-
terized by the rate constant kd. (This constant is de-
noted by kdC and kdN for the cytoplasmic and nuclear
forms of the PER-TIM complex, respectively.) This
relatively small, nonspecific degradation term is not
required for oscillations but ensures that a steady state
exists even when specific degradation processes are
inhibited.

Kinetic Equations

The time evolution of the 10-variable model is gov-
erned by the following kinetic equations in which all
parameters and concentrations are defined with re-
spect to the total cell volume:

dMP

dt  = νsP 
KIP n

KIP n + CN n
 − νmP 

MP

KmP + MP
 − kdMP (1a)

dP0
dt  = ksPMP − V1P 

P0

K1P + P0
 + V2P 

P1

K2P + P1
 − kdP0 (1b)

dP1
dt  = V1P 

P0

K1P + P0
 − V2P 

P1

K2P + P1
    

   − V3P 
P1

K3P + P1
 + V4P 

P2

K4P + P2
 − kdP1

(1c)

Figure 1. Scheme of the model for circadian oscillations in Droso-
phila involving negative regulation of gene expression by PER
and TIM. per (MP) and tim (MT) mRNAs are synthesized in the
nucleus and transferred into the cytosol, where they accumulate
at the maximum rates vsP and vsT, respectively. There they are
degraded enzymatically at the maximum rates, vmP and vmT, with
the Michaelis constants, KmP and KmT. The rates of synthesis of
the PER and TIM proteins, respectively proportional to MP and
MT, are characterized by the apparent first-order rate constants ksP
and ksT. Parameters ViP (ViT) and KiP (KiT) (i = 1, . . . 4) denote the
maximum rate and Michaelis constant of the kinase(s) and phos-
phatase(s) involved in the reversible phosphorylation of P0 (T0)
into P1 (T1) and P1 (T1) into P2 (T2), respectively. The fully phos-
phorylated forms (P2 and T2) are degraded by enzymes of maxi-
mum rate vdP and vdT and of Michaelis constants KdP and KdT and
reversibly form a complex C (association and dissociation are
characterized by the rate constants k3 and k4), which is transported
into the nucleus at a rate characterized by the apparent first-order
rate constant k1. Transport of the nuclear form of the PER-TIM
complex (CN) into the cytosol is characterized by the apparent
first-order rate constant k2. The negative feedback exerted by the
nuclear PER-TIM complex on per and tim transcription is de-
scribed by an equation of the Hill type (see first terms in Equa-
tions 1a and 1e) in which n denotes the degree of cooperativity and
KIP and KIT are the threshold constants for repression.
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Figure 76: Model for circadian rhythm for Drosophila including TIM and PER. Light re-
sponse via rapid degradation of TIM by light (Leloup and Goldbeter, 1998).
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gene expression, this leads to a larger rise in per and
tim transcripts and, hence, to a larger increase in the
two proteins.

The comparisons between Figs. 4B and 4E and be-
tween Figs. 4C and 4F further indicate that in the
asymmetrical conditions considered in Fig. 4, the

Figure 4. Effect of asymmetrical conditions and of entrainment by a light-dark (LD) cycle. Panels A-C on the left refer to the case of
continuous darkness, whereas panels D-F on the right pertain to the entrainment by a 12:12 LD cycle. The curves are generated by numerical
integration of Equations 1a-j. In panels A-C, the maximum rates of TIM degradation, vdT, remain constant and equal to 2 nM/h. In panels
D-F, to take into account light-induced TIM degradation, vdT = 2 nM/h during the dark phase and is multiplied by 2 during the light phase.
Other parameter values are identical for panels A-C and D-F. Shown in panels A and D are the time variations of the total PER (PT) and
TIM (TT) proteins and of the per (MP) and tim (MT) mRNAs. These variations are enlarged for MP and MT in panels B and E, in which the
variation of the nuclear form of the PER-TIM complex (CN) also is shown. Panels C and F present enlargements of the variations in total
PER and TIM proteins. With respect to the symmetrical conditions of Fig. 2, an asymmetry between the rates of synthesis (vsP and vsT)
and degradation (vmP and vmT) of MP and MT has been introduced; here vsP = 0.8 nM h–1 < vsT = 1.0 nM h–1 and vmP = 0.8 nM h–1 > vmT =
0.7 nM h–1. Moreover, parameter k1 has been increased from 0.6 to 1.2 h–1 so as to keep a period close to 24 h. Other parameter values are as in
Fig. 2.
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Figure 77: Comparison of model oscillations in PER and TIM without (c) and with
L:D=12:12 light modulation. Note the faster degradation of TIM in the morning (Leloup
and Goldbeter, 1998).

The impact of light on the circadian oscillator is commonly measured in terms of a phase-
response curve ∆φ(φ0):

• a brief light stimulus is given to the system at a given phase φ0 during the oscillation

• the shift ∆φ in the oscillation phase induced by the stimulus is measured as a func-
tion of φ0

effect of the light pulse is to increase, for a variable
time, the maximum rate of TIM degradation, vdT. Only
the form T2 is initially considered to be degraded
specifically in the model, but the effect of degradation
of all forms of the protein will be considered in Figs.
7E,F. The duration of the increase in TIM degradation
can be much longer than the duration of the pulse itself
because the perturbation might induce the synthesis
of a TIM protease that could remain active for a certain
time even after the light stimulus has been withdrawn.

To determine the effect of the perturbation, we must
first fix the phase 0 of the unperturbed rhythm. In the
wild type, the full period being equal to approxi-
mately 24 h, the phase spans the interval 0 to 24 h,
whereas for the pers mutant, the phase spans the inter-
val 0 to 18 h. As in the experiments described by Hall
and Rosbash (1987) (Fig. 6A), we specify in Fig. 6B
(corresponding to the wild type) and Fig. 6C (corre-
sponding to pers) the initial phase (0 h) such that the
minimum in per mRNA occurs at 12 h. In Drosophila,

Figure 6. Phase-response curves (PRCs) obtained experimentally (A) and theoretically (D) for the wild type and pers mutant in Drosophila
following perturbation by light. The experimental curves in panel A, based on data obtained by R. J. Konopka and D. Orr using a 1-min
light pulse, are redrawn from Fig. 2 of Hall and Rosbash (1987); black dots refer to the wild type, and unfilled circles pertain to the pers

mutant. The theoretical PRCs in panel D, pertaining to the wild type (solid line) and pers mutant (dashed line), have been obtained by
integration of Equations 1a-j, starting with the initial conditions corresponding to the particular phase of the unperturbed oscillations in
panels B and C, after multiplying by a factor of 2 during 3 h parameter vdT in Equation 1h, which measures the maximum rate of degradation
of the fully phosphorylated form of TIM. Panels B and C show the unperturbed oscillations in PER and TIM and their mRNAs for the
cases of the wild type and pers mutant, respectively; in each case, phase zero is chosen, as in the experiments (Hall and Rosbash, 1987), so
that the minimum in per mRNA occurs after 12 h. Phase zero corresponds to the beginning of the subjective night. Parameters in panel B
and for the solid line in panel D (corresponding to the wild type) are as in Fig. 2; for panel C and the dashed curve in panel D (corresponding
to the case of the pers mutant), the value of kdN measuring the degradation of the nuclear PER-TIM complex has been increased from 0.01
up to 0.45 h–1. (See Fig. 3A, curve a, which shows how the period decreases when kdN increases.) The values of the free-running periods
in panels B and C are equal to 24.135 and 18.025 h, respectively.
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and for the solid line in panel D (corresponding to the wild type) are as in Fig. 2; for panel C and the dashed curve in panel D (corresponding
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in panels B and C are equal to 24.135 and 18.025 h, respectively.
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Figure 78: Phase-resetting curves for wildtype Drosophila (solid) and pers Drosophila
(open) (Hall and Rosbash, 1987) and in the PER-TIM model (solid/dashed) (Leloup and
Goldbeter, 1998). Phase 0 corresponds to the beginning of the subjective night. Light
early in the night (TIM is rising during that phase) delays the rhythm, later at night (TIM
decreasing) it advances the rhythm; during the free-running subjective day (i.e. no light)
light stimuli have little effect (TIM is close to its minimum anyway).

3.4.1 Jet Lag

The adjustment to a shift in the light-dark cycle takes time during which the different cir-
cadian rhythms of the body can get out of synchrony to some extent. This affects not only
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travelers, but also shift workers and weekend party animals (social jet lag).

(7, 10, 11). This latter effect has been attributed to the teams
traveling west performing further from their optimal time-of-day
than their host teams that are not typically jet lagged do, en-
hancing jet-lag effects.
We performed a multivariate linear regression analysis, in-

cluding home- and away-team jet-lag variables considering
travel direction (greater than or equal to two or more time
zones with one time zone/day adjustment) and home- and
away-team variables, to determine whether away- or home-
team jet lag contributed to performance independent of each
other and team (Table 1, and see Methods). A detailed de-
scription of the model used is provided in Methods. In general,
the effects of eastward travel on winning percentage exceeded
those of westward travel, which were consistent with the >24-h
endogenous period. However, only eastward travel by the home
team reached statistical significance (home eastward travel, P <
0.05). It is well established that the home team has a systematic
advantage over the away or visiting team. In terms of winning
percentage over the time period of our analysis, the home team
won 53.9% of its games, corresponding to an advantage of
+3.9%. In fact, the home-team eastward travel effect (−3.5%,
P < 0.05) was comparable in magnitude to this home-field
advantage (+3.9%). Thus, if the home team traveled two time
zones east, and the away team was visiting from the same time
zone, the home-field advantage was essentially nullified. On the
other hand, the effect of traveling west was smaller and did not

reach statistical significance (−2.0%, P = 0.11), suggesting di-
rection selectivity. Interestingly, for the away team, the effects
of traveling east on winning percentage were also larger than
those traveling west, although eastward effects did not reach
statistical significance (−2.1%, P = 0.075). The direction-se-
lective effects, at least for the home team, suggest that they are
due to circadian misalignment and not due to a general effect
of travel.
To determine the basis of these effects, we examined the

effects of jet lag on major parameters of home- and away-
team offense, such as runs scored and batting average. Sur-
prisingly, we found that home- and away-team offenses were
differentially impacted by jet lag on one of these parameters,
slugging percentage (total bases/at-bats). Like winning per-
centage, these home-team effects were direction selective,
evident after eastward (P < 0.05) but not westward travel (P =
0.327), suggesting a circadian etiology. On the other hand,
neither eastward (P = 0.412) nor westward travel (P = 0.3215)
impacted away-team slugging percentage. Although the ef-
fects did not reach statistical significance, a similar pattern
was also evident for runs scored. It is noteworthy that these
effects were detected even though there are both fewer
eastward travel and home-team jet-lag games and thus, less
statistical power.
We then examined additional more specific offensive metrics

to identify the underlying basis of these changes to major

Table 1. Effect of travel direction on the impact of jet lag on home and away winning and aggregate offensive performance

Home jet lag Away jet lag

Offense West
West P
value Average East

East P
value West

West P
value Average East

East P
value

Winning, % −0.02 ± 0.016 0.112 0.539 ± 0.002 −0.035 ± 0.019 0.0335* −0.01 ± 0.013 0.2295 0.461 ± 0.002 −0.021 ± 0.015 0.075
Runs scored −0.098 ± 0.104 0.173 4.787 ± 0.015 −0.15 ± 0.121 0.1065 −0.018 ± 0.087 0.4165 4.652 ± 0.015 −0.011 ± 0.096 0.456
Batting

average
−0.001 ± 0.003 0.372 0.265 ± 0.0004 −0.004 ± 0.003 0.074 −0.001 ± 0.002 0.2425 0.254 ± 0.0003 −0.001 ± 0.002 0.408

On-base, % −0.001 ± 0.003 0.419 0.334 ± 0.0004 −0.003 ± 0.003 0.191 −0.002 ± 0.002 0.195 0.319 ± 0.0004 −0.00009 ± 0.002 0.486
Slugging, % −0.002 ± 0.005 0.327 0.420 ± 0.0007 −0.01 ± 0.006 0.0415* −0.002 ± 0.004 0.3215 0.400 ± 0.0007 −0.001 ± 0.004 0.412

Home and away jet lag show the regression coefficients indicating the effect of jet lag on home- and away-team offensive performance, respectively.
Regression coefficients are adjusted for team effects. Parameters are expressed on a per-game basis with error indicating SE of the estimated effect. P values
are one tailed, derived from the regression analysis testing whether jet lag adversely impacts performance.
*Metrics where P < 0.05. Average is over all 46,535 games.

