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Introduction

In this paper, we study physical and geometric applications of hypersurfaces whose
speed depends at least in part on the local mean curvature. The main tool is
a numerical technique, introduced in {25], that accurately follows the evolving
hypersurface by embedding it as the zero level set in a family of hypersurfaces. The
resulting partial differential equations for the motion of the level set function may
be solved by using numerical techniques borrowed from hyperbolic conservation
laws. The advantage to this approach is that sharp corners and cusps are accurately
tracked, and topological changes in the evolving hypersurface are handled naturally
with no special attention.

This technique, known as the level set approacli, is used to analyze a collection
of problems. In Part One, we give the mathernatical and numerical formulation
for this technique. In Part Two, we discuss a collection of geometric problems.
First, the collapse of a hypersurface under motion by mean curvature is studied.
In [29], numerical experiments were performed of the collapse of a dumbbell, and
showed that the handle pinches off and splits the single dumbbell into two separate
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hypersurfaces, each of which collapses to a point. In this paper, we show that an
extension of this problem produces an interesting result: a multi-armed dumbbell
leaves a separate, residual closed object at the center after the singularity forms.
Hypersurfaces propagating under Gaussian curvature are also considered.

Next, the level set approach is used to generate minimal surfaces attached to
a one-dimensional wire frame in three space dimensions. Given a wire frame, we
construct a surface passing through that 1-D curve and view it as the zero level set
of a higher dimensional function. The mean curvature equation for this function
is then evolved in time, producing a minimal surface as the final limiting state.

Next, we compute hypersurfaces of constant non-zero mean curvature by adding
a hyperbolic component to the flow partial differential equation. As examples,
catenoid-like surfaces of a variety of non-zero curvatures are computed. The ex-
tension of the level set formulation to the computation of surfaces of any prescribed
function of the curvature is given.

Finally, we end our geometric examples with the generalization of the curvature
flow algorithm to curves on two-dimensional manifolds in R3. In this context, the
curves flow with speed dependent on the geodesic curvature of the curve. Examples
of curves on a cube, sphere, and torus are given.

In Part Three, we summarize some of the work so far in applying these level set
approaches to physical problems in which motion by curvature plays a key role.
Here, we provide motivation and reference for work in flame propagation, two fluid
problems, crystal growth and dendritic solidification, droplet dynamics, and image
reconstruction.

Part I: The Level Set Formulation

Equations of Motion

Consider a closed curve y(¢) where ¢ is time, ¢t € [0, c0), moving with speed F
normal to itself. The speed F may depend on local properties of the curve such
as the curvature or normal vector. The origin of the work to follow propagating
interfaces began in [27,28], where the role of curvature in the speed function F
for the propagating front ¥(t) was shown to be analogous to the role of viscosity
in the corresponding hyperbolic conservation law for the evolving slope of ¥(t).
This led to the level set formulation of the propagating interface introduced in
[25]. In general terms, let v(0) be a closed, non-intersecting, (N — 1) dimensional
hypersurface and construct a function ¢(Z,t) defined from RN x R to R such that
the level set {¢ = 0} is the front y(¢), that is

v(t) = {# € RN : ¢(,t) = 0} (1)
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In order to construct such a function ¢(Z,t), appropriate initial conditions #(z,0)
and an associated partial differential equation for the time evolution of #(z,1)
must be supplied. We initialize ¢ by

#(2,0) = +d(z) @)

where d(Z) is the signed distance from z to the initial front 7(t = 0). In order
to derive the partial differential equation for the time evolution of @, consider the
motion of some level set {#(Z,t) = C}. Let Z(t) be the trajectory of some particle
located on this level set, so that, (see [23]),

$(z(1),t) =C (3)
The particle velocity %? in the direction # normal to the level set C is given by
oz
— = F. 4
o " “)
Differentiating Eqn. (3) with respect to ¢ and combining with Eqn. (4) yields
¢+ F||Vg||=0

¢(Z,t = 0) = given. (%)

Eqn. (5) yields the motion of the interface y(¢) as the level set ¢ = 0, thus
7(t) = {=: 8(2,1) = 0}. (6)

