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LOCALIZED STRUCTURES IN PATTERN-FORMING
SYSTEMS*

HERMANN RIECKEf

Abstract. A number of mechanisms that lead to the confinement of patterns
to a small part of a translationally symmetric pattern-forming system are reviewed:
nonadiabatic locking of fronts, global coupling and conservation laws, dispersion, and
coupling to additional slow modes via gradients. Various connections with experimental
results are made.

1. Introduction. Over the past years investigations of pattern for-
mation have been quite successful, in particular investigations of spatially
and temporallv periodic patterns have reached a mature state. In recent
years there have been quite a few experimental observations that go be-
yond this framework, in which spatially localized patterns are found, i.e.
structures in which certain patterns extend onlyv over a small part of the
spatially homogeneous system. In most cases, far away from the localized
pattern the structures are asymptotic to the trivial, unstructured state or
to a different, periodic state.

A classic example of such localized structures are propagating pulses
of excitation in nerve conduction systems (e.g. 60, 33]). Over the years
quite a large number of qualitatively different localized patterns has been
identified in a variety of dissipative systems. In convection of binary mix-
tures one-dimensional wave pulses and domains of waves have been found
[34. 4. 36, 28]. In pure-fluid convection in narrow channels confined do-
mains of large convection rolls have been found embedded in a pattern
of rolls of smaller wavelength [23]. Qualitatively similar states arise in
Taylor vortex flow [3] and in parametrically excited surface waves in fer-
rofluids [31]. In the Taylor system the vortices with small wavenumber
turn out to show additional fine-scale turbulence. In Taylor vortex flow
of a viscoelastic fluid striking, as yet unexplained two-vortex states have
been observed 21]. Solitary propagating waves have been seen in chem-
ical systems [49]. in gas discharge systems [7], and also in parametrically
driven surface waves [30]. Recently two observations have found particular
interest. On the surface of vertically vibrated granular material circular.
solitary waves (‘oscillons’) arise, which due to the temporal symmetry of
the system occur in two symmetrically related forms that can bind and
form chains and other larger arrangements [61]. In electroconvection of ne-
matic liquid crystals stable long and narrow domains of convection waves
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nucleate spontaneously from the very weak noise in the system [15].

The wide range of qualitatively different localized structures cannot
be understood with a single mechanism, and in fact quite a few different
mechanisms appear to be relevant. A comprehensive review and classinca-
tion of these mechanisms would be valuable. This goal is. however, bevond
the scope of the present paper. Instead, it is intended to provide a brief
discussion of some of the important aspects of the mechanisms. The topic
of sec.2 is the stabilization through the interaction of fast and slow spatial
scales. Localization can also occur due to a conservation law or global cou-
pling (sec.3). The effect of dispersion in wave systems is briefly discussed in
sec.4. Localization through the coupling to an additional field via gradients
is reviewed in some detail in sec.5.

2. Locking of fronts. A quite general situation in which localized
states are expected to exist arises in bistable systems in which fronts can
connect the two coexisting states. The combination of two opposite fronts
leads to a localized structure. The simplest description of such a situation
is given by a single-component reaction-diffusion equation. In the conrtext
of pattern-forming systems the translation symmetry leads to a Ginzburg-
Landau equation for the complex amplitude A of the pattern

(2.1) QA =0%A+ ) A+ c|APA - |A]PA

This equation is valid for weak bistability, i.e. ¢ > 0 small. Eq.(2.1) admits
front solutions A% (z — o, t) located at zy and connecting the basic state
A =0 and a patterned state A = A4 exp(igz). For long times the front is
expected to approach a front without any phase winding, A = Aezp 1v)
with v* = const., i.e. the wavenumber of the localized pattern is given bv the
critical wavenumber [62]. It is therefore reasonable to focus on the case of A
real, i.e. a nonlinear diffusion equation. For general parameters the fronts
will propagate and one of the two states will invade the other. For one value
of the control parameter, Ao, however, the fronts are stationary. A localized
state can then be obtained by a combination of these two front solutions
separated by a distance L. Due to the interaction between the fronts a
stationary state will be obtained for suitably adjusted values of A\. For large
values of L the dynamics of the fronts can be described asymptoticaliv by
an equation for L alone,

dL
— =200\ - ce L/

(2.2)
where the velocity v of a single front vanishes at Ao and £ characterizes
the width of the fronts. The interaction coefficient c¢ is positive and the
fronts attract each other. Since the interaction decays with distance the
attraction renders the localized state unstable. Thus, stable localized states
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consisting of two fronts can only be obtained if a repulsive component arises
through additional contributions. This is possible in various ways.

