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1 Motivation and Introduction

Central step when solving partial differential equations: approximate derivatives in space

and time. Focus here on spatial derivatives.

Finite difference approximation of (spatial) derivatives:

• Accuracy depends on order of approximation ⇒ number of grid points involved in the

computation (width of ‘stencil’)

• For higher accuracy use higher-order approximation

⇒ use more points to calculate derivatives

• function is approximated locally by polynomials of increasing order

To get maximal order use all points in system

⇒ approximate function globally by polynomials

More generally:

• approximate function by suitable global functions fk(x)

u(x) =

∞∑

k=1

ukfk(x)

fk(x) need not be polynomials

• calculate derivative of fk(x) analytically: exact
⇒ error completely in expansion

Notes:

• For smooth functions the order of the approximation of the derivative is higher than

any power.

• high derivatives not problematic
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a) b)

Figure 1: a) finite differences: local approximation u = u1, u2, ...uN . Unknowns: values at

grid points. b) spectral: global approximation . Unknowns: Fourier amplitudes

Note: in pseudo-spectral methods again values at grid points used although expanded in a

set of global functions

Thus:

• Study approximation of functions by sets of other functions

• Impact of spectral approach on treatment of temporal evolution

We will use Fourier modes and Chebyshev polynomials.

Recommended books (for reference)

• Spectral Methods by C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Springer.

They have written three books. [1, 2, 3]. The two new ones are not expensive.

• Spectral Methods in MATLAB by L.N. Trefethen, SIAM, ISBN 0898714656. Not ex-

pensive.

• Chebyshev and Fourier Spectral Methods by J.P. Boyd, Dover (2001). Available online

at http://www-personal.umich.edu/~jpboyd/BOOK_Spectral2000.html and

is also not expensive to buy.

1.1 Review of Linear Algebra

Motivation: Functions can be considered as vectors

=⇒ consider approximation of vectors by other vectors
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Definition: V is a real (complex) vector space if for all u,v ∈ V and all α, β ∈ R(C)

αu + βv ∈ V

Examples:

a) R3 = {(x, y, z)|x, y, z ∈ R} is a real vector space

b) Cn is a complex vector space

c) all continuous functions form a vector space:

αf(x) + βg(x) is a continuous function if f(x) and g(x) are

d) The space V = {f(x)|continuous, 0 ≤ x ≤ L, f(0) = a, f(L) = b} is only a vector space for

a = 0 = b. Why?

Definition: For a vector space V < ·, · >: V × V → C is called a scalar product or inner

product iff

< u, v > = < v, u >∗

< αu+ βv, w > = α∗ < u,w > +β∗ < v,w >, α, β ∈ C

< u, u > ≥ 0

< u, u >= 0 ⇔ u = 0.

Notes:

• < u, v > is often written as u+ · v with u+ denoting the transpose and complex conju-

gate of u.

• v is a column vector, u+ is a row vector

Examples:

a) in R3: < u, v >=
∑3

i=1 uivi is a scalar product

b) in L2 ≡ {f(x)|
∫∞
−∞ |f(x)|2 dx <∞}

< u, v > =

∫ ∞

−∞
u∗(x)v(x) dx

is a scalar product.

Notes:

• u(x) can be considered the “x− th component” of the abstract vector u.

• < u, u >≡ ||u|| defines a norm.

• scalar product satisfies Cauchy-Schwartz inequality

| < u, v > | ≤ ||u|| ||v||

(since the cosine of the angle between the vectors is smaller than 1)
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Definition: The set {v1, ...,vN} is called an orthonormal complete set (or basis) of V if any

vector u ∈ V can be written as

u =
N∑

k=1

ukvk,

with v+
i · vj ≡ < vi,vj >= δij.

Calculate the coefficients ui:

< vj ,u >=
∑

k

uk < vj ,vk >=
∑

k

ukδkj = uj

Example: projections in R2

u1v1 =< v1,u > v1 is the projection of u onto v1.

Projections take one vector and transform it into another vector:

Definition: L : V → V is called a linear transformation iff

L(αv + βw) = αLv + βLw

Definition: A linear transformation P : V → V is called a projection iff

P 2 = P

Examples:

1. Pv = N−1v v+ with N = v+ · v is a projection onto v:

Pvu = v
v+ · u
v+ · v

P 2
v u = v

v+

v+ · v ·
(

v
v+ · u
v+ · v

)

= v
v+ · u
v+ · v = Pvu

Notes:
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• v can be thought of as a column vector and v+ a row vector

⇒ v+ · v is a scalar while v v+ is a projection operator

• v+ · u/v+ · v is the length of the projection of u onto v

2. Let {vi, i = 1..N} be a complete orthonormal set

u =
N∑

k=1

(v+
k · u)vk = (

N∑

k=1

vkv
+
k ) · u

thus we have
N∑

k=1

vkv
+
k = I

i.e. the sum over all projections onto a complete set yields the identity transformation:

completeness of the set v

3. A linear transformation L can be represented by a matrix:

(Lu)i = v+
i L

N∑

j=1

ujvj =
∑

j

v+
i Lvj uj =

∑

j

Lijuj

with

Lij = v+
i Lvj

The identity transformation is given by the matrix

Iij = v+
i (
∑

k

vkv
+
k )vj =

∑

k

δikδkj = δij

can write this also as

Iij =
∑

k

v+
i vk
︸ ︷︷ ︸

ith−component of vk

·
(
v+

j vk

)+

︸ ︷︷ ︸

cc of jth−component of vk

(1)

Note: The matrix elements Lij depend on the choice of the basis

Getting back to functions: Vector spaces formed by functions often cannot be spanned by

a finite number of vectors, i.e. no finite set {v1, ...,vN} suffices ⇒ need to consider se-

quences and series of vectors. We will not dwell on this sophistication.

2 Approximation of Functions by Fourier Series

Periodic boundary conditions are well suited to study phenomena that are not dominated

by boundaries. For periodic functions it is natural to attempt approximations by Fourier

series.

Consider the set of functions {φk(x) = eikx|k ∈ N}. It forms a complete orthogonal set of

L2[0, 2π].
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1. Orthogonal

φ+
k · φl ≡< φk, φl >=

∫ 2π

0

(eikx)∗eilx dx = 2πδlk

as before eikx is the xth-component of φk

2. Complete:

for any u(x) ∈ L2[0, 2π] there exist {uk|k ∈ N}

lim
N→∞

||u(x) −
N∑

k=−N

ukφk(x)||2 = 0

i.e.

lim
N→∞

∫ 2π

0

|u(x) −
N∑

k=−N

uke
ikx|2 dx = 0

with the Fourier components given by

uk =
1

2π
< φ+

k , u >=
1

2π

∫ 2π

0

e−ikxu(x) dx

Note:

• Completeness
∑N

k=1 vkv
+
k = I (cf (1)) implies

lim
N→∞

∞∑

|k|=0

φk(x)φ
+
k (x′) = lim

N→∞

N∑

|k|=0

eik(x−x′) = 2π

∞∑

l=−∞
δ(x− x′ + 2πl). (2)

Definition: The spectral projection PNu(x) of u(x) is defined as

PNu(x) =

N∑

|k|=0

ukφk(x).

Thus,

lim
N→∞

||u(x) − PNu(x)||2 = 0.

Notes:

• PN is a projection, i.e. P 2
N = PN (see homework)

• PN projects u(x) onto the subspace of the lowest 2N + 1 Fourier modes
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• ||PNu(x)||2 = 2π
∑N

|k|=0 |uk|2:

||PNu(x)||2 = < PNu, PNu >

= <

N∑

|k|=0

ukφk(x),

N∑

|l|=0

ulφl(x) >

=
∑

kl

u∗kul < φk(x), φl(x) >

=
∑

kl

u∗kul 2π δkl

= 2π
N∑

|k|=0

|uk|2.

• Parseval identity extends this to the limit N → ∞ :

•
||u||2 = lim

N→∞
||PNu||2 = lim

N→∞
2π

∞∑

|k|=0

|uk|2

i.e. the L2−norm of a vector is given by the sum of the squares of its components for

any orthonormal complete set. Thus, as more components are included the retained

“energy” approaches the full energy.

Proof: we have

lim
N→∞

||u(x) − PNu(x)||2 = 0

and want to conclude ||u(x)||2 = limN→∞ ||PNu(x)||2.
Consider

(||u|| − ||v||)2 = ||u||2 + ||v||2 − 2||u|| ||v||
≤ ||u||2 + ||v|2 − 2| < u, v > |

using Schwartz inequality | < u, v > | ≤ ||u|| ||v|| (projection is smaller than the whole

vector).

Now use 2| < u, v > | ≥ 2Re(< u, v >) =< u, v > + < v, u > (note < u, v > is in general

complex).

Then

||u||2 − ||v||2 ≤ ||u||2 + ||v|2− < u, v > − < v, u >=< u− v, u− v >= ||u− v||2.

Get Parseval identity with v = PNu.

2.1 Convergence of Spectral Projection

Convergence of Fourier series depends strongly on the function to be approximated
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The highest wavenumber needed to approximate a function well surely depends on the

number of “wiggles” of that function.

Definition: The total variation V(u) of a function u(x) on [0, 2π] is defined as

V(u) = sup
n

sup
0=x0<x1<...<xn=2π

n∑

i=1

|u(xi) − u(xi−1)|

Notes:

• the supremum is defined as the lowest upper bound

• for supremum need only consider xi at extrema

Examples:

1. u(x) = sin x on [0, 2π] has V(u) = 4

2. variation of u(x) = sin 1
x
is unbounded on (0, 2π].

Results: One has for the spectral projection:
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1. u(x) continuous, periodic and of bounded variation

⇒ PNu converges uniformly and pointwise to u:

lim
N→∞

max
x∈[0,2π]

∣
∣
∣
∣
∣
∣

u(x) −
N∑

|k|=0

eikxuk

∣
∣
∣
∣
∣
∣

= 0

Notes:

• example for uniform and non-uniform convergence:

consider u(x) = a
x

– on [1, 2] lima→0 u(x) = 0 converges uniformly

max
x∈[1,2]

∣
∣
∣
a

x

∣
∣
∣ = a→ 0

– on (0, 1) lima→0 u(x) = 0 converges but not uniformly

max
x∈(0,1)

∣
∣
∣
a

x

∣
∣
∣ = does not exist sup

x∈(0,1)

∣
∣
∣
a

x

∣
∣
∣ = ∞
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Thus:

uniform convergence of Fourier approximation ⇒ there is an upper bound for error

along the whole function (upper bound on global error).

2. u(x) of bounded variation

⇒ PNu converges pointwise to 1
2
(u+(x) + u−(x)) for any x ∈ [0, 2π] where at discontinu-

ities u±(x) = u(x± ǫ)
Note: even if u(x) is discontinuous PNu(x) is always continuous for finite N

(a)

Figure 2: The spectral approximation is continuous even if the function to be approximated

is discontinuous.

3. For u(x) ∈ L2 the projection PNu converges in the mean,

lim
N→∞

∫ ∞

−∞
|u(x) −

∑

k

φkuk|2 dx = 0

but possibly u(x0) 6= PNu(x0) at isolated values of x0, i.e. pointwise convergence except

for possibly a “set of measure 0” (consisting of discontinuities and square-integrable

singularities)

4. u(x) continuous and periodic: PNu need not necessarily converge for all x ∈ [0, 2π]
Note: What could go ‘wrong’? Are there functions that are periodic and continuous

but have unbounded variation?

consider u(x) = x sin 1
x
on [− 1

π
, 1

π
] (note sin 1

x
is not defined at x = 0)

u(x) is continuous: limx→0 x sin 1
x

= 0
u(x) is periodic on [− 1

π
, 1

π
]

u(x) not differentiable at x = 0: u′(x) = sin 1
x
− 1

x
cos 1

x
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Decay Rate of Coefficients:

The error ||u − PNu|| =
∑

|k|>N |uk|2 is determined by uk for |k| > N (cf. Parseval identity).

Question: how fast does the error decrease as N is increased?

⇒ consider uk for k → ∞

2π uk = < φk, u >=

∫ 2π

0

e−ikxu(x) dx

=
i

k
e−ikxu(x)|2π

0 − i

k

∫ 2π

0

e−ikxdu

dx
dx

=
i

k
(u(2π−) − u(0+)) − i

k
< φk,

du

dx
>

...

=
i

k
(u(2π−) − u(0+)) + ... + (−1)r−1(

i

k
)r

(
dr−1u

dxr−1

∣
∣
∣
∣
2π−

− dr−1u

dxr−1

∣
∣
∣
∣
0+

)

+ (−1)r(
i

k
)r < φk,

dru

dxr
> .

Use Cauchy-Schwarz | < φk,
dru
dxr > | ≤ ||φk|| ||d

ru
dxr || as long as ||dru

dxr || <∞ (using ||φk|| =
√

2π):

|uk| ≤
∣
∣
∣
∣

1

2πk

(
u(2π−) − u(0+)

)
∣
∣
∣
∣
+ ...+

1

2π

∣
∣
∣
∣
(
1

k
)r

(
dr−1u

dxr−1

∣
∣
∣
∣
2π−

− dr−1u

dxr−1

∣
∣
∣
∣
0+

)∣
∣
∣
∣
+

∣
∣
∣
∣

1√
2πkr

||d
ru

dxr
||
∣
∣
∣
∣
.

Thus:

• for non-periodic functions

|uk| = O
(

1

k
(u(2π−) − u(0+)

)

• for C∞−functions whose derivatives are all periodic iterate integration by parts indef-

initely:

|uk| ≤
1√

2πkr
||d

ru

dxr
|| for any r ∈ N.

Decay in k faster than any power law. One can show that

uk ∼ e−α|k|

with 2α being given by the strip of analyticity of u(x) when extended to the complex

plane (cf. Boyd, theorem 5, p.45).

Example:

With z ≡ x+ iy consider u(z) = tanh (ξ sin z) along the imaginary axis:

tanh (ξ sin iy) =
sinh (ξi sinh y)

cosh (ξi sinh y)
=
i sin (ξ sinh y)

cos (ξ sinh y)

has a first singularity at y± with ξ sinh y± = ±1
2
π. Strip of analyticity has width 2α =

y+ − y− ∼ 1
ξ
. The steeper u(x) at x = 0 the narrower the strip of analyticity and the

slower the decay of the Fourier coefficients.
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• Cauchy-Schwarz estimate too soft: iteration possible as long as

∣
∣
∣
∣
< φk,

dru

dxr
>

∣
∣
∣
∣
< ∞

(i.e. dru
dxr ∈ L1, see e.g. Benedetto: Real Analysis):

Thus
dlu
dxl periodic for 0 ≤ l ≤ r − 2

dru
dxr ∈ L1





 ⇒ uk = O
(

1
kr

)

Note:

• only dr−2u
dxr−2 has to be periodic because boundary contribution of dr−1u

dxr−1 is of the same

order as that of the integral over dru
dxr

Examples:

1. u(x) = (x− π)2 is C∞ in (0, 2π), but derivative is not periodic:

uk =
1

2π

∫ 2π

0

e−ikx(x− π)2 dx =
2

k2

origin for only quadratic decay are the boundary terms:

uk = − i

2πk

∫ 2π

0

e−ikxdu

dx
dx =

1

2π

1

k2
(u′(2π−) − u′(0+)) +

1

2π

1

k2

∫ 2π

0

e−ikxu′′(x)dx =
2

k2

since u′(2π−) = 2π = −u′(0+) and
∫ 2π

0
e−ikxu′′(x)dx = 0.

2. u(x) = x2 − θ(x− π) ((x− 2π)2 − x2) should be similar:

periodic, but discontinuity of derivative

1st derivative has jump, 2nd derivative has a δ−function, 3rd derivative involves the

derivative of the δ-function: 〈φk, δ
′(x)〉 = O(k).

Estimate Convergence Rate of Spectral Approximation

Consider approximation for u(x)

E2
N ≡ ||u− PNu||2 =

∑

|k|>N

|uk|2 =
∑

|k|>N

|uk|2
|k|2r

|k|2r
<

1

N2r

∑

|k|>N

|uk|2 |k|2r

If dru
dxr exists and is square-integrable then the sum converges and is bounded by the norm

||dru
dxr ||2:

∑

|k|>N

|uk|2 |k|2r <

∞∑

|k|=0

|k|2r |uk|2 = ||d
ru

dxr
||2
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Thus:

||u− PNu||2 ≤
1

N2r
||d

ru

dxr
||2.

For u(x) ∈ C∞ with all derivatives periodic the inequality holds for any r

||u− PNu||2 ≤ inf
r

1

N2r
||d

ru

dxr
||2 (3)

Notes:

• The order of convergence depends on the smoothness of the function (highest square-

integrable derivative)

• For u(x) ∈ C∞: uk ∼ e−α|k|

⇒ one gets convergence faster than any power: spectral or infinite-order accu-

racy:

||u− PNu||2 =
∑

|k|>N

|uk|2 ∼ 2e−α(N+1)

∞∑

k=0

(
e−α
)k

= 2e−α(N+1) 1

1 − e−α
=

(
2e−α

1 − e−α

)

e−αN

with 2α being the width of the strip of analyticity of u(x) when u(x) is continued ana-

lytically into the complex plane (cf. Trefethen Theorem 1c, p.30, Boyd theorem 5, p.45)

Spectral Approximation:

– convergence becomes faster with increasing N

– high-order convergence only for sufficiently large N

Finite-Difference Approximation:

– order of convergence fixed
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• Effective exponent of convergence depends on N :

Note: in general

||d
ru

dxr
||2 → ∞ faster than exponentially for r → ∞

– Example

||d
reiqx

dxr
|| = qr||eiqx||

Thus, for simple complex exponential || dr

dxr e
iqx|| grows exponentially in r.

– For functions that are not given by a finite number of Fourier modes the norm

has to grow with r faster than exponentially:

show by contradiction

If ||d
ru

dxr
||2 ∝ η2r then EN ∝

( η

N

)2r

Can then pick a fixed N > η to get

inf
r
EN = 0

⇒ approximation is exact for finite N in contradiction to assumption..

Now consider

lnEN ≤ ln

(

inf
r

1

N2r
||d

ru

dxr
||2
)

= inf
r

(

ln ||d
ru

dxr
||2 − 2r lnN

)

||dru
dxr ||2 grows faster than exponential ⇒ ln ||dru

dxr ||2 grows faster than linearly for large r

r

small N
large N

⇒ can pick N sufficiently large that for small r denominator N r grows faster in r
⇒ error estimate decreases with r
for larger r the exponential N r does not grow fast enough

⇒ error estimate grows with r
value of r at the minimum gives effective exponent for decrease in error in this regime

of N .

With increasing N the minimum in the error estimate (solid circle in the figure) is

shifted to larger r
⇒ effective order of accuracy increases with N :
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Note:

Spectral approximation guaranteed to be superior to finite difference methods

only in highly accurate regime

Approximation of Derivatives

Given u(x) =
∑
uke

ikx the derivatives are given by

dnu

dxn
=

∞∑

|k|=0

(ik)nuke
ikx

if the series for the derivative converges (again, convergence in the mean)

Note:

• not all square-integrable functions have square-integrable derivatives

dθ

dx
= δ(x)

• if series for u(x) converges uniformly then its 1st derivative still converges (possibly

not uniformly)

• convergence for dqu
dxq is a power of N q slower than that for u since one can take only q

fewer derivatives of it than of u,

dqu

dxq
=
∑

k

(ik)quk e
ikx

coefficients (ik)quk decay more slowly than uk itself.

the estimate (3) gets weakened by

||d
qu

dxq
− PN

dqu

dxq
||2 ≤ inf

r

1

N2r−2q
||d

ru

dxr
||2 for r > q

• Periodic boundary conditions: non-periodic derivative dru
dxr equivalent to discontinuous

dru
dxr , i.e.

dr+1u
dxr+1 not square-integrable

2.2 The Gibbs Phenomenon

Consider convergence in more detail for u(x) piecewise continuous

PNu(x) =

N∑

|k|=0

uke
ikx =

1

2π

∫ 2π

0

N∑

|k|=0

e−ikx′+ikxu(x′) dx′

PN can be written more compact using

DN(s) ≡
N∑

|k|=0

eiks =
sin(N + 1

2
)s

sin(1
2
s)

.
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This identity can be shown by multiplying by the denominator:

(

ei 1
2
s − e−i 1

2
s
) [
e−iNs + e−i(N−1)s + ...+ eiNs

]
= ei(N+ 1

2
)s − e−i(N+ 1

2
)s

Insert

PNu(x) =
1

2π

∫ 2π

0

sin
[
(N + 1

2
)(x− x′)

]

sin
[

1
2
(x− x′)

] u(x′) dx′

=
︸︷︷︸

use t=x−x′

1

2π

∫ x

x−2π

sin(N + 1
2
)t

sin 1
2
t

u(x− t) dt

Use the completeness of the Fourier modes

lim
N→∞

DN (s) =
∞∑

|k|=0

eiks = 2π
∞∑

l=−∞
δ(s+ 2πl)

⇒ for large N the sum DN (s) is negligible except near s = 2πl, l = 0,±1,±2, ... .