Eqn. (5) is referred to as the level set formulation. For certain speed functions F, it
reduces to some familiar equations. For example, for F = 1, the equation becomes
the eikonal equation for a front moving with constant speed. For F = 1 —ex, where
« 1s the curvature of the front, Eqn. (5) becomes a Hamilton-Jacobi equation with
parabolic right-hand-side, similar to those discussed in [7]). For F' = «, Eqn..(5)
reduces to the equation for mean curvature flow. When required, the curvature
k may be determined from the level set function #. For example, in three space
dimensions the mean curvature is given by

(22)(87 + 62) + (835)(82 + 62) + (¢::) (62 + 2)
"‘2(¢x¢y¢xy + ¢y ¢z¢1‘z + ¢x¢z¢rz) (7)
2¢Z + ¢§ + 62)°/ '

There are several advantages of this approach given in Eqn. (5). First, the fixed
coordinate system avoids the numerical stability problems that plague approxima-
tion techniques based on a parameterized approach. Second, topological changes
are handled naturally, since the level surface ¢ = 0 need not be simply connected.
Third, the formulation clearly applies in any number of space dimensions.

To illustrate, in Figure 1 the motion of a circle in the zy-plane propagating
outward with constant speed is shown. Fig. la shows the initial circle, while Fig. 1b
shows the same circle as the level set ¢ = 0 of the initial surface

¢(21y)t:0): Vz2+y2_1°
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The one-parameter family of moving curves y(¢) is then matched with the one-
parameter family of moving surfaces in Figs. 1c and 1d. This level set approach to
front propagation has been employed in a variety of investigations, as discussed in
Part Two. In some particular cases, the reaction diffusion method has also shown
some promising results. The theoretical underpinnings of the level set approach
have been examined in detail by Evans and Spruck [9,10}; for further theoretical
work, see also [4,8,11,15].

a. Initial circle b. Initial surface

c. Circle at time ¢ d. Surface at time t

Figure 1: Eulerian formulation of equations of motion

Numerical Approximation

A successful numerical scheme to approximate Eqn. (5) hinges on the link with
hyperbolic conservation laws. As motivation, consider the simple case of a moving
front in two space dimensions that remains a graph as it evolves, and consider the
initial front given by the graph of f(z) with f, f’, periodic on [0, 1]. Let y(z,t) be
the height of the propagating function at time t, thus y(z,0) = f(z). The normal
at (z,y) is (1, —yz), and the equation of motion becomes y; = F(x)(1 + y2)!/2.
Using the speed function F(x) = 1 — ¢k, where the curvature & = yz/(1 + y2)*/?,
we get :

()Mo Y
Yt ( +y:) 6(1‘*‘.7/_3) (8)
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To construct an evolution equation for the slope u = dy/dz, we differentiate both
sides of the above with respect to z and substitute to obtain

u

uy + [—(1 + uz)l/?JI =€ [(lTru'-’).]I (9)
Thus, the derivative of the Harmnilton-Jacobi equation with curvature-dependent
right-hand-side for the changing height y(z,t) is a viscous hyperbolic conserva-
tion law for the propagating slope u. With this hyperbolic conservation law, an
associated entropy condition must be invoked to produce the correct weak solu-
tion beyond the development of a singularity in the evolving curvature. Complete
details may be found in [29)].

Considerable care must be taken in devising numerical schemes to approximate
the level set Eqn. (5). Because a central difference approximation to the gradient
produces the wrong weak solution, we instead exploit the technology of hyperbolic
conservation laws in devising schernes which maintain sharp corners in the evolving
hypersurface and choose the correct, entropy-satisfying weak solution. One of the
easiest such schemes is a variation of the Engquist-Osher scheme presented in [25].
This scheme is upwind in order to follow the characteristics at boundaries of the
computational domain. The scheme is as follows, Decompose the speed function
Finto F = F4 + Fg, where Fa is treated as the hyperbolic component which
must be handled through upwind differencing, and the remainder Fp which is to
approximated through central differencing. Let #7;1 be the numerical approxima-
tion to the solution ¢ at the point iAz, jAy, kAz, and at time nAt, where Az,
Ay, Az is the grid spacing and At is the time step. We can then advance from
one time step to the next by means of the numerical scheme

¢’?j+1 = @7 + FaAt-

((min(D7 ¢,;,0))% + (max(Df ¢i;,0))* + (min(Dy ¢:;,0))2 .
+ (max(Dy ¢, 0)) + (min(D7 ¢5,0))° + (max(D¥ 6,5, 0))2) /2
+ AtF5 |79
(10)
Here, the difference operators Dy refers to the backward difference in the z direc-
tion. The other difference operators are dcfined similarly.