For a steady pattern a quite general mechanism can stabilize localized
structures [39]. In the asymptotic expression (2.2) the velocity of widely
separated fronts vanishes only for a single value of the control parameter A.
In addition, the interaction between the fronts is monotonically attractive,
reflecting the monotonic nature of the fronts. In the full equations, which
capture also the underlying pattern, the front velocity can vanish, however,
over a finite range of parameter values [39] due to an interaction between
the position zg of the front and the underlying pattern. This interaction is
lost within the envelope equation (2.1) through the introduction of multiple
spatial scales.

By modifying the projection that leads to the solvability condition
(2.2) to be a projection over all of space rather than just one wavelength
(as it is done to obtain (2.1)) a modified evolution equation for the front
position zo can be obtained [5],

dl‘o
dt
where f(zo) is periodic with the periodicity of the underlying pattern.
Due to the second term a finite locking range A\ over which the front is
stationary is obtained. It is exponentially small in the steepness of the
front, i.e. f(zo) ~ A\ exp(—a/v/)), as is typical for nonadiabatic terms
[39]. It is not clear whether the prefactor of the exponential given in (5]
contains all the terms of the relevant order.

Due to the oscillatory character of the patterned fronts their interac-
tion will also be modified. No detailed analytical calculation of this appears
to have been done so far. It has, however, been studied in quite some detail
numerically [52. 33, 13]. This work is motivated by the recent observation
of localized excitations (oscillons) of parametrically excited waves in gran-
ular material [61. These excitations cover only a single wavelength of the
pattern and due to the subharmonic response consist in alternate phases
of the driving of a single peak or a single crater. They arise in a parameter
regime in which the transition to spatially periodic waves is subcritical and
predominantly to square rather than stripe patterns.

Since the subharmonic instability of the surface waves arises from a
Floquet multiplier crossing the unit circle at -1, the small-amplitude and
slow-time behavior can be described by the same type of equation as that
obtained from a real eigenvalue crossing 0, with the additional requirement
that the resulting equations are equivariant under flipping the sign of the
amplitude of the pattern. The latter expresses the two equivalent states
that are phase-shifted with respect to each other by one period of the
driving.

To capture the non-adiabatic locking in a description of this system
the fast spatial scales have to be kept in the description. Therefore one

(2:3) =v(A) + f(zo),
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is led to the use of order-parameter equations (e.g. [35]) of the Swift-
Hohenberg type. As expected, stable localized states are found in one
dimension [52] as well as in two dimensions [53, 13]. In two dimensions
the stable range appears to be noticeably larger than in one dimension
[13]. Of course, the description of such a short localized state using the
interaction of widely separated fronts can at most give qualitative insight.
However. the numerical results are consistent with the exponential scaling
of the locking range expected from (2.3) [13]. In two dimension the locking
mechanism requires that the pattern be periodic in both directions as it is
the case with square and hexagonal patterns. In the experiments square
patterns are observed in the relevant regime [61]. The case of localized
structures arising from hexagonal patterns has been discussed earlier [2].

As in the experiments various bound states of oscillons of alternating
polarity (peak vs. crater) are found [13, 53]. This multitude of solutions
is due to the non-monotonic interaction between the oscillons. Such sta-
tionary multi-hump solutions have been discussed in great detail in the
context of homoclinic orbits in reversible systems [10, 54]. In the simple
order-parameter model, in addition, weakly bound states of equal polarity
are found as well, which are, however, quite sensitive to noise. A more
detailed analysis raises the question whether this localization mechanism is
indeed sufficient to describe the experiments or whether additional mecha-
nisms are relevant [13, 58]. In a number of other phenomenological models
oscillons have been found as well, but the localization mechanisms have not
been identified clearly [58, 63, 50, 16].

The same mechanism has also been invoked to explain the localized
waves in electroconvection of nematic liquid crystals (‘worms’) [59]. There
the transition to the extended waves is, however, most likely supercritical
[57] and therefore no fronts connecting the basic state and the extended
waves exist.

3. Global coupling and conserved quantities. Single localized
states can also be stabilized through a global coupling or the presence of a
conservation law. Consider, for example, the simple extension of (2.1),

(3.1) O A=02A+ ) A+ c|APA - |A§4A—f~:A/ |AJ? dz.

—0oC

Now a single domain of A = A, embedded in a domain with A = 0, cannot
grow to an arbitrary size L due to the ever increasing damping of A with L.
Thus, stable domains can be obtained. This mechanism has been studied
in detail in the context of current filaments in semiconductors [1, 55] and
gas discharge systems.

A similar mechanism arises if the bifurcating amplitude is a conserved
quantity. A simple case is given by the Ginzburg-Landau equation for
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solutions. Their localization is due to a balance between the amplitude de-
pendence of the oscillation frequency and the linear dispersion. Due to the
symmetries of the system the solitons form a continuous four-parameter
family of solutions, characterized by the position, phase, amplitude .4 and
velocity v of the soliton,

(4.2) A = Asech(A(z — vt))es A —v")t+ive

In the presence of weak dissipation or parametric forcing [17], which in-
troduces terms of the form yA* (cf. 5.8) with A* denoting the complex
conjugate of A, the symmetries involving the amplitude, the velocity, and
the phase (in the case of forcing) are broken and the parameters of the
solitons become slow functions of time [64, 37, 56, 46|, e.g.,

dA
af
where ¢, denotes the real part of ¢, etc. Stable solitary waves correspond
to stable fixed points of (4.3) and the corresponding equation for v. Thus,
to obtain stable localized waves arising from a Hopf bifurcation within
this framework the bifurcation to the extended traveling waves must be
subcritical (p, < 0). In fact, the localized waves exist only for parameter
values for which also extended waves exist (although possibly unstably).
The perturbed solitons of the nonlinear Schrodinger equation were invoked
(37, 56] to model the localized wave trains that have been observed in
binary-mixture convection [34, 4, 36, 28]. Indeed, for large dispersion the
envelope of the experimentally observed wave train looks quite similar to
a typical soliton of the nonlinear Schrédinger equation.

In other regimes, in which dispersion is weaker, the wave pulses are

better characterized as a pair of stably bound fronts connecting the con-
ductive state with the nonlinear wave state. The interaction between the
fronts is affected by dispersion and the amplitude dependence of the fre-
quency. In the limit of weak dispersion again an evolution equation for the
length L of the localized state can be derived [32, 22],
(4.4) dg? =2v()\) —c1e” € + T
The potential for a repulsive interaction (c; > 0) arises from the last term
in (4.4). It is due to the differential phase winding, which arises from the
amplitude dependence of the frequency and which leads to a gradient in
the wavenumber [32].

Recently, cases of strong dispersion have been investigated in the
Ginzburg-Landau equation in which stable saturated localized waves arise
even in regimes in which spatially periodic waves blow up in finite time
[40, 25]. Even though the cubic dissipative term is non-saturating and no
fifth-order term is present to prevent blow-up, it turns out that the ampli-
tude dependence of the frequency can be large enough to generate strong

(43) 200~ dv?) A+ 3 (20, — ) A + Tepe P,

mi
Q
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gradients in the wave number which in turn lead to strong dissipation via
the diffusion term.

5. Gradient-coupling to an additional field. By introducing a
second field one can obtain very robust localized structures. A classic case
is that of two coupled reaction-diffusion equations. This type of system has
been studied in great detail and it will suffice to mention a few keywords
(60, 33]. In the paradigmatic case one variable acts as an activator and
satisfies a nonlinear equation with an S-shaped nullcline of the reaction
term while the equation for the inhibitor is linear. In the lumped system
(no spatial dependence) one can then distinguish three classes of dynamics
depending on the intersection of the nullclines of the two reaction terms:
oscillatory, excitable, and bistable. The type of spatial structure that is
obtained depends strongly on the ratio of the diffusion coefficients. In
the excitable regime and if both coefficients are of similar size one obtains
traveling pulses that have been widely used to model in particular nerve
conduction [60]. If the diffusion of the inhibitor is fast compared to that
of the activator it spreads well ahead (and behind) of the activator and
localized stationary structures are obtained [26].

Less well investigated than the reaction-diffusion systems are systems
in which the interaction between the different modes is through the gradi-
ents of one of the fields. Such an interaction arises naturally in secondary
bifurcations off a periodic pattern. There the amplitude of the bifurcating
mode is coupled to the phase of the underlying pattern, which is a slow
mode due to the translation symmetry of the system [12]. The bifurcat-
ing amplitude depends, however, not on the phase itself but only on its
gradient, the wavenumber. Two cases of localized structures described by
equations of this type have been investigated [9, 48, 51]. The gradients can
also arise from the advective nature of the interaction [58, 44. 47].

If a one-dimensional steady pattern undergoes a secondary Hopf bi-
furcation the complex amplitude A of the oscillations and the phase ¢ of
the underlying pattern satisfy an equation of the form [12]

(5.1) A=A+ dB2A+clAPA + f0:0 A,
(5.2) 0v0 = 6020 + h0;|A]* +iw(A*9, A — 48, A%).

The coefficients in (5.1) are complex while those in (5.2) are real. It turns
out that (5.1,5.2) have an exact localized solution of the form [51]

d¢

—= = Qo + Q1 sech®(kz),
dzx

(5.3) A = Ag sech(kz)e*t+¥,
with dy/dr = Bjtanh(kz) and the six coefficients satisfying certain al-
gebraic relationships. Numerical simulations show that this solution can
in fact be stable. An important feature of this localized solution is that
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through the coupling proportional to f the local growth rate of the oscil-
latory mode is modified by the wavenumber of the underlying pattern and
is strongly increased inside the localized structure while it is reduced out-
side. This localized solution appears to capture the essence of the localized
oscillations found in square electroconvection patterns of a nematic liquid
crystal [27].

A somewhat similar situation is found for patterns undergoing a parity-
breaking bifurcation, i.e. an instability that breaks the reflection symmetry
of the pattern and induces a drift of the pattern. Such instabilities can also
lead to localized structures in the form of domains of traveling waves that
drift through the otherwise stationary pattern. They have been observed
in directional solidification [19], viscous fingering [14], and in Taylor vortex
flow [65].

The parity-breaking instability of a steady pattern can be described by
an equation for the real amplitude A of the asymmetric mode that breaks
the reflection symmetry and again for the phase ¢ of the underlying pattern
(11, 12, 18],

(5.4) A=A+ A0;0)A — A3 +dO2A + b02¢ + h.o.t.
(5.5) 0,0 = A.

Note that these equations exhibit an inhomogeneous scaling in the small
parameter measuring the distance from threshold, the amplitude and the
space and time scales. The existence of localized drift waves in (5.4,5.5)
can be seen quite easily [48, 9]. Assuming a steady solution (¢(z) = 0:¢(z),
A(z)) in a frame moving with velocity v the wavenumber of the underlying
pattern is given by ¢ = —A/v + goo and the amplitude A satisfies

dO2A + (v — %)6,‘4 -

d

(5.6) -

{1(,\ + A1go0) A% — ;\1 A3 - ‘44} .
A homoclinic orbit in space connecting A = 0 with itself exists if the
‘friction’ v — b/v vanishes, yielding for the velocity v = = +v/b. Numerical
simulations show that this state can be stable. It is noteworthy that it can
only exist if it drifts: for v = 0 the wavenumber ¢ would diverge.

It should be pointed out that both secondary bifurcations discussed
here are supercritical for the spatially periodic states. Nevertheless, stable
localized structures are possible. They correspond to homoclinic rather
than heteroclinic structures in space.

Gradient coupling can also arise in systems undergoing a primary bi-
furcation to a patterned state. In a phenomenological model for surface
waves in vibrated granular material a coupling of the surface oscillation
amplitude A to the local averaged thickness of the layer has been intro-
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duced leading to [58]

24 — pA,

(5.7) BA=~7A" —(1—iw)A+ (1+ib)A4 — |4
(5.8) Op = aV - (pV|A]?) + BAp.

Here the gradient coupling models the expulsion of material from strongly
oscillating regions. The term involving A* arises from the parametric forc-
ing of the system at twice the resonant frequency of the oscillatory mode
A. In direct numerical simulations and by using a shooting method two-
dimensional localized structures similar to the experimentally observed os-
cillons were obtained. They appear in a regime in which square patterns
arise in a subcritical bifurcation. As in the two cases discussed above, it
appears to be important that the local growth rate is enhanced inside the
oscillon and reduced outside. As in the experiments [61] and other mod-
els for oscillons [63, 50, 13] bound states of localized states with opposite
polarity are found.

In traveling-wave systems gradient coupling arises quite naturally if
the waves advect a quantity that is dynamically relevant, i.e. evolves on
a time scale comparable to that of the bifurcating amplitude. This has
been studied in quite some detail motivated by experiments on traveling
waves in binary-mixture convection [34, 4, 36. 28] and in electroconvection
of nematic liquid crystals [15].

In binary-mixture convection, motivated by the anomalously slow drift
of the pulses, the advection of a concentration mode by the traveling wave
was considered [45]. This mode can be important since mass diffusion is
very slow in liquids. It was found that such an advection not only affects
the pulse velocity [46] but can also be sufficient to localize a traveling wave
structure. The equations that were used to study this mechanism describe
the evolution of the complex wave amplitude 4 and of a real concentration

mode C,

(5.9) O, A+50,4=dd?A+ (\+ fC)A = cA|A)> + plA[* A,
(5.10) 8,C = 602C — aC + hdy|AP.

In general, the coefficients in (5.9) are complex while those in (5.10) are
real. The derivation of these equations from the Navier-Stokes equation
shows that in principle quite a few additional coupling terms arise [46].
To concentrate on the localization by the concentration mode C rather
than by dispersion all coefficients in (5.9) are assumed to be real. Since the
svstem is bistable (¢ > 0, p < 0) fronts exist that connect the conductive
state A = 0 with the traveling-wave state 4 = Ao. Their interaction
is strongly affected by the advected field. Focussing on the effect of the
advection, evolution equations for the velocities v;; of the leading and of
the trailing front can be derived in the case of weak diffusion of A and C,
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small group velocity and weak coupling [24],

(5.11) Uy =5-— ﬁ + sgn(vi)p,
J
5 e—al/lv
(5.12) vy =8 — — + 2y————— — sgn(v)p,
[ve ] |vi]

where p measures the control parameter )\, 7 is proportional to the coupling
h, and L is the (time-dependent) length of the pulse. Since C' decays over
distances much larger than A the attractive interaction between the fronts
that was obtained in (2.2) is negligible in this regime. Egs.(5.11, 5.12) show
that the sign of the interaction mediated by C depends on the direction
of propagation of the pulse. It is repulsive only if the whole pulse drifts
opposite to the linear group velocity (for s > 0). This can be understood
with simple arguments considering the effect of C on the local growth rate
of A and its consequence for the velocity of the respective fronts. An
essential ingredient is that |C| is smaller at the trailing front than at the
leading front [24].

It turns out that the advected field can even lead to localized structures
if the initial bifurcation is supercritical (¢ < 0). Somewhat similar to the
case of the parity-breaking bifurcation, for d = 0 and o = 0 the coupled
equations (5.9, 5.10) can be reduced to a single equation for C that has the
form of a particle in a (cubic) potential [38],

1 i 8 206 6 82
§(s—v)5830+ <E+ (s—v) - ( +—>C—h—2810> 0;C

2h T h
(5.13) :—%{%02—3%(%“) 03}.

Again the velocity v of the pulse is an eigenvalue and is determined by the
condition that the ‘work’ done by the ‘friction’ vanishes over the homoclinic
orbit that connects C = 0 with itself. Since the friction is nonlinear in this
system the velocity has to be determined numerically. Direct numerical
simulation of (5.9,5.10) (with d > 0) shows that these traveling-wave pulses
can be stable [44]. As in the parity-breaking case (5.6) it appears to be
crucial that the pulse drift (v # 0).

The advection of a slow mode by traveling waves appears also to be
relevant to understand recent observations of localized waves (‘worms’) in
electroconvection of nematic liquid crystals [15]. Due to the anisotropy of
this system the initial Hopf bifurcation leads to the competition of waves
traveling in four symmetrically related directions that are oblique to the
preferred direction characterized by the director of the liquid crystal. In
analogy to zig-zag patterns these waves may be termed left- and right-zigs
and -zags, respectively. The worms are made up of right-traveling zigs and
zags and drift slowly to the left (or vice versa). A surprising aspect of the
system is that the initial bifurcation to the periodic waves is supercritical
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'57], but the worms are nucleated well below that Hopf bifurcation [6].
The usual coupled Ginzburg-Landau equations for the two participating
wave amplitudes alone are therefore insufficient to describe the worms.
An extension that includes the advection of a slow mode similar to the

basic state SW-pulse basic state

Fi1G. 1. Zig- and zag-wave (top) and C-field (bottom) in numerical simulations of
a worm. The sketch in the center indicates schematically the amplitude of the standing-
wave pulse (solid line) and of the C-field (averaged over y, dashed line).

concentration mode in binary-mixture convection has been considered [47],

(5.14) A =—uy- VA+u‘4+b13§A+by3§A+206§yA
+fCA+c|A*A+ g|B|* A,
(5.15) 0:B = —up VB + uB + b,0.B + b,0.B — 2a9>,B
+fCB + ¢|BI*B + g|A|*B,
(5.16) %C =06AC —aC +hy-V|AP? +hp - V|B|.
Here A and B are the amplitudes for the right-traveling zig- and zag-waves,
respectively. Within these equations the localization of the worms can be
understood to arise from the combination of two different mechanisms.
In a one-dimensional reduction in the y-direction transverse to the worm

(5.14-5.16) reduce to the equations for two counterpropagating waves each
advecting C in opposite directions. Numerical simulations show that again
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a localized structure can exist stably already below the Hopf bifurcation
although that bifurcation is supercritical (¢ < 0). Similar to the traveling-
wave pulse this standing-wave pulse is homoclinic in space, but in contrast
to the traveling-wave pulses no analytic description like (5.13) is available
as yet. :

Given the coexistence of the standing-wave pulses (not of the extended
waves) with the basic, non-convective state there exist also fronts that
connect the basic state at = 0o with the standing-wave pulse (see fig.1).
In analogy to the interaction between fronts discussed in the case of binary-
mixture convection (5.11,5.12) one may expect that these fronts form a
stable worm if the worm drifts opposite to the z-component of the linear
group velocity of the two wave components. Indeed, the experimentally
observed worms show this behavior [15].

6. Conclusion. Quite a few experimentally observed localized struc-
tures in dissipative systems can be understood qualitatively with the mech-
anisms discussed in this paper. With respect to quantitative comparisons
the results are somewhat limited, yet. Given the variety of different struc-
tures and mechanisms it would be of great interest to condense them into
paradigmatic cases, which will depend on the symmetries of the underlying
pattern (steady, traveling, oscillatory,...) and the symmetries of the cou-
pling to additional slow modes if present. Another relevant distinction will
be whether the localized structures are homoclinic or heteroclinic in space.
While for some of the presented mechanisms analytical insight has been
gained in limiting cases, this is not the case for all of them. For instance.
a systematic treatment of localization through nonadiabatic effects, which
are quite general for steady structures and for standing waves, would be
valuable. In contrast to the exponentially small interaction between local-
ized structures the formation of localized structures by such an interaction
between fronts of patterns has not been treated much.
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