Assume u(x) is discontinuous at x0

u(x−0 ) = u− u(x+
0 ) = u+

Consider in particular points close to the discontinuity

x = x0 +
∆x

N + 1
2

,

∣
∣
∣
∣

∆x

N + 1
2

∣
∣
∣
∣
≪ 1,

and use that DN(t) decays rapidly away from t = 0

PNu(x0 +
∆x

N + 1
2

) ≈ 1

2π

∫ ǫ

−ǫ

sin(N + 1
2
)t

sin 1
2
t

u(x0 +
∆x

N + 1
2

− t)dt
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Approximate u(x) in the integrand by u+ and u−, respectively,

PNu(x0 +
∆x

N + 1
2

) ≈ 1

2π
u+

∫ ∆x

N+ 1
2

−ǫ

sin(N + 1
2
)t

1
2
t

dt+
1

2π
u−
∫ ǫ

∆x

N+ 1
2

sin(N + 1
2
)t

1
2
t

dt

Now write s = (N + 1
2
)t and consider N → ∞ for fixed ǫ

∫ ∆x

−(N+ 1
2
)ǫ

sin s

s
ds →

∫ ∆x

−∞

sin s

s
ds

=

∫ 0

−∞

sin s

s
ds+

∫ ∆x

0

sin s

s
ds

=
π

2
+ Si(∆x)

with Si(x) the sine integral and limx→∞ Si(x) = π/2.

Similarly:

∫ ǫ(N+ 1
2
)

∆x

sin s

s
ds →

∫ ∞

∆x

sin s

s
ds

=
1

2

∫ ∞

−∞

sin s

s
ds+

∫ 0

∆x

sin s

s
ds

=
π

2
− Si(∆x)

Thus

PNu(x0 +
∆x

N + 1
2

) ≈ 1

2
(u+ + u−) +

1

π
Si(∆x)(u+ − u−)

Note:
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• Maximal overshoot is 9% of the jump (independent of N)

PNu(x0 +
π

N + 1
2

) − u+ = (u+ − u−)

(
1

π
Si(π) − 1

2

)

= (u+ − u−) 0.09

• Location of overshoot at x0 + π
N+ 1

2

converges to jump position x0. Everywhere else

series converges pointwise to u(x)

• the maximal error does not decrease: convergence is not uniform in x; but convergence
in the L2-norm, since area between PNu and u goes to 0.

• Smooth oscillation can indicate severe problem: unresolved discontinuity.

To capture true discontinuity finite differences may be better.

• Smooth step (e.g. tanh x/ξ):
as long as step is not resolved expect behavior like for discontinuous function

slow convergence and Gibbs overshoot (⇒HW), only when enough modes are retained

to resolve the step the exponential convergence will set in.

2.3 Discrete Fourier Transformation

We had continuous Fourier transformation

u(x) =
∞∑

|k|=0

eikxuk

with

uk =
1

2π

∫ 2π

0

e−ikxu(x)dx

Consider evolution equation

∂u

∂t
= F (u,

∂u

∂x
)

Our goal was to do the time-integration completely in Fourier space since our variables are

the Fouriermodes ⇒ need Fourier components Fk

Consider linear PDE:

• F (u, ∂
∂x

) = ∂2
xu

∂u

∂t
=
∂2u

∂x2

Insert Fourier expansion and project onto φk = eikx

duk

dt
= −k2uk

Consider nonlinear PDEs:
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• Polynomial: F (u) = u3

Fk = 1
2π

∫

u(x)3e−ikx dx =
1

2π

∫

dx e−ikx
∑

k1

eik1xuk1

∑

k2

eik2xuk2

∑

k3

eik3xuk3

=
∑

k1

∑

k2

uk1uk2uk−k1−k2

convolution requires N2 multiplication of three numbers, compared to a single such

multiplication

for rth−order polynomial need N r−1operations: slow!

• General nonlinearities, e.g.

coupled pendula

F (u) = sin(u) = 1 − 1

3!
u3 +

1

5!
u5 + ...

Arrhenius law in chemical reactions

F (u) = eu =

∞∑

l=0

1

l!
ul

arbitrarily high powers of u, cannot use convolution

Evaluate nonlinearities in real space:

need to transform efficiently between real space and Fourier space

Discrete Fourier transformation:

Question: will we loose spectral accuracy with only 2N grid points in integral?

trapezoidal rule 1
2
11111..111

2
with 2N collocation points

xj =
2π

2N
j, ∆x =

2π

2N
, x2N = x0

ũk =
1

ck

1

2N

(

1

2
e−ikx0u(x0) +

2N−1∑

j=1

e−ikxju(xj) +
1

2
e−ikx2Nu(x2N)

)

=
︸︷︷︸

for periodic u(x)

1

ck

1

2N

2N−1∑

j=0

e−ikxju(xj)

High wavenumbers:
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Calculate high wavenumber components

ũN+m =
1

2N

2N−1∑

j=0

e−iN 2π
2N

j
︸ ︷︷ ︸

e−iπj

e−imxj u(xj)

=
1

2N

2N−1∑

j=0

e+iπj e−imxj u(xj)

= ũ−N+m

• thus: ũN = ũ−N

• there are only 2N independent amplitudes

⇒ limited range of relevant wave numbers: −N ≤ k ≤ N

Figure 3: For a discrete spatial grid the Fourier space is periodic.

a) 1st Brillouin zone, b) periodic representation of Fourier space.

• Fourier space is periodic ⇔ spatial grid is discrete rather than continuous

This is the converse of the Fourier spectrum becoming discrete when the real space is

made periodic (rather than infinite)

• Two possible treatments:

1. restrict −N ≤ k ≤ N − 1 (somewhat asymmetric)

in Matlab: (ũ0, ũ1, ...ũN , ũ−N+1, ũ−N+2, ..., ũ−1)
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2. in these notes we set

ũN = ũ−N =
1

2

1

2N

2N−1∑

j=0

eiNxju(xj)

i.e.

cN = c−N = 2 and cj = 1 for j 6= ±N

Inverse Transformation

IN(u(xj)) =

N∑

k=−N

ũke
ikxj

Orthogonality:

< φk, φl >N=
1

2N

2N−1∑

j=0

ei(l−k) 2π
2N

j =

∞∑

l−k=−∞
δl−k,2Nm (4)

Notation:

< ., . >N denotes the scalar product of functions defined only at N discrete points xj

Figure 4: Cancellation of the Fourier modes in the sum. Here N = 4 and l − k = 1

Note:

• < φk, φl >N 6= 0 if k − l is any multiple of 2N and not only for k = l (cf. completeness

relation (2))

high wavenumbers are not necessarily perpendicular to low wavenumbers

Interpolation property

Consider IN (u) on the grid

IN(u(xl)) =

N∑

k=−N

ũke
ikxl
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=
N∑

k=−N

1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)e
ikxl interchange sums to get δ-function

=
1

2N

2N−1∑

j=0

u(xj)

2N∑

r≡k+N=0

ei(r−N) 2π
2N

(l−j) 1

cr−N

in the r-sum: for r = 2N we have eiπ(l−j) 1
2
and for r = 0 we have e−iπ(l−j) 1

2

⇒ using (4) the sum adds up to 2Nδlje
−iπ(l−j) (note that |l − j| < 2N)

Thus

IN (u(xl)) =
1

2N

2N−1∑

j=0

u(xj) 2Nδjl = u(xl).

Notes:

• On the grid xj the function u(x) is represented exactly by IN(u(x));
no information lost on the grid

• IN (u(x)) is often called Fourier interpolant.

2.3.1 Aliasing

For the discrete Fourier transform the function is defined only on the grid:

what happens to the high wavenumbers that cannot be represented on that grid?

Consider u(x) = ei(r+2N)x with 0 < |r| < N .

Continuous Fourier transform: PNu = 0 since the wavenumber is higher than N .

Discrete Fourier transform:

u(xj) = ei(2N+r) 2π
2N

j = eir 2π
2N

j = eirxj

On the grid u(x) looks like eirx:

IN(u(xj)) = eirxj 6= 0

u(x) is folded back into the 1st Brillouin zone.

Notes:

• highest wavenumber that is resolvable on the grid: |k| = N

e±iN 2π
2N

j = (−1)j

• in CFT unresolved modes are set to 0

• in DFT unresolved modes modify the resolved modes: Aliasing
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Relation between CFT (uk) and DFT (ũk) coefficients:

ũk =
1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)

=
1

2N

1

ck

∞∑

l=−∞

2N−1∑

j=0

ei(l−k) 2π
2N

jul

=
1

ck

∞∑

l=−∞

∞∑

m=−∞
δl−k,2Nmul

ũk =
1

ck
uk +

1

ck

∞∑

|m|=1

uk+2Nm

The sum contains the aliasing terms from higher harmonics that are not represented on

the grid.

High wavenumbers look like low wavenumbers and contribute to low-k amplitudes

Error ‖u− INu‖2
:

INu =

N∑

k=−N

ũke
ikx =

N∑

k=−N







1

ck
uk +

1

ck

∞∑

|m|=1

uk+2Nm






eikx

= PNu+RNu

||u−INu||2 = || u− PNu
︸ ︷︷ ︸

all modes have |k|>N

− RNu
︸︷︷︸

all modes have |k|≤N

||2 =
︸︷︷︸

orthogonality

||u−PNu||2+||RNu||2

Interpolation error is larger than projection error.

Decay of coefficients:

if CFT coefficients decay exponentially, uk ∼ e−α|k|, so will the DFT coefficients:

ũk ∼ 1

ck
e−α|k|+

1

ck

∞∑

|m|=1

e−α|k+2Nm| ∼
︸︷︷︸

geometric series

∼ 1

ck
e−α|k|+

1

ck

2e−2αN

1 − e−2αN
for k ≪ N

Thus:

The asymptotic convergence properties of the DFT are essentially the same as those of the

CFT ⇒ homework assignment
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2.3.2 Differentiation

Main reason for spectral approach: derivatives

For CFT one has: projection and differentiation commute :

d

dx
(PNu) =

N∑

k=−N

ikuke
ikx

PN(
du

dx
) =

N∑

k=−N

(
du

dx
)ke

ikx

=

N∑

k=−N

1

2π

∫

e−ikx′ du

dx′
dx′ eikx using i.b.p. :

=
N∑

k=−N

1

2π
ik

∫

e−ikx′

u(x′)dx′ eikx

=
d

dx
(PNu)

For DFT interpolation and differentiation do not commute:

d

dx
(INu) 6= IN(

du

dx
).

i.e. d
dx

(INu) does not give the exact values of du
dx

on the grid points.

INu does not agree with u between grid points ⇒ its derivative does not agree with the

derivative of u on the grid points, but IN(du
dx

) does interpolate du
dx
.

Asymptotically, the errors of In(du
dx

) and of d
dx
IN(u) are of the same order.

Implementation of Discrete Fourier Transformation

Steps for calculating derivatives at a given point:

i) Transform method
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1. calculate ũk from values at collocation points xj :

ũk =
1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)

2. for rth−derivative
dru

dxr
⇒ (ik)rũk

3. back-transformation at collocation points

dr

dxr
IN(u(xj)) =

N∑

k=−N

(ik)rũke
ikxj

Notes:

• seems to require O(N2) operations
compared to O(N) operations for finite differences

• for N = 2l3m5n... DFT can be done in O(N lnN) operations using fast Fourier trans-

form1

• for u real: ũk = ũ∗−k ⇒ need to calculate only half the ũk:

special FFT that stores the real data in a complex array of half size

N independent variables: ũ0 and ũN real, ũ1,...,ũN−1 complex

ii) Matrix multiplication method

dr

dxr IN(u) is linear in u(xj) ⇒ can write it as matrix multiplication

dr

dxr
IN(u(xj)) =

N∑

k=−N

(ik)rũke
ikxj interchange sums

=

2N−1∑

l=0

(
N∑

k=−N

(ik)r 1

2N

1

ck
eik(xj−xl)

)

u(xl)

write in terms of vectors and matrix





u(x0)
...

u(x2N−1)



 = u
dr

dxr
IN(u) =







...
u(r)(xj)

...







Then first derivative

u(1) = Du

1In matlab functions FFT and IFFT.
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with

Djl =
1

2N

N∑

k=−N

ik
1

ck
eik 2π

2N
(j−l) =







1
2
(−1)j+l cot( j−l

2N
π) for j 6= l

0 for j = l

Higher derivatives

u(r) = Dru

Notes:

• D is 2N × 2N matrix (j, l = 0, ..., 2N − 1)

• D is anti-symmetric: Dlj = −Djl

• matrix multiplication is expensive: N2 operations

but multiplication can be vectorized, i.e. different steps of multiplication/addition are

done simultaneously for different numbers in the matrix

Eigenvalues of Pseudo-Spectral Derivative:

Fourier modes with |k| ≤ N − 1 are represented exactly

Deikx = ik eikx for |k| ≤ N − 1

⇒ plane waves eikx must be eigenvectors with eigenvalues

λk = ik = 0,±1i,±2i, ...,±(N − 1)i

D has 2N eigenvalues: one missing

trD = 0 ⇒
∑

k λk = 0 ⇒ last eigenvalue λN = 0

can see that also via: eiN 2π
2N

j = (−1)j = e−iN 2π
2N

j ⇒ eigenvalue must be independent of the

sign of N ⇒ λN = 0

Interpretation: consider PDE

∂u

∂t
=
∂u

∂x
with u = eiωt+ikx

Frequency ω numerically determined by Du: ω = λk

For |k| ≤ N − 1 the solution is a traveling wave with direction of propagation given by sign

of k.

For k = ±N one has u(xj) = (−1)j : does not define a direction of propagation ⇒ ω ≡ λk = 0.

Note:

One gets a vanishing eigenvalue also using the transform method:

(−1)j = ũNe
iN 2π

2N
j + ũ−Ne

−iN 2π
2N

j with ũN = ũ−N

thus
d

dx
PN

(
(−1)j

)
= iNũNe

iNxj + (−iN)ũ−Ne
−iNxj = 0.
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3 Fourier Methods for PDE: Continuous Time

Consider PDE
∂u

∂t
= S(u) ≡ F (u,

∂u

∂x
,
∂2u

∂x2
, ...)

The operator S(u) can be nonlinear

Two methods

1. Pseudo-spectral:

u⇒ INu

Spatial derivatives in Fourier space

Nonlinearities in real space

temporal evolution performed in real space or in Fourier space:

i.e. unknowns to be updated are the u(xj) in real space or the ũk in Fourier space

2. Galerkin method

u⇒ PNu

completely in Fourier space: spatial derivatives, nonlinearities and temporal updating

are all done in Fourier space

3.1 Pseudo-spectral Method

Method involves the steps

1. introduce collocation points xj and u(xj)

2. transfrom numerical solution u(xj) ⇒ ũk to Fourier space

3. evaluate derivatives using ũk

4. transform back into real space and evaluate nonlinearities

5. evolve in time either in real space or in Fourier space

d

dt
IN(u) = S(IN(u))

Note:

IN (u) is not the spectral interpolant of the exact solution u since solving PDE induces errors:
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1. taking the spectral interpolant of the exact solution û yields

IN

(
d

dt
û

)

= IN (S(û)) .

Using
d

dt
IN(u) = IN

(
d

dt
u

)

the pseudospectral solution satisfies

IN

(
d

dt
u

)

= S(IN(u)) 6= IN (S(u))

since spatial derivative does not commute with IN

2. time-stepping introduces errors beyond the spectral approximation.

Examples:

1. Wave equation

∂tu = ∂xu

a) Using FFT

∂tu(xj) = ∂xIN (u(xj)) =

N∑

k=−N

ikũke
ikxj

Note: ũk and the sum over k (=back-transformation) are evaluated via two FFTs.

b) Using multiplication with spectral differentiation matrix D,

∂tu(xj) =
∑

l

Djlu(xl)

2. Variable coefficients

∂tu = c(x)∂xu

a)

∂tu(xj) = c(xj) ∂xIN(u(xj))

multiply by wave speed in real space

b)

∂tu(xj) = c(xj)
∑

m

Djmu(xm).

3. Reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

a) using FFT

∂tu(xj) = ∂2
xIN(u(xj)) + f(u(xj)) = −

N∑

k=−N

k2ũke
ikxj + f(u(xj))

b) matrix multiplication

∂tu(xj) =
∑

m

D
(2)
jmu(xm) + f(u(xj)) with D

(2)
jm =

∑

l

DjlDlm.
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4. Burgers equation

∂tu = u∂xu

=
1

2
∂x(u

2) in conservation form

consider both types of nonlinearities2 αu∂xu+ β∂x(u
2)

a)

αu(xj)∂xIN(u(xj)) = αu(xj)
N∑

k=−N

ik ũke
ikxj

β ∂xIN(u2(xj)) = β

N∑

k=−N

ik w̃ke
ikxj

w̃k =
1

2N

2N−1∑

j=0

e−ikxj u2(xj)

b)

∂tu(xj) = αu(x)Du+ βD





u(x0)
2

...
u(x2N−1)

2





Notes:

• spectral methods will lead to Gibbs oscillations near the shock

• pseudo-spectral methods: on the grid the oscillations may not be visible; may

need to plot function between grid points as well, but derivatives show oscilla-

tions

• all sums over Fourier modes k or grid points j should be done via FFT.

3.2 Galerkin Method

Equation solved completely in Fourier space

1. plug

u(x) =

N∑

k=−N

uke
ikx

into ∂tu = S(u)

2. project equation onto first 2N Fourier modes (−N ≤ l ≤ N)

∂tul ≡
1

2π

∫ 2π

0

e−ilx∂tu(x) dx =
1

2π

∫ 2π

0

e−ilx S(u(x)) dx

2Note: For smooth functions the two formulations are equivalent.Burgers equation develops shocks at

which the solution becomes discontinuous: formulations not equivalent, need to satisfy entropy condition,

which corresponds to adding a viscous term ν∂
2

x
u and letting ν → 0.
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More generally, retaining N modes from a complete set of functions {φk(x)}

u(x) =

N∑

k=1

ukφk(x)

< φl, ∂tu > = < φl, S(u) > for 1 ≤ l ≤ N

< φl, ∂tu− S(u) > = 0

Residual (=error) ∂tu− S(u) has to be orthogonal to all basis functions that were kept:

PN (∂tPNu− S(PNu)) = 0

optimal choice within the space of N modes that is used in the expansion

Note: for Galerkin the integrals are calculated exactly either analytically or numerically

with sufficient resolution (number of grid points →∞)

Examples:

1. Variable-coefficient wave equation

∂tu = c(x) ∂xu

∂tum =

∫ 2π

0

e−imxc(x)

N∑

k=−N

ik uke
ikxdx

=
N∑

k=−N

Cmk ikuk

Cmk =

∫ 2π

0

ei(k−m)xc(x)dx

Note: although equation is linear, there are O(N2) operations through variable coef-

ficient (Cmk is in general not diagonal).

2. Burgers equation

∂tu = αu∂xu+ β∂x(u
2)

αu∂xu = α

N∑

k=−N

N∑

l=−N

uk ilul e
i(k+l)x

β∂xu
2 = β

N∑

k=−N

N∑

l=−N

i(k + l) ukul e
i(k+l)x

project onto e−imx ⇒integral gives δk+l,m and
∑

l yields l ⇒ m− k

∂tum =
N∑

k=−N

i(α(m− k) + βm)ukum−k (5)

Note: again O(N2) operations in each time step.
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Comparison:

• Nonlinear problems:

Galerkin: effort increases with degree of nonlinearity because of convolution

pseudo-spectral: effort mostly in transformation to and from Fourier space: FFT es-

sential

• Variable coefficients:

Galerkin requires matrix multiplication, pseudospectral only scalar multiplication

• error larger in pseudo-spectral, but same scaling of error with N

• Unresolved modes:

Pseudo-spectral has aliasing errors: unresolved modes spill into equations for re-

solved modes

Nonlinearities generate high-wavenumber modes: their aliasing can be removed by

taking more grid points (3
2
−rule) or by phase shifts

• Grid effects:

pseudo-spectral method breaks the translation symmetry, can lead to pinning of fronts

Galerkin method does not break translation symmetry.

• Newton method for unstable fixed points or implicit time stepping:

quite clear for Galerkin code: (5) is simply a set of coupled ODEs, not so obvious to im-

plement for pseudo-spectral code, since back- and forth-transformations are needed.

4 Temporal Discretization

Consider

∂tu = S(u)

Two possible goals:

1. interested in steady state: transient towards steady state not relevant

only spatial resolution relevant

2. initial-value problem: interested in complete evolution

temporal error has to be kept as small as spatial error

If transient evolution is relevant then spectral accuracy in space best exploited

if high temporal accuracy is obtained as well: seek high-order temporal schemes
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4.1 Review of Stability

Consider ODE

∂tu = λu (6)

Definitions:

1. A scheme is stable if there are constants C, α, T , and δ such

||u(t)|| ≤ Ceαt||u(0)||
for all 0 ≤ t ≤ T , 0 < ∆t < δ. The constants C and α have to be independent of ∆t.