Table 2. Effect of travel direction on the impact of jet lag on home offensive performance

Home jet lag

Offense West West P value Average East East P value

At-bats 0.218 ± 0.138 0.113 33.497 ± 0.019 −0.141 ± 0.16 0.38
Singles 0.047 ± 0.088 0.7035 6.017 ± 0.012 −0.01 ± 0.103 0.46
Doubles −0.015 ± 0.045 0.369 1.769 ± 0.006 −0.146 ± 0.053 0.003*
Triples −0.003 ± 0.015 0.4295 0.205 ± 0.002 −0.031 ± 0.018 0.037*
Home runs 0.001 ± 0.035 0.525 1.033 ± 0.005 −0.01 ± 0.041 0.4
Walks 0.054 ± 0.071 0.777 3.435 ± 0.010 0.028 ± 0.083 0.6345
Strikeouts 0.057 ± 0.089 0.2595 6.202 ± 0.013 −0.05 ± 0.103 0.686
Stolen bases −0.04 ± 0.031 0.0995 0.634 ± 0.004 −0.062 ± 0.036 0.0425*
Caught stealing −0.032 ± 0.017 0.9725 0.262 ± 0.002 −0.002 ± 0.02 0.531
Stolen base attempts −0.072 ± 0.036 0.022* 0.896 ± 0.005 −0.063 ± 0.041 0.0635
Sacrifice hits −0.008 ± 0.02 0.349 0.348 ± 0.003 0.01 ± 0.023 0.674
Sacrifice flies −0.011 ± 0.018 0.2685 0.295 ± 0.003 0.002 ± 0.021 0.5455
Grounded into double plays 0.032 ± 0.028 0.1235 0.762 ± 0.004 0.062 ± 0.032 0.0285*

Home jet lag shows regression coefficients indicating effects on home offensive performance. Regression coefficients are adjusted
for team effects. Parameters are expressed on a per-game basis with error indicating SE of the estimated effect. P values are one tailed,
derived from the regression analysis testing whether jet lag adversely impacts performance.
*Metrics where P < 0.05. Average is over all 46,535 games.

1408 | www.pnas.org/cgi/doi/10.1073/pnas.1608847114 Song et al.

Figure 79: Jet lag and baseball. a) Eastward travel reduces number of home runs (data
1991-1993) (Recht et al., 1995). b) Impact of jetlag on winning different for home and
away jet lag (Song et al., 2017)

Baseball and jet lag: Correlation does not
imply causation
Etienne Joly a,1

Suicides	by	crashingJa
pa

ne
se

	c
ar

s	
so

ld

Japanese	passenger	cars	sold	in	the	US
	correlates	with	

Suicides	by	crashing	of	motor	vehicle

Suicides	by	crashing Japanese	cars	sold

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

80	suicides

100	suicides

120	suicides

140	suicides

600	thousand	cars

800	thousand	cars

1000	thousand	cars

1200	thousand	cars

tylervigen.com

LETTER

Baseball and jet lag: Correlation does not
imply causation
Etienne Jolya,1

My attention was drawn to the recent article by Song
at al. entitled “How jet lag impairs Major League
Baseball performance” (1), not only by its slightly un-
usual subject butmore importantly because I wondered
how one could ever actually prove the effect of jet
lag on baseball performance.

In this paper, Song et al. (1) manage to refine the
results obtained by Recht et al. as early as 1995 (2),
showing that eastward travel correlates with decreased
performance. Specifically, by making use of elaborate
statistics on the very large amount of Major League
Baseball record databases available online, Song et al.
(1) found statistically significant correlations of eastward
travel with several variables related to home-team
offensive performance, as well as with “home runs
allowed” for both home and away teams.

Although I do not dispute the large amount of
work involved and would be well-nigh incapable of
judging the validity of the analyses performed, I must
admit that I was taken aback by the way Song et al.
(1) systematically present the correlations they iden-
tify as direct proof of causality between jet lag and the
affected variables. It is actually quite remarkable to
me that the word “correlation” does not appear even
once in the paper, when this is actually what the au-
thors have been looking at and, in my opinion, to be
scientifically accurate, the title of the article should

really read: “How jet lag correlates with impairments
in Major League Baseball performance.”

Given the very large amount of literature on corre-
lations between jet lag and decreased athletic perfor-
mance in a whole variety of sports, I am of course not
disputing that jet lag is the most likely cause for the
effects recorded. And looking at the title of the articles
in the reference list of the Song et al. (1) report, this
tendency to amalgamate correlation with causality is
apparently extremely frequent in this field of investiga-
tion. But given the broad readership of PNAS and
the subject of this article, I feel that it is likely to be
relayed by the press and to attract the attention of
many people, both scientists and nonscientists.

Considering the current tendency to misinterpret
scientific data, via the misuse of statistics in partic-
ular, I feel that a journal such as PNAS should aim to
educate by example, and thus ought to enforce
more rigor in the presentation of scientific articles
regarding the difference between correlations and
proven causality.

For anyone needing to be convinced that strong
correlations do not necessarily prove causality, and
to finish on a more light-hearted note, I invite them to
visit the website of Tyler Vigen, which provides some
pretty interesting examples of spurious correlations
(www.tylervigen.com/spurious-correlations).

1 Song A, Severini T, Allada R (2017) How jet lag impairs Major League Baseball performance. Proc Natl Acad Sci USA 114:1407–1412.
2 Recht LD, Lew RA, Schwartz WJ (1995) Baseball teams beaten by jet lag. Nature 377:583.
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Figure 80: a) ‘It is actually quite remarklable to me that the word “correlation” does not ap-
pear even once in the paper.....’ writes (Joly, 2017) about (Song et al., 2017). b) Spurious
Correlations by Tyler Vigen http://www.tylervigen.com/spurious-correlations
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Figure 81: Correlations:
space launches/sociolgy PhD r = 0.79; Miss America/murders r = 0.87.
Spurious Correlations by Tyler Vigen.

Issue

• to what extent can other factors, i.e. non-circadian factors, be controled for?
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• can one see a mechanism that could account for the correlation?

• can one modify that mechanism and confirm that this modifies the outcome as pre-
dicted?

Magazine
R915

deleterious effects of phase 
advances of the light cycle is 
unclear. It appears that the 
mechanism is not stress-related. 
Other possibilities include sleep 
deprivation and disruption of 
the immune system. There 
is significant complexity in 
the resetting behavior of the 
mammalian timing system to 
phase advances in the light 
schedule [4] that might play a 
role in the increased mortality 
that we observed. 

In future experiments it 
will be important to explore 
how the length of the interval 
between shifts affects longevity 
and whether there is reduced 
longevity in animals that 
experience light cycle changes 
when younger.

Non-standard lighting cycles 
have repeatedly been shown to 
hasten death in animals. Fruit 
flies [5] and blowflies [6] have 
shorter lifespans when housed 
in L:D cycles with a period 
shorter than 21 hours or longer 
than 27 hours. Cardiomyopathic 
hamsters exhibited a median 
life expectancy that was 11.3% 
shorter if they were housed on a 
light schedule that was inverted 
once per week compared with a 
stationary 14:10 L:D cycle [7]. 

However, the same shifting 
schedule did not affect lifespan 
in CD2F1 mice [8]. A 6 hour 
phase- shift in the light cycle every 
two days increased the growth 
rate of Glasgow osteosarcoma in 
mice [9]. We believe that ours is 
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changes may have an adverse 
effect on health during phase 

advances. Alternatively, the 
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make them less able to tolerate 
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morbidity associated with phase 
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Figure 1. Survival of aged mice undergoing weekly phase shifts of the light cycle.
(A) Survival curves of aged mice undergoing a weekly 6 hour advance or delay adjust-
ment of the light cycle, compared with unshifted aged controls. On Day 56 survival was 
47% in advancers, 68% in delayers, and 83% in unshifted aged mice (group sizes are 
n = 30 for controls and advancers and n = 28 for delayers). The distribution of surviv-
ing mice at the end of Week 4 (p < 0.05), Week 5 (p < 0.025), Week 6 (p < 0.01), Week 7 
(p < 0.01) and Week 8 (p < 0.05) of the protocol is significantly different than chance (chi 
square). Advancers died faster than controls (pairwise Chi square; p < 0.01, Day 54) but 
were only different from delayers at the ends of Weeks 6 (p < 0.01) and 7 (p < 0.025). 
(B) Death rate per week of the protocol. % mortality of remaining mice is plotted for 
each week in bold. Trend-lines (three-point moving average) for each dataset are shown 
with dotted lines of the same color. Advancers began dying sooner (all 3 groups chi-
square; Weeks 3–4, p < 0.025; Weeks 5–6 p <0.05) and the death rate remained higher 
than the other groups until the final week of the protocol. The death rate in unshifted 
animals was flat for the duration of the experiment. (C) Survival curves for mice shifted 
every 4 days. We found that advancers still died at a faster rate (p < 0.05 on Day 32; 
group sizes: 13 advancers, 12 delayers).
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Figure 1. Survival of aged mice undergoing weekly phase shifts of the light cycle.
(A) Survival curves of aged mice undergoing a weekly 6 hour advance or delay adjust-
ment of the light cycle, compared with unshifted aged controls. On Day 56 survival was 
47% in advancers, 68% in delayers, and 83% in unshifted aged mice (group sizes are 
n = 30 for controls and advancers and n = 28 for delayers). The distribution of surviv-
ing mice at the end of Week 4 (p < 0.05), Week 5 (p < 0.025), Week 6 (p < 0.01), Week 7 
(p < 0.01) and Week 8 (p < 0.05) of the protocol is significantly different than chance (chi 
square). Advancers died faster than controls (pairwise Chi square; p < 0.01, Day 54) but 
were only different from delayers at the ends of Weeks 6 (p < 0.01) and 7 (p < 0.025). 
(B) Death rate per week of the protocol. % mortality of remaining mice is plotted for 
each week in bold. Trend-lines (three-point moving average) for each dataset are shown 
with dotted lines of the same color. Advancers began dying sooner (all 3 groups chi-
square; Weeks 3–4, p < 0.025; Weeks 5–6 p <0.05) and the death rate remained higher 
than the other groups until the final week of the protocol. The death rate in unshifted 
animals was flat for the duration of the experiment. (C) Survival curves for mice shifted 
every 4 days. We found that advancers still died at a faster rate (p < 0.05 on Day 32; 
group sizes: 13 advancers, 12 delayers).

Figure 82: Effect of persistent jet lag on survival in mice. a) Weekly shift by 6 hours. b)
Increased stress for more frequent shifts by 6 hours (every 4 days) (Davidson et al., 2006).

Other aspects

• the circadian clock is quite robust

• the period of the clock is quite independent of the temperature, even though all
reaction rates vary with temperature; i.e. the circuit somehow compensates for tem-
perature changes.

How is this robustness achieved?

3.5 Repressilator

To understand the behavior of natural genetic circuits is difficult, since they can involve
many components, not all of which may be known. What are there design principles?
What are the key elements? A different approach is to design synthetic circuits that involve
only components that are not naturally present in the cell and study their properties.

An influential early example of this is the repressilator (Elowitz and Leibler, 2000), which
consists of 3 sets of repressor-protein systems with the protein i+ 1 repressing the mRNA
of protein i cyclically

dmi

dt
= −mi +

α

1 + pni+1

+ α0 (23)

dpi
dt

= −β (pi −mi) . (24)

The principle is quite similar to that of the rock-paper-scissors system.
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Figure 83: Repressilator designed in E. coli. Visualization of oscillations with GFP; signal
from a single cell in bottom graph (Elowitz and Leibler, 2000).

In (23,24) it is assumed, for simplicity, that all three mRNA-protein sets are equivalent.
In that case there is a fixed point with mi = m(0) and pi = p(0). Its linear stability can be
determined relatively easily, because the Jacobian is cyclical, i.e. it does not change when
indices are cyclically rotated.

Consider first a simpler case: for β →∞ the p-equation yields pi = mi and the m-equation
becomes

dmi

dt
= −mi +

α

1 +mn
i+1

+ α0

with linearization

L∞ =

 −1 −α̂ 0
0 −1 −α̂
−α̂ 0 −1


where

α̂ =
nα
(
p

(0)
i+1

)n−1

(
1 +

(
p

(0)
i+1

)n)2 < 0 p
(0)
i+1 = m

(0)
i+1.

Because of the rotation symmetry shifting the eigenvector components cyclically must
result in an eigenvector with the same eigenvalue, i.e. it must be a multiple of the unshifted
vector  x

y
z

→
 y

z
x

 = µ

 x
y
z


The eigenvector therefore has the form x

y
z

 =

 1
µ
µ2


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For the eigenvector one gets then the conditions

−1− α̂µ = λ

−µ− α̂µ2 = λµ

−α̂− µ2 = λµ2

Eliminating λ one gets

−α̂− µ2 = (−1− α̂µ)µ2 ⇒ µ3 = 1 µ = ei
2π
3
j j = 0, 1, 2

and
λj = −1− α̂ei

2π
3
j j = 1 . . . 3

With ei
2π
3 = −1

2
+ i

√
3

2
the fixed point is unstable to oscillations for

α̂ > 2.

For finite β, the full system is also cyclic and the linearization and the eigenvector have
the form

L =


−1 0 0 −α̂ 0 0
β −β 0 0 0 0
0 0 −1 0 0 α̂
0 0 β −β 0 0
0 α̂ 0 0 −1 0
0 0 0 0 β −β

 v =


u
v
µu
µv
µ2u
µ2v


leading to

µ3 = 1

and

λ2
j =

(β + 1)

2

(
−1±

√
1− 4β (1 + α̂µj)

(β + 1)2

)
which recovers for β →∞ the three eigenvalues above, while the other three eigenvalues
diverge.
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Figure 84: Simulations of the ODEs and of a stochastic version (using Gillespie algorithm),
showing strong fluctuations (Elowitz and Leibler, 2000).
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Figure 85: Oscillation period (160± 40 minutes) is longer than the cell cycle (50− 70 min-
utes) and oscillations often remain correlated for some time in daughter cells (cf. Fig.83)
before they diverge in phase and/or amplitude (Elowitz and Leibler, 2000).

Note:

• The oscillations in the repressilator are quite noisy

– circadian oscillators seem to be more robust: what additional design elements
do they have?

109



Modeling Biological Oscillations H. Riecke, Northwestern University

4 Calcium Oscillations18

Calcium in the cytoplasm plays an important role in controling a wide range of cell func-
tions. It controls many aspects of cell dynamics

• muscle contractions

• gene transcription

– plasticity in neuronal cells for learning and memory

• enzyme secretion

• apoptosis

In many cases it does so by binding to proteins and modifying their enzymatic properties.
Its concentration within a cell is therefore very low most of the time to avoid interference
with those enzyme functions. Signaling with calcium is achieved with well-controled, very
brief changes in calcium concentration that are also quite localized within the cell. An
important component of that control is binding of calcium to buffers and sequestering it
into intra-cellular stores like the encoplasmatic reticulum (ER) (sarcoplasmatic reticulum
in muscle cells).

NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 1 | OCTOBER 2000 | 1 3

R E V I E W S

Pancreas. RYRs have also been described in non-
excitable cells such as the pancreas, where they 
collaborate with InsP3Rs to control both fluid and
enzyme secretion (FIG. 4c)6.Acetylcholine and cholecys-
tokinin act through Ins(1,4,5)P3. Cholecystokinin also
acts through both NAADP and cADPR. NAADP might
also initiate Ca2+ release from RYRs19.

As a result of these ON mechanisms, Ca2+ flows into
the cytoplasm to produce the increase in concentration
that constitutes a Ca2+ signal (FIG. 1). However, the con-
centration that is measured in cells using various Ca2+

indicators (for example, aequorin or Ca2+-sensitive
dyes such as Fura2 or Fluo3) is only the tip of the ice-
berg because most of the Ca2+ that enters the cytoplasm
is rapidly bound to various cytosolic buffers such as

them to respond effectively to the small depolarizations
that occur at synaptic spines16.The Ca2+ signals in spines,
responsible for mediating the early synaptic modifica-
tions that are implicated in learning and memory, are
provided by entry through such VOCs and also through
ROCs (such as NMDA (N-methyl-D-aspartate) recep-
tors) and by release from RYRs and InsP3Rs (reviewed in
REF. 17).As InsP3Rs are sensitive to both Ins(1,4,5)P3 and
Ca2+, they could act as coincidence detectors to correlate
the activity of pre- and postsynaptic inputs, which is
central to memory formation17. In hippocampal neu-
rons, for example, electrical activity resulting in Ca2+

entry through VOCs acts together with Ins(1,4,5)P3 pro-
duced by metabotropic glutamate receptors (mGluR1)
to produce a synergistic release of internal Ca2+ (REF.18).

Figure 2 | Elements of the Ca2+ signalling toolkit. Cells have an extensive signalling toolkit that can be mixed and matched
to create Ca2+ signals of widely different properties. Ca2+-mobilizing signals (blue) are generated by stimuli acting through a
variety of cell-surface receptors (R), including G-protein (G)-linked receptors and receptor tyrosine kinases (RTK). The signals
generated include: inositol-1,4,5-trisphosphate (Ins(1,4,5)P3), generated by the hydrolysis of phosphatidylinositol-4,5-
bisphosphate (PtdIns(4,5)P2) by a family of phospholipase C enzymes (PLCβ, PLCγ); cyclic ADP ribose (cADPR) and nicotinic
acid dinucleotide phosphate (NAADP), both generated from nicotinamide-adenine dinucleotide (NAD) and its phosphorylated
derivative NADP by ADP ribosyl cyclase; and sphingosine 1-phosphate (S1P), generated from sphingosine by a sphingosine
kinase. ON mechanisms (green) include plasma membrane Ca2+ channels, which respond to transmitters or to membrane
depolarization (ΔV), and intracellular Ca2+ channels — the Ins(1,4,5)P3 receptor (InsP3R), ryanodine receptor (RYR), NAADP
receptor and sphingolipid Ca2+ release-mediating protein of the ER (SCaMPER). The Ca2+ released into the cytoplasm by these
ON mechanisms activates different Ca2+ sensors (purple), which augment a wide range of Ca2+-sensitive processes (purple),
depending on cell type and context. OFF mechanisms (red) pump Ca2+ out of the cytoplasm: the Na+/Ca2+ exchanger and the
plasma membrane Ca2+ ATPase (PMCA) pumps Ca2+ out of the cell and the sarco-endoplasmic reticulum Ca2+ ATPase
(SERCA) pumps it back into the ER/SR. (TnC, troponin C; CAM, calmodulin; MLCK, myosin light chain kinase; CAMK,
Ca2+/calmodulin-dependent protein kinase; cyclic AMP PDE, cyclic AMP phosphodiesterase; NOS, nitric oxide synthase; PKC,
protein kinase C; PYK2, proline-rich kinase 2; PTP, permeability transition pore.)

Online poster
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Figure 86: Very busy overview of the multiple functions of calcium in cells Berridge et al.
(2000). One central feature is the storage of calcium in the endoplasmatic reticulum (ER)
or the sarcoplasmic reticulum (SR) with calcium being pumped by SERCA and PCMCA
pumps and released from the stores via RyR and other receptors.

18(Fall et al., 2002) Ch.5
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Various proteins such as presenilins and apoptosis
regulatory proteins (such as Bcl-2 described later)
modulate the way these two organelles handle Ca2+.
The presenilins, located in the ER membrane, not only
function to process the β-amyloid precursor protein
but also modulate Ca2+ signalling. Mutations of prese-
nilin result in overfilling of the ER leading to larger
Ca2+ signals and a decrease in capacitative Ca2+ entry29.

The mitochondrion has an enormous capacity to
accumulate Ca2+ and the mitochondrial matrix contains
buffers that prevent the concentration from rising too
high. Once the cytosolic Ca2+ has returned to its resting
level, a mitochondrial Na+/Ca2+ exchanger pumps the
large load of Ca2+ back into the cytoplasm, from which it
is either returned to the ER or removed from the cell
(FIG. 2). Ca2+ can also leave the mitochondrion through a
permeability transition pore (PTP)26,30,which has all the
elements of Ca2+-induced Ca2+ release because its forma-
tion is activated by the build up of Ca2+ within the mito-
chondrial matrix31. This PTP may have two functional
states. A low conductance state of the pore can act
reversibly, allowing mitochondria to become excitable,
and this may contribute to the generation of Ca2+

waves31.On the other hand, an irreversible high conduc-
tance state of the PTP has a marked effect on the mito-
chondrion in that it collapses the transmembrane
potential and leads to the release of cyctochrome cand
the initiation of apoptosis (see later).

Global aspects of Ca2+ signalling
Elementary events. Further versatility is achieved by
varying the spatial and temporal aspects of Ca2+ sig-
nalling32,33. The different types of Ca2+ signals shown
in FIG. 5 result from the InsP3Rs and/or RYRs having
different degrees of excitability depending on the lev-
els of the appropriate Ca2+-mobilizing messenger. At
low levels of stimulation, the degree of excitability is
such that individual RYRs or InsP3Rs open and these
single-channel events have been recorded as quarks34

or blips35, respectively (FIG. 5b). These may be consid-
ered as the fundamental events that are the building
blocks from which more complex Ca2+ signals are con-
structed. These single-channel events are rare and the
more usual event is larger, resulting from the coordi-
nated opening of clusters of InsP3Rs or RYRs, known
as puffs or sparks, respectively (FIG. 5c). Sparks were
first described in cardiac cells36 where they represent
Ca2+ signals from a group of RYR2 channels opening
in concert. The puffs recorded in either Xenopus
oocytes37,38 or HeLa cells39 have diverse amplitudes
indicating that there are either variable numbers of
InsP3Rs within each cluster or variable numbers of
channels open within an individual cluster.

Ca2+ waves. Sparks and puffs contribute to intracellular
Ca2+ signals, such as the Ca2+ waves that sweep through
cells (FIG.5d).For waves to occur,most of the InsP3Rs and
the RYRs must be sufficiently sensitive to Ca2+ to
respond to each other through the process of Ca2+-
induced Ca2+ release. One group of channels releases
Ca2+, which then diffuses to neighbouring receptors to

Figure 4 | Application of the Ca2+ signalling toolkit to regulate different cellular
processes. a | In skeletal muscle, an L-type Ca2+ channel (α1S) senses membrane
depolarization (ΔV) and undergoes a conformational change that is transmitted to the
ryanodine receptor 1 (RYR1) (FIG. 3b). Ca2+ released from the sarcoplasmic reticulum (SR)
interacts with two sensors, troponin C (TnC), which triggers contraction, and calmodulin
(CAM), which activates glycogen metabolism to synthesize ATP. b | Neurons have several Ca2+-
sensitive processes located in different regions. Membrane depolarization (ΔV) is sensed by N-
or P/Q-type channels at the synaptic endings to produce a localized pulse of Ca2+ that triggers
exocytosis. In the cell body and dendrites, L-type channels sense the same depolarization and
induce the entry of Ca2+ which has a number of targets: adenylyl cyclase I or III (AC I/III) leading
to cyclic AMP production, proline-rich tyrosine kinase (PYK2), mitogen-activated protein kinase
(MAPK), Ca2+/calmodulin-dependent protein kinase II (CAMKII) and calmodulin–calcineurin
(CAM–CN). Some of these targets induce gene transcription. The neurotransmitter glutamate
can also generate Ca2+ signals either by activating receptor-operated channels such as NMDA
(N-methyl-D-aspartate) receptors, or by stimulating the metabotropic glutamate receptor
mGluR1 to produce inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize internal Ca2+ from the
endoplasmic reticulum (ER). These glutamate-induced Ca2+ signals are localized to synaptic
endings, where they contribute to processes such as long-term potentiation (LTP) and long-
term depression (LTD), which have been implicated in learning and memory. c | The exocrine
pancreas uses two signalling systems regulated by separate receptors. Acetylcholine uses
Ins(1,4,5)P3 to release internal Ca2+. As well as stimulating Ins(1,4,5)P3 formation,
cholycystokinin also acts through both cyclic ADP ribose (cADPR) and nicotinic acid
dinucleotide phosphate (NAADP). The latter seems to act by releasing a small amount of
trigger Ca2+ through the NAADP receptor (NR) that then acts together with cADPR to release
further Ca2+ through RYRs.

© 2000 Macmillan Magazines Ltd

Figure 87: Some more details of specific functions of calcium Berridge et al. (2000).

Calcium can also be involved in communication between cells Leybaert and Sanderson
(2012).

Calcium often exhibits oscillatory dynamics that reflect the release of calcium from the in-
tracellular stores in response to an increase of the calcium concentration (calcium-induced
calcium release).
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Figure 1. Calcium ion spiral waves in Xenopus oocytes
Three frames have been chosen from a movie of an oocyte to show how the wave patterns evolve over
time. These spectacularly patterned signals were first described by Lechleiter et al. (1991). Reproduced
with permission of Professor James Lechleiter PhD: http://www.uthscsa.edu/csb/faculty/lechleiter.asp.

What is so special about Ca2+ anyway?

Before looking at Ca2+ imaging itself, I want to provide
a very brief and ridiculously selective overview of the
evidence pointing to the importance of Ca2+ signalling.
Although free Ca2+ inside the cytosol is a very small
percentage of total body Ca2+, most of which is found
in bone mineral, it is a crucial cell signal in many cell
types. Some of the earliest evidence for this came from
experiments carried out in the 1880s on frog heart muscle
by Sydney Ringer. He wanted to develop a salt solution
suitable for in vitro studies on isolated tissues. Early
experiments were promising, but subsequent attempts to
repeat the work gave much less satisfactory results. Some
detective work led to the discovery (Ringer, 1883) ‘that
the saline solution which I had used’ (i.e. in the earlier
successful study) ‘had not been prepared with distilled

Figure 2. An early demonstration of the importance of Ca2+ for muscle contractility
Changes in volume were recorded from an isolated frog ventricle perfused with blood or saline solutions
(more detail on the technique and Ringer’s work is presented by Miller, 2004). Full contractions were only
seen when Ca2+ was present in the perfusate. Figure reproduced with permission from Ringer (1883).

water, but with pipe water supplied by the New River
Water Company . . . . . It is obvious therefore that the
effects I had obtained are due to some of the inorganic
constituents of the pipe water.’ It is generally accepted
that Ringer’s technician was probably responsible for the
initial oversight in using pipe water rather than distilled
water, but the consequences were positive, since they
demonstrated both that the heart could be kept beating
and that this required some ingredient missing from saline
prepared with distilled water (Miller, 2004). Ringer went
on to determine which of the ‘inorganic constituents’
in pipe water was important and discovered that his
artificial saline solution only supported consistent cardiac
contractions when Ca2+ was present, suggesting that this
was necessary for normal cell function (Fig. 2). By such
serendipity knowledge is advanced.

C⃝ 2010 The Author. Journal compilation C⃝ 2010 The Physiological Society

Figure 88: Oscillations in calcium concentration can take the form of spiral waves. a) Time
sequence of waves within Xenopus oocyte cells, also shown as 3d image at the bottom
(original paper) Lechleiter et al. (1991). b) Snapshots in later paper McGeown (2010).

To model calcium dynamics we need to model the buffering and the sequestering. The
latter involves receptors (IP3R and RyR) that release calcium from the stores and pumps
that pump it into the stores against a strong concentration gradient.

Consider a cell that contains a cytosolic compartment and an ER. We want to model the
calcium dynamics in these interacting cell components
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4.1 Rapid Buffering and Flux Balance

The cytosol of a cell as well as the ER contain buffers to which the calcium binds quickly.
Therefore, when calcium enters that compartment a certain fraction of that calcium gets
bound and only the remaining calcium is free calcium that is available for other reactions.
We aim to get a relationship between the change in total calcium and in free calcium.

Consider the cytosol first (subscript i for inside the cytosol)

[Ca2+]i + [Ca2+B]i = [Ca2+]toti (25)

[B]i + [Ca2+B]i = [B]toti (26)

The buffer reaction is given by

[Ca2+]i + [B]i

k+︷︸︸︷

︸︷︷︸
k−

[Ca2+B]i

leading to the equations

d[Ca2+]i
dt

= k−[Ca2+B]i − k+[Ca2+]i[B]i

d[B]i
dt

= k−[Ca2+B]i − k+[Ca2+]i[B]i

d[Ca2+B]i
dt

= −k−[Ca2+B]i + k+[Ca2+]i[B]i

Being linear, these equations have a single fixed point (steady state), at which the con-
centrations satisfy

[Ca2+]i =
k−

k+

[Ca2+B]i
[B]i

= Ki
[Ca2+B]i

[B]i
(27)

with
Ki ≡

k−

k+
.

the dissociation constant of that reaction.

Note:

• For Ki � 1 the affinity of calcium to the buffer is small.

This fixed point is reached from any initial condition. The time it takes to do so depends
on k±: for large k− and k+ that time is short. If calcium influxes, say, are small, the
concentrations can adjust fast enough to satisfy the equilibrium condition (27) very well at
all times. Using (27) to eliminate [Ca2+B]i from (25) yields then

[Ca2+]toti =

(
1 +

1

Ki

[B]i

)
[Ca2+]i
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Using

[B]toti =

(
1 +

1

Ki

[Ca2+]i

)
[B]i

one then gets

[Ca2+]toti =

(
1 +

1

Ki

1

1 + 1
Ki

[Ca2+]i
[B]toti

)
[Ca2+]i =

(
1 +

[B]toti
Ki + [Ca2+]i

)
[Ca2+]i

The evolution of the calcium concentration is given by conservation laws for the total
amount of calcium

d[Ca2+]toti
dt

=
1

V̄i

(
J inPM − JoutPM − J inER + JoutER

)
= jinPM − joutPM − jinER + joutER

where V̄i is the volume of the cytosol and jPM is the normalized flux across the cell mem-
brane and jER the normalized flux across the ER membrane.

Analogously, for the concentration in the ER

d[Ca2+]totER
dt

=
1

V̄ER

(
J inER − JoutER

)
=

V̄i
V̄ER

(
jinER − joutER

)
,

normalizing the fluxes also by the cytosol volume rather than by the ER volume.

Through the fast buffering approximation the derivative of the total calcium can be ex-
pressed in terms of that of the free calcium

d[Ca2+]toti
dt

=
d[Ca2+]toti
d[Ca2+]i

d[Ca2+]i
dt

=
1

fi([Ca2+]i)

d[Ca2+]i
dt

with
d[Ca2+]toti
d[Ca2+]i

= 1 +
[B]toti

Ki + [Ca2+]i
− [B]toti [Ca2+]i

(Ki + [Ca2+]i)
2 = 1 +

Ki[B]toti
(Ki + [Ca2+]i)

2

fi([Ca
2+]i) =

(
1 +

Ki[B]toti
(Ki + [Ca2+]i)

2

)−1

Notes:

• Low affinity buffers have large dissociation constants. For Ki � [Ca2+] one gets
then

fi ≈
1

1 +
[B]toti
Ki

independent of [Ca2+].

• For large buffer concentrations fi is small. Typical values are fi = 0.01 . . . 0.05.

The flux equation can then be written as

d[Ca2+]i
dt

= fi([Ca
2+]i)

(
jinPM − joutPM − jinER + joutER

)
(28)
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and analogously
d[Ca2+]ER

dt
=

V̄i
V̄ER

fER([Ca2+]ER)
(
jinER − joutER

)
. (29)

Note:

• With increasing buffer concentration the calcium dynamics become slower.

It is useful to introduce

σ =
V̄ERfi
V̄ifER

and write (29) as
d[Ca2+]ER

dt
=
fi
σ

(
jinER − joutER

)
Note:

• The buffering reduces the increase in the free calcium concentration arising from an
influx. The compartment behaves as if it had a larger effective volume V̄i

fi
and V̄ER

fER
,

respectively.

• σ gives the ratio between the effective volumens of the cytosol and the ER.

Combining (28) and σ times (29) yields

d

dt

(
[Ca2+]i + σ[Ca2+]ER

)
= fi

(
jinPM − joutPM

)
.

Thus, the total free calcium concentration can be written as

[Ca2+]T = [Ca2+]i + σ[Ca2+]ER.

If there are no fluxes across the membrane [Ca2+]T is constant and [Ca2+]ER can be
eliminated in favor of [Ca2+]i.

Note:

• To complete the dynamics we need to relate the fluxes to concentrations. For that
we need models of pumps, leaks and receptors that drive the fluxes.
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4.2 Model of the Ryanodine Receptor

The RyR is a key player in calcium-induced calcium release.

[Ca*+], Oscillations in Sympathetic Neurons 
1111 

30 K + 5 Coff 
1 uM Ryonodine 

b CCoffl o <mM>: 10. 0. 10 c 

- 
10 .sc 

3 I i 

caffeine (Figure Id, replotted as the square symbols 
in Figure le after scaling by 0.5). The resemblance is 
striking, given that the immediate stimulus is high 
K+ in one case and caffeine in the other. Evidently, 
application of high K+ in the presence of caffeine pro- 
duces a combination of voltage-dependent Ca2+ entry 
and release of internal Ca*+ by the same mechanism 
that is responsible for caffeine-induced Ca*+ release, 
namely CICR. 

Involvement of CICR in the [Ca”]i Oscillations 
Block by Ryanodine 
Further support for the involvement of CICR in the 
[Ca*‘], oscillations comes from the observation that 
they are inhibited by 1 PM ryanodine (Figure 2a). This 
drug binds with high affinity and specificity to Ca2+ 
release channels from brain (McPherson et al., 1991) 
and muscle (Imagawa et al., 1987; Lai et al., 1988). Rya- 
nodine has been used widely in the study of CICR 
(Sutko et al., 1985; Marban and Wier, 1985; Meissner, 
1986; Lattanzio et al., 1987; Fill and Coronado, 1988) 
and is thought to inhibit it by either preventing chan- 
nel opening (McPherson et al., 1991) or stabilizing an 
open subconductance state (Imagawa at al., 1987; 
Rousseau et al., 1987; Bezprozvanny et al., 1991), pre- 
venting net Ca*+ accumulation by the store and 
thereby net Ca*+ release. The blocking effect of rya- 
nodine was very consistent (9/9 cells at 1 PM; l/l cell 
at 10 PM), but somewhat variable in rate (spike ampli- 
tude declined over l-8 cycles before [Ca*+], stabilized). 
The observation that at least one cycle occurred be- 
fore any indication of block is consistent with use 

(nM) 

Figure2. Involvement of CICR in Caf- 
feine-Induced [Ca2+], Oscillations 

(a] [CaZ+], oscillations are blocked by 1 uM 
ryanodine, after which [Ca2+], stabilizes at a 
level UCa*+lrr.ryan, dashed line) that falls be- 
tween the intracycle minimum and maxi- 
mum. Cell BIZJ. 
(b) Sudden caffeine removal at different 
points in the oscillatory cycle caused a 
rapid fall in [Ca2+],. This occurred either 
when caffeine was removed following a 
peak (b, top, 2), or just before a peak while 
[Ca*+], was still rising (b, bottom, 3). Note 
that the latency for resumption of oscilla- 
tions after caffeine was restored depended 
on where in the cycle it was initially re- 
moved. 
(c] Comparison between phase trajectories 
from records l-3 in(b). Following each per- 
turbation, [Ca2+], declined approximately 
exponentially, as revealed by a linear por- 
tion of the phase trajectory (dashed line). 
The slope of this line gives a time constant 
of -3 s (linear regression). In this cell (BO9P) 
[Ca*‘], oscillated in the presence of 10 mM 
caffeine with normal [K+], (2 mM). 

dependence of ryanodine’s inhibitory effect (Rous- 
seau et al., 1987; Thayer et al., 1988). Since control 
experiments show that 1 PM ryanodine inhibits caf- 
feine-induced release of internal Ca2+ but does not 
inhibit voltage-dependent Ca2+ channel current (Friel 
and Tsien, 1992), we attribute this action of ryanodine 
to inhibition of CICR. 

In the presence of ryanodine, [Ca*+], stabilized at a 
level (Ka2+15s,ryan; Figure 2, dashed line) that fell be- 
tween the extremes of [Ca2+], reached during the oscil- 
latory cycle. Since [Ca*‘], did not drift under these 
conditions, we regard [Ca2+]ss,n/an as a steady-state level 
at which Ca2+ entry and extrusion across the surface 
membrane balance one another under the prevailing 
experimental conditions of [K+],, [Ca2+10, and [caff],. In 
the Discussion, we will consider extending this inter- 
pretation of [Ca2+]sS,ryan to the case in which [Ca2+], is 
oscillating. For now, [Ca2+]5r,lyan will be used simply as 
a reference level for describing [Ca2+]i changes during 
the oscillatory cycle. 
Effect of Sudden Caffeine Removal 
Caffeine is thought to release internal Ca2+ by increas- 
ing the potency with which Ca2+ opens intracellular 
Ca2+ release channels. If this is true, then the Ca2+ 
permeability of the store at a given [Ca2+], should be 
elevated in the presence of caffeine. If caffeine re- 
moval reduces this permeability, then it should be 
possible to assess the activity of CICR while [Ca2+l, is 
oscillating by removing caffeine: reducing the Ca*+ 
permeability of the store should create an imbalance 
between internal Ca2+ uptake and release, a sudden 
outward net Ca2+ flux, and a drop in d[Ca’+]i/dt. 

Figure 89: Oscillations in bullfrog sympathetic ganglion neuron involve calcium-induced
calcium release (CICR), since they are blocked by applying ryanodine, which blocks the
ryanodine receptor. The oscillations require that the ryanodine receptors are activated by
caffeine (Friel and Tsien, 1992).

 tween UV flashes by stirring the medium for
 30 s. We generated ensemble currents (Fig.
 IB) by summing single-channel sweeps. We
 determined the time constant of activation
 ( = 1.2 ms) by fitting a single exponential
 to the ensemble current. The activation
 rate of isolated RyR channels is consistent
 with the initial rate of CICR activation in
 vivo (5-7).

 To further detail RyR activation, we
 examined the action of photolytically re-
 leased Ca2+ on the activity of the RyR
 channel (Fig. 2A). Small increases in
 [Ca2+J activated the RyR channel in only
 a few instances. Thus, the result was a
 small ensemble current. Larger increases
 in [Ca2+] activated the channel more
 often, which resulted in larger ensemble
 currents. After a photolytic increase in

 [Ca2+], the probability of opening (P.)
 peaked and then spontaneously decayed,
 whereas the [Ca2+I remained elevated
 (Figs. 1 and 2A) (20). This spontaneous
 decay could be related to Ca2+-dependent
 inactivation (10). The rate of the decay (T
 = 1.3 s) closely correlates with the rate of
 Ca2+-dependent inactivation measured in
 permeablized cardiac myocytes (T = 1.1 s;
 10). However, steady-state PO measure-
 ments at constant bath [Ca2+] show no
 evidence of inactivation in the range of
 0.1 to 10 pLM [Ca2+] (Fig. 2B, open
 triangles) as described (13, 14).

 To address this discrepancy, we com-
 pared the Ca2+ dependency of activation
 induced by caged Ca2+ photolysis (where
 PO was measured at the peak of the ensem-
 ble currents) and the steady-state Ca2+

 dependence of the channel (where P0 was
 measured at constant bath [Ca2+] over a
 long period of time). The channel's sensi-
 tivity to Ca2+ was approximately ten times
 greater when Ca2+ was applied by photol-
 ysis (Fig. 2B, open circles) than when
 Ca2+ was applied under steady-state con-
 ditions (Fig. 2B, open triangles). The
 steady-state measurements at constant
 [Ca2+] correlate directly with the Ca2+
 dependence of PO measured at the end of
 the photolytically induced ensemble cur-
 rents (Fig. 2B, filled circles). These results
 suggest that the Ca2+ sensitivity of RyR
 activation decreases during prolonged ex-
 posure to Ca2+. This phenomenon may
 account for the observed spontaneous de-
 cay of channel activity. A shift in Ca2+
 sensitivity could explain why channels
 that apparently inactivate after fast in-
 creases in [Ca2+I remain active at much
 higher [Ca2+] under steady-state condi-
 tions.

 To test if the spontaneous decay in chan-
 nel activity resulted from a conventional
 mechanism (such as Ca2+-dependent inac-
 tivation), we increased the [Ca2+J in tWO
 incremental steps (Fig. 3). A conventional

 Fig. 1. Activation of single cardiac A
 RyR channels by flash photolysis
 of caged Ca2+ (DM-nitrophen).
 Single-channel openings are
 shown as upward deflections.
 The current carrier was Cs+. The
 UV laser flash was applied at the

 arrowhead. (A) Six independent "1_
 examples of channel activation in- ] 20 pA
 duced by flash photolysis of DM- O
 nitrophen. (B) Ensemble current
 constructed from 87 data _
 sweeps. (Inset) Time course of
 activation was best fit by a single B

 exponential function (expanded = 1.2 ms -1.0
 scale). The time constant of acti- -, i

 vation was 1.1 ? 0.3 ms (n = 7; o 0.5 Po
 mean ? SD). (C) The amplitude . ...1.

 and time course of the free Ca2+ ----------------------------------------------------------------------------------- - ?-?
 change in the microenvironment
 of the channel was estimated in I

 separate experiments in which C 10
 the lipid bilayer was replaced with j )

 a Ca2+ ionophore resin (20). This A Flash 50.1
 transformed the bilayer aperture 500ms
 into a Ca2+ electrode while main-
 taining the geometric architecture of the experimental system.

 mechanism predicts that if the channel be-
 comes inactivated after the first increase in
 [Ca2+], it will not respond to the second
 increase in [Ca2+]. However, application of
 two incremental increases in the [Ca2+]
 elicited two transient bursts of channel ac-
 tivity (Fig. 3). The cardiac RyR appears to
 adapt to the [Ca2+] to which it is exposed,
 preserving its capacity to respond to a new
 higher [Ca2+]. Additionally, conventional
 desensitization at the single-channel level is
 characterized by bursts of openings separated
 by long silent intervals (21). In contrast, the
 opening frequency in the single-channel rec-
 ords appears to decrease gradually (Fig. 3A).
 Thus, the nature of our single-channel rec-
 ords is also inconsistent with conventional
 desensitization.

 The spontaneous decay of channel ac-

 tivity, the shift in Ca2+ sensitivity, and the
 ability of apparently desensitized single
 channels to activate in response to a second
 Ca2+ stimulus support the hypothesis that
 RyR Ca2+ adaptation exists. We propose
 that the adaptation process includes the
 following events. (i) A change in [Ca2+
 induces channel activity as a consequence
 of Ca2+ binding to an activation site on the
 RyR molecule. This step is relatively fast (T
 - 1.2 ms; Fig. 1). (ii) The RyR molecule
 undergoes a transformation that induces a
 slow (T 1.3 s; Fig. 2) decrease in the
 Ca2+ affinity of the activation site. The
 result is less occupancy of the activation site
 and a decay in channel activity (relaxation
 phase). (iii) The relaxation phase leaves
 the activation site available to respond to a
 second Ca2+ stirriulus (Fig. 3).

 Fig. 2. Single-channel P. A - 1.0
 measured during sus- 2.5 s

 tained Ca2+ stimuli. Free - 0.5 P0
 [Ca2+] before the flash ]

 was 100 nM. (A) Ensemble ...... . ......... . * .... 0.0
 currents generated by the

 summation of 64 data 11.0
 sweeps at three concen- 5 Ca2+ (itM)
 trations of Ca2+ (0.2, 0.5, A Flash A A 0.1
 and 1 pIM). Each ensemble current was generated B
 from a different channel. In each case, activity peaked 1.00 -
 within 4 ms and then spontaneously decayed, where- x
 as the [Ca2+] remained high (shown below each 0.75 /
 trace). The rate of decay (T = 1.3 + 0.6 s; n = 11; p 050 Peak
 mean ? SD) was not dependent on [Ca2+]. (B) P ,/ Plateau
 Dependence on [Ca2+] of channel activity measured 0.25 - and
 at the peak (open circles) and at the end (filled circles) steady-state
 of the ensemble currents. The Ca2+ dependence of ? .?? .. . .... .
 channel activity under steady-state conditions where 10-7 10-6 i0-5 10-4

 the average P, was estimated at constant [Ca2+] over Ca2 (M)
 several minutes (open triangles) is also shown.
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 tween UV flashes by stirring the medium for
 30 s. We generated ensemble currents (Fig.
 IB) by summing single-channel sweeps. We
 determined the time constant of activation
 ( = 1.2 ms) by fitting a single exponential
 to the ensemble current. The activation
 rate of isolated RyR channels is consistent
 with the initial rate of CICR activation in
 vivo (5-7).

 To further detail RyR activation, we
 examined the action of photolytically re-
 leased Ca2+ on the activity of the RyR
 channel (Fig. 2A). Small increases in
 [Ca2+J activated the RyR channel in only
 a few instances. Thus, the result was a
 small ensemble current. Larger increases
 in [Ca2+] activated the channel more
 often, which resulted in larger ensemble
 currents. After a photolytic increase in

 [Ca2+], the probability of opening (P.)
 peaked and then spontaneously decayed,
 whereas the [Ca2+I remained elevated
 (Figs. 1 and 2A) (20). This spontaneous
 decay could be related to Ca2+-dependent
 inactivation (10). The rate of the decay (T
 = 1.3 s) closely correlates with the rate of
 Ca2+-dependent inactivation measured in
 permeablized cardiac myocytes (T = 1.1 s;
 10). However, steady-state PO measure-
 ments at constant bath [Ca2+] show no
 evidence of inactivation in the range of
 0.1 to 10 pLM [Ca2+] (Fig. 2B, open
 triangles) as described (13, 14).

 To address this discrepancy, we com-
 pared the Ca2+ dependency of activation
 induced by caged Ca2+ photolysis (where
 PO was measured at the peak of the ensem-
 ble currents) and the steady-state Ca2+

 dependence of the channel (where P0 was
 measured at constant bath [Ca2+] over a
 long period of time). The channel's sensi-
 tivity to Ca2+ was approximately ten times
 greater when Ca2+ was applied by photol-
 ysis (Fig. 2B, open circles) than when
 Ca2+ was applied under steady-state con-
 ditions (Fig. 2B, open triangles). The
 steady-state measurements at constant
 [Ca2+] correlate directly with the Ca2+
 dependence of PO measured at the end of
 the photolytically induced ensemble cur-
 rents (Fig. 2B, filled circles). These results
 suggest that the Ca2+ sensitivity of RyR
 activation decreases during prolonged ex-
 posure to Ca2+. This phenomenon may
 account for the observed spontaneous de-
 cay of channel activity. A shift in Ca2+
 sensitivity could explain why channels
 that apparently inactivate after fast in-
 creases in [Ca2+I remain active at much
 higher [Ca2+] under steady-state condi-
 tions.

 To test if the spontaneous decay in chan-
 nel activity resulted from a conventional
 mechanism (such as Ca2+-dependent inac-
 tivation), we increased the [Ca2+J in tWO
 incremental steps (Fig. 3). A conventional

 Fig. 1. Activation of single cardiac A
 RyR channels by flash photolysis
 of caged Ca2+ (DM-nitrophen).
 Single-channel openings are
 shown as upward deflections.
 The current carrier was Cs+. The
 UV laser flash was applied at the

 arrowhead. (A) Six independent "1_
 examples of channel activation in- ] 20 pA
 duced by flash photolysis of DM- O
 nitrophen. (B) Ensemble current
 constructed from 87 data _
 sweeps. (Inset) Time course of
 activation was best fit by a single B

 exponential function (expanded = 1.2 ms -1.0
 scale). The time constant of acti- -, i

 vation was 1.1 ? 0.3 ms (n = 7; o 0.5 Po
 mean ? SD). (C) The amplitude . ...1.

 and time course of the free Ca2+ ----------------------------------------------------------------------------------- - ?-?
 change in the microenvironment
 of the channel was estimated in I

 separate experiments in which C 10
 the lipid bilayer was replaced with j )

 a Ca2+ ionophore resin (20). This A Flash 50.1
 transformed the bilayer aperture 500ms
 into a Ca2+ electrode while main-
 taining the geometric architecture of the experimental system.

 mechanism predicts that if the channel be-
 comes inactivated after the first increase in
 [Ca2+], it will not respond to the second
 increase in [Ca2+]. However, application of
 two incremental increases in the [Ca2+]
 elicited two transient bursts of channel ac-
 tivity (Fig. 3). The cardiac RyR appears to
 adapt to the [Ca2+] to which it is exposed,
 preserving its capacity to respond to a new
 higher [Ca2+]. Additionally, conventional
 desensitization at the single-channel level is
 characterized by bursts of openings separated
 by long silent intervals (21). In contrast, the
 opening frequency in the single-channel rec-
 ords appears to decrease gradually (Fig. 3A).
 Thus, the nature of our single-channel rec-
 ords is also inconsistent with conventional
 desensitization.

 The spontaneous decay of channel ac-

 tivity, the shift in Ca2+ sensitivity, and the
 ability of apparently desensitized single
 channels to activate in response to a second
 Ca2+ stimulus support the hypothesis that
 RyR Ca2+ adaptation exists. We propose
 that the adaptation process includes the
 following events. (i) A change in [Ca2+
 induces channel activity as a consequence
 of Ca2+ binding to an activation site on the
 RyR molecule. This step is relatively fast (T
 - 1.2 ms; Fig. 1). (ii) The RyR molecule
 undergoes a transformation that induces a
 slow (T 1.3 s; Fig. 2) decrease in the
 Ca2+ affinity of the activation site. The
 result is less occupancy of the activation site
 and a decay in channel activity (relaxation
 phase). (iii) The relaxation phase leaves
 the activation site available to respond to a
 second Ca2+ stirriulus (Fig. 3).

 Fig. 2. Single-channel P. A - 1.0
 measured during sus- 2.5 s

 tained Ca2+ stimuli. Free - 0.5 P0
 [Ca2+] before the flash ]

 was 100 nM. (A) Ensemble ...... . ......... . * .... 0.0
 currents generated by the

 summation of 64 data 11.0
 sweeps at three concen- 5 Ca2+ (itM)
 trations of Ca2+ (0.2, 0.5, A Flash A A 0.1
 and 1 pIM). Each ensemble current was generated B
 from a different channel. In each case, activity peaked 1.00 -
 within 4 ms and then spontaneously decayed, where- x
 as the [Ca2+] remained high (shown below each 0.75 /
 trace). The rate of decay (T = 1.3 + 0.6 s; n = 11; p 050 Peak
 mean ? SD) was not dependent on [Ca2+]. (B) P ,/ Plateau
 Dependence on [Ca2+] of channel activity measured 0.25 - and
 at the peak (open circles) and at the end (filled circles) steady-state
 of the ensemble currents. The Ca2+ dependence of ? .?? .. . .... .
 channel activity under steady-state conditions where 10-7 10-6 i0-5 10-4

 the average P, was estimated at constant [Ca2+] over Ca2 (M)
 several minutes (open triangles) is also shown.
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Figure 90: A) RyR respond to a step increase in the calcium concentration with a transient
current and a plateau current. B) Dependence of the peak and plateau currents on the
step size. (Friel and Tsien, 1992)

 m REPORTS

 Fig. 3. Activation of the cardiac A
 RyR channel by two incremental
 increases in [Ca2+]. Two UV
 flashes were applied 2 s apart _ ] 20 pA
 (at arrowheads). (A) Single-
 channel records. Open events
 are shown as upward deflec-
 tions. (B) Ensemble currents -0.5

 generated from 92 data sweeps kkjj; i Po
 collected from a single channel jo25 Po
 (probability of multiple channels 10.0
 <0.0001) (19). (C) Time course ...
 of the change in [Ca2+]. Data
 are representative of six experi- C 1500
 ments. A 250 ] Ca2+ (nM)

 100

 A Flash

 Cardiac RyR adaptation reconciles a
 body of apparently contradictory results.
 The fact that the cardiac RyR becomes
 insensitive only to the [Ca2+] to which it is
 exposed explains why Ca2+-dependent inac-
 tivation was evident in some studies (10, 12)
 and absent in others (7, 11, 13, 14). Cardiac
 RyR adaptation may represent the negative
 control mechanism that counters the inher-
 ent positive feedback of CICR. In our study,
 the rate of RyR adaptation appears to be too
 slow (103 times slower than RyR activation)
 to account by itself for the gradation of
 CICR in vivo. It is possible, however, that
 the rate of adaptation is faster under normal
 physiological conditions [in the presence of
 Mg2+, adenosine triphosphate (ATP), and
 Ca2+ as the conducting ion]. Alternatively,
 even an adaptation with relatively slow ki-
 netics could have a role in controlling
 CICR. Modeling studies have shown that if
 the Ca2+ sensitivity of the Ca2+ release
 mechanism is precisely adjusted, it is possi-
 ble to obtain graded control of CICR (22).
 Such models, however, are intrinsically un-
 stable and tend toward spontaneous oscilla-
 tion (22). Adaptation could provide a mech-
 anism to continuously fine-tune the Ca2+
 sensitivity of the system to maintain a stable,
 graded CICR.

 Single-channel adaptation may not be
 unique to the RyR. A similar mechanism
 may underlie the phenomenon of quantal
 or incremental Ca2+ release from inositol
 trisphosphate (IP3)-sensitive Ca2+ stores
 by submaximal doses of IP3 (23-27). The
 origin of quantal Ca2+ release from IP3-
 sensitive stores has been a subject of debate.
 It has been attributed either to a heteroge-
 nous population of Ca2+ stores with differ-
 ent IP3 sensitivities (24, 27) or to a gradual
 attenuation of IP3 sensitivity in individual
 IP3 receptors (IP3Rs) (28-30). Our study
 demonstrates that RyR adaptation occurs in
 individual channels as a result of a shift in
 ligand sensitivity. Because the RyR and
 IP3R are similar proteins (31-33), quantal
 behavior in IP3R populations may also arise
 from individual IP3Rs and result from mod-

 ulation of the receptor sensitivity to IP3.
 Thus, quantal Ca2+ release from IP3R pop-
 ulations might be a consequence of adapta-
 tion of single IP3R channels to incremental
 doses of IP3.

 As proposed for the IP3R (28), a shift in
 ligand sensitivity might be regulated by a
 second Ca2+ binding site that interacts
 with the activation site in an allosteric
 fashion. Thus, adaptation may arise from
 allosteric interactions in the homotet-
 rameric structure (33) of the RyR. Alterna-
 tively, it could be attributed to an interac-
 tion between the RyR and an unidentified,
 closely associated regulatory protein. A
 model based on the existence of a catalytic
 regulatory molecule that controls the tran-
 sition between open and closed forms of the
 IP3R channel has been proposed (34). Re-
 gardless of the specific mechanism, adapta-
 tion appears to be a fundamental feature of
 intracellular Ca2+ release channels, includ-
 ing both the RyR and IP3R.
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Figure 91: Response of RyR to two sequential puffs of calcium. Traces in A show opening
events of a single channel. B: Calcium current averaged over many trials. C: calcium
concentration. (Friel and Tsien, 1992)
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The transient response of the current to an increase in calcium suggests that the Ryan-
odine receptor activates quickly but then adapt slowly and becomes inactivated with time.

Keizer and Levine developed a model of the ryanodine receptor that is based on 2 open
states and 2 closed states (Keizer and Levine, 1996)19. The transitions in and out of the
second closed state are slow and represent an inactivation of the receptor.

Figure 92: Sketch of the 2 open and 2 closed states of the ryanodine receptor and their
transition probabilities (Fall et al., 2002).

Mass action yields equations for the probability of the receptor to be in that state or, equiv-
alently, the mean fraction of the receptors to be in that state,

dPC1

dt
= −k+

a [Ca2+]nPC1 + k−a PO1

dPO1

dt
= +k+

a [Ca2+]nPC1 − k−a PO1 − k+
b [Ca2+]mPO1 + k−b PO2

−k+
c PO1 + k−c PC2

dPO2

dt
= k+

b [Ca2+]mPO1 − k−b PO2

dPC2

dt
= +k+

c PO1 − k−c PC2

The probabilities have to add up to 1 and the equation conserves that sum

PC1 + PC2 + PO1 + PO2 = 1
d

dt
(PC1 + PC2 + PO1 + PO2) = 0

This allows to us to eliminate one variable, e.g. PC1, from the equations

PC1 = 1− PO1 − PO2 − PC2 .

Determine the fixed point for a given constant calcium concentration from the equations
for PC1, PO1, and PO2; the equation for PC2 is then automatically satisfied because of the

19The paper arose from the undergraduate honors thesis of Leslie Levine
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conservation of the probability.

dPO1

dt
= +k+

a [Ca2+]n (1− PO1 − PO2 − PC2)− k−a PO1 − k+
b [Ca2+]mPO1 + k−b PO2

−k+
c PO1 + k−c PC2 (30)

dPO2

dt
= k+

b [Ca2+]mPO1 − k−b PO2 (31)

dPC2

dt
= +k+

c PO1 − k−c PC2 (32)

Straightforward algebra gives the unique solution to this linear 3 × 3 system. It is more
compact to write the solution in terms the dissociation constants instead of the respective
reaction rates k±a,b,c,

Kn
a =

k−a
k+
a

Km
b =

k−b
k+
b

Kc =
k−c
k+
c

.

Consider the dimensions of the dissociation constants (using {} instead of [] to denote
dimensions)

{
k−a,b,c

}
=

1

time

{
k−a
k+
a

}
= [Ca2+]n

{
k−b
k+
b

}
= [Ca2+]m

{
k−c
k+
c

}
= 1

Thus
{Ka} = {Kb} = [Ca2+].

Note:

• Consider equilibrium between O1 and O2

PO2 =
k+
b

k−b
[Ca2+]mPO1 =

(
[Ca2+]

Kb

)m
PO1 .

Thus, Kb gives the calcium concentration for which O1 and O2 are equally populated.

One then obtains

PO1 =
1(

Ka
[Ca2+]

)
n +

(
[Ca2+]
Kb

)
m + 1 + 1

Kc

(33)

PO2 =

(
[Ca2+]
Kb

)m(
Ka

[Ca2+]

)
n +

(
[Ca2+]
Kb

)
m + 1 + 1

Kc

(34)

PC2 =
1
Kc(

Ka
[Ca2+]

)
n +

(
[Ca2+]
Kb

)
m + 1 + 1

Kc

(35)
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Important:

• The transitions to and from the inactivated state C2 are slow, it therefore takes quite
a while to reach this fixed point. That fixed point depends on [Ca2+].

• Does one have to solve the full 4 equations to describe the approach to this fixed
point when [Ca2+] changes?

• Since the transition rates among O1, O2, and C1 are fast, one can obtain a simpli-
fied description of the dynamics that results from changes in [Ca2+] using the rapid
equilibrium approximation.

Consider explicitly the limiting situation

k+
a [Ca2+]n ∼ k−a ∼ k+

b [Ca2+]m ∼ k−b � k+
c ∼ k−c

Then PC2 evolves much more slowly than PO1 and PO2 (and PC1).

Eq.(30) shows that PO1 depends also on the slowly evolving PC2 although it has high
reaction rates. To get an idea of how to make use of this consider first a much simpler
situation

dy

dt
= −λy + cos t λ� 1. (36)

Calculate the exact solution

y = yh + yp yh = ae−λt

and
yp = A cos t+B sin t

−A sin t+B cos t = −λA cos t− λB sin t+ cos t

A = λB B = −λA+ 1 ⇒ A =
λ

λ2 + 1
B =

1

λ2 + 1

For any fixed time t

y = ae−λt +
λ

λ2 + 1
cos t+

1

λ2 + 1
sin t →︸︷︷︸

λ→∞

1

λ
cos t+O

(
1

λ2

)
Thus, after the decay of the exponentially decaying transient, i.e. for t � 1

λ
, the solution

is given to leading order by the balance between the terms on the r.h.s of (36), i.e. by the
quasi-static fixed point

λy = cos t.

After a short transient of duration O (1/k−a ), the fast variables PO1 and PO2 will reach the
quasi-static fixed point given by

dPO1

dt
= 0 =

dPO2

dt

with PC2 fixed.

Note that (30) includes also reaction terms k±c , which are small compared to the rest. We
can ignore those terms when calculating the fixed point.
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Simple algebra then gives

P
(0)
O1

=
1

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n · w P
(0)
O2

=
1

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n ( [Ca2+]

Kb

)m
· w

(37)
with

w(t) = 1− PC2

the fraction of receptors that are not inactivated.

We still need to determine w(t) ≡ 1− PC2(t) = PC1 + PO1 + PO2. From (32) we get

dw

dt
= k−c (1− w)− k+

c PO1

Since w evolves much more slowly than PO1, PO1 is essentially always at the fixed point
given by (37).

dw

dt
= k−c (1− w)− k+

c

1

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n · w
= k−c

1−

1 +
1

Kc

1

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n
w


= k−c

1−

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n
+ 1

Kc

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n
w


This can be written as

dw

dt
=
w∞ − w

τ

with

w∞ =

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n
+ 1

Kc

1 +
(

[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n
−1

τ =
w∞
k−c

.

The probability for the ryanodine receptor to be open is then given by

PO(t) ≡ PO1(t) + PO2(t) =
1 +

(
[Ca2+]
Kb

)m
1 +

(
[Ca2+]
Kb

)m
+
(

Ka
[Ca2+]

)n · w(t) (38)

where [Ca2+] is in general also a function of time.

Fitting to the experiments (Gyorke and Fill, 1993) leads to n = 4 and m = 3 and values for
the reaction constants.

Dependence of the receptor on [Ca2+]i in the steady state (33,34,35)

• For low [Ca]2+
i
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– most receptors closed, very few inactivated since very few in O1

PO1 ∼ [Ca2+]ni PO2 ∼ [Ca2+]n+m
i PC2 ∼ [Ca2+]ni w∞ ∼ 1

• For high [Ca]2+
i

– most receptors in O2-state, very few inactivated since very few in O1and C2

cannot be reached from O2

PO1 ∼ [Ca2+]−mi PO2 ∼ 1 PC2 ∼ [Ca2+]−mi w∞ ∼ 1

• Intermediate [Ca]2+
i

– significant fraction of receptors in O1and therefore also significant fraction in C2,

w∞ < 1

Dependence of adaptation on [Ca2+]i

• Steps to large [Ca2+]i should not lead to significant adaptation since w∞ ∼ 1

• Steps to intermediate [Ca2+]i will lead to adaptation (i.e. overshoot in [Ca2+]i-flux)
because a large fraction of receptors quickly go to O1 and quickly equilibrate with O2

(the relative populations of O1 and O2 depend on the dissociation constant Kb). The
fraction that stays in O1 equilibrate with C2 on a longer time scale

Note:

• The rapid equilibrium approximation is valid as long as [Ca2+] does not change too
fast to allow the fast variables to be close to the quasi-static fixed point (33,34,35).

• After brief, rapid changes in [Ca2+] there will be a transient during which the fast
variables reach the fixed point (33,34,35) .

RyR Adaptation and Ca2+ Oscillations

TABLE 1 RyR kinetic constants (n = 4, m = 3)

Rate constant Value

k+ 1500 ,uM-4 s-
ka 28.8 s-'
kb+ l,150 M-3 s-
kj 385.9 s-'
k.+ 1.75 s-
kc- 0.1 s-1

cline to the plateau (Fig. 2 B) occurs within a few seconds.
With these parameters the model also mimics "adaptation,"
as is shown in Fig. 2 C, where a further increase of [Ca4+]
to 0.50 AM at the arrow gives rise to a comparable peak in
PO.

It is easy to see how the features of the kinetic model give
rise to rapid activation, slow inactivation, and "adaptation."
Referring to Fig. 1, we see that at low [Ca2+] the RyR will
occupy predominantly the closed state, Cl. In fact, at a basal
concentration of 0.1 ,uM the open probability is -0.01 in
our model. A rapid jump in [Ca21] from 0.1 to 0.9 ,uM (as
in Fig. 2 A) increases the occupancy of the two open states
within milliseconds because of the rapid Ca2+ dependence
of the transitions in steps a and b. This leads to the peak
open probability, which is followed by a decline as the

0.0-I a

0.0 5.0 10.0
time (ms)

.;>.
co.0
2 0.5.
CL
c
0.CL0

0.0 -
0

1.0 B

0 2.0 4.0
time (s)

rapidly equilibrating transitions in steps a and b slowly lose
occupancy owing to the slow transition c to state C2. Ad-
aptation, as illustrated in Fig. 2 C, occurs before complete
equilibration of step c and is due to the residual occupancy
of the closed state, Cl of the RyR, which can be recruited
into the open states by a second pulse of Ca2+.
The dependence of the peak and plateau responses for

increases in [Ca42+] from 0.1 ,M to higher values is shown
in Fig. 2 D. The filled circles represent the peak values
taken from simulations like that in Fig. 2 A, whereas the
curves are theoretical values based on the separation of the
"fast" time scale for the rise to the peak (milliseconds) from
the "slow" time scale for the decline to the plateau (sec-
onds). The derivation of these theoretical expressions is
given in Appendix A. The calculated values for POA are in
good agreement with the experimental results of Gyorke
and Fill (1993) (shown as the open triangles). This includes
the facts that PO saturates slightly below P0 = 1 (0.963 in
Fig. 2 A) and that PO is negligible for [Ca4+] ' 0.1 ,uM
(Fig. 2 D). At values of [Cai2] higher than 5 ,uM the
plateau, on the other hand, rises somewhat higher (1.0 rather
than 0.75) than is reported experimentally. This problem
can be remedied in the model by addition of another closed
state, C3, that is connected to C2 by a [Ca2+]-dependent
transition. For the sake of simplicity, however, and because
the difference is significant only when [Ca2+] is at the high
end of the physiological range (Alberts et al., 1989), we
have not included that additional kinetic step in the version
of the model presented here.
On a time scale longer than 10-20 ms it is possible to

approximate the values of Pc., PO,, and Po2 by taking
advantage of the fact that the kinetic steps a and b in Fig. 1
rapidly reach equilibrium before PC2 changes appreciably.
On the "slow" time scale of changes in PC2 it is shown in
Appendix B that the open probability can be approximated
by
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FIGURE 2 (A) Simulation of the rapid rise to the peak open probability
of a single RyR following an increase of [Ca4+] from 0.1 to 0.9 ,uM,
calculated with Eqs. 1-4 and the rate constants in Table 1. (B) Same as (A)
but on a longer time scale to show the decline to the plateau open

probability. (C) Same as (B) but with two increases in [Ca4+]: from 0.1 to
0.35 ,tM at t = 0 followed by an increase to 0.50 ,mM at the arrow. Note
the adapted response. (D) The peak and the plateau open probabilities as

functions of [Ca.+]. (Solid curves) Theoretical values from Eqs. 15 and 16;
(0) simulations like that in (A); (IA) Experimental data (Fig. 2 B of Gyorke
and Fill, 1993) (upward facing triangles are the peak; and downward, the
plateau).

pslow _ w(1 + ([Ca. ]/Kb)3)
= 1 + (Kl[Ca4+])4 + ([Ca4+]/Kb)3' (5)

where w = 1-PC2, the fraction of channels not in state C2.
Furthermore, on this time scale w solves the differential
equation

dw/dt = - (w -w([Ca2+]))Ir([C4-'D, (6)

where wr is the equilibrium value of w and T is its relaxation
time. Explicit expressions for w'([Ca2+]) and r([Ca4+]) are

given in Eqs. 20 and 21 in Appendix B.
For fixed values of [Ca42+], Eqs. 5 and 6 show that the

rate of relaxation of w determines the rate of relaxation of
PO to its plateau value in Fig. 2 D. In the model the
relaxation time depends on [Ca4. ] and has a value of 1.0 s

for [Ca4+] = 0.5 ,tM. For the parameter values in Table 1
the relaxation time increases to -2.0 s at [Ca4+] = 0.2 ,uM
and to -1.9 s at [Ca4+] = 1.0 ,uM. This is compatible with
the experimental relaxation time of 1.3 ± 0.3 s reported for
the cardiac RyR (Gyorke and Fill, 1993).
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Figure 93: Keizer-Levine model for the RyR: response of Ryanodine receptor model to
step increases in [Ca2+] Keizer and Levine (1996).
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4.3 Bullfrog Sympathetic Ganglion Neuron Model: Closed Cell

The sympathetic ganglia are part of the autonomous (non-conscious) nervous system,
which deals with food and breeding (para-sympathetic nervous system) and with stress
response ‘fight or flight’ (sympathetic nervous system).

Many aspects of these basic functions are conserved among species. The bullfrog sym-
pathetic ganglion neuron was apparently a good model system top study the effect of
caffeine on neurons in the sympathetic nervous system Kuba and Nishi (1976).

The calcium concentration in the cytosol satisfies (cf. (28))

d[Ca2+]i
dt

= fi

jRyR ([Ca2+]i, w
)

+ jleak
(
[Ca2+]i

)
− jSERCA

(
[Ca2+]i

)︸ ︷︷ ︸
pump


The flux through the leak is driven simply by diffusion, i.e. by the difference in concentra-
tion in the cytosol and the ER,

jleak = νleak
(
[Ca2+]ER − [Ca2+]i

)
.

The ryanodine receptor releases calcium from the ER when its channel is open

jRyR = νRyRPO([Ca2+]i, w)
(
[Ca2+]ER − [Ca2+]i

)
with PO([Ca2+]i, w) given by (38).

Here it is assumed that the RyR acts symmetrically , i.e. calcium is transported as easily
out of the ER as into the ER. That results in the flux being proportional to the concentration
gradient (difference).

The SERCA pump pumps calcium into the ER against a very large concentration differ-
ence. Its flux can well fitted by a Hill function

jSERCA = νSERCA
[Ca2+]2i

[Ca2+]2i +K2
SERCA

.

Together with
dw

dt
=
w∞ ([Ca2+]i)− w

τ ([Ca2+]i)

and the conservation of calcium

[Ca2+]ER =
1

σ

(
[Ca2+]T − [Ca2+]i

)
we have a closed system of equations for w and [Ca2+]i

d[Ca2+]i
dt

= f0

(
[Ca2+]i; [Ca2+]T

)
+ w · f1

(
[Ca2+]i; [Ca2+]T

)
dw

dt
= g0

(
[Ca2+]i

)
+ w · g1

(
[Ca2+]i

)
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with f0,1 depending on [Ca2+]T as a control parameter.

Having 2 coupled ODEs allows a phase plane analysis.

The nullclines are given by

0 = f0 + wf1

0 = g0 + wg1

The intersections of the nullclines give fixed points of the dynamics.

Depending on [Ca2+]T the equations have 1 or 3 fixed points with saddle-node bifurcations
changing the number of fixed points.

In particular, for intermediate [Ca2+]T there is bistability:

• for low [Ca2+]i only few RyR are open

• increasing [Ca2+]i opens more RyR, which leads to more release of calcium from
the ER, increasing [Ca2+]i further, opening yet more RyR.

A linear stability analysis of the fixed points shows the stability as indicated in the bifurca-
tion diagram.

There is also an oscillatory instability (Hopf bifurcation) near the lower saddle-node bifur-
cation point leading to unstable oscillations. For somewhat different parameters (of the
SERCA pump) they can be made stable.

However

• The oscillations exist only over a very small range of [Ca2+]T .

• The period of the oscillations tends to be too short. It is controlled by 1/k−c = O(10s)

Figure 94: Phase plane and bifurcation diagram for the closed-cell model Fall et al. (2002).
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4.4 Bullfrog Sympathetic Ganglion Neuron Model: Open Cell

Consider extension of the model to obtain robust oscillations.

NWKI” 
1112 

25 mv 

b CKI, <mM> : 30. 2. 30 c CCOI, CmM) : 2. 0. 2 

Sudden caffeine removal invariably led to a rapid 
fall in d[Ca2’],/dt, regardless of whether it occurred 
during the rising or falling phases of the [Ca*+], tran- 
sient (Figure 2b). Thus, caffeine must influence [Caz’], 
regulation at these times, presumably by promoting 
CICR. The changes in [Ca2’], were associated with a 
prompt increase in net outward CaL+ flux that was 
several times larger than the outward flux during the 
declining phase of the spontaneous [CaZ”], transients 
(Figure 2c, compare traces l-3). The prompt change in 
d[Ca*‘],/dt is consistent with rapid washout of caffeine 
(O’Neill et al., 1990) and suggests that its stimulatory 
effect on the internal store is quickly reversible. After 
caffeine removal, [Cal’], fell with a fast exponential 
time constant (r = 3 s) that was independent of when 
in the oscillatory cycle the perturbation occurred, 
consistent with a first-order restorative process. The 

10 set 

Figure 3. [Cal+], Oscillations Occur at Con- 
stant V, but the Importance of Voltage- 
Gated Ca2+ Entry Varies during the Oscilla- 
tory Cycle 

(a) High K’ (30 mM) depolarized V, and tn- 
creased [Ca2’],. Caffeine (1 mM) produced 
a small rise in [CaZ-I,, with little or no 
change in V,. In the presence of 1 mM caf- 
feine, high KL depolarized V, io the same 
degree but elicited a larger and more tran- 
sient [W’], response than that elicited by 
high K’ alone. Increasing [Gaff], to 5 mM 
produced a transient [Ca2+] elevatton fol- 
lowed by steady [Ca>+], oscillations, but V, 
remained clamped at -33 mV. Resting po- 
tential in this cell (Bl3L) was -66 mV. 
(band c) Separation of the interspike [Cal’], 
rise into two intervals with different re- 
quirements for external CaL+. Comparison 
between the effect of lowering [K’],!b) and 
removing external Cal- (c) in two different 
phases of the oscillatory cycle. Each col- 
umn shows the effect of changing the ex- 
ternal solution early during the interspike 
rise in [(Ia’-], (top), when [Ca’+], was not 
changing very fast, and during the rapid 
upstroke (center), shown on an expanded 
time scale at the bottom. Vertical dashed 
lines indicate when solution changes were 
made, and the zero [Ca2+], level is indicated 
by dotted lines. (b, top)When [K’],was low- 
ered from 30 to 2 mM near the interspike 
minimum, [Ca2’], fell and oscillations 
stopped, demonstrating the importance of 
depolarization. (c, top) Removing external 
Ca2” had the same effect, suggesting that 
elevated [K’], is important because it pro- 
motes entry of extracellular Ca’+. (c, center 
and bottom) After removing external Ca’* 
when [Ca?], was increasing more rapidly, 
[Ca’+],continued to rise, indicatingthat the 
rise reflects release of internal Cal+. (0, cen- 
ter and bottom) After iowertng [K+], at a 
similar point in the cycle, [CazL], continued 
to rise in much the same way, Indicating 
that depolarizatton per se is not necessary 
for internal Ca’+ release. [Gaff], = 5 mM. 
Cell B13G (b); ceil B12Z (c). 

overall interpretation is that caffeine promotes a 
[Ca*+],-dependent leakage of Ca2” via Ca*’ release 
channels in the internal store and that this leakage 
opposes ongoing Ca2+ uptake. When caffeine is re- 
moved, the leak is promptly abolished and the first- 
order restorative process becomes unopposed, lead- 
ing to net Cal-- uptake by the store. 

[Caz’li Oscillations Occur at Fixed 
Membrane Potentials 
Previous studies have not determined whether vari- 
ations in membrane potential (V,) play a role in caf- 
feine-induced [Ca*+], oscillations in these ceils (e.g., 
Kuba, 1980). To address this question, we monitored 
V,, with an intracellular microelectrode while [Ca2+]: 
oscillated after stimulation with high K’ and caffeine 
(Figure 3a). in the combined presence of 30 mM K’ 

Figure 95: Oscillations require some depolarization of the cell (by reducing the impact
of the hyperpolarizing K-conductance) and the application of caffeine. The membrane
voltage is held constant Friel and Tsien (1992).

Since the oscillations require some depolarization of the cell, voltager-dependent calcium
channels in the external cell membrane could play a role. Since the oscillations persist,
when the membrane voltage is fixed (voltage clamp), it may be sufficient to allow a steady
influx of calcium.

Consider the total calcium concentration

d[Ca2+]T
dt

= fi

 jin︸︷︷︸
calcium channel

− jPMCA︸ ︷︷ ︸
pump


The PMCA pump (plasma membrane Ca2+-ATPases) can reasonably modeled like the
SERCA pump

jPMCA = νPMCA
[Ca2+]2i

K2
PMCA + [Ca2+]2i

.

For fixe membrane voltage jin is just a fixed current.

The equation for [Ca2+]i needs to be extended to include the membrane fluxed

d[Ca2+]i
dt

= fi (jRyR + jleak − jSERCA + jin − jPMCA)

Together with the equation for w(t) one has then three equations. Can they be simplified?

Experimentally, the oscillations have a period of O(1min). The time constant for w(t) is
O(10s). It is therefore reasonable to assume that w(t) relaxes to w∞ and follows it quite
closely⇒ replace w(t) by w∞,

jRyR = νRyRPO([Ca2+]i, w∞)
(
[Ca2+]ER − [Ca2+]i

)
.
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The bifurcation diagram for [Ca2+]i as a function of [Ca2+]T can now be considered as the
phase plane with the nullclines

[Ca2+]T : jin − νPMCA
[Ca2+]2i

K2
PMCA + [Ca2+]2i

= 0 ⇒ [Ca2+]i = const.

[Ca2+]i : jRyR + jleak − jSERCA + jin − jPMCA = 0

The fixed-point branch of Fig.94 amounts to the nullcline of [Ca2+]i.

When the nullcline of [Ca2+]T intersects that of [Ca2+]i on the intermediate branch one
obtains a periodic orbit as indicated

• On the lower branch [Ca2+]T increases and state follows the lower branch until that
branch turns around (saddle-node bifurcation)

• Then [Ca2+]i increases rapidly and the system goes to the upper branch.

• Since the upper branch is on the other side of the nullcline for [Ca2+]T , [Ca2+]i de-
creases until it reaches the end of that branch

• There [Ca2+]i decreases rapidly and the system goes back to the lower branch.

Note:

• Since νPCMA � νSERCA the evolution along the branches is much slower than the
jumping between the branches.

• Such Oscillations are called relaxation oscillations.

• The separation of time scales of the evolution along the branches and between
branches allows an understanding of the oscillations based on the quasi-static bi-
furcation diagram.
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Ca2+ pumps and exchange mechanisms are prevalent in the
plasma membrane of cells, we treat efflux as occurring via
a plasma membrane Ca2+-ATPase (PMCA pump) only
(Carafoli, 1994). Adding these terms to the closed-cell
model described in the previous section gives the open-cell
[Ca42+] balance equation:

d[Cai+]/dt =f((viP ow + v2)([Cas2]-[Cai2])

[Cai ]2 [Ca2+]2
V3[C 2+]2 + K2 Vout[C2+]2 +K2+ojinu (10)

where the final two terms represent the PMCA pump (Ca-
rafoli, 1994) and the Ca2+ influx. Because the cell is open
to the external medium, the total free-Ca2+ concentration,
Co, is no longer fixed but varies according to the equation

dC0/dt =J(jin - Vt[Ca4+]2 + K(11)
These two equations, along with Eq. 8 and the definitions of
psoW and [Ca2+] in Eqs. 5 and 9, describe how [Ca2+]
responds to alterations in the rate of influx, jin.
The open-cell model involves three new parameters: jin'

Kout, and vout Inasmuch as Jin represents influx from a

clamped membrane potential in an electrically excitable
cell, it can be estimated from whole-cell Ca2+ currents. A
current of 0.1 pA in a cell with a volume of 1000 um3 gives
a value Of jin ==1 ,uM s- I, and we use values of iin of this
magnitude (see Table 3), which are similar to those mea-
sured in the bullfrog sympathetic neuron (Friel, 1995). The
value of the dissociation contant, Kout, is known to be larger
than that of the SERCA pump, and, based on measurements
in Jurkat (R. Dolmesch and R. Lewis, personal communi-
cation) and red-blood cells (Carafoli, 1994), we take Kout =
0.6 ,uM. The value of vout also has been estimated in Jurkat
cells (R. Dolmesch and R. Lewis, personal communication)
and in pancreatic acinar cells (Tepikin et al., 1992) to be
10 ,utM s'-. In combination with the maximal leak (v2)

and pump rates (V3) for the internal stores, vout determines
the steady-state values of [Ca42+] and [Ca2+]. We have
required these to be of the order of 0.05-0.10 and 50-150
,uM, respectively. In the open-cell model the maximal leak
rate can be quite small, and it is set close to zero. Reference
values for the additional parameters in the open-cell model
are given in Table 3.

TABLE 3 Additional parameters for the open-cell model

Parameter Value Meaning/Equation
v2 0.5 s-1 (0.1 s-') Maximal rate of store leak/Eq. 10
V3 120 ,uM s-' Maximal rate of SERCA pump/Eq. 10
Vout 9.0 JiM s- Maximal rate of PMCA pump/Eq. 10
K.Ut 0.60 ,uM Dissociation constant for PMCA/Eq. 10
jii 1.0 ,uM s-' Constant influx rate/Eq. 10

Small-store parameters are given in parentheses.

Figure 5 illustrates the sorts of oscillation in [Ca4+] and
[CaI2+] that occur with the open-cell model for the large-
store and small-store parameters listed in Table 3. Despite
the fact that the cell with a large store contains more total
free Ca2+, the actual free-Ca2+ concentration in the store,
[Ca2+], is less than half of that of the cell with a small store.
The larger total free-Ca2+ concentration for a large store is
reflected in the larger amplitude of the oscillations in [Ca 2]
and in a smaller-amplitude oscillation in [Ca 2+]. These
oscillations are typical of what is observed with parameter
values in the range of those in Table 3, with substantially
larger amplitude oscillations observed when jin and vout are
increased. Comparing the two parts of Fig. 5 shows that
spikes in [Ca4+] are preceded by store refilling and occur
simultaneously with rapid, partial depletion of the stores.
This type of oscillation is completely dependent on the
refilling of the stores through the influx term, Jin. Indeed,
setting iin to zero has the effect of eliminating all further
spikes and, if it is done during the spiking phase, terminates
the spike prematurely.
We have explored the influence of adaptation of the RyR

on this type of fill-and-release Ca2+ oscillation by altering
the rate at which adaptation occurs. The effect of making
adaptation fast (decreasing T in Eq. 21 by increasing kc to
10 s-1) is shown in Fig. 6. For both the large- and the
small-store cases the amplitude, the shape, and the period-
but not the existence-of the oscillations are modified. If

I-

co
E0

._cE
q
0
0
0
0

cuo
0E
2
.E
w

0
CS)

time (sec)

FIGURE 5 Oscillations in (top) [Ca2+] and (bottom) [Ca!'] for the
open-cell model; ( ) Small internal store, (-- - -) large
internal store; other parameters are given in Table 3.
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Figure 96: Relaxation oscillations in the open-cell model. a) Nullclines and periodic orbit
in the phase plane Keizer and Levine (1996). b) As typical for relaxation oscillations, the
oscillations are strongly nonlinear (anharmonic) Fall et al. (2002).
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