Examples

Grayson [16] has proven that any non-intersecting closed curve in R? moving with
speed F(k) = —k must collapse smoothly to a circle; see also (12,13,14].In Figure 3,
is a demonstration of a closed spiral curve shrinking towards a circle. Note that
the calculation follows a family of spirals lying on the higher dimensional surface.
The particular front corresponding to the propagating curve vanishes when the
evolving surface moves entirely above the zy-plane, that 1s, when ¢(z, y, t) > 0 for

all (z,y).
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As a different example, let the wound spiral in the previous example represent
the boundary of a flame burning with speed F(k) = 1 — ¢x, ¢ = 0.1. Here, the
entropy condition is needed to account for the change in topology as the front
burns together. In Fig. 4a, the initial spiral as the boundary of the shaded region
is given. In Fig. 4b, the splral expands, and pinches off due to the outward normal
burning and separates into two flames, one propagating outward and one burning
in. In Figure 4c, the front is the boundary of the shaded region. The outer front
expands and the inner front collapses and disappears. In Fig. 4d all that remains
is the outer front which asymptotically approaches a circle.

Part IT: Geometric Problems in Curvature Flow

Collapsing Dumbbells under Mean Curvature Flow

In this section, singularity formation of hypersurfaces in three space dimensions
propagating under mean curvature is studied. Theoretical discussion of such flows
have been made in [3,17,20]. Numerical calculations based on a marker Lan-
grangian approach have been made in [2].

A well-known example is the collapse of a dumbbell, studied numerically in
[27], and theoretically in [18,21]. In Fig. 2, the cross-section of the evolution of a
dumbbell collapsing under its mean curvature (F(k) = —«) is given. In Figure 2a,
various time snapshots of the collapsing dumbbell are shown. As can be seen from
the evolving shape, the center handle of the dumbbell pinches off, separating the
collapsing hypersurface into two pieces. ;

A more complicated version is shown in Figure 5, which shows the collapse of °
a four-armed dumbbell. Four different singularities form leaving a residual pillow
m the center which collapses smoothly through a spherical shape to a point.

As a final demonstration of this process, Figures 6 and 7 show the collapse
of a diagonal lattice of tubes. The lattice shown in Figure 6a (Time = 0.0) has
periodic boundary conditions; thus, the figure represents one section of an infinite
lattice. As the hypersurface collapses the pillow emerges at the intersection of the
tubes. A wholly different result is shown in Figure 7, where the same tube lattice
is shown, only this time with thicker tubes (Figure 7a). In this case, the separate
pillows appear in the holes of the lattice, as the evolving surface collapses around
them.

Next, a three-dimensional version of the spiral collapsing under mean curvature
is computed. The three-dimensional spiral hypersurface shown in Figure 8 is actu-
ally hollow on the inside; the opening on the right end extends all the way through
the object to the leftmost tip. As the hypersurface collapses under its mean cur-
vature, the inner sleeve shrinks faster than the outer sleeve, and withdraws to the
rightmost edge before the outer sleeve collapses around it.
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Figure 2: Collapsing Dumbbell

Collapsing Surfaces under Gaussian Curvature Flow

A variation on the above study can be performed using Gaussian curvature instead
of mean curvature. Starting with the definition of Gaussian curvature KGayssian for
a surface (see {19]), an expression for KGaussian int terms of the level set function ¢
can be obtained, namely

G2 (byybzr — 87.) + 63 (brcde: — 62,) + 02 (Porbyy — 62,)
- 2[¢1‘¢y(¢:cz¢yz - ¢xy¢zz) + ