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Summary

In this paper the induction of moving (drifting) patterns by wavelength
selection is investigated. In the- first part the theory for selection by ramps
(i.e. control parameters which vary slowly in space) and the resulting motion
is reviewed. Particular emphasis is put on qualitative features which should
appear in most pattern fcrming systems if their dynamics is not derived from a
minimizing potential. For experimental relevance of this theory the influence
of imperfections (pinning centers) has to be taken into account. In the second
part the experimental investigation of moving convection patterns in a
convection cell with ramps is presented. In agreement with the theoretical
predictions it is found that -

— Drifting patterns are observable,
— Due to the pinning centers drifting starts at a value Rm of the control

parameter well above the onset of convection Rc’
— The drift velocity approaches zero at Rm.

Introduction

In pattern forming systems like Rayleigh—-Benard convection and Taylor-Couette
flow the wavelength of the patterns is not unique, the patterns are stable
within a certain band. The related question of a "preferred" wavelength cannot
be answered in the usual experimental set—ups as the distance between the two
ends fixes the wavelength. In order to get rid of these ends one is led to the
idea of a subcritical ramp /1/: The driving force is decreased slowly In space
from supercritical to subecritical values, as indicated by the figure in the
title. As was shown theoretically such ramps lead to a perfect selection of a
single wavelength /1/. Experiments in Taylor-Couette flow /2,3/ with conical
cylinders clearly confirm this vanishing of the wavelength band: A single
wavelength is selected in the limit of an infinitely long ramp. It has been
pointed out theoretically, however; that this wavelength is not unique /1,4/.
In Rayleigh-Benard convection it dépends on the combination of the geometrical
(varying layer thickness) and thermal (varying temperature difference) part of
the ramp. If so, different combinations at the left and right end of a
convection cell could lead to different wavelengths. Such a situation is not
stable, the patterns move from the small wavelength end to the long wavelength
end driven by a phase diffusion process. This paper presents the experimental

investigation of this phenomenon.

Lecture presented at the Int. Symposium on the Physics of Structure Formation:
Theory and Simulation, at Tibingen (Germany), October 1986 (to be published in
Springer Serles in Synergetlics, Edlitors: W. Gittinger and G. Dangelmayr).



1. THEORY

1.1 Smooth Ramps in Rayleigh-Benard Convection

Two-dimensional convection can be described by

4 _ - _v2m
RoaxT Vip = 0, [at+(azrpax ax:paz)]'r ver = o. (1)

Here the Overbeck-Boussinesq—approximation and an infinite Prandtl number have
been assumed and all quantities have been made dimensionless by using typical
scales. The fluid is assumed to lie in the x-y-plane and the velocity
1=(vx,vy) is given by the streamfunction v via vx=aztp and v'z=-axtp. The

temperature is denoted by T and the Rayleigh number by Ro'

As indicated in the title we wish to analyze the convection pattern that
arises for boundary conditions which depend smoothly and slowly on the
x—-coordinate. Therefore a slow spatial scale X = ax with a«l is introduced.
For simplicity the fluid is now assumed to be contained between an upper flat
plate (z=0) and a lower plate at z=-G(X). Similarly, the temperature is taken
to be constant (T=0) at z=0 and X-dependent at z=-G(X) (T=H(X)G(X)). Thus H(X)
is the local temperature gradient in the non-convective state. To transform
the region contained between the plates to a rectangle new coordinates are
introduced, which are orthogonal to order O(a),

¢ = 2/G, £t =x+a®-1) 6 a2 ' ()

Here G'=6XG. The boundary conditions now read

T=0 at { =0, T = H(X) G(X) atg = -1,

2
g

For simplicity stress—free boundary conditions for p have been assumed. Rigid
boundary conditions are expected to give qualitatively the same results. Note
that with the coordinates (2) the usual free boundary conditions are in fact
given by (3), which was not the case for the coordinates used in /4/.

p =38 p =0 atf = -1, 0. (3)

How do we now obtain moving patterns? As mentioned above they result if in
the same region two different wave numbers (or disjoint wave-number bands) are
selected by suitable selection mechanisms. Therefore we briefly review
wave—-number selection by smooth ramps /1,4/.