2. A scheme is absolutely stable if

||u(t)|| <∞ for all t.

Note:

• The concept of absolute stability is only useful for differential equations for which

the exact solution is bounded for all times.

• absolute stability closely related to Neumann stability

3. The region A of absolute stability is given by the region A the complex plane defined

by

A = {λ∆t ∈ C | ||u(t)|| bounded for all t}

Notes:

• for λ ∈ R the ODE (6) corresponds to a parabolic equation like ∂tu = ∂2
xu in Fourier

space

• for λ ∈ iR the ODE (6) corresponds to a hyperbolic equation like ∂tu = ∂xu in Fourier

space

For a PDE one can think in terms of a system of ODEs coupled through differentiation

matrices,

∂tu = Lu

e.g. for ∂tu = ∂xu one has L = D.

Assume L can be diagonalized

SLS−1 = Λ with Λ diagonal

Then

∂tSu = ΛSu

Thus:

Stability requires that all eigenvalues λ of L are in the region of absolute stability of the

scheme.

Note:
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• highest Fourier eigenvalues

– for simple wave equation: λmax = ±i (N − 1)

– for diffusion equation: λmax = −N2

Side Remark: Stability condition after diagonalization in terms of Su,

||Su(t)|| < Ceαt||Su(0)||

We need

||u(t)|| < C̃eαt||u(0)||
If S is unitary, i.e. if S−1 = S+we have

||Su|| = ||u||

For Fourier modes spectral differentiation matrix is normal

D+D = DD+

⇒ D can be diagonalized by unitary matrix

(Not the case for Chebyshev basis functions used later)

Thus: for Fourier method it is sufficient to consider scalar equation (6).

4.2 Adams-Bashforth Methods

Based on rewriting in terms of integral equation

un+1 = un +

∫ tn+1

tn

F (t′, u(t′))dt′

Explicit method: approximate F (u) by polynomial that interpolates F (u) over last l time

steps3 and extrapolate to the interval [tn, tn+1].

Figure 5: Adams-Bashforth methods interpolate F (u) over the interval [tn−l, tn] and then

extrapolate to the interval [tn, tn+1].

3Figure has wrong label for first grid point.
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Consider

∂tu = F (u)

AB1: un+1 = un + ∆tF (un)

AB2: un+1 = un + ∆t

(
3

2
F (un) − 1

2
F (un−1)

)

Note:

• AB1 identical to forward Euler

Stability:

Consider F (u) = λu with λ ∈ C

AB1:

z = 1 + ∆tλ

|z|2 = (1 + λr∆t)
2 + λ2

i ∆t
2

Stability limit given by |z|2 = 1:

AB1=FE: (1 + λr∆t)
2 + λ2

i ∆t
2 = 1

To plot stability limit parametrize z = eiθ and plot λ∆t ≡ (λr(θ) + iλi(θ))∆t

AB1:

λ∆t = z − 1

AB2:

λ∆t =
z − 1
3
2
− 1

2z

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3
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Notes:

• AB1=FE and AB2 are not absolutely stable for purely dispersive equations λr = 0

• AB3 and AB4 are absolutely stable even for dispersive equations λr = 0

• AB1 and AB2: the stability limit is tangential to λr = 0: for λr = 0 exponential growth

rate goes to 0 for ∆t → 0 at fixed number of modes (i.e. fixed λ). For fixed tmax we can

choose ∆t small enough to limit the growth of solution.

AB1: for λr = 0 |z|2 = 1 + λ2
i ∆t

2

|z| tmax
∆t = (1 + λ2

i ∆t
2)

1
2

tmax
∆t ≤ e

1
2
λ2

i ∆t2 tmax
∆t need ∆t≪ O(λ−2

i )

for simple wave equation one has then

∆t≪ O(N−2)

i.e. AB1 is stable for ‘diffusive scaling’

AB2: for λr = 0 z = 1 + iλi∆t−
1

2
λ2

i ∆t
2 +

1

4
λ3

i ∆t
3 − 1

8
λ4

i ∆t
4

|z|2 = 1 +
1

2
λ4

i ∆t
4

|z| tmax
∆t ≤ e

1
4
λ4

i ∆t4 tmax
∆t need ∆t≪ O(λ

− 4
3

i ) = O(N− 4
3 )

For simple wave equation one gets

∆t≪ O(N− 4
3 )

which is less stringent than AB1=FE.

The growth may be less of a problem for spectral methods since one would like to

balance the temporal error with the spatial error

∆tp ∼ e−αN

one may have to choose therefore quite small ∆t just to achieve the desired accuracy,

independent of the stability condition.

But: growth rate is largest for largest wavenumbers k: high Fourier modes tend to

‘creep in’.

• Diffusion equation: FE stability limit for λi = 0 and λr = −k2 < 0:

∆t <
2

|λr|
=

2

k2
max

=
2

N2

for central difference scheme

∆t <
1

2
∆x2 =

1

2

(
2π

2N

)2

≈ 5

N2

The scaling of stability limit is the same, but finite-difference scheme has slightly

larger prefactor, i.e. it has a slightly larger stability range. But it needs smaller ∆x
to achieve the same spatial accuracy.
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Comment on Implementation

Consider

∂tu = ∂2
xu+ f(u)

Forward Euler

un+1 = un + ∆t ∂2
xu

n + ∆t f(un)

Want to evaluate derivative in Fourier space ⇒ FFT

1. If we do the temporal update in Fourier space

ũn+1
k = ũn

k + ∆t(−k2)ũn
k + ∆tFk(f(un))

where Fk(f(un)) is the kth-mode of the Fourier transform of f(un)
After updating ũn+1

k transform back to un+1(xj) and calculate f(un+1
j ) for next Euler

step.

2. If we do the temporal update in real space

First transform back into real space and do time the step there

un+1
j = un

j + ∆t∂2
xIN(u) + ∆t f(uj)

Note: the choice between these two types of updates is quite common, not only in

forward Euler.

4.3 Adams-Moulton-Methods

seek highly stable schemes: implicit scheme

→ in the polynomial interpolation of F (u) for the integral in

un+1 = un +

∫ tn+1

tn

F (t′, u(t′))dt′ (7)

include tn+1. This makes the scheme implicit.

Figure 6: Adams-Moulton methods interpolate F (u) over the interval [tn+1−l, tn+1], which

includes the new time step.
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Backwards Euler : un+1 = un + ∆tF (un+1)

Crank-Nicholson : un+1 = un +
1

2
∆t
(
F (un+1) + F (un)

)

3rd order Adams-Moulton: un+1 = un +
1

12
∆t
(
5F (un+1) + 8F (un) − F (un−1)

)

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4
Adams−Moulton

AM3
AM4
AM5
AM6

Note:

• Region of stability shrinks with increasing order

• Only backward Euler and Crank-Nicholson are unconditionally stable

• AM3 and higher have finite stability limit: we do not get a high-order unconditionally

stable schem with AM.

Implementation of Crank-Nicholson

Consider the wave equation

∂tu = ∂xu
(

1 − 1

2
∆t ∂x

)

un+1 =

(

1 +
1

2
∆t ∂x

)

un

With matrix multiply method

∑

l

(

1 − 1

2
∆tDjl

)

un+1(xl) =
∑

l

(

1 +
1

2
∆tDjl

)

un(xl)

would have to invert full matrix: slow
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With FFT or for Galerkin insert u(x) =
∑

k e
ikxũk and project equation onto φk:

∫ 2π

0
dx e−ikx...

(

1 − 1

2
∆t ik

)

ũn+1
k =

(

1 +
1

2
∆t ik

)

ũn
k

ũn+1
k =

1 + 1
2
∆t ik

1 − 1
2
∆t ik

ũn
k

Note:

• Since derivative operator is diagonal in Fourier space, inversion of operator on l.h.s.

is simple:

time-stepping in Fourier space yields explicit code although implicit scheme.

This is not possible for finite differences.

• With variable wave speed one would have
(

1 − 1

2
∆t c(x) ∂x

)

un+1 =

(

1 +
1

2
∆t c(x) ∂x

)

un

⇒FFT does not lead to diagonal form: wavenumbers of u(x) and of c(x) couple
⇒projection leads to convolution of c(x) and ∂xu

n+1: expensive

• The scheme does not get more involved in higher dimensions

e.g. for diffusion equation in two dimensions

∂tu = ∇2u

one gets

ũn+1
kl =

1 − ∆t (k2 + l2)

1 + ∆t(k2 + l2)
ũn

kl

That is to be compared with the case of finite differences where implicit schemes in

higher dimensions become much slower since the band width of the matrix becomes

large (O(N) in two dimensions, worse yet in higher dimensions).

Note:

• make scheme explicit by combining Adams-Moulton with Adams-Bashforth to predictor-

corrector

replace the unknown un+1 in the integrand of (7) of the AM-scheme by an estimate

based on AB, which can be lower order than the AM-scheme:

AB: predictor O(∆tn−1)

AM: corrector O(∆tn)






⇒ O(∆tn)

each time step requires two evaluations of r.h.s ⇒not worth if expensive

Advantage: scheme has same accuracy as AB of O(∆tn) but greater range of stability

with same storage requirements
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4.4 Semi-Implicit Schemes

Often time step is limited by instabilities due to linear derivative terms but not due to

nonlinear terms:

Treat

• linear derivative terms implicitly

• nonlinear terms explicitly

Note: implicit treatment of nonlinear terms would require matrix inversion at each time

step

Example: Crank-Nicholson-Adams-Bashforth (CNAB)

Consider

∂tu = ∂2
xu+ f(u)

un+1 − un

∆t
=

1

2
∂2

xu
n+1 +

1

2
∂2

xu
n +

3

2
f(un+1) − 1

2
f(un) + O(∆t3)

(

1 − 1

2
∆tD2

)

un+1 =

(

1 +
1

2
∆tD2

)

un + ∆t

(
3

2
f(un+1) − 1

2
f(un)

)

3 Steps:

• FFT F of r.h.s.

• divide by (1 + 1
2
∆tk2)

• do inverse FFT of r.h.s. ⇒un+1
j

un+1
j = F−1

(
1

1 + 1
2
∆tk2

{(

1 − 1

2
∆t k2

)

F(un
i ) + ∆tF

(
3

2
f(un

i ) −
1

2
f(un−1

i )

)})

or written as

ũn+1
k =

1

1 + 1
2
∆tk2

{(

1 − 1

2
∆t k2

)

F(un
i ) + ∆t

(
3

2
fk(u

n
i ) −

1

2
fk(u

n−1
i )

)}

4.5 Runge-Kutta Methods

Runge-Kutta methods can be considered as approximations for the integral equation

un+1 = un +

∫ tn+1

tn

F (t′, u(t′))dt′

with approximation of F based purely on times t′ ∈ [tn, tn+1].

46



Runge-Kutta 2:

trapezoidal rule for integral

∫ tn+1

tn

F (t′, u(t′))dt′ =
1

2
∆t
(
F (tn, u

n) + F (tn+1, u
n+1)

)
+ O(∆t3)

approximate un+1 with forward Euler (its error contributes to the error in the overall

scheme at O(∆t3).

Improved Euler method (Heun’s method)

k1 = F (tn, u
n)

k2 = F (tn + ∆t, un + ∆t k1)

un+1 = un +
1

2
∆t (k1 + k2) + O(∆t3)

Other version : mid-point rule ⇒ modified Euler:

un+1 = un + ∆tF

(

t+
1

2
∆t, un +

1

2
∆tF (tn, u

n)

)

Note:

• Runge-Kutta methods of a given order are not unique (usually free parameters)

General Runge-Kutta scheme:

un+1 = un + ∆t
s∑

l=0

γlFl

F0 = F (tn, u
n)

Fl = F (tn + αl∆t, u
n + ∆t

l∑

m=0

βlmFm) 1 ≤ l ≤ s

Notes:

• Scheme has s + 1 stages

• F (u) is evaluated at intermediate times tn +αl∆t and at suitably chosen intermediate

values of the function u.

• For βll 6= 0 scheme is implicit

• Coefficients αl, βlm, γl determined by requiring highest order of accuracy:

in general this does not determine the coefficients uniquely
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Runge-Kutta 4

corresponds to Simpson’s rule (1
6
(1 4 1))

k1 = F (tn, u
n)

k2 = F (tn +
1

2
∆t, un +

1

2
∆t k1)

k3 = F (tn +
1

2
∆t, un +

1

2
∆t k2)

k4 = F (tn + ∆t, un + ∆t k3)

un+1 = un +
1

6
∆t (k1 + 2k2 + 2k3 + k4) + O(∆t)5

Note:

• to push the error to O(∆t5) the middle term in Simpson’s rule has to be split up into

two different terms.

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Runge−Kutta

RK1
RK2
RK3
RK4

Notes:

• stability regions expand with increasing order

• RK4 covers parts of imaginary and of real axis: suited for parabolic and hyperbolic

problems

48



4.6 Operator Splitting

For linear wave equation or diffusion equation we have exact solution in Fourier space,

∂tu = ∂2
xu ⇒ ũn

k = ũk(0) e−k2tn

Can we make use of that for more general problems?

For finite differences we discussed

∂tu = (L1 + L2)u

solution approximated as

un+1 = e(L1+L2)∆tun

= eL1∆teL2∆tun + O(∆t2)

this corresponds to

∂tu = L2u and then ∂tu = L1u

alternating integration of each equation for a full time step ∆t

Apply to reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

L1u ∼ ∂2
xu L2u ∼ f(u)

Treat L2u in real space, e.g. forward Euler

u∗(xj) = un(xj) + ∆t f(un(xj))

Treat L1u in Fourier space

ũn+1
k = e−k2∆tũ∗k exact!!

Written together:

ũn+1
k = e−k2∆t (un

k + ∆t fk(u
n
l ))

Notes:

• could use any other suitable time-stepping scheme for nonlinear term: higher-order

would be better

• But: operator splitting error arises.

Could improve

e(L1+L2)∆tun = e
1
2
L1∆teL2∆te

1
2
L1∆tun + O(∆t3)

If intermediate values need not be available the 1
2
∆t−steps can be combined:

un+2 = e
1
2
L1∆teL2∆te

1
2
L1∆te

1
2
L1∆teL2∆te

1
2
L1∆tun + O(∆t3) =

= e
1
2
L1∆teL2∆teL1∆teL2∆te

1
2
L1∆tun + O(∆t3)

approximate eL2∆t by second-order scheme (rather than forward Euler) to get over-all

error of O(∆t3).

• time-stepping is done in real space and in Fourier space

• to get higher order one would have to push the operator splitting error to higher order.
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4.7 Exponential Time Differencing and Integrating Factor Scheme

Can we avoid the operator-splitting error altogether?

Consider again reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

without reaction the equation can be integrated exactly in Fourier space

un+1
k = e−k2∆tun

k

Go to Fourier space (‘Galerkin style’)

∂tuk = −k2uk + fk(u) (8)

Here fk(u) is k−component of Fourier transform of nonlinear term f(u)

To assess a good approach to solve (8) it is good to consider simpler problem yet:

∂tu = λu+ F (t) (9)

where u is the Fourier mode in question and F plays the role of the coupling to the other

Fourier modes.

We are in particular interested in efficient ways to deal with the fast modes with large,

positive λ because they set the stability limit:

1. If the overall solution evolves on the fast time scale set by λ, accuracy requires a time

step with |λ∆t| ≪ 1 and an explicit scheme should be adequate.

2. If the overall solution evolves on a slower time scale τ ≫ 1/|λ|, which is set by Fourier

modes with smaller wavenumber (i.e. F (t)evolves slowly in time) then one would like

to take time steps with |λ|∆t = O(1) or even larger without sacrificing accuracy, i.e.

one would like to be limited only by the condition ∆t≪ τ .
In particular, for F = const. one would like to obtain the exact solution u∞exact = −F/λ
with large time steps.

Use integrating factor to rewrite (9) as

∂t

(
ue−λt

)
= e−λtF (t)

which is equivalent to

un+1 = eλ∆tun + eλ∆t

∫ ∆t

0

e−λt′F (t+ t′)dt′.

Need to approximate integral. To leading order it is tempting to write

un+1 = eλ∆tun + eλ∆t∆t F (t).

This yields the forward Euler implementation of the integrating-factor scheme.

For F = const. this yields the fixed point

u∞IF

(
1 − eλ∆t

)
= ∆t eλ∆t F.

But:
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• for −λ∆t ≫ 1 one has u∞IF → 0 independent of F and definitely not u∞IF → u∞exact ≡
−F/λ. To get a good approximation of the correct fixed point u∞exact one therefore still

needs |λ|∆t≪ 1!

Note:

• even for simple forward Euler fixed point (un+1 = un) would be obtained exactly for

large ∆t (disregarding stability)

un+1 = un + ∆t (λun + F )

Problem: Even if F evolves slowly, for large λ the integrand still evolves quickly over the

integration interval: to assume the integrand is constant is a poor approximation.

Instead: assume only F is evolving slowly and integrate the exponential explicitly

un+1 = eλ∆tun + eλ∆tF (tn)
1

λ

(
1 − e−λ∆t

)

This yields the forward Euler implementation of the exponential time differencing scheme,

un+1 = eλ∆tun + ∆t F (tn)

(
eλ∆t − 1

λ∆t

)

Notes:

• now, for F = const and −λ∆t → ∞ one gets the exact solution u∞ETD → −F/λ.

• for |λ|∆t≪ 1 one gets back the usual forward Euler scheme (eλ∆t − 1)/λ∆ → 1.

For the nonlinear diffusion equation one gets for ETDFE

un+1
k = e−k2∆tun

k + ∆t Fk(ul(t))

(

1 − e−k2∆t

k2∆t

)

where in general Fk(ul(t)) depends on all Fourier modes uk.

For higher-order accuracy in time use better approximations for the integral (see Cox &

Matthews, J. Comp. Physics 176 (2002) 430, and Kassam & Trefethen, SIAM J. Sci. Com-

put. 26 (2005) 1214, for a detailed discussion of various schemes and quantitative compar-

isons for ODEs and PDEs. The latter paper includes two matlab programs for Fourier and

Chebyshev spectral implementations).

The 4th-order Runge-Kutta version reads (using c ≡ λ∆t)

u1k = un
k E1 + ∆t Fk(u

n, tn)E2

u2k = un
k E1 + ∆t Fk(u1, tn +

1

2
∆t)E2

u3k = u1k E1 + ∆t

(

2Fk

(

u2, tn +
1

2
∆t

)

− Fk (un, tn)

)

E2

un+1
k = un

kE
2
1 + ∆t ·G

G = Fk (un, tn) E3 + 2

(

Fk

(

u1, tn +
1

2
∆t

)

+ Fk

(

u2, tn +
1

2
∆t

))

E4 + (10)

+Fk (u3, tn + ∆t) E5
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with

E1(c) = ec/2 E2(c) =
ec/2 − 1

c

E3(c) =
−4 − c+ ec (4 − 3c+ c2)

c3

E4(c) =
2 + c+ ec (−2 + c)

c3

E5(c) =
−4 − 3c− c2 + ec (4 − c)

c3

For |c| < 0.2 the factors E3,4,5(c) can become quite inaccurate due to cancellations:

E5(c) =
1

c3

(

−4 − 3c− c2 +

(

1 + c+
1

2
c2 +

1

6
c3 + . . .

)

(4 − c)

)

=
1

6
+ O(c)

For small values of c it is therefore better to replace E3,4,5 by their Taylor expansions

E2(c) =
1

2
+

1

8
c+

1

48
c2 +

1

384
c3 +

1

3840
c4 +

1

46080
c5 +

1

645120
c6 +

1

10321920
c7

E3(c) =
1

6
+

1

6
c+

3

40
c2 +

1

45
c3 +

5

1008
c4 +

1

1120
c5 +

7

51840
c6 +

1

56700
c7

E4(c) =
1

6
+

1

12
c+

1

40
c2 +

1

180
c3 +

1

1008
c4 +

1

6720
c5 +

1

51840
c6 +

1

453600
c7

E5(c) =
1

6
+ 0 c− 1

120
c2 − 1

360
c3 − 1

1680
c4 − 1

10080
c5 − 1

72576
c6 − 1

604800
c7

Alternatively, one can evaluate the coefficients via complex integration using the Cauchy

integral formula [7]

f(z) =
1

2πi

∮

C

f(t)

t− z
dt (11)

if f(z) is analytic inside C which encloses z. Since the singularities of Ei(c) at c = 0 are

removable and since C can be chosen to remain a finite distance away from c = 0 the

Cauchy integral formula (11) can be used to evaluate Ei(c) even in the vicinity of c = 0.

Note:

• diffusion and any other linear terms retained in the eigenvalue λ of the linear operator

are treated exactly

• no instability arises from the linear terms for any ∆t : unconditionally stable

• to evaluate Fk(u1, tn + 1
2
∆t):

u1k

inverse FFT
︷︸︸︷→ u1(xj)

insert into F
︷︸︸︷→ F (u1, tn +

1

2
∆t)

FFT
︷︸︸︷→ Fk(u1, tn +

1

2
∆t)

• if the PDE involves multiple components (e.g. u and v in a two-component reaction-

diffusion system) at each stage of the RK4-scheme one needs to determine the analo-

gous quantities uik and vik with i = 1, 2, 3 in parallel, i.e. one needs to determine both

u1k and v1k before one can proceed to u2k and v2k etc.
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• large wave numbers are strongly damped, as they should be (this is also true for

operator splitting)

compare with Crank-Nicholson (in CNAB, say)

un+1
k =

1 − 1
2
∆t k2

1 + 1
2
∆t k2

un
k

for large k∆t

un+1
k = −(1 − 4

∆t k2
+ ...)un

k

which exhibits oscillatory behavior and slow decay.

Note that backward Euler also damps high-wavenumber oscillations, but it is only

first order

un+1
k =

1

1 + ∆tk2
un

k → 1

∆tk2
un

k for |k| → ∞.

Note:

• some comments on the 4th-order integrating factor scheme are in Appendix B.

4.8 Filtering

In some problems it is not (yet) possible to resolve all scales

• shock formation (cf. Burgers equation last quarter)

• fluid flow at high Reynolds numbers (turbulence): energy is pumped in at low wavenum-

bers (e.g. by motion of the large-scale walls), but only very high wavenumbers experi-

ence significant damping, since for low viscosity high shear is needed to have signifi-

cant damping.

In these cases aliasing and Gibbs oscillations can lead to problems.

Aliasing and Nonlinearities

Nonlinearities generate high wavenumbers

u(x)2 =
N∑

l=−N

N∑

k=−N

uluke
i(k+l)x

p-th order polynomial generates wavenumbers up to ±pN . On the grid of 2N points not all

wavenumbers can be represented ⇒ Fourier interpolant IN(u(x)) keeps only ±N : higher

wavenumber aliased into that range.

Example:
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on grid xj = 2π
2N
j with only 2 grid points per wavelength 2π

q
with q = N

u(xj) = cos qxj = cosN
2π

2N
j = cos(πj) = (−1)j

u(xj)
2 = cos2 qxj = (+1)j = 1 cos2 qxj is aliased to a constant on that grid

Note: in a linear equation no aliasing arises during the simulation since no high wavenum-

bers are generated (aliasing only initially when initial condition is reduced to the discrete

spatial grid)

Aliasing can lead to spectral blocking:

If dissipation occurs essentially only at the very high unresolved wavenumbers:

• dissipation is missing

• aliased high wavenumbers feed energy into the lower, weakly damped wavenumbers

• energy piles up most noticeably at the high-end of the resolved spectrum (|k| = N)
because there the correct energy is smallest (relative error largest)

• pile up can lead to instability

(from J.P. Boyd Chebyshev and Fourier Spectral Meth-

ods, p. 2107)

If resolution cannot be increased to the extent that high wavenumbers are resolved, im-

provement can be obtained by filtering out those wavenumbers that would be aliased into

the lower spectrum.

Quadratic nonlinearities lead to doubling of wavenumbers:

The interval [−qmax, qmax] is mapped into [−2qmax, 2qmax]

[−qmax, qmax] → [−2qmax, 2qmax]
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-N N

q 2q
2q-2N

Require that the mapped wavenumber interval does not alias into the original wavenumber

interval

2qmax − 2N ≤ −qmax

i.e. require

qmax ≤ 2

3
N

More generally: for pth-order nonlinearity choose

qmax =
p+ 1

2
N

Algorithm:

1. FFT: ui → ũk

2. take derivatives

3. filter out high wavenumbers: ũk = 0 for |k| > p+1
2
N

4. inverse FFT: ũk → ui; this function does not contain any ‘dangerous’ high wavenum-

bers any more

5. evaluate nonlinearities ui → up
i

6. back to 1.

(from J.P. Boyd Chebyshev

and Fourier Spectral Methods, p. 212)
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Orszag’s 2/3-rule:

For quadratic nonlinearity set the highest N/3 Fourier-modes to 0 in each time step just

before the back-transformation to the spatial grid:

• evaluating the quadratic nonlinearity (which is done in real space):

– the ‘good’ wavenumbers [0, 2
3
N ] contained in u(x) generate the wavenumbers [0, 4

3
N ]

of which the interval [N, 4
3
N ] will be aliased into [−N,−2

3
N ] and therefore will

contaminate the highest N/3 modes (analogously for [0,−2
3
N ]).

– the ‘bad’, highest N/3 modes [2
3
N,N ] generate wavenumbers [4

3
N, 2N ] which are

aliased into [−2
3
N, 0] and would contaminate the ‘good’ wavenumbers.

• setting the highest N/3 modes to 0 avoids contamination of good wavenumbers; no

need to worry about contaminating the high wavenumbers that later are set to 0

anyway.

Alternative view:

For a quadratic nonlinearity, to represent the wavenumbers [−N,N ] without aliasing need
3
2
· 2N grid points:

want 3N grid points for integrals ⇒ before transforming the Fourier modes [−N,N ] back to

real space need to pad them with zeroes to the range [−3
2
N, 3

2
N ].

Thus: To avoid aliasing for quadratic nonlinearity need 3 grid points per wavelength

cos qxj = cos(N
2π

3N
j) = cos(2π

j

3
)

Notes:

• for higher nonlinearities larger portions of the spectrum have to be set to 0.

• instead of step-function filter can use smooth filter, e.g.

F (k) =







1 |k| ≤ k0 (= 2
3
N)

e−(|k|n−|k0|n) |k| > k0

(12)

with n = 2, 4.

• 2
3
−rule (and the smooth version) makes the pseudo-spectral method more similar to

the projection of the Galerkin approach

• does not remedy the missing damping of high wavenumbers, but reduces the (incor-

rect) energy pumped into the weakly damped wave numbers.
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Gibbs Oscillations

Oscillations due to insufficient resolution can contaminate solution even away from the

sharp step/discontinuity: can be improved by smoothing

Approximate derivatives, since they are more sensitive to oscillations (function itself does

not show any oscillations on the grid)

∂xu⇒
N∑

k=−N

ik ũke
ikx filter to

N∑

k=−N

ik F (k) ũke
ikx

with F (k) as in (12).

Note:

• result is different than simply reducing number of modes since the number of grid

points for the transformation is still high

• filter could also smooth away relevant oscillations ⇒ loose important features of solu-

tion

e.g. interaction of localized wave pulses: oscillatory tails of the pulses determine the

interaction between the pulses, smoothing would kill interaction

Notes:

• It is always better to resolve the solution

• Filtering and smoothing make no distinction between numerical artifacts and physi-

cal features

• Shocks would better be treated with adaptive grid
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5 Chebyshev Polynomials

Goal: approximate functions that are not periodic

5.1 Cosine Series and Chebyshev Expansion

Consider h(θ) on 0 ≤ θ ≤ π

extend to [0, 2π] to generate periodic function by reflection about θ = π

g(θ) =







h(θ) 0 ≤ θ ≤ π

h(2π − θ) π ≤ θ ≤ 2π

Then

g(θ) =

∞∑

k=−∞
ḡke

ikθ =

∞∑

k=−∞
ḡk(cos kθ + i sin kθ)

Reflection symmetry: sin θ drops out

g(θ) =
∞∑

k=−∞
ḡk cos kθ =

∞∑

k=0

gk cos kθ

with

gk = ḡk for k = 0 gk = 2ḡk for k > 0

ḡk =
1

2π

∫ 2π

0

e−ikθg(θ)dθ =
1

π

∫ π

0

cos kθg(θ)dθ reflection symmetry

Write as

gk =
1

π

2

ck

∫ π

0

cos kθ g(θ)dθ with ck =







2 for k = 0

1 for k > 0
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This is the cosine transform.

Notes:

• Convergence of the cosine series depends on the odd derivatives at θ = 0 and θ = π

• If dg
dθ

6= 0 at θ = 0 or θ = π then gk = O(k−2) even if function is perfectly smooth in

(0, π):

gk =
2

πck

∫ π

0

cos kθ g(θ)dθ i.b.p

=
2

πck

1

k
sin kθ g(θ)

∣
∣
∣
∣

π

0

− 2

πck

1

k

∫ π

0

sin kθ
d

dθ
g(θ)dθ i.b.p

=
2

πck

1

k2
cos kθ

d

dθ
g(θ)

∣
∣
∣
∣

π

0

− 2

πck

1

k2

∫ π

0

cos kθ
d2

dθ2
g(θ)dθ

boundary terms vanish for all k only if

g′(0) = 0 = g′(π)

Since cos kπ = (−1)k non-zero slopes at the endpoints cannot cancel for all k.

• in general, only odd derivatives of g(θ) contribute to boundary terms:

1

kl+1
cos kθ

dl

dθl
g(θ)

∣
∣
∣
∣

π

0

for l odd

Thus:

• for general boundary conditions Fourier (=cosine) series converges badly: Gibbs phe-

nomenon
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5.2 Chebyshev Expansion

To get the derivative of the function effectively to vanish at the boundaries stretch the

coordinates at the boundaries infinitely strongly. This can be achieved by parametrizing x
using the angle θ on a circle:

Consider f(x) on −1 ≤ x ≤ 1

Transform to 0 ≤ θ ≤ π using x = cos θ, g(θ) = f(cos(θ))

Function is now parametrized by θ instead of x

Consider Fourier series for g(θ)

g′(θ) = −f ′(cos θ) sin θ ⇒ dg

dθ
= 0 at θ = 0, π

Generally: all odd derivatives of g(θ) vanish at θ = 0 and θ = π.

Proof: cos θ is even about θ = 0 and about θ = π ⇒ f(cos θ) is also even about those points

⇒ all odd derivatives vanish at θ = 0, π.

Thus: the convergence of the approximation to g(θ) by a cosine-series does not depend on

the boundary conditions on f(x)

f(x) = g(θ) =

∞∑

k=0

gk cos kθ extension of g to 2π is even
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=

∞∑

k=0

gk cos(k arccosx)

Introduce Chebyshev polynomials

Tk(x) = cos(k arccosx) = cos kθ

f(x) =
∞∑

k=0

fk Tk(x)

Properties of Chebyshev Polynomials

• Tk(x) is a k
th−order polynomial

show recursively:

T0(x) = 1 T1(x) = x

Tn+1(x) = cos ((n + 1) arccosx) = cos ((n+ 1)θ)

Trig identities:

cos ((n+ 1)θ) = cosnθ cos θ − sinnθ sin θ

cos ((n− 1)θ) = cosnθ cos θ + sinnθ sin θ

cancel sinnθ sin θ by adding and use cos(θ) = T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x)

Note: recursion relation useful for computation of Tn(x)

• Tn(x) even for n even, odd otherwise

• Tn(x) =
∑

j ajx
j ⇒ aj have alternating signs

• the expansion coefficients are given by

fk = gk =
1

π

2

ck

∫ π

0

g(θ) cos kθ dθ

rewrite in terms of x:

θ = arccosx dθ =
1√

1 − x2
dx

fk =
2

πck

∫ 1

−1

f(x)Tk(x)
1√

1 − x2
dx

ck =

{
2 k = 0
1 k > 0

• The convergence of f(x) in terms of Tk(x) is the same as that of g(θ) in terms of the

cosine-series. In particular, boundary values are irrelevant (replace x by cos θ in f(x))
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• The Chebyshev polynomials are orthogonal in the weighted scalar product

< Tk, Tl >≡
∫ 1

−1

Tk(x)Tl(x)
1√

1 − x2
dx = ck

π

2
δkl

• The weight
√

1 − x2
−1

is singular but

∫ 1

−1

1√
1 − x2

dx

is finite.

• Derivatives of Tk(x) :

d

dx
is not diagonal for basis of Tk(x)

d

dx
Tk(x) 6= λTk(x)

in particular: the order of the polynomial changes upon differentiation.

Considering d
dθ

cos(n± 1)θ one gets

d

dx
Tk±1 =

d

dθ
cos(k ± 1)θ

dθ

dx

= −(k ± 1)
1
dx
dθ

(sin kθ cos θ ± cos kθ sin θ)

1

k + 1

d

dx
Tk+1(x) −

1

k − 1

d

dx
Tk−1(x) =

1

sin θ
(sin kθ cos θ + cos kθ sin θ − sin kθ cos θ + cos kθ sin θ)

thus

2Tk(x) =
1

k + 1

d

dx
Tk+1(x) −

1

k − 1

d

dx
Tk−1(x)

Thus: differentiation more difficult than for Fourier modes.

• Zeroes of Tk(x)

Tk(x) = cos (k arccosx) = cos kθ

⇒ Tk(x) has k zeroes in [−1, 1]

kθl = (2l − 1)
π

2
l = 1, ..., k

xl = cos
2l − 1

2k
π

The zeroes cluster near the boundaries.
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• Extrema of Tk(x) (Chebyshev points)

kθl = lπ xl = cos
l

k
π l = 1, ..., k

Tk(xl) = (−1)l

Extrema are also clustered at boundary

Chebyshev polynomial look like a cosine-wave wrapped around a cylinder and viewed

from the side

• Transformation to θ = arccos x places more points close to boundary: small neighbor-

hood dx is blown up in dθ

x = cos θ dθ = − 1

sin θ
dx

⇒ dθ → ∞ for θ → 0, π
df

dθ
→ 0

all derivatives vanish at boundary: no Gibbs phenomenon for non-periodic functions

• understanding of properties of functions often aided by knowing what eigenvalue

problem they solve: what is the eigenvalue problem that has the Tk(x) as solutions?

Tk(x) = cos kθ
d2

dθ2
cos kθ = −k2 cos kθ

rewrite in terms of x = cos θ

d

dθ
= − sin θ

d

dx
= −

√
1 − x2

d

dx

thus Tk(x) satisfies the Sturm-Liouville problem

√
1 − x2

d

dx

(√
1 − x2

d

dx
Tk(x)

)

+ k2Tk(x) = 0
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with boundary conditions: Tk(x) bounded at x = ±1
Note: Sturm-Liouville problem is singular: coefficient of highest derivative vanishes

at boundary ⇒ no boundary values specified but only boundedness

The singularity is the origin of hte good boundary resolution (no Gibbs). Fourier series

is solution of regular Sturm-Liouville problem

6 Chebyshev Approximation

Approximate f(x) on a ≤ x ≤ b using Chebyshev polynomials

Again depending on the evaluation of the integrals

• Galerkin expansion

• Pseudospectral expansion

6.1 Galerkin Approximation

PNu(x) =
N∑

k=0

ukTk(x)

with

uk =
2

π

1

ck

∫ +1

−1

1√
1 − x2

u(x)Tk(x)dx

Note:

• need to transform first from interval a ≤ t ≤ b to −1 ≤ x ≤ +1 using

x =
2t− (a+ b)

b− a

Transformation to θ = arccosx showed

uk = O(k−r) if u ∈ Cr−1 (∂r
xu ∈ L1)

i.e. if rth derivative is still integrable (may be a δ−function)

Show this directly in x:
πck
2
uk =

∫
1√

1 − x2
u(x)Tk(x)dx

using k2Tk(x) = −
√

1 − x2 d
dx

(
√

1 − x2 d
dx
Tk)

πck
2
uk = − 1

k2

∫
1√

1 − x2
u(x)

√
1 − x2

d

dx

(√
1 − x2

d

dx
Tk(x)

)

dx =

= − 1

k2
u(x)

√
1 − x2

d

dx
Tk

∣
∣
∣
∣

+1

−1

+
1

k2

∫ +1

−1

du

dx

√
1 − x2

d

dx
Tk(x)dx = since u(x) bounded

=
1

k2

{

du

dx

√
1 − x2Tk(x)

∣
∣
∣
∣

+1

−1

−
∫ +1

−1

d

dx

(
du

dx

√
1 − x2

)

Tk(x)dx

}
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Note:

even without the 2nd integration by parts it seems that uk = O(k−2)
⇒ it seems that even for d2u

dx2 /∈ L1 one gets uk = O(k−2)

But:
d

dx
Tk(x) =

d

dx
cos(k arccosx) = O(k)

⇒ for du
dx

∈ L1 and
d2u
dx2 /∈ L1:

uk = O(
1

k2

d

dx
Tk(x)) = O(

1

k
)

Again, convergence of Chebyshev approximation can be shown to be

||PNu(x) − u(x)|| ≤ C

N q
||u||q

with ||u|| being the usual L2−norm (with weight
√

1 − x2
−1

and ||u||q being the qth Sobolev

norm

||u||2q = ||u||2 + ||du
dx

||2 + ...+ ||d
qu

duq
||2

For derivatives one gets

||d
ru

dxr
− dr

dxr
PNu|| ∼ ||u− PNu||r ≤

C

N
1
2
+q−2r

||u||q

Note:

• for each derivative the convergence decreases by two powers of N ; in Fourier expan-

sion each derivative lowered the convergence only by a single power in N .

• for C∞−functions one still has spectral accuracy, i.e. exponential convergence

• the estimate for the rth derivative is not precisely for the derivative but for the r−Sobolev

norm (cf. [1] for details)

• rule of thumb: for each wavelength of a periodic function one needs at least 3 Cheby-

shev polynomials to get reasonable approximation.

6.2 Pseudo-Spectral Approximation

For Galerkin approximation the projection integral

uk =
2

πck

∫ π

0

u(cos θ) cos kθdθ

has to be calculated exactly (e.g. analytically)

For pseudospectral approximation calculate integral based on a finite number of collocation

points.

Strategy: find most accurate integration formula for the functions in question
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Here: u(cos θ) is even in θ ⇒ u(cos θ) cos kθ has expansion in cosnθ

⇒ need to consider only cosnθ when discussing integration method

Analytically we have ∫ π

0

cosnθ dθ = π δn0

Similar to Fourier case: use trapezoidal rule

∫ π

0

g(θ) dθ ⇒
N∑

j=0

g(
πj

N
)
π

Nĉj
with ĉj =







2 j = 0, N

1 otherwise

Show: Trapezoidal rule is exact for cos lθ, l = 0, ..., 2N − 1

1. l = 0
∫

dθ ⇒
N∑

j=0

g(
πj

N
)
π

Nĉj
=

π

2N
+ (N − 1)

π

N
+

π

2N

2. l even

cos lθj =
1

2
(eilθj + e−ilθj ) with θj =

π

N
j

⇒
N∑

j=0

1

ĉj
eil π

N
j =

︸︷︷︸

eilπ=e0 for l even

N∑

j=1

(
eil π

N

)j

= eil π
N

1 − eilπ

1 − eil π
N

= 0 using

N∑

j=1

qj = q
1 − qN

1 − q

Note: for l = 2N the denominator vanishes:

cos 2N
π

N
j = 1 ⇒

∑

6= 0 trapezoidal rule not correct

3. l odd:
cos lθ odd about θ = π

2

cos lθj = − cos lθN−j

cos lθj = cos l
π

N
j

cos lθN−j = cos
(

l
π

N
N − l

π

N
j
)

= − cos
(

−l π
N
j
)

⇒
N∑

j=0

cos lθj = 0
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Transform in x−coordinates

∫ 1

−1

p(x)√
1 − x2

dx =

∫ π

0

p(cos θ)dθ =
N∑

j=0

p(cos
π

N
j)

π

Nĉj

Note:

This can also be viewed as a Gauss-Lobatto integration

∫ 1

−1

p(x)w(x)dx =

N∑

j=0

p(xj)wj

with points xj = cos π
N
j and weights wj = π

Nĉj

Gauss-Lobatto integration is exact for polynomials up to degree 2N − 1:

• degree 2N − 1 polynomials have 2N coefficients

• 2N parameters to choose:

wj for j = 0, ..., N and xj for j = 1, ..., N − 1 since x0 = −1 and xN = +1

The xj are roots of a certain polynomial q(x) = pN+1(x) + apN(x) + bpN−1(x) with a and b
chosen such that q(±1) = 0

Note: for the scalar product one needs the integral to be exact up to order 2N since each

factor can be a N th-order polynomial ⇒ see (13) below

Summarizing:

pseudo-spectral coefficients given by

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

ĉj

with

ĉi =







2 i = 0, N

1 1 ≤ i ≤ N − 1

again highest mode resolvable on the grid given by

TN(xj) = cos
(

N arccos
(

cos
π

N
j
))

= cosπj = (−1)j

Remember origin of ck

cN = 2 as in Fourier expansion in θ

c0 = 2 since only for k 6= 0 two exponentials e±ikx contribute to cos kx

Note:

• need not distinguish between ck and ĉj : from now on ĉj = cj
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Notes:

• transformation can be written as matrix multiplication

ũk =

N∑

j=0

Ckju(xj)

with

Ckj =
2

Nckcj
Tk(xj) =

2

Nckcj
cos
(

k arccos(cos
π

N
j)
)

=
2

Nckcj
cos(

kjπ

N
)

• the inverse transformation is

u(xj) =

N∑

k=0

Tk(xj) ũk =

N∑

k=0

(
C−1

)

jk
ũk

with
(
C−1

)

jk
= Tk(xj) = cos

πjk

N

• transformation seemingly O(N2): but there are again fast transforms (see later).

• discrete orthogonality
N∑

j=0

Tl(xj)Tk(xj)
1

cj
=
N

2
clδlk

since for l + k ≤ 2N − 1 the integration is exact

N∑

j=0

Tl(xj)Tk(xj)wj =

∫

Tl(x)Tk(x)
1√

1 − x2
dx = ck

π

2
δlk note: wj =

π

cjN

for l + k = 2N : since l, k ≤ N one has l = N = k: TN(xj) = (−1)j

⇒
N∑

j=0

TN (xj)TN (xj)
1

cj
= N (13)

although T 2
N is not a constant (only on the grid).

The pseudospectral approximant interpolates the function on the grid

INu(xl) =

N∑

k=0

ũkTk(xl) =

N∑

k=0

N∑

j=0

2

Nckcj
u(xj)Tk(xj)Tk(xl)
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use Tk(xj) = cos k arccosxj = cos k πj
N

= Tj(xk) and orthogonallity

⇒ INu(xl) =
N∑

j=0

2

Ncj
u(xj)

N∑

k=0

1

ck
Tj(xk)Tl(xk) =

N∑

j=0

u(xj)
cl
cj
δjl = u(xl)

Aliasing:

As with Fourier modes the pseudosprectral approximation has aliasing errors:

In Fourier we have aliasing from 2N + r to r and from −2N + r to r . The mode −2N + r is
also contained in the Chebyshev mode cos(2N − r)θ. Therefore 2N − r also aliases into r.

Consider T2mN±r(x) on grid xj = cos πj
N

T2mN±r(xj) = cos

(

(2mN ± r) arccos(cos
πj

N
)

)

= cos

(

(2mN ± r)
πj

N

)

=

= cos 2m
Nπj

N
cos r

πj

N
∓ sin 2m

Nπj

N
︸ ︷︷ ︸

0

sin r
πj

N
= cos r

πj

N

Thus: T±r+2mN is aliased to Tr(x) on the grid.

Coefficients of Tk are determined by all contributions that look like Tk on the grid

ũk = uk +
∞∑

m=1

u2mN±k

6.2.1 Implementation of Fast Transform

The ũk can be obtained using FFT for u(x) real

Extend u(cos θ) from [0, π] to [0, 2π] in ‘θ−space’:

extended f(cos θ) is periodic in θ ⇒ FFT
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extension

uj =

{
u(xj) 0 ≤ j ≤ N

u(x2N−j) N + 1 ≤ j ≤ 2N

Note:

• in Matlab the extension can be done easily using the command FLIPDIM

Coefficients are given by

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

cj
=

2

Nck

N∑

j=0

u(xj) cos(k
πj

N
)
1

cj
(14)

Rewrite the sum in terms of the extension (using that cos and u are even with respect to

θ = 0, π

N−1∑

j=1

uj cos
πjk

N
=
︸︷︷︸

j=2N−r r=2N−j

2N−1∑

r=N+1

u2N−r
︸ ︷︷ ︸

ur

cos

(
πk

N
(2N − r)

)

=

2N−1∑

r=N+1

ur cos
πkr

N

thus considering factor 1/cj in (14)

ũk =
2

Nck

1

2

{

u0 cos 0 + uN cos πk + 2
N−1∑

j=1

uj cos
πjk

N

}

=

=
2

Nck

1

2

{

u0 cos 0 + uN cos πk +

N−1∑

j=1

uj cos
πjk

N
+

2N−1∑

j=N+1

uj cos
πjk

N

}

=
1

Nck

2N−1∑

j=0

uj cos
πjk

N
=

1

Nck
Re

{
2N−1∑

j=0

uje
i jπk

N

}

︸ ︷︷ ︸

FFT

Notes:

• here the ordering of grid points is x = cos θ
therefore u0 = u(+1) and uN = u(−1)
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Reorder:

zj = cos θN−j then z0 = −1 zN = +1

Tk(zj) = cos (k arccos cos θN−j) = cos
(

k(N − j)
π

N

)

= cos kπ cos
kjπ

N
+ sin kπ sin

kjπ

N
= (−1)k cos

kjπ

N

Thus:

Tk(zj) = (−1)kTk(xj)

expressing the fact that reflecting about the y-axis (x → −x) amounts to switching sign of

the odd Chebyshev polynomials but leaving the even Tk unchanged.

Relation to FFT is changed

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

cj
=
︸︷︷︸

relabeling

2

Nck

N∑

j=0

u(zj)Tk(zj)
1

cj

= (−1)k 2

Nck

N∑

j=0

u(zj) cos
kjπ

N

1

cj
= (−1)k 1

Nck
Re

{
2N−1∑

j=0

ûj e
i jπk

k

}

︸ ︷︷ ︸

FFT

where

û0 = u(−1) ûN = u(+1) û2N = u(−1)

⇒ with natural ordering FFT yields (−1)kũk.

6.3 Derivatives

Goal: approximate derivative of u(x) by derivative of interpolant INu(x)

Need d
dx
Tk(x) in terms of Tk(x). We had

Recursion Relation

d

dx
Tm+1(x) = (m+ 1)

{

2Tm(x) +
1

m− 1

d

dx
Tm−1(x)

}

m ≥ 2

with
d

dx
T0(x) = 0

d

dx
T1(x) = T0

Note:

• d
dx
Tm−1 contains even lower Tl etc.:

d
dx
Tm contains contributions from many Tk
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First Derivative

Expand the derivative of the interpolant in Tk(x)

d

dx
(INu(x)) =

N∑

k=0

ũk
d

dx
Tk(x) =

N∑

k=0

bkTk(x)

To determine bl project derivative onto Tl(x)

N∑

k=0

ũk

∫ +1

−1

Tl(x)
d

dx
Tk(x)

1√
1 − x2

dx =

N∑

k=0

bk

∫ 1

−1

Tl(x)Tk(x)
1√

1 − x2
dx

︸ ︷︷ ︸

δlk
π
2
ck

=
π

2
cl bl

Note:

• here c0 = 2 and cN = 1 since full projection, integrand evaluated not only at discrete

grid points (we get an analytic result for the bk )

Use
∫ 1

−1

Tl(x)
d

dx
(Tk(x))

1√
1 − x2

dx =







0 l ≥ k
0 k > l k + l even
kπ k > l k + l odd

Proof:

1. l ≥ k
degree of d

dx
Tkis k − 1 ⇒ can be expressed by sum of Tj with j < l; scalar product

vanishes since Tk ⊥ Tj for j 6= k

2. k + l even ⇒ l and k both even or both odd ⇒ Tl
d
dx
Tk odd ⇒ integral vanishes

3. k + l odd, k > l: prove by induction

write k = l + 2r − 1, r = 1, 2, 3, ...

(a) r = 1, k = l + 1
first l 6= 0

< Tl
d

dx
Tl+1 > =

︸︷︷︸

recursion for d
dx

Tl+1

(l+1)







2 < TlTl > +
1

l − 1
< Tl

d

dx
Tl−1 >

︸ ︷︷ ︸

=0 since l−1<l







= 2(l+1)
π

2

now l = 0

< T0
d

dx
T1 >=< T0T0 >= π
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(b) induction step: assume

< Tl
d

dx
Tl+2r−1 >= (l + 2r − 1)

︸ ︷︷ ︸

k

π, r ≥ 1

〈Tl
d

dx
Tl+2(r+1)−1〉 = 〈Tl(l + 2r + 1)

(

2Tl+2r +
1

l + 2r − 1

d

dx
Tl+2r−1

)

〉

=
l + 2r + 1

l + 2r − 1
〈Tl

d

dx
Tl+2r−1〉 =

l + 2r + 1

l + 2r − 1
(l + 2r − 1)π = (l + 2r + 1)π

= (l + 2(r + 1) − 1)π

Thus:

bl =
2

cl

N∑

k=l+1 ; k+l odd

kũk

Notes:

• calculation of single coefficient bl is O(N) operations instead of O(1) for Fourier
⇒ calculation of complete derivative seems to require O(N2) operation

• bl depends only on ũk with k > l: only polynomials with higher degree contribute to a

given power of x of the derivative

Determine bl recursively:

cl
2
bl = (l + 1)ũl+1 +

N∑

k=l+3 ; k+l odd

kũk = (l + 1)ũl+1 +
cl+2

2
bl+2

Thus

bN = 0

bN−1 = 2NũN

clbl = 2(l + 1)ũl+1 + bl+2 0 ≤ l ≤ N − 2

Note:

• here cN = 1 since full integral ⇒ no factor cl+2 for l ≤ N − 2

• recursion relation requires only O(N) operations for all N coefficients

• recursion relation cannot be parallelized or vectorized:

evaluation of bl requires knowledge of bk with k > l:

– cannot evaluate all coefficients bl simultaneously on parallel computers

– cannot start evaluating product involving bl without finishing first calculation for

bk with k > l
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Higher Derivatives

calculate higher derivatives recursively

dn

dxn
u(x) =

d

dx

(
dn−1

dxn−1
u(x)

)

i.e. given

dn−1

dxn−1
IN(u(x)) =

N∑

k=0

b
(n−1)
k Tk(x)

one gets

dn

dxn
IN(u(x)) =

N∑

k=0

b
(n−1)
k

d

dx
Tk(x) =

N∑

k=0

b
(n)
k Tk(x)

with

b
(n)
N = 0

b
(n)
N−1 = 2Nb

(n−1)
N

clb
(n)
l = 2(l + 1)b

(n−1)
l+1 + b

(n)
l+2

Note:

• to get nth derivative effectively have to calculate all derivatives up to n

6.3.1 Implementation of Pseudospectral Algorithm for Derivatives

Combine the steps: given u(x) at the collocation points xj calculate ∂
n
xu at xj

I. Transform Method

1. Transform to Chebyshev amplitudes

ũk =
2

Nck

N∑

j=0

u(xj) cos
jkπ

N

1

cj

2. Calculate derivatives recursively

b
(n)
N = 0

b
(n)
N−1 = 2Nb

(n−1)
N

clb
(n)
l = 2(l + 1)b

(n−1)
l+1 + b

(n)
l+2

3. Transform back to real space at xj

∂n
x IN (u(xj)) =

N∑

k=0

b
(n)
k cos

jkπ

N
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Note:

• steps 1. and 3. can be performed using FFT

FFT for back transformation

forward transformation was

ũk =
2

Nck

N∑

j=0

u(xj) cos
jkπ

N

1

cj
=

1

Nck
Re

{
2N−1∑

j=0

uje
i πjk

N

}

(15)

the last sum can be done as forward FFT

For first derivative at xj we need
N∑

k=0

bk cos
jkπ

N

1. extend bj
br = b2N−r for r = N + 1, ..., 2N − 1

2. need factors cj (cf. (15)): redefine bj

b̂0 = 2b0 b̂N = 2bN b̂j = bj for j 6= 0, N

N∑

k=0

bk cos
jkπ

N
=

N∑

k=0

b̂k cos
jkπ

N

1

ck
=

1

2
Re

{
2N−1∑

k=0

b̂ke
i jkπ

N

}

︸ ︷︷ ︸

FFT

Last sum can again be done as forward FFT.

Notes:

• backward transformation uses the same FFT as the forward transformation.

more precisely, because only real part is taken the sign of i does not matter

• again for natural ordering want derivative at zj = cos π
N

(N − j):
need

b̂k cos

(
kπ

N
(N − j)

)

= (−1)kb̂k cos
kjπ

N

⇒ replace

b̂k → (−1)k b̂k

II. Matrix Multiply Approach

As in Fourier case derivative is linear in u(xj) ⇒ can be written as matrix multiplication

∂xIN(u(xj)) =

N∑

k=0

Djku(xk)
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Djk gives contribution of u(xk) to derivative at xj

The polynomial IN(u(x)) interpolates u on the grid xj . Since the order of IN is equal to the

number of grid points, this polynomial is unique. Therefore start by seeking the polynomial

that interpolates u(xj) and then take its derivative.

Construct interpolating polynomial from polynomials gk(x) satisfying

gk(xj) = δjk

u(xj) =

N∑

k=0

gk(xj)u(xk)

∂xu(x)|xj
=

N∑

k=0

∂xgk(x)

∣
∣
∣
∣
∣
xj

u(xk) ≡
N∑

k=1

Djku(xk)

Construct the polynomial noting that Chebyshev polynomial TN (x) has extrema at all xj

for 1 ≤ j ≤ N − 1
d

dx
TN(xj) = 0 for j = 1, ...N − 1

Note: d
dx
TN has N − 1 zeroes since it has order N − 1

gk(x) =
(−1)k+1

N2ck
︸ ︷︷ ︸

normalization

vanishes at x0,N

︷ ︸︸ ︷

(1 − x2)

vanishes at xj

︷ ︸︸ ︷

d

dx
TN(x)

1

x− xk
︸ ︷︷ ︸

cancels (x−xk) in numerator

Notes:

•
∑
u(xk)gk(x) interpolates u on the grid

• gk(x) is indeed a polynomial since denominator is cancelled by d
dx
TN , which vanishes

at the xk

• gk(x) is a Lagrange polynomial

L
(N)
k (x) =

N∏

k 6=m=0

x− xm

xk − xm
=

x− x0

xk − x0
. . .

x− xk−1

xk − xk−1

x− xk+1

xk − xk+1
. . .

x− xN−1

xk − xN−1

x− xN

xk − xN
0 ≤ k ≤ N

Take derivative of gk(x)

d

dx
INu(xj) =

N∑

k=0

u(xk)g
′
k(xj) =

N∑

k=0

Djku(xk)

For natural ordering z = cos θN−j = cos N−j
N
π, i.e. z0 = −1 and zN = 1, one gets
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Djk =
cj
ck

(−1)j+k 1

xj − xk
for j 6= k

Djj = − xj

2 (1 − x2
j )

for j 6= 0, N (16)

D00 = −2N2 + 1

6
DNN = +

2N2 + 1

6

Notes:

• differentiation matrix is not skew-symmetric

Djk 6= Dkj since Djj 6= 0 and
cj
ck

• ||D|| = O(N2) because of clustering of points at the boundary

clear for D00 and DNN .

smallest grid distance is O(N−2), e.g., for |j −N | ≪ N

1 − zj = 1 − cos (θN−j) = 1 − (1 − (N − j)2

N2
π2 + ...) = O(N−2)

⇒ stability condition will involve N−2 instead of N−1

⇒ more restrictive than Fourier modes

• higher derivatives obtained via Dn

Note:

• it turns out that the numerical accuracy of the matrix-multiply approach using D as

formulated in (16) is quite prone to numerical round-off errors. D has to satisfy

N∑

j=0

Dij = 0 ∀j

reflecting that the derivative of a constant vanishes.

A better implementation is

Djk =
cj
ck

(−1)j+k 1

xj − xk
for j 6= k

Djj = −
N∑

j 6=k=0

Djk (17)

(18)

7 Initial-Boundary-Value Problems: Pseudo-spectralMethod

We introduced Chebyshev polynomials to deal with general boundary conditions. Imple-

ment them now
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7.1 Brief Review of Boundary-Value Problems

Depending on character of equation we need to pose/may pose different number of boundary

conditions at different locations.

7.1.1 Hyperbolic Problems

characterized by traveling waves: boundary conditions depend on characteristics:

Boundary condition to be posed on incoming characteristic variable but not on outgoing

characteristic variable. Solution blows up if boundary condition is posed on wrong variable.

1. Scalar wave equation

∂tu = ∂xu u(x, 0) = u0(x) − 1 ≤ x ≤ +1

wave travels to the left

u(x, t) = u(x+ vt)

distinguish boundaries;

(a) x = −1: outflow boundary ⇒ u is outgoing variable

requires and allows no boundary condition

(b) x = +1 : inflow boundary ⇒ u is incoming variable

needs and allows single boundary condition

2. System of wave equations

∂tu = A∂xu

diagonalize A to determine characteristic variables

Example:

∂tu = ∂xv

∂tv = ∂xu

Taking sum and difference

Ul = u+ v Ur = u− v

∂tUl,r = ±∂xUl,r

(a) x = −1: only Ur is incoming, only Ur accepts boundary condition

(b) x = +1: only Ul is incoming, only Ul accepts boundary condition

Physical boundary conditions often not in terms of characteristic variables

Example:

u = u± at x = ±1 v unspecified

at x = −1:

Ur(−1) = u− − v(−1) = u− − 1

2
(Ul(−1) − Ur(−1))

Ur(−1) = 2u− − Ul(−1)
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7.1.2 Parabolic Equations

No characteristics, boundary conditions at each boundary

Example:

∂tu = ∇ · j = ∇ · ∇u = ∆u

Typical boundary conditions:

1. Dirichlet

u = 0

2. Neumann (no flux boundary condition)

∂xu = 0

3. Robin boundary conditions

αu+ β∂xu = g(t)

7.2 Pseudospectral Implementation

Pseudospectral: we have grid points ⇒ boundary values available

discuss using matrix-multiply approach

Explore: simple wave equation

∂tu = ∂xu u(x = 1, t) = g(t)

discretize

∂tui =

N∑

j=0

Dijuj with uj = u(xj)

Notes:

• spatial derivative calculated using all points

⇒ derivatives available at boundaries without introducing the virtual points that ap-

peared when using finite differences

∂xu0 =
1

2∆x
(u1 − u−1)

• boundary condition seems not necessary: it looks as if uN could be updated without

making use of g(t).
But: PDE would be ill-posed without boundary conditions

⇒ scheme should blow up! (see later)
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Correct implementation

∂tui =
N∑

j=0

Dijuj i = 0, ..., N − 1

uN = g(t)

Note:

• although uN is not updated using the PDE, it can still be used to calculate the deriva-

tive at the other points.

Express scheme in terms of unknown variables only: u0, u1, ...uN−1

Define reduced n× n−differentiation matrix

D
(N)
ij = Dij i, j = 0, ..., N − 1

i.e. N th row and column of Dij are omitted.

∂tui =
N−1∑

j=0

D
(N)
ij uj +DiNuN i = 0, ..., N − 1

uN = g(t)

Notes:

• boundary conditions modify differentiation matrix

• in general equation becomes inhomogeneous

7.3 Spectra of Modified Differentiation Matrices

With u = (u0, ..., uN−1) PDE becomes inhomogeneous system of ODEs

∂tu = D(N)u + d with di = DiNg(t)

For simplicity assume vanishing boundary values: d = 0

Stability properties determined by eigenvalues λj of modified differentiation matrix D(N)

∂tuj = λjuj

Reminder:

• region of absolute stability of scheme for eigenvalue λj

{λj ∆t ∈ C|uj bounded for all t}

• scheme is asymptotically stable if it is absolutely stable for all eigenvalues of D(N)
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7.3.1 Wave Equation: First Derivative

What are the properties of D(N)?

Review of Fourier Case

• eigenvalues of DF are ik, |k| = 0, 1, ...N − 1. All eigenvalues are purely imaginary and

the eigenvalue 0 is double.

• DF is normal ⇒ can be diagonalized by unitary matrix U

U−1DU =







λ1

λ2

...
λN







≡ D

with ||D|| = ||D|| and ||U−1u|| = ||u||
⇒ ||u|| is bounded by the same constant as ||U−1u||, independent of N
⇒ sufficient to look at scalar equation.

Properties of D(N) for Chebyshev

• eigenvalues of D(N) are not known analytically

• eigenvalues of D(N) have negative real part

∂tu = D(N)u well-posed

∂tu = −D(N)u ill-posed

in ill-posed case boundary condition should be at x = −1 but it is posed at x = +1
Example: N = 1

D(N) = D00 = −2 + 1

6
= −1

2

∂tu0 = −1

2
u0 bounded; boundary condition on u1

For boundary condition at x = −1 introduce D(0)

D
(0)
ij = Dij i, j = 1, ..., N

Thus for

∂tu = −∂xu

∂tui = −
N∑

j=1

D
(0)
ij uj +Di0g(t) for i = 1, ..., N

Eigenvalues of D(0) have positive real part

Example: N = 1

D(0) = DNN = +
1

2

Note:
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– in Fourier real part vanishes: ⇒ no blow-up

periodic boundary conditions are well-posed for both directions of propagation

• D(N) is not normal (D+D 6= DD+) ⇒ similarity transformation S to diagonal form not

unitary

||u|| 6= ||Su||
For any fixed N ||u|| is bounded if ||Su|| is bounded
But constant relating ||u|| and ||Su|| could diverge for N → ∞
⇒ stability is not guaranteed for N → ∞ if scalar equation is stable.

• eigenvalues of D(N) and D(0) are O(N2)
⇒ stability limits for wave equation will involve

∆t ≤ O(N−2)

larger eigenvalues reflect the close grid spacing near the boundary, ∆x = O(N−2)

7.3.2 Diffusion Equation: Second Derivative

Consider

∂tu = ∂2
xu α0,N u+ β0,N ∂xu = γ0,N at x = ±1

a) Fixed Boundary Values α = 1, β = 0
unknowns

u1, u2, ..., uN−1

known

u0 = γ0 uN = γN

Reduced (n− 1) × (n− 1) differentiation matrix for second derivative

D
(0,N)
2,ij = (D2)ij i, j = 1, ..., N − 1

then

∂tui =
N−1∑

j=1

D
(0,N)
2,ij uj + (D2)i0γ0 + (D2)iNγN for i = 1, ..., N − 1
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Note:

• again the 2nd derivative is calculated by using all values of u, including the fixed

prescribed boundary values

• for transformation to ũk via FFT use all grid points

information for ∂2
xu is, however, discarded at the boundaries

Eigenvalues

exact eigenvalues of ∂2
xu with u(±1) = 0:

• sin qx is eigenfunction of ∂2
x for q = π

L
n = π

2
n. ⇒ eigenvalues λn = −π2

4
n2

• all functions that vanish at x = ±1 can be expanded in terms of sin qxwith q = π
L
n = π

2
n

⇒ sin qx form a complete set ⇒ no other eigenfunctions

eigenvalues of D
(0,N)
2 :

• all eigenvalues are real and negative

• eigenvalues are O(N4) reflecting the small grid spacing near the boundaries.

b) Fixed Flux: α = 0, β = 1
Need other modification of D2:

• u0 and uN now unknown ⇒ (n + 1) × (n+ 1) matrix

• ∂xu0 and ∂xuN are known

⇒ ∂xui is calculated with D only for i = 1, ..., N − 1

D̂
(0,N)
ij =

{
Dij 1 ≤ i ≤ N − 1
0 i = 0 or i = N

∂xui =

N∑

j=0

D̂
(0,N)
ij uj + δi,0γ0 + δi,NγN i = 0, ..., N

• 2nd derivative

∂2
xui =

N∑

j=0

Dij∂xuj =

N∑

j,k=0

DijD̂
(0,N)
jk uk +Dijδj,0γ0 +Dijδj,NγN

• Diffusion equation

∂tui =

N∑

j,k=0

DijD̂
(0,N)
jk uk

︸ ︷︷ ︸

apply e.g. Crank-Nicholson

+ Di0γ0 +DiNγN
︸ ︷︷ ︸

inhomogeneous terms

1

∆t

(
un+1 − un

)
= θDD̂(0,N)un+1 + (1 − θ)DD̂(0,N)un +Di0γ0 +DiNγN

Note:
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– derivative at boundary is calculated also with spectral accuracy; in finite differ-

ence schemes they are one-sided: reduced accuracy

– Crank-Nicholson for fixed boundary values similar.

7.4 Discussion of Time-Stepping Methods for Chebyshev

Based on analysis of
du

dt
= λu

which scheme has range of ∆t in which it is absolutely for given λ ∈ C

Main aspect: not only D
(0,N)
2 but also D(N) has negative real part

7.4.1 Adams-Bashforth

AB1= forward Euler

AB2

un+1 = un + ∆t

(
3

2
fn − 1

2
fn−1

)

AB3

un+1 = un + ∆t

(
23

12
fn − 16

12
fn−1 +

5

12
fn−2

)

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3

Since the eigenvalues of the odd Chebyshev derivatives have non-zero (negative) real part

all three schemes have stable regions not only for diffusion but also for wave equation.
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Stability limits:

wave equation

∆tmax = O(
1

N2
)

diffusion equation

∆tmax = O(
1

N4
)

strong motivation for implicit scheme

7.4.2 Adams-Moulton

AM1=backward Euler

AM2=Crank-Nicholson

AM3

un+1 = un + ∆t

(
5

12
fn+1 +

8

12
fn − 1

12
fn−1

)

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4
Adams−Moulton

AM3
AM4
AM5
AM6

backward Euler and Crank-Nicholson remain unconditionally stable for both equations

AM3: now stable for small ∆t ; but still implicit scheme

Notes:

• Crank-Nicholson damps large wavenumbers only weakly, 2nd order in time

• backward Euler damps large wavenumbers strongly: very robust, but only 1storder in

time

• if high wavenumbers arise from non-smooth initial conditions: take a few backward

Euler steps
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7.4.3 Backward-Difference Schemes

this class of schemes is obtained by obtaining interpolant for u(t) and taking its derivative

as the left-hand-side of differential equation

pm(t) =

m−1∑

k=0

u(tn+1−k)L
(m)
k (t)

with Lagrange polynomials

L
(m)
k (t) =

m−1∏

k 6=l=0

t− tn+1−l

tn+1−k − tn+1−l

to get derivative
du

dt

∣
∣
∣
∣
tn+1

=
d

dt
pm(t)

∣
∣
∣
∣
tn+1

1. m = 2

p2(t) =
un+1 − un

tn+1 − tn
(t− tn) + un

d

dt
p2(t)

∣
∣
∣
∣
tn+1

=
un+1 − un

tn+1 − tn
= f(un+1)

thus: BD1=backward Euler

2. m = 3 yields BD2
3

2
un+1 − 2un +

1

2
un−1 = ∆t fn+1

−15 −10 −5 0 5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

5

10

15

20

25
backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

−1 −0.5 0 0.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

Neumann Analysis for BD2:
3

2
z − 2 +

1

2z
− ∆tλz = 0
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z1,2 =
2 ±

√
1 + 2∆tλ

3 − 2∆tλ
→ ∓ 1

√

2∆t|λ|
→ 0 for ∆t|λ| → ∞

Note:

• BD1 and BD2 are unconditionally stable. BD3 and higher are not unconditionally

stable

• BD2 damps high wavenumbers strongly (although not as strongly as BE) and is 2nd

order in time

compared to Crank-Nicholson it needs more storage since it uses un−1

7.4.4 Runge-Kutta

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Runge−Kutta

RK1
RK2
RK3
RK4

For Chebyshev also RK2 stable for wave equation - was not the case for Fourier

7.4.5 Semi-Implicit Schemes

Consider diffusion equation with nonlinearity

∂tu = ∂2
xu
︸︷︷︸

CN

+ f(u)
︸︷︷︸

AB2

u(x = 0) = γ0 u(x = L) = γN

un+1 = un + ∆t
(
θ∂2

xu
n+1 + (1 − θ)∂2

xu
n
)

+ ∆t

(
3

2
f(un) − 1

2
f(un−1)

)

Calculate derivatives with differentiation matrix

⇒ boundary conditions enter

∂2
xui =

∑

j

D
(0,N)
2,ij uj +D2

i0γ0 +D2
iNγN i = 1, ..., N − 1
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remember

D
(0,N)
2,ij = (D2)ij i, j = 1, ..., N − 1

insert in scheme

∑

j

(δij − ∆tθD
(0,N)
2,ij )un+1

j =
∑

j

(δij + ∆t(1 − θ)D
(0,N)
2,ij )un

j + ∆t
(
D2

i0γ0 +D2
iNγN

)
+

∆t

(
3

2
fi(u

n) − 1

2
fi(u

n−1)

)

i = 1, ..., N − 1

Notes:

• Need to invert δij − ∆tθD
(0,N)
2,ij : constant matrix ⇒ only one matrix inversion

• in the algorithm D
(0,N)
2,ij is effectively a N − 2 × N − 2 matrix; but it is not the same

matrix as D2 for N − 2 nodes!

• if boundary condition depends on time

either CN

∆t
(
θD2

i0γ0(tn+1) + (1 − θ)D2
i0γ0(tn+1)

)

or AB2

∆t

(
3

2
D2

i0γ0(tn) − 1

2
D2

i0γ0(tn−1)

)

4

7.4.6 Exponential Time-Differencing

Consider again

∂tu = ∂2
xu+ f(u) 0 < x < L b.c. at x = 0, L

Using the Chebyshev differentiation matrix D2 this can be integrated formally

un+1 = eD
2∆tun + eD

2∆t

∫ ∆t

0

e−D
2t′f(t+ t′)dt′

where f denotes the vector (f1, . . . , fN).

For a EDTFE we approximate this as

un+1 = e∆tD2

un + ∆tE0(∆tD
2) f(tn) (19)

4Include CNAB for Chebyshev with FFT:

(I + ∆tD)−1 = (FF
−1 + ∆tF

−1
D̃F )−1 = (F−1(I + ∆tD̃)F )−1 = F

−1(I + ∆tD̃)−1
F
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with

E0(∆tD
2) = (∆tD)−2

(

I − e−D2∆t
)

As in the Fourier case the evaluation of E0 suffers from round-off through cancellations.

Even worse cancellations for Ei in EDTRK4 (cf. (10)). Using Taylor’s formula is not

straightforward. Use Cauchy integral formula for matrices A [6, 7].

Consider

Φ(A) =
1

2πi

∮

C
f(t) (tI −A)−1 dt

Assume A can be diagonalized

A = SΛS−1

with Λ = diag(λ1, λ2, . . . , λn)

(tI − A)−1 =
(
tSIS−1 − SΛS−1

)−1
=
{
S (tI −Λ)S−1

}−1

= S (tI −Λ)−1
S−1 = S diag

(
1

t− λ1
, . . . ,

1

t− λn

)

S−1

Since S does not depend on t ∈ C

Φ(A) = S
1

2πi

∮

C
f(t)diag

(
1

t− λ1
, . . . ,

1

t− λn

)

dtS−1

= S diag

(
1

2πi

∮

C
f(t)

1

t− λ1
dt, . . . ,

1

2πi

∮

C
f(t)

1

t− λn
dt

)

S−1

If C encloses λi
1

2πi

∮

C
f(t)

1

t− λi
dt = f(λi)

If C encloses all eigenvalues of A one gets

Φ(A) = S diag (f(λ1), . . . , f(λn))S−1 = f(A)

and

f(A) =
1

2πi

∮

C
f(t) (tI −A)−1 dt (20)

Notes:

• sample code for the Allen-Cahn equation, f(u) = u− u3, is in the appendix of [7]

• the contour integral can be evaluated using the trapezoidal rule

• simplest contour is a circle with radius R centered at t = 0

• eigenvalues of D2 grow like N4 ⇒ R has to be chosen large enough

– et grows and oscillates rapidly for ranges of large complex t (cf. (10))
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– more integration points are needed for the integral

– possibly other contour shapes preferrable (e.g. elliptic close to real axis or parabolic)

Boundary conditions:

1. Fixed boundary values:

u0 = γ0 uN = γN

using the modified differentiation matrix D
(0,N)
2 we have N −1 unknowns u1, . . . , uN−1,

∂tui =
N−1∑

j=1

D
(0,N)
2,ij uj + (D2)i0γ0 + (D2)iNγN + fi(u) for i = 1, ..., N − 1

Two possibilities:

(a) Shift solution to make boundary conditions homogeneous

u = U + ub

with

ub(x) = γ0 + (γN − γ0)
x

L

U satisfies now Dirichlet boundary conditions and can be determined using (19)

or its RK4 version with D2 replaced by D
(0,N)
2

(b) Can include the inhomogenous terms (D2)i0γ0 + (D2)iNγN in f .

2. Fixed flux boundary conditions

∂xu = γ0,N at x = 0, L

∂tui =

N∑

j,k=0

DijD̂
(0,N)
jk uk +Di0γ0 +DiNγN + fi(u) for i = 0, . . . , N

For γ0 6= γN the transformation to Neumann condition would induce an additional

term since ∂2
xub 6= 0.

Probably it is preferrabe to include the inhomogeneous terms in f .

8 Initial-Boundary-Value Problems: Galerkin Method

Galerkin method:

unknowns are the expansion coefficients, no spatial grid is introduced

Implementation of boundary conditions is different for Galerkin and for pseudospectral:

• pseudospectral: we have grid points ⇒ boundary values available

• Galerkin: no grid points, equations obtained by projections

⇒ modify expansion functions or projection
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8.1 Review Fourier Case

∂tu = Su 0 ≤ x ≤ 2π periodic b.c.

Expand u

PN(u) =

N∑

k=−N

uk(t)e
ikx

replace u by projection PN(u) in PDE

∂tPN(u) − S PN(u) = 0

the expansion coefficients are determined by the condition that equation be satisfied in

subspace spanned by the eikx, −N ≤ k ≤ N , i.e. error orthogonal to that subspace

Project onto eilx, −N ≤ l ≤ N

〈eilx, ∂tPN(u) − S PN (U)〉 = 0

Orthogonality of eilx-modes

∂tul −
∫ 2π

0

e−ilxS PN(u) = 0

e.g. for S = ∂x

∂tul −
∫

e−ilx
∑

k

(ik)uke
ikx = 0

∂tul − ilul = 0

Notes:

• no aliasing error since transforms are calculated exactly

• nonlinear terms and space-dependent terms require convolution: slow

• no grid: preserves translation symmetry

• boundary conditions:

each Fourier mode satisfies the boundary conditions individually

8.2 Chebyshev Galerkin

Consider

∂tu = ∂xu − 1 ≤ x ≤ +1, u(x = +1, t) = g(t)

Expand

PN(u) =

N∑

k=0

uk(t)Tk(x)
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project back onto Tl(x)
〈Tl, ∂tPN(u) − ∂xPN(u)〉 = 0

∂tul(t) =
N∑

k=0

〈Tl(x), ∂xTk(x)〉 uk(t)

with

〈u1(x), u2(x)〉 =

∫ +1

−1

u1(x)u2(x)
1√

1 − x2
dx

Where are the boundary conditions?

Note:

• the Tk(x) do not satisfy the boundary conditions individually

8.2.1 Modification of Set of Basis Functions

Construct new complete set of functions, each of which satisfies the boundary conditions.

Example: Dirichlet condition g(t) = 0

Since

Tk(x = +1) = 1

introduce

T̂k(x) = Tk(x) − T0(x), k ≥ 1

each T̂k satisfies boundary condition.

Note:

• modified functions may not be orthogonal any more

〈T̂l(x), T̂k(x)〉 = 〈Tk, Tl〉
︸ ︷︷ ︸

∝δkl

−〈TkT0〉
︸ ︷︷ ︸

=0

−〈T0Tl〉
︸ ︷︷ ︸

=0

+ 〈T0T0〉
︸ ︷︷ ︸

=π

• could orthogonalize the set with Gram-Schmidt procedure

T̃1 = T̂1

T̃2 = T̂2 − 〈T̃1T̂2〉 T̃1

T̃3 = T̂3 − 〈T̃1T̂3〉T̃1 − 〈T̃2T̂3〉T̃2

...
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• procedure is not very flexible, expansion functions have to be changed whenever

boundary conditions are changed.

8.2.2 Chebyshev Tau-Method

To be satisfied

∂tu = ∂xu

u(+1, t) = g(t)

i.e. boundary condition represents one more condition on the expansion coefficients

⇒ introduce 1 extra unknown

Expand in N + 2 modes

PN+1(u) =

N∑

k=0

ukTk(x) + uN+1TN+1(x)

Project PDE onto T0,...TN ⇒ N + 1 equations

〈Tl, ∂tPN+1(u) − ∂xPN+1(u)〉 = 0 0 ≤ l ≤ N

satisfy boundary condition

N∑

k=0

ukTk(x = +1) + uN+1TN+1(x = +1) = g(t)

Use orthogonality

cl∂tul =

N+1∑

k=0

uk〈Tl, ∂xTk〉

and Tk(x = 1) = 1
N+1∑

k=0

uk = g(t)

Thus: N + 1 equations for N + 1 unknowns. Should work.

Note:

• For p boundary conditions expand in N +1 + pmodes and project PDE onto first N + 1
modes and use remaining p modes to satisfy boundary conditions.

Spurious Instabilities

τ−method can lead to spurious instabilities and eigenvalues.

Example: incompressible Stokes equation in two dimensions

∂tv = −1

ρ
∇p+ ν∆v ∇ · v = 0
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Introduce streamfunction ψ and vorticity ζ

v = (−∂yψ, ∂xψ) = −∇× (ψk̂)

ζ = (∇× v)z = ∇2ψ

eliminate pressure from Stokes by taking curl

∂tζ = ν∆ζ

ζ = ∇2ψ

Consider parallel channel flow with v depending only on the transverse coordinate x: v =
v(x)

∂tζ = ν∂2
xζ (21)

ζ = ∂2
xψ (22)

Boundary conditions at x = 0, L

vx = 0 ⇒ ∂yψ = 0

vy = 0 ⇒ ∂xψ = 0

Boundary condition ∂yψ implies ψ is constant along the wall. If there is not net flux through

the channel then ψ has to be equal on both sides of the channel

ψ = 0 x = 0, L

Can combine both equations (21,22) into single equation for ψ

∂t∂
2
xψ = ν∂4

xψ

with 4 boundary conditions

ψ = 0 ∂xψ = 0 at x = 0, L
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Ansatz

ψ = eσtΨ(x)

σ∂2
xΨ = ν∂4

xΨ

Expand

Ψ(x) =

N∑

k=0

ΨkTk(x) ∂2
xΨ =

N∑

k=0

b
(2)
k Tk(x) ∂4

xΨ =

N∑

k=0

b
(4)
k Tk(x)

Results for eigenvalues
N σ1 σ2

10 −9.86966 4, 272
15 −9.86960 29, 439
20 −9.86960 111, 226

Notes:

• spurious positive eigenvalues

σmax = O(N4)

• scheme is unconditionally unstable, useless for time integration

o.k. to determine eigenvalues as long as spurious eigenvalues are recognized

Rephrase problem [5, 4]

expand

ψ = eσt
∑

k

ψkTk(x)

ζ = eσt
∑

k

ζkTk(x)

in PDE

σζk = νζ
(2)
k

ζk = ψ
(2)
k

where ζ
(2)
k and ψ

(2)
k are coefficients of expansion of 2nd−derivative

Previously all boundary conditions were imposed on first equation

Physically:

impose no slip condition vy = 0 on Stokes equation

σζk = νζ
(2)
k 0 ≤ k ≤ N − 2

∂xψ (x = ±1) = 0 N − 1 ≤ k ≤ N

impose incompressibility on vorticity equation

ζk = ψ
(2)
k 0 ≤ k ≤ N − 2

ψ(x = ±1) = 0 N − 1 ≤ k ≤ N

This scheme is stable.
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9 Iterative Methods for Implicit Schemes

Consider as simple example nonlinear diffusion equation

∂tu = ∂2
xu+ f(u)

with Crank-Nicholson for stability or for Newton

un+1 − un

∆t
= θ∂2

xu
n+1 + (1 − θ)∂2

xu+ θf(un+1) + (1 − θ)f(un)

linearize f(un+1) (for reduced Newton, i.e. only single Newton step)

f(un+1) = f(un + un+1 − un) = f(un) + (un+1 − un)f ′(un) + ...

and discretize derivatives (Chebyshev or Fourier or finite differences)

∂2
xu ⇒ D2u

then (

(
1

∆t
− θf ′(un))I − θD2

)

un+1 =

(

(
1

∆t
− θf ′(un))I + (1 − θ)D2

)

un + f(un)

Notes:

• in linear case matrix on l.h.s. is constant ⇒ only single matrix inversion

• in general:

– matrix inversion in each time step

– for full Newton matrix changes after each iteration

• finite differences: in one dimension only tri-diagonal matrix

• pseudospectral: matrix is full, inversion requires O(N3) operations

• implicit treatment of nonlinearity is in particular important when nonlinearity con-

tains spatial derivatives, otherwise in many cases sufficient to treat nonlinear term

explicitly (e.g. CNAB)

9.1 Simple Iteration

Goal: replace ’solving a matrix equation’ by ’multiplying by matrix’, which is faster

Consider matrix equation

Ax = b

Seek iterative solution scheme

xn+1 = xn + g(xn)

need to chose g(x) to get convergence to solution
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xn+1 = xn ⇔ Axn = b

simplest attempt

g(x) = b− Ax

xn+1 = (I − A)xn + b ≡ Gx + b

check whether solution is a stable fixed point: consider evolution of error

δn = xn − xe

δn+1 = xn+1 − xe = (I −A)xn + b
︸︷︷︸

Axe

−xe

= (I− A)(xn − xe) = (I− A)δn

thus

δn+1 = Gδn

Estimate convergence

||δn+1|| ≤ ||G|| ||δn||
and

||δn|| ≤ ||G||n ||δ0||
convergence in the vicinity of the solution guaranteed for

||G|| ≤ α < 1

If δn is eigenvector of G

δn+1 = Gδn = λiδn

⇒ need λi ≤ α < 1 for all eigenvalues λi

Define spectral radius of G

ρ(G) = max
i

|λi|

then we have

iteration converges iff ρ(G) ≤ α < 1

Define convergence rate R as inverse of number of iterations to decrease δ by factor e

ρ(G)
1
R =

1

e

R = − ln ρ(G) > 0

Note:

• for special initial conditions that lie in a direction that contracts faster one could have

faster convergence. The rate R is guaranteed.
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• for poor initial guess: possibly no convergence at all.

For Crank-Nicholson (in the linear case)

A =
1

∆t
I − θD2

thus

G = I −A = (1 − 1

∆t
)I + θD2

Eigenvalues of G:

ρ(G) = O(N2) Fourier

ρ(G) = O(N4) Chebyshev

ρ(G) ≫ 1 no convergence.

9.2 Richardson Iteration

Choose g(x) more carefully

g(x) = ω (b− Ax)

Iteration

xn+1 = xn + ω (b− Axn) = Gxn + ωb

with iteration matrix

G = I − ωA

Choose free parameter ω such that that ρ(G) is minimal, i.e.

max
i

|1 − ωλi| minimal

A = 1
∆t

I− θD2 has only positive eigenvalues

O(1) = λmin ≤ λ ≤ λmax = O(N2,4)

98



optimal choice

1 − ωλmax = −(1 − ωλmin)

ωopt =
2

λmin + λmax

optimal spectral radius

ρ(G)min = max
i

|1 − ωλi| = 1 − ωoptλmin =
λmax − λmin

λmax + λmin

Spectral condition number

κ =
λmax

λmin

ρ(G)min =
κ− 1

κ+ 1
< 1

Notes:

• Richardson iteration can be made to converge by suitable choice of ω independent of

spectral radius of original matrix

• Fourier and Chebyshev have large κ

κ = O(N2,4) ⇒ ρ very close to 1

• in Crank-Nicholson

Aij =

[
1

∆t
− θf ′(un)

]

δij − θD2,ij

the D2−part corresponds to calculating the second derivative ⇒ can be done using

FFT rather than matrix multiplication.

9.3 Preconditioning

Range of eigenvalues of G very large ⇒ slow convergence

Further improvement of g(x)

xn+1 = xn + ω M−1
︸︷︷︸

preconditioner

(b− Axn)

Iteration matrix

G = I − ωM−1A

Goal: minimize range of eigenvalues of G

Note:

• optimal would be M−1 = A−1 then G = 0 ⇒ instant convergence

that is the original problem

• find M that is easy to invert and is close to A, i.e. has similar spectrum

⇒ use M from finite difference approximation
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9.3.1 Periodic Boundary Conditions: Fourier

For simplicity discuss using simpler problem

∂tu = ∂2
xu with periodic b.c.

backward Euler:

• spectral ⇒ A, use Fourier because of boundary conditions

• finite differences ⇒ M

Finite differences
1

∆t
(un+1

j − un
j ) =

1

∆x2

(
un+1

j+1 − 2un+1
j + un+1

j−1

)

written as

Mun+1 = un

with

M =







1
∆t

+ 2
∆x2 − 1

∆x2 0 − 1
∆x2

− 1
∆x2

1
∆t

+ 2
∆x2

1
∆x2 0

0 ... ... ...
− 1

∆x2 0 − 1
∆x2

1
∆t

+ 2
∆x2







Spectral

A =
1

∆t
I −D2

Eigenvalues of M−1A:

M and A have same eigenvectors eilx

⇒ eigenvalues satisfy

λM−1A =
λA

λM

eigenvalues of M:

Mije
ilxj =

(
1

∆t
− eil∆x − 2 + e−il∆x

∆x2

)

eilx

λM =
1

∆t
+

2

∆x2
(1 − cos l∆x)

eigenvalues of A

λA =
1

∆t
+ l2

⇒

λM−1A =
1

∆t
+ l2

1
∆t

+ 2
∆x2 (1 − cos l∆x)

=

=
∆x2

∆t
+ ∆x2l2

∆x2

∆t
+ 2(1 − cos l∆x)
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range of eigenvalues

l → 0 λM−1A → 1 when
∆x2

∆t
dominates

l → N

2
∆x2l2 →

(
2π

N

N

2

)2

= π2 1 − cos l∆x→ 2 λM−1A → π2

4

Thus:

• ratio of eigenvalues is O(1) ⇒ fast convergence of iteration.

In practice

xn+1 = xn + ωM−1(b− Axn)

is solved as

M (xn+1 − xn) = ω (b −Axn)

Notes:

• for Fourier case (periodic boundary conditions) M is almost tri-diagonal , equation can

be solved fast

• for Chebyshev case: also tri-diagonal, but grid points are not equidistant, need finite

difference approximation on the same grid

∂2
xu =

2

∆xj(∆xj + ∆xj−1)
uj+1 −

2

∆xj∆xj−1
uj +

2

∆xj−1(∆xj + ∆xj−1)
uj−1 (23)

with ∆xj = xj+1 − xj

again eigenvalues of M−1A can be shown to be O(1)

• for κ ≈ 3 one has ρ = κ−1
κ+1

≈ 1
2
⇒ δn = δ12

−n

thus
δn
δ1

≈ 10−4 for n ≈ 12

⇒ implicit method with computational effort not much more than explicit

• the matrix multiplication should be done with fast transform, e.g. for Fourier

Axn =

(
1

∆t
I − D2

)

xn =
1

∆t
xn − F−1

(
−k2F(xn)

)
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9.3.2 Non-Periodic Boundary Conditions: Chebyshev

Need to consider modified matrices, e.g. D
(0,N)
2 , and also in finite differences

1. fixed values u0,N = γ0,N

⇒ only N − 1 unknowns

Chebyshev: use D
(0,N)
2

∑

j

[
δij
∆t

− αD
(0,N)
2,ij

]

un+1
j = r.h.s. +D2

i0γ0 +D2
iNγN

finite differences5







1
∆t

− 2α
∆x2

α
∆x2 0 0

α
∆x2

1
∆t

− 2α
∆x2

α
∆x2 0

0 ...
0 0 α

∆x2
1

∆t
− 2α

∆x2







=

(

r.h.s.

)

+







−1
∆x2γ0

0
...

−1
∆x2γN







2. fixed flux ∂xu0,N = γ0,N

Chebyshev:

∂xui =
∑

j

D̂
(0,N)
ij uj + δi0γ0 + δiNγN

with

D̂(0,N) =







0 0 0 0
D

0 0 0 0







then

∂2
xui =

∑

jk

DijD̂
(0,N)
jk uk

︸ ︷︷ ︸

⇒ l.h.s.

+ Di0γ0 +DiNγN
︸ ︷︷ ︸

known ⇒ r.h.s.

finite differences:

introduce virtual points: u−1 and uN+1

∂xu0 =
u1 − u−1

2∆x
= γ0 ⇒ u−1 = u1 − 2∆xγ0

⇒ equation for u0 is modified

∂2
xu0 =

u1 − 2u0 + u−1

∆x2
=
u1 − 2u0 + (u1 − 2∆xγ0)

∆x2

=
−2

∆x2
u0 +

2

∆x2
u1

︸ ︷︷ ︸

l.h.s.

− 2

∆x
γ0

︸ ︷︷ ︸

r.h.s.

5The matrix is actually not correct. One has to take into account the non-equidistant grid (cf. (23)).
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M is tridiagonal

M =







1
∆t

− 2
∆x2

2

∆x2 0 0
1

∆x2
1

∆t
− 2

∆x2
1

∆x2 0
0 ...
0







Notes:

• this leads apparently to eigenvalues λM−1Ain the rangeO(1) toO( 1
N

) ⇒ κ becomes

large with N , convergence not good.

• apparently better to use D̂
(0,N)
ij only to calculate derivative for the boundary points

and to calculate ∂2
xu using D2 for interior points (see Streett (1983) as referenced

in [2] in Sec. 5.2)

Back to reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

Newton for Crank-Nicholson yields

[
1

∆t
I − αD2 − αI

df(un)

du

]

︸ ︷︷ ︸

A

un+1 = r.h.s.

Note:

• A depends on un ⇒ eigenvalues depend on un and therefore also on time

⇒ eigenvalues are in general not known

⇒ choice of ω is not straightforward: trial and error ‘technique’

9.3.3 First Derivative

Consider simpler problem

du

dx
= f(x) with periodic b.c.

i.e. ∑

j

Dijuj = fi

Try usual central differences for finite-difference preconditioning of Fourier differentiation

matrix
uj+1 − uj−1

2∆x
=⇒ λM =

2i sin l∆x

2∆x

then

λM−1A =
il∆x

i sin l∆x
with − π ≤ l∆x ≤ +π

since sin π = 0 one has
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• λM−1A unbounded ⇒ κ unbounded

• no convergence

Possibilities:

1. Could omit higher modes (Orszag)

ũ
(c)
k =

{
ũk |k| ≤ 2N

3

0 2N
3
< |k| ≤ N

and calculate derivative with ũ(c)

duj

dx
=

N∑

k=−N

ikũ
(c)
k

Now l∆x ≤ 2
3
π and range of λM−1A is 1 ≤ λM−1A ≤ 2π

3
sin 2π

3
≈ 2.4.

Omitting these modes would be consistent with anti-aliasing for a quadratic nonlin-

earity.

2. Want sin 1
2
l∆x instead of sin ∆x

Use staggered grid: evaluate derivatives and differential equation at xj+1/2 but based

on the values at the grid points xj

Finite differences

du

dx

∣
∣
∣
∣
x

j+ 1
2

=
uj+1 − uj

∆x
= e

ilx
j+1

2
e

1
2
il∆x − e−

1
2
il∆x

∆x
⇒ λM =

2i sin 1
2
l∆x

∆x

Spectral

du

dx

∣
∣
∣
∣
x

j+1
2

=

N∑

l=−N

ilũke
il(xj+

1
2

π
N

) ⇒ λA = il

thus

λM−1A =
1
2
l∆x

sin 1
2
l∆x

1 ≤ λM−1A ≤ π

2

For wave equation one would get similar problem with central-difference preconditioning

λM−1A =
∆x
∆t

+ il∆x
∆x
∆t

+ i sin l∆x
with − π ≤ l∆x ≤ +π

In implicit scheme ∆t may be much larger than ∆x:
again λM−1A has very large range ⇒ poor convergence

Use same method.

Note:

• one-sided difference would not have this problem either:

uj+1 − uj

∆x
⇒ λM =

eil∆x

∆x

λM−1A =
il∆x

eil∆x
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10 Spectral Methods and Sturm-Liouville Problems

Spectral methods:

• expansion in complete set of functions

• which functions to choose?

To get complete set consider eigenfunctions of a Sturm-Liouville problem

d

dx

(

p(x)
d

dx
φ

)

− q(x)φ+ λ w(x)
︸︷︷︸

weight function

φ = 0 − 1 ≤ x ≤ 1

with

p(x) > 0 in − 1 < x < 1 w(x), q(x) ≥ 0

• regular:

p(−1) 6= 0 6= p(+1)

• singular:

p(−1) = 0 and/or p(+1) = 0

Boundary conditions are homogeneous:

• regular

α±φ(±1) + β±
dφ(±1)

dx
= 0 (24)

• singular

p(x)
dφ

dx
→ 0 for x→ ±1 (25)

φ cannot become too singular near the boundary

Sturm-Liouville problems have non-zero solutions only for certain values of λ: eigenvalues
λn

Define scalar product:

〈u, v〉w =

∫ +1

−1

w(x)u∗(x)v(x)dx

eigenfunctions φk form an orthonormal complete set

〈φk, φl〉 = δlk

Examples:
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1. p(x) = 1 = w(x) and q(x) = 0

d2

dx2
φ+ λφ = 0 Fourier, regular Sturm-Liouville problem

2. p(x) =
√

1 − x2, q(x) = 0, w(x) = 1√
1−x2

d

dx

(√
1 − x2

d

dx
φ

)

+ λ
1√

1 − x2
φ = 0 Chebyshev, singular

Expand solutions

u(x) =
∞∑

k=0

ukφk(x)

with

uk =

∫

w(x)φ∗(x)u(x) dx projection

Consider convergence of expansion in L2−norm

||u(x) −
N∑

k

ukφk(x)|| → 0 for N → ∞

Note:

• pointwise convergence only for almost all x

Truncation error

||
∞∑

k=N+1

ukφk(x)||

depends on decay of uk with k

Want spectral accuracy

uk ≤ O
(

1

kr

)

for all r

Under what condition is spectral accuracy obtained?

Consider

uk =

∫

w(x)φ∗(x) u(x) dx

Previously (Fourier and Chebyshev) did integration by parts.

Use Sturm-Liouville problem

w(x)φ∗
k(x) =

1

λk

[

qφ∗
k −

d

dx

(

p
dφ∗

dx

)]
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u
k

=
1

λk

∫

u

{

qφ∗
k −

d

dx

(

p
d

dx
φ∗

k

)}

dx =

=
1

λk

∫

uqφ∗
kdx+

1

λk

{

−up d
dx
φ∗

k

∣
∣
∣
∣
±1

+

∫
du

dx
p
dφ∗

dx
dx

}

=

=
1

λk

∫

uqφ∗
kdx+

1

λk

{

−up d
dx
φ∗

k

∣
∣
∣
∣
±1

+
du

dx
pφ∗

k

∣
∣
∣
∣
±1

−
∫

d

dx

(
du

dx
p

)

φ∗
kdx

}

Boundary terms vanish if

p

{

u
dφ∗

dx
− du

dx
φ∗

k

}∣
∣
∣
∣
±1

= 0

• regular case
d

dx
φ∗

k(±1) = −α±
β±

φ∗
k(±1)

p

{

−uα±
β±

φ∗
k −

du

dx
φ∗

k

}∣
∣
∣
∣
±1

= 0

thus: u has to satisfy the same strict boundary conditions as φk

• singular case

p
d

dx
φk → 0 at boundary

⇒ require

φkp
du

dx
→ 0 at boundary

need only same weak condition on u as on φ

p
du

dx
→ 0 at boundary

For large k (cf. Fourier case λk = −k2 and dφk/dx = ikφk)

λk = O(k2)
dφk

dx
= O(k)

⇒ if boundary conditions are not met one gets

uk = O(
1

k
)

For spectral accuracy necessary but not sufficient:

u satisfies same boundary conditions as φ

To consider higher orders use Lφk = λkwφk to rewrite compact (cf. [2]):

uk = 〈φk, u〉w =
1

λk

〈 1

w
Lφk, u〉w
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if φ and u satisfy the same boundary conditions, then they are in the same function spaces

and 1
w
L is self-adjoint (in explicit calculation above, the w cancel and one can perform the

usual integration by parts)

uk =
1

λk

〈φk,
1

w
Lu〉w =

1

λ2
k

〈 1

w
Lφk,

1

w
Lu〉w =

1

λ2
k

〈φk,
1

w
L

1

w
Lu〉w

The last step can be done if 1
w
Lu satisfies the same boundary conditions as φ.

Introducing

u(m) =
1

w
Lu(m−1)

can write

uk =
1

λr
k

〈φk, u(r)〉 = O
(

1

λr
k

)

if

• the u(m) satisfy same boundary conditions as φ for all 0 ≤ m ≤ r − 1

• u(r) is integrable

Conclusion:

• regular Sturm-Liouville problem: since
(

1
w
L
)r
u has to satisfy the boundary conditions

these boundary conditions (24) are a very restrictive condition.

Fourier case is a regular Sturm-Liouville problem: for spectral accuracy we needed

that all derivatives satisfy periodic boundary conditions.

• singular Sturm-Liouville problem: singular boundary conditions (25) only impose a

condition on regularity, do not prescribe any boundary values themselves

Simple example:

∂tu = ∂2
xu+ f(x, t) u(0) = 0 = u(π)

Could use sine-series

u =
∑

k

ake
σt sin kx

since they satisfy related eigenvalue problem

λφ = ∂2
xφ φ = 0 at x = 0, π

But: this is a regular Sturm-Liouville problem with L = ∂2
x and w = 1

Spectral convergence only if

u(r)(0) = 0 = u(r)(π) for all r (26)
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i.e. if all even derivatives have to vanish at the boundary

Most functions that satisfy the original boundary conditions u(0) = 0 = u(π) do not satisfy

the additional conditions (26)

e.g. stationary solution for f(x, t) = c

u =
1

2
cx2 − 1

2
cπx

of course ∂2
xu(x = ±1) = c 6= 0.

In fact, expanding in a sine-series one gets

ak =
1

πk3

(

(−1)k − 1
)

Thus:

• Expansions in natural eigenfunctions of a problem are only good if they satisfy a

singular Sturm-Liouville problem.

• If they do not satisfy a singular Sturm-Liouville problem one most likely will not get

spectral convergence even if the functions look very natural for the problem

11 Spectral Methods for Incompressible Fluid Dynam-

ics

Navier-Stokes equations for fluids arise in a wide range of application.

In many situations the fluid velocities are much smaller than the speed of sound. Density

variations can then often be assumed to propagate infinitely fast: the fluid can be assumed

to be incompressible,

∂tu + u · ∇u = −∇p + f + ν∆u

∇ · u = 0

Boundary conditions (no-slip condition and wall impermeable)

u = 0 on boundary

External forces (or imposed pressure gradients) are included in f .

The effectively infinite wave speed leads to numerical challenges.

Mathematically:
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• pressure appears in momentum equation, but does not have an evolution equation of

its own and has no boundary condition at the walls

• divergence-free condition is an algebraic condition on the velocity, poses constraint on

the momentum equation

• could write momentum equation in terms of the vorticity ω = ∇×u

this would get rid of the pressure, but there is no convincing boundary condition for

vorticity

• divergence-free

– ⇒ can introduce streamfunction

boundary conditions can be tricky (can lead to spurious, destabilizing eigenval-

ues, cf. Sec.8.2.2)

For concreteness consider flows with boundaries only in one direction, e.g. flow between

two plates:

• 1 or 2 directions (x and z) can be approximated by periodic boundary conditions

• no-slip boundary conditions in one direction (y)

There are a number of different approaches that have been taken, we discuss only a few

selected ones. Most are formulated in terms of the primitive variables (u, p).

• coupled method: solve momentum equation and incompressibility simultaneously

• Galerkin method with divergence-free basis functions

• operator-splitting methods

Central aspects [3]:

• effectively infinite sound speed requires an implicit treatment of the pressure

• viscosity term has highest derivative: often also treated implicitly

The discussion here is following [3].
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11.1 Coupled Method

treat u and p simultaneously in coupled equations, usually use semi-implicit method

For a first-order method one would get (with an imposed pressure gradient pxex to drive the

flow)

1

∆t
un+1 − ν∆un+1 + ∇pn+1 = fn+1 + pxex +

1

∆t
un − un · ∇un (27)

∇ · un+1 = 0

un+1 = 0 on boundary

Derivatives implemented via ik in the x-direction and via Chebyshev differentiation matrix

in y-direction:

u =
∑

Uk(y, t)e
ikx =

∑

Ũkm(t)Tm(y)eikx p =
∑

Pk(y, t)e
ikx =

∑

P̃km(t)Tm(y)eikx (28)

With (28) and U = (U, V ) the Navier-Stokes equation (27) becomes

1

∆t
Un+1

k + νk2Un+1
k − ν∂2

yU
n+1
k + ikP n+1

k ex + ∂yP
n+1
k ey = rk (29)

ikUn+1
k + ∂yV

n+1
k = 0

with

rk =
1

∆t
Un

k − (un · ∇un)k − (pxex)k (30)

and boundary condition

Un+1
k (y = ±1) = 0

System can be solved

• directly with iterative method (precondition for the y-derivative)

• using the influence matrix method (Kleiser-Schumann)

Discuss here the influence matrix method.

For U one gets from (29)

−νU ′′ + λU + ikP = rx (31)

with

U(y = ±1) = 0

and

λ =
1

∆t
+ νk2.

For V one gets

−νV ′′ + λV + P ′ = ry (32)

with boundary condition

V (y = ±1) = 0. (33)
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Once P is known U and V can be determined from (31, 32).

To get an equation for the pressure eliminate Un+1 from (27) by taking its divergence and

using incompressibility (drop subscript k and superscript n = 1)

P ′′ − k2P = ∇ · r (34)

We do not have a boundary condition for the pressure. Instead, using ∇ · U = 0 and

∂xU(y = ±1) = 0 one gets the boundary condition on V ′

V ′(y = ±1) = 0 (35)

Thus, the P -equation is coupled to the V -equation through this additional boundary condi-

tions. Need to compute P and V simultaneously using (34,35,32,33)

L
(
P
V

)

= b V (y = ±1) = 0 = V ′(y = ±1) (36)

with

L =

(
∂2

y − k2 0
−∂y ν∂2

y − λ

)

b =

(
∇ · r
−ry

)

Slightly strange boundary conditions:

• 2nd-order ODE for P but no boundary condition for P

• 2nd-order ODE for V but 4 boundary conditions for V

Consider auxiliary problem, assuming there is a boundary condition for P ,

L
(
P
V

)

= b P (y = ±1) = P± V (y = ±1) = 0 (37)

(36) can be solved by solving 3 versions of (37):

L
(
Pp

Vp

)

= b Pp(y = ±1) = 0 Vp(y = ±1) = 0 (38)

L
(
P+

V+

)

= 0 P+(y = +1) = 1 P+(y = −1) = 0 V+(y = ±1) = 0 (39)

L
(
P−
V−

)

= 0 P−(y = +1) = 0 P−(y = −1) = 1 V−(y = ±1) = 0 (40)

Expand the solution to (36) as
(
P
V

)

=

(
Pp

Vp

)

+ δ+

(
P+

V+

)

+ δ−

(
P−
V−

)

(41)

and impose the boundary condition of (36)
(
V ′

+(+1) V ′
−(+1)

V ′
+(−1) V ′

−(−1)

)

︸ ︷︷ ︸

M

(
δ+
δ−

)

= −
(
V ′

p(+1)
V ′

p(−1)

)

Since L does not depend on the flow (U, P ) the solutions to (39) and to (40) do not depend

on the flow:
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•
(
P+

V+

)

and

(
P−
V−

)

need to be calculated only once at the beginning of the code

• the influence matrixM can also be calculated initially

Procedure:

1. Compute

(
Pp

Vp

)

which depends on the flow via the inhomogeneity b

2. Compute δ±, which provides the correct boundary conditions P± for (37)

P± = δ±

3. With δ± the solution to (36) is given by (41) (no need to solve (37) explicitly).

Notes:

• in the spectral approach the differential equations in y will be solved using Chebyshev

polynomials

• discussion above was done for continuous differentiation operators, not for discrete

differentiation (pseudo-spectral collocation points) ⇒ the solution to the equations

obtained from taking the divergence of the NS-equation (i.e. (34,32,35)) does not

guarantee a divergence-free solution. Error is estimated to be (with Ny grid points

in y-direction)

O
(
Ny

ν∆t
ŨkNy

,
Ny

ν∆t
ŨkNy−1

)

• Correction (τ -correction step) improves also stability limit

• With and without τ -correction code achieves spectral accuracy in space.

11.2 Operator-Splitting Methods

A common way to split the Navier-Stokes equations is into a velocity step

1

∆t

(
un+1/2 − un

)
− ν∆un+1/2 = −un · ∇u− pxex (42)

with a boundary condition

un+1/2(y = ±1) = gn+1/2

with gn+1/2 to be discussed later. The intermediate velocity field un+1/2 is not divergence-

free. This is achieved with the pressure step

1

∆t

(
un+1 − un+1/2

)
+ ∇pn+1 = 0 (43)

∇ · un+1 = 0

with boundary condition (again u = (u, v))

vn+1(y = ±1) = 0

Note
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• counting boundary conditions:

– after Fourier transformation momentum equation is an algebraic equation in the

x-component and a first-order ODE for p in the y-component

– the incompressibility condition is a first-order ODE

– for two first-order ODEs expect only two boundary conditions, v at both sides.

Not possiblte to impose also boundary conditions on u

• in this formulation time-stepping is only first-order (Euler)

• un+1 is divergence-free but does not satisfy the no-slip condition exactly:

uslip ≡ u(y = ±1) 6= 0

– for gn+1/2 = 0 one has uslip = O(∆t)

– modified boundary conditions can improve accuracy

gn+1/2
x = ∆t∂xp

n gn+1/2
y = 0 ⇒ uslip = O(∆t2)

higher-order conditions are possible

For expansion in Chebyshev modes relevant:

• pressure enters equation only via its gradient

• T ′
N (xj) = 0 at all xj = cos πj

N

⇒ pressure mode pN does not affect flow field and results in spurious mode

To avoid spurious pressure mode use only N − 1 Chebyshev modes

p(x, y, t) =
∑

k

N−1∑

m=0

P̃km(t)Tm(y) eikx

and solve the pressure step using the staggered grid points as collocation points

yj+1/2 = cos
π(j + 1

2
)

N
j = 0 . . . N − 1

The velocity field is expanded as usually

u(x, y, t) =
∑

k

N∑

m=0

Ũkm(t)Tm(y) eikx

and for the velocity step the usual collocation points are used

yj = cos
πj

N
j = 0 . . . N

Notes:
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• The pressure mode P̃00 also does not affect the flow. However, a spatially homogeneous

pressures is also physically irrelevant⇒ indeterminacy of P̃00 does not pose a problem.

• Since two different grids are used one needs to interpolate (u, p) from one grid to the

other by evaluating the Tm at the respective grid points. This introduces additional

steps in the algorithm (some slowing down).

Velocity Step

drop again subscript k

ν∂2
yU

n+1/2 − λUn+1/2 = −r

Un+1/2(y = ±1) = gn+1/2(y = ±1)

with λ = 1
∆t

+ νk2 and r as in (30)

Determine U using Chebyshev τ -method using the usual (Gauss-Lobatto) collocation points

yj .

Pressure Step

For transformation between the grids write

Û = (U(y0), U(y1), . . . , U(yN))t V̂ = (V (y0), V (y1), . . . , V (yN))t

and

P̂ =
(
P (y1/2), P (y3/2), . . . , P (yN−1/2)

)t

Need to compute the Chebyshev coefficients Ũ and P̃ for U and P based on the values at

the respective grid points

Ũ = C0Û Ṽ = C0V̂

and

P̃ = C+P̂

where C0 and C+ are the appropriate matrices

Velocity divergence needed on staggered grid points

∇ · u → DÛ ≡
(
C−1

+ C0

) [

ikÛ + C−1
0 DC0V̂

]

where D computes the derivative from the Chebyshev coefficients

Pressure gradient needed on regular grid points in momentum equation

∇p→ GP̂ ≡
(
C−1

0 C+

) (

ikP̂ ,C−1
+ DC+P̂

)

Pressure step (43) becomes

Ûn+1 = Ûn+1/2 − ∆tGP̂ at interior points yj, j = 1 . . .N − 1 (44)

DÛn+1 = 0 at yj+1/2, j = 0 . . . N − 1 (45)
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with

Ûn+1
x = Ûn+1/2

x − ∆t
(

GP̂
)

x
at y = ±1 (46)

Ûn+1
y = 0 at y = ±1 (47)

Rewrite these equations to obtain an equation for the pressure. To make use of the diver-

gence condition (45) combine (44) with (47)

Ûn+1 = Z
(

Ûn − ∆tGP̂
)

at yj, j = 0 . . . N

where the matrix Z sets the boundary values of y-componet to 0

Then one can use the divergence condition (45) to eliminate Ûn+1 and obtains an equation

for the pressure

D Z G P̂ =
1

∆t
D Z Ûn+1/2

Once the pressure is known Ûn+1 can be determined directly from (44-47).

Note:

• for more details on operator-splitting and other schemes for incompressible Navier-

Stokes see [2, 3]
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A Insertion: Testing of Codes

A few suggestions for how to test codes and identify bugs:

• test each term individually if possible

– set all but one coefficient in the equation to 0:

does the code behave qualitatively as expected from the equation?

– compare quantitatively with simple analytical solutions (possibly with some co-

efficients set to 0)

• code ‘blows up’:

– is it a ‘true blow-up’: exact solution should not blow up

– is the blow-up reasonable for this type of scheme for this problem? Stability?

Does decreasing dt increase/decrease the growth?

– is the blow-up a coding error?

• track variables:

use only few modes so you can print out/plot what is going on in each time step

• if the code seems not to do what it should it often is a good idea to vary the parameters

and see whether the behavior of the code changes as expected (e.g. if a parameter was

omitted in an expression the results may not change at all even though the parame-

ters are changed); the response of the code to parameter changes may give an idea for

where the error lies.

B Details on Integrating Factor Scheme IFRK4

Some more details for the integrating-factor scheme (keeping in mind that it is usually not

as good as the exponential time differencing scheme):

Rewrite (8) with integrating factor ek2t

∂t(e
k2tuk) = k2ek2tuk + ek2t∂tuk = ek2tfk(u) (48)

Introduce auxiliary variable vk(t) = ek2tuk(t)

∂tvk = ek2tfk(e
−l2tvl) (49)

Note:

• for nonlinear f the Fourier coefficient fk depends on all Fourier modes of v
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It is natural to consider now suitable time-integration methods to solve equation (49)

Example: Forward Euler

vn+1
k = vn

k + ∆t ek2tfk(e
−k2tvn

k )

ek2(t+∆t)un+1
k = ek2tun

k + ∆t ek2tfk(u
n
k)

un+1
k = e−k2∆t (un

k + ∆t fk(u
n
k))

Note:

• with forward Euler integrating factor generates same scheme as the operator-splitting

scheme above

• diffusion and other linear terms are treated exactly

• no instability arises from linear term for any ∆t

• large wave numbers are strongly damped, as they should be (this is also true for

operator splitting)

compare with Crank-Nicholson (in CNAB, say)

un+1
k =

1 − 1
2
∆tk2

1 + 1
2
∆tk2

un
k

for large k∆t

un+1
k = −(1 − 4

∆tk2
+ ...)un

k

oscillatory behavior and slow decay.

• FFT is done on nonlinear term rather than the linear derivative term (cf. operator

splitting)

• But: fixed points in u depend on the time step ∆t and are not computed correctly

for large ∆t, whereas without the integrating factor the fixed points of the numerical

scheme agree exactly with those of the differential equation.

Notes:

• It turns out that the prefactor of the error term is relatively large in particular com-

pared to the exponential time differencing scheme (cf. Boyd, Chebyshev and Fourier

Spectral Methods6)

Details for Runge-Kutta:

In Fourier space

∂tuk = −k2uk + fk(u)

6See also Cox and Matthews, J. Comp. Phys. 176 (2002) 430, who give a detailed comparison and a further

advanced method exponential time differencing.
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For vk = ek2tuk then

∂tvk = ek2tfk(vle
−l2t) = Fk(t, vl)

Note: Fk(t, vl) depends explicitly on time even if f(u) does not!

Then

k1k = ∆tFk(tn, v
n
l ) =

= ∆t ek2tnfk(v
n
l e

−l2tn) = ∆tek2tnfk(u
n
l )

k2k = ∆tFk(tn +
1

2
∆t, vn

l +
1

2
k1l) =

= ∆t ek2(tn+∆t/2)fk((v
n
l +

1

2
k1l) e

−l2(tn+∆t/2))

= ∆t ek2(tn+∆t/2)fk(v
n
l e

−l2tne−l2∆t/2 +
1

2
k1le

−l2(tn+∆t/2))

= ∆t ek2(tn+∆t/2)fk(u
n
l e

−l2∆t/2 +
1

2
k1le

−l2(tn+∆t/2))

Growing exponentials become very large for large k. Introduce

k̄1k = k1ke
−k2tn

k̄2k = k2ke
−k2(tn+∆t/2)

k̄3k = k3ke
−k2(tn+∆t/2)

k̄4k = k4ke
−k2(tn+∆t)

Then

k̄1k = ∆t fk(u
n
l )

k̄2k = ∆t fk(u
n
l e

−l2∆t/2 +
1

2
k̄1le

−l2∆t/2)

= ∆t fk

(

(un
l +

1

2
k̄1l)e

−l2∆t/2

)

k̄3k = ∆t fk

(

un
l e

−l2∆t/2 +
1

2
k̄2l

)

k̄4k = ∆t fk

(

un
l e

−l2∆t + k̄3le
−l2∆t/2

)

vn+1
k = vn

k +
1

6
(k1k + 2k2k + 2k3k + k4k)

un+1
k ek2(tn+∆t) = un

ke
k2tn +

1

6
ek2tn

(

k̄1k + 2k̄2ke
k2∆t/2 + 2k̄3ke

k2∆t/2 + k̄4ke
k2∆t

)

Thus

un+1
k = un

ke
−k2∆t +

1

6

(

k̄1ke
−k2∆t + 2k̄2ke

−k2∆t/2 + 2k̄3ke
−k2∆t/2 + k̄4k

)

Note

• In each of the four stages go to real space to evaluate nonlinearity and then transfrom

back to Fourier space to get its Fourier components in order to evaluate k̄ik, i = 1..4.
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C Chebyshev Example: Directional Sensing in Chemo-

taxis

Levine, Kessler, and Rappel have introduced a model to explain the ability of amoebae (e.g.

Dictyostelium discoideum) to sense chemical gradients very sensitively despite the small

size of the amoeba (see PNAS 103 (2006) 9761).

The model consists of an activator A, which is generated in response to the external chem-

ical that is to be sensed. The activator is bound to the cell membrane and constitutes the

output of the sensing activity (and triggers chemotactic motion), and a diffusing inhibitor

B. The inhibitor can attach itself to the membrane (its concentration is denoted Bm) where

it can inactivate A.

The model is given by

∂B

∂t
= D∇2B inside the cell − 1 < x < +1

with boundary ocndition

D
∂B

∂n
= kaS − kbB.

Here ∂/∂n is the outward normal derivative. In a one-dimension system its sign is opposite

on the two sides of the system, ∂/∂n = −∂/∂x at x = −1 whereas ∂/∂n = +∂/∂x at x = +1 .

The reactions of the membrane bound species are given by

dA

dt
= kaS − k−aA− kiABm

dBm

dt
= kbB − k−bBm − kiABm

To implement the boundary conditions with Chebyshev polynomials (using the matrix mul-

tiplication approach):

∂Bi

∂x
=

N∑

j=0

DijBj for i = 1, . . . , N − 1

∂B0

∂x
= − 1

D
(kaS0 − kbB0)

∂BN

∂x
=

1

D
(kaSN − kbBN)

The second derivative is then given by

D
∂2Bi

∂x2
= D

N−1∑

j=1

N∑

k=0

DijDjkBk −Di0 (kaS0 − kbB0) +DiN (kaSN − kbBN)

which can be written as

D
∂2Bi

∂x2
=

N∑

k=0

D̃ikBk + ka (−Di0S0 +DiNSN)
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with

D̃ik = D
N−1∑

j=1

DijDjk − b







−Di0 0 0 DiN

−Di0 ... ... DiN

−Di0 ... ... DiN

−Di0 0 0 DiN







The equations on the membrane are nonlinear. The implementation of Crank-Nicholson

is then done most easily not completely implicitly, i.e. no full Newton iteration sequence

is performed to solve the nonlinear equations. Instead only a single iteration is performed

(semi-implicit) This is equivalent to expanding the terms at the new time around those at

the old time. Specifically

αAn+1Bn+1 + (1 − α)AnBn = α ((An + ∆A)(Bn + ∆B)) + (1 − α)AnBn =

= α (AnBn + An∆B +Bn∆A + O(∆A∆B)) + (1 − α)AnBn =

= α
(
An+1Bn + AnBn+1

)
+ (1 − 2α)AnBn + O(∆A∆B).

Ignoring the term O(∆A∆B) is often good enough.

D Background for Homework: Transitions in Reaction-

Diffusion Systems

Many systems undergo transitions from steady state to oscillatory ones or from spatially

homogeneous ones to states with spatial structure (periodic or more complex)

Examples:

• buckling of a bar or plate upon uniform compression (Euler instability)

• convection of a fluid heated from below: thermal instability through bouyancy or

temperature-dependence of surface tension

• fluid between two rotating concentric cylinders: centrifual instability

• solid films adsorbed on substrates with different crystaline structure (cf. Golovin’s

recent coloquium)

• surface waves on a vertically vibrated liquid

• various chemical reactions: Belousov-Zhabotinsky

– oscillations:

in the 1950s Belousov could not get his observations published because the jour-

nal reviewers thought such temporal structures were not ‘allowed’ by the second

law of thermodynamics

– spatial structure:

Turing suggested (1952) that different diffusion rates of competing chemicals

could lead to spatial structures that could underly the formation of spatial struc-

tures in biology (segmentation of yellow-jackets, patterning of animal coats...)

121



Common to these systems is that the temporal or spatial structures arise through instabil-

ities of a simpler (e.g. homogeneous) state. Mathematically, these instabilities are bifurca-

tions at which new solutions come into existence.

General analytical approach:

1. find simpler basic state

2. identify instabilities of basic state

3. derive simplified equations that describe the structured state in the weakly nonlinear

regime

leads to equations for the amplitude of the unstable modes characterizing the struc-

ture: Ginzburg-Landau equations

In homework consider simple model in one spatial dimension for chemical reaction involv-

ing two species

∂tu = D1∂
2
xu+ f(u, v)

∂tv = D2∂
2
xu+ g(u, v)

‘Brusselator’ (introduced by Glansdorff and Prigogine, 1971, from Brussels) does not model

any specific reaction, it is just s very simple rich model

f(u, v) = A− (B + 1) u+ u2v

g(u, v) = Bu− u2v

with A and B external control parameters. Keep in the following A fixed and vary B.

For all parameter values there is a simple homogeneous steady state

u = A v =
B

A

This state may not be stable for all values of B: study stability by considering small pertur-

bations

u = A+ U

v =
B

A
+ V

Inserting in original equation

u2v = AB + 2BU + A2V + U2B

A
+ 2AUV + U2V

∂tU = D1∂
2
xU + (B − 1)U + A2V + F (U, V )

∂tV = D2∂
2
xV − BU − A2V − F (U, V )

with

F (U, V ) =
B

A
U2 + 2AUV + U2V
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Linear stability: omit F (U, V ), which is negligible for infinitesimal U and V

(
∂tU
∂tV

)

=

(
D1∂

2
xU

D2∂
2
xV

)

+

(
B − 1 A2

−B −A2

)

︸ ︷︷ ︸

M0

(
U
V

)

Exponential ansatz (
U
V

)

= eσteiqxA
(
U0

V0

)

(50)

M(σ, q)

(
U0

V0

)

≡
(

−σ −D1q
2 +B − 1 A2

−B −σ −D2q
2 − A2

)(
U0

V0

)

= 0

has only a solution if

detM(σ, q) = 0

σ2 + σ
(
(D1 +D2)q

2 + A2 − B + 1
)

︸ ︷︷ ︸

α(q)

+A2(B − 1) + q2
(
A2D1 + (1 −B)D2

)
+D1D2q

4

︸ ︷︷ ︸

β(q)

= 0

This gives a relation

σ = σ(q)

Instability occurs if

ℜ(σ) ≡ σr > 0 for some q

In this model two possibilities for onset of instability

• σ = iω with q = 0: oscillatory instability leading to Hopf bifurcation

expect oscillations to arise with frequency ω
occurs for α(q = 0) = 0

B(H)
c = 1 + A2 ωc = σi

• σ = 0 with q 6= 0: instability sets in first at a specific q = qc (critical wavenumber)

expect spatial structure to arise with wavenumber qc
occurs for β(qc) = 0

B(T )
c =

(

1 + A

√

D1

D2

)2

q2
c =

A√
D1D2

here used σ(qc, B
(T )
c ) = 0 as well as dσ

dq

∣
∣
∣
q
c,B

(T )
c

= 0 to get the value where the first mode

becomes unstable.

For small amplitude A one can do a weakly nonlinear analysis, expanding the equations in

A and B − B
(H,T )
c to obtain a Ginzburg-Landau equation for the complex amplitude A,

∂TA = δ ∂2
XA + µA− γ|A|2A

For Hopf bifurcation δ, µ, and γ are complex, for Turing bifurcation they are real.
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In the original exponential ansatz (50) amplitude A is constant. It turns out one can al-

low A allow to vary slowly in space and time. The Ginzburg-Landau equation has simple

spatially/temporally periodic solutions

A = A0e
iωteiqx

with

A2
0 =

µr − δrq
2

γr

ω = µi − δiq
2 − γi|A|2

This leads to solutions for U and V of the form
(
U
V

)

= ei(ωc+ω)tei(qc+q)xA0

(
U0

V0

)

+ h.o.t.

In the homework the system has non-trivial boundaries: affects the onset of the instabil-

ities. In this case one gets interesting behavior already for values of B that are slightly

below Bc. Instabilities can arise at boundaries, which then can interact with the instabili-

ties in the interior of the system.

E Background for Homework: Pulsating Combustion

Fronts

Consider a one-dimensional combustible fluid in which the reactants are well mixed (pre-

mixed) and in which the concentration of a rate-limiting reactant is given by Y . The temper-

ature of the fluid is given by T . A simple reaction with Arrhenius kinetics is then described

by

∂t̂T = κ∂2
x̂t+ q Y k(T )

∂t̂Y = D∂2
x̂Y − Y k(T )

with the reaction term

k(T ) = k0e
− E

kBT

with E the activation energy and kB the Boltzmann constant.

Boundary conditions

T (0, t) = Tl T (L, t) = Tr

Y (0, t) = Yl Y (L, t) = Yr

and initial conditions

T (x, 0) = T0 Y (x, 0) = Y0

Make dimensionless

C =
Y

Y0

and

θ =
T − Tad

Tad − T0
Tad = T0 + qY0
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i.e.

T = Ta + qY0θ

Insert into Arrhenius law

e−E/kBT = e−E/kBTaeE/kB(1/Ta−1/T )

= k(Ta)exp

(
E

kB

1

TaT
(T − Ta)

)

= k(Ta)exp

(
E

kBTa

qY0θ

Ta + qY0θ

)

= k(Ta)exp

(
Zθ

1 + δθ

)

with the Zeldovich number Z given by

Z =
E

kBTa

qY0

Ta

and δ =
qY0

Ta

This results in the final equations

∂tθ = ∂2
xθ + Ce

Zθ
1+δθ (51)

∂tC =
1

Le
∂2

xC − Ce
Zθ

1+δθ (52)

with Lewis number given by

Le =
κ

D

Initial conditions

C = 1 θ = −1

and boundary conditions

θ = θl,r C = Cl,r

For very large activation energy (Z large) the reaction front can be replaced by an internal

layer and one can treat the outer solution analytically. A linear stability analysis shows

that for Le > 1 and the Zeldovich number above a certain value of Zc(Le) the steadily

propagating front becomes unstable to oscillations and a transition to pulsating fronts occur

[8]. In two-dimensional versions of (51,52) instabilities to cellular flames arise for Le < 1
(cf. Fig. 7).
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Figure 7: Cellular flame on a porous plug burner (from http://vip.cs.utsa.edu/
flames/overview.html see also [9]).

126