Introducing 6 via T=HG(6-{), 6 and p are expanded in a,
p(n.XL,7) =p +ap+., 6MXLT)= 6, +a6, +. (4)

Both, » and @ are 2w-periodic in the phase n. In addition to the slow time 7 =
slow phase ¢ is introduced

v = a’t, 7 = a lex,7)/6. (5)

Using at=(q/G)an-4-a,ax (1) is regained in 0(a®) with the local Rayleigh number



R(X)=ROHG‘ replacing Ro' Thus, to this order any local wave number q(X) is
possible as long as it stays within the band of stable solutions. Due to the
singularity of the linearized operator £ of (1) a solvability condition arises
at order O(a), which is obtained by+projecting the equations in O(a) onto the
adjoint translational null mode (Vl,Vz) of £ /4/,

T, 8,9 =D3yq+ (B+E)IRR+ (C- 4B) 8,G/G. (6)

Because the coefficients depend on q=GaEn=Gax(¢/G). (6) is a nonlinear
diffusion equation for the phase ¢, describing the effect of the ramped
boundary conditions on the statics and slow dynamics of the periodic pattern.
The coefficients are given by /5/ .

+
To = <V2 6n90>.

+ 2 2,2 2 2.2
= - - + 2 - + 3
D <Vl [Raqeo 4q(ac q an) naquo 2(ac 3q an) n'po]

+
v} ["c P20 = 0,0, = 13 B - (1+ anq)anOO] >,

+ +
B=- iR -0+ v} [(eo - 613, v, - 2qaneo]>,
- + - 2 2,2 + _ _
c=- <t [R(l £3,)0, + 4403} +aq an)anwo] +v} [(90 08, v, 2qan00]>

— syt 2, _ 2, 2,2
E= <V1 [R GROO 4q(a( +q an)Rakantpo] +

+
V2 [(1 - 6<90)R6Rtpo + ac (2 RaRGO - 2qR6R6n90]>, (7)

where <...> denotes the average f;nfgl...dtdn. The expressions for B and C

differ from those given in /4/ due to the different coordinate system. In
addition, the fact has been used that the basic flow need not be calculated

explicitly to order O(a).

The phase diffusion equation (6) shows that for ramps which become
subcritical in some region the wave-number band collapses to a single wave
number /1,4/. Consider now a system with a homogeneous part of length L which
Is connected to two different subcritical ramps at both ends. If these ramps
select different wave numbers q, and q,. say, then a wave—-number gradient is

established in the homogeneous region, which leads to phase diffusion (see (6)
with R and G constant). This, however, never comes to an end, as the wave
numbers at both ends, are fixed by the ramps, and a moving pattern with

velocity
v=0D <3xq/q‘rO (8)

is obtained. The only requirement for a system to support this dynamics is the
existence of different ramps which select different wave numbers. For
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Rayleigh-Benard convection this amounts to the condition that neither of the
coefficients B+E and C-4B in (6) vanish identically. Close to threshold this
requirement is in fact fulfilled as a calculation using the amplitude
approximation shows /4,5/ (far from threshold and for rigid boundary
conditions the coefficients have to be computed numerically, which has been
done for pure thermal ramps only /6/). This can be seen in detail for the

family of ramps given by /4/
] axG/G + (1 - 8) axH/H =0, & = const. (9)

The static phase diffusion equation can then be written as

(¢ - 3p%) 8,p =28 (¢ - p°) - p + 7p*//48,

28 = (4b - ) ;2= - b - 7//a8B, (10)
with

€ =(R-RJR, R, =277"/4, p = yB/30° (q - a,). a, = w/YZ.

B=-b(e~p"),b=060, C=-c(c-p?) c= 154 (11)

The solutions to this equation with p(¢=0)=0 are given in fig. 1 for various
values of B. It clearly shows that the selected wave number is non-universal,
i.e. it depends on the ramp chosen. In fact, the slope of the selected wave
number is given by 6€p=1//3, which can be varied from -® to ® by a suitable

choice of 8.

Fig. 1

Selected wave numbers
for different ramps
as given by (10)
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Thus, according to this analysis moving patterns are possible in
RB-convection and the threshold Rm for the motion coincides with the threshold

Rc for the appearance of the pattern itself. The wave-number gradient
axqﬁ(qz -q, )/aL and therefore also the velocity v grows linearly when

increasing the Rayleigh number.



1.2 Imperfect Wave-number Selection by Pinning Ramps

How much of the analysis in sec.l carries over to a real experiment where the
basic requirement of this analysis, the perfectly smooth variation of the
control parameters, is not really met? To clarify this it is useful to look at
the influence of the ramp on the basic state. This state is purely conductive
for constant boundary conditions. For aXH:-O. however, the ramp induces a

large—scale convection with

vi(c,x) - @ R 3.H (55*-10¢%+7/3)/120H + O(a®) (12)

]

v‘;(c,)o a? 3y (R G 8, H/H) (£°-10¢°/3+7¢/3)/120. | (13)

In particular, if H has a localized region with large curvature 6)2{}{, the
vertical velocity vz contains a peak-like term, which can lead to a pinning of

the periodic convective pattern. In this section the influence of such pinning
centers on wave-number selection is reviewed. It has been shown that in the
usual set-ups they are the predominant cause for deviations from the perfect
selection displayed in fig. 2 and lead to finite band widths Aq /7,5/. Because
drifting of the pattern sets in only if the wave-number bands of different
ramps do not overlap, its onset is expected to lie above the convection

threshold (Rm>Rc).

For simplicity the analysis is demonstrated using an extension of the
Swift-Hohenberg model /8/,

o = [R—(a§+1)2]zp-zp3 +G (1 -R+ G2, a4

where the additional term G(I-R—Gz) has been introduced to obtain a
non-trivial basic state
B 2 2q26)2(G
=G +a (15)
R -1 - 3G

4

similar to that in RB-convection (13). Again, the control parameters R and G
are assumed to vary slowly and smoothly in space in two regions I and III.
However, in region II, which separates I and III, they are allowed to vary
more rapidly. As non-adiabatic effects are responsible for the wave-number
bands a separate slow scale X must not be introduced. Instead, for R we

require

a;‘R = 0(a™ in I and 111, a;‘R =0(a) in I, a «1, (16)

and analogously for G. This is, for instance, the case if two smooth ramps are
joined in II with different slopes. In /7,8/ it is shown that the rapid
variation in II leads to, a matching condition for the wave numbers in the two
phase diffusion regions I and III. Similarly to (6) it is obtained by
projecting (14) in order O(a) with rp=w°+atpl+.. onto the null mode. However, as

lPl is not 2wm-periodic in the phase 7 in II, boundary terms appear, which are
removed by a second integration over all of region II (n1<n<772). The resulting

matching condition reads



n n+2n
2
1 , . '
D[q2 q + "<0nq2 anql)]- q Idn Jdn [p(n +no)anR +7(n +no)anc] an
n, n

1

where ql=q(nl) etc. and D, p and 7 are functionals of ?, similar to A,B,C and

E in (6) /7/. The crucial point of (17) is the dependence of the r.h.s on the
phase no of the solution tpo relative to the ramp. This is illustrated in

fig. 2 for a ramp of the form

R = R‘ - 8(-x) AR'x, G = G1 - 6(-x) AG'x, : (18)

with 6(x) being the step function (R1=0.5, G1=0.1. AR'=-0.005, AG'=0.0005).

This ramp becomes smoothly subcritical for x-— and therefore yields perfect
selection in region 1 (qarqc=l). The wave number q in III is given by the

matching condition (17) and therefore depends on 170, the phase of wo at x=0.
The function q(no) is 2m-periodic. Due to the harmonic content of Y also

higher harmonics are apparent (compare also with the experimental results for
Taydor vortex flow, fig. 10 in /3/). Thus, although the wave number in I is
perfectly selected, a wave-number band Aq arises in III through the
n o-dependent influence of the pinning center.

1.0 " ' ' ' Fig. 2
Wave number q as a function

of the phase "o of 1po at x=0.

q is 2m-periodic.
Parameters:
R . =0.5 G . =0.1

AR'=-0.005 AG'=0.0005
(see (18))

-1.0 s s 1 A
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PHASE AT PINNING CENTER

A characteristic feature of wave-number bands produced by a pinning basic
state is their dependence on the control parameter: close to threshold they
grow with decreasing control parameter. This is shown in fig. 3, where the
matching condition is compared with a numerical simulation of (14)
(AR'=-0.001,-0.005, AG'=0.0005, G1 =0.1). This ("anomalous") behavior of the

band width is also observed in Taylor vortex flow /2,3/. In these experiments
a characteristic cross-over from the anomalous to the normal band {s observed,
which is also reproduced by the matching condition (17) when applied to a
further extension of the model (14) /9/. Figure 3 shows very good agreement
for larger R-Rc. For too small values of R—Rc the validity of (17) breaks down

due to the divergence of the correlation length at threshold.
To obtain moving patterns the wave-number bands of different ramps may not

overlap. Therefore the pinning basic state will lead to a shift in the onset
of motion to larger values of R as illustrated in fig. 5 below. As before,



6] i T Fig. 3
-—2N - Wave-number band for ramp
with discontinuous slope.

- " ; The lines represent (17).
o ;' The symbols are obtained by
f 2 numerical simulation of the
° X ! model (14).
: Parameters:
AG'=0.0005. 61 =0.1

’ ’ ‘ solid circles: AR'=-0.005
0.0 0.3 0.6 03 open diamonds: AR'=-0.001
CONTROL PARAMETER R-RC

BANDWIDTH aq .103

however, the velocity should still grow linearly from o0 when increasing R
beyound onset. Experimentally, one is interested in minimizing the pinning in

! X - ' X
R = iR [x - d én(2 cosha)]+Ri, ie. axn = iR'(1 - tanhy), (19)

with G=0, R1 =1, R'=0.1. These ramps lead in amplitude approximation to

= 11p| ®d sinh(nd)

Fig. 4
Wave-number band for ramp
with continuous slope
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The solid circles are
obtained by numerical

: integration of model (14).
1 . The line represents (20).
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Figure 5 summarizes the results of the theoretical analysis qualitatively,
In RB-convection cloge to threshold any wave number in the stable band can be

pinning centers each selection curve ig expanded to an anomalous band, which
widens close to the convection threshold Rc. Therefore the bands will overlap
there. The patterns will start to move above a threshold Rm>Rc where this
overlap ceases to exist. The exact poéltion of this critical point thus



depends sensitively on the smoothness of the ramps. The velocity v increases
linearly with R close to Rm.

Fig. 5
/ ; Schematic explanation for
/ j the existence of moving
/ | patterns. Dashed regions
)/ ! indicate the bands
© f selected by the two
N | different ramps
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2. EXPERIMENTAL RESULTS

The method used for the flow visualisation is the shadowgraph technique:
Density gradients in the fluid caused by temperature gradients lead to light
intensity modulations. This light intensity is measured with a photodiode
which can be moved parallel to the convection cell under computer control by a

stepping motor.

Fig. 6

const. temperature Convection cell
copper (not to scale)

ﬂ 8mm d@ The height of the convection
glass cell is 3mm, the length of
—] heater its bulk part 18mm. Note the
additional heater on the

const. heat . right hand side (c.h.).

3mm




Figure 7 shows scans of the light intensity at various temperature
differences measured in the bulk part of the cell (position 0 corresponds to
the middle of the cell) The scan at 2.5K temperature difference shows no
modulation, this difference is clearly below the convection threshold
(modulations of the light intensity caused by spatial inhomogenities of the
light source are taken away by image division). The measurement at 9.9K is
clearly above the convection threshold - intensity peaks are visible. These
are caused by the colder (sinking) parts of the fluid. Their position is not
constant, but a function of the temperature difference. The peaks move to the
right when increasing this difference, but they tend to come back to their
original position when decreasing this difference as indicated by the dashed
lines. The difference between the solid and dashed curves is expected to go to
zero when increasing the waiting time between successive temperature steps.

> ' ' ' ' ' 9.9K Fig. 7

: W\—wf Intensity profiles for

) —~/}/& /{& ,)‘?\‘ /;/)é various temperature

& = N 2N N differences in the range
= A I 2 between 2.5K and 9.9K.

Z [~ A~ A~ o~

= e N—N——— Intensitiy peaks (caustics)
e e ———— correspond to the location of
(:5 — cold sinking fluid.

(]

- 25K

9 6 -3 0 3 8 9
POSITION (mm)

By spectral analysis the amplitude of the light intensity modulation and
the wavelength of the convection pattern can be extracted from the profiles
shown in the above figure. The amplitude is expected to be proportional to the
temperature modulations in the fluid in the limit of small modulations, i.e.
close to the convection threshold. The lower part of fig. 8 shows the result.
Because the temperature modulation is known to grow according to a square-root
law, the same would be expected for the intensity modulation in the
neighborhood of the threshold. Measurements like this allow a determination of
the critical temperature difference for the onset of convection (2.63K). The
upper part of fig. 8 shows the wavelength of the convection patterns. Here a
difference between data points obtained when increasing the temperature (open
squares) and decreasing the temperature (solid circles) is observed. This
indicates that the waiting time between consecutive data points (30 minutes)
is long enough for the amplitude of the convection to reach its equilibrium
value, but too short for the phase diffusion process to adjust the length and
position of the convection pattern. Like in the previous figure, ‘the
difference between the two curves Iis expected to go to zero for a longer
waiting time. The important feature of: figure 8 is the smooth variation of the
wavelength. This is made possible by the ramps and unlike the discontinuous
jumps of the wavelength observed in convection boxes with sharp corners.

The measurements shown in figs. 7,8 are done without the side wall heating.
No moving patterns are observed in that case, except for the transients when
reaching the equilibrium position. If the symmetry of the two ramps is broken
by means of the additional heater, drifting convection patterns become
possible. This is demonstrated in fig. 9. The heater is located at the left
end (negative positions). Thus the temperature difference is already
subritical at a position of —15mm, while on the other end the critical
position seems to be close to +30mm. The profiles are taken within time
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intervalls of 15 minutes and plotted on top of each other. The movement of
the patterns from the right to the left is clearly visible.
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As indicated by fig. 9 the velocity of the moving patterns is not constant
but rather a periodic function of time. One way to measure the mean velocity
is to locate a photodiode at a fixed position and to measure the frequency of
the time-periodic intensity modulations. These frequencies are plotted in
fig. 10 as a function of the reduced temperature difference &. The onset of
motion is located at &£=0.4, i.e. well above the onset of convection. The
frequency goes down to small values at this point. More measurements are
needed to evaluate the detailed structure of the frequency curve at this
point. The data presented are consistent with the statement that the frequency
would go to zero monotonically when approaching Rm' Measurements close to this

point obviously become time-consuming - the lowest measured frequency
corresponds to a period of 20 hours.
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Fig. 10

Frequency of the light

intensity modulations

e measured by a stationary
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. | . photodiode
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® The periodic signal is caused
by the drifting convection
patterns. Its frequency is
proportional to the velocity.
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Increasing the temperature difference leads to an increase of the
travelling speed of the convection patterns. If ¢ is too large, however, this
movement has to come to an end because the whole cell is supercritical then. A
discussion of this second transition was not attempted here. It would
presumably require an inclusion of the lateral boundary conditions.

In this paper drifting patterns have been discussed using phase diffusion
theory for the wavelength selection by ramps. This theory explains the
experimental observations, provided that the effect of pinning centers is
taken into account.
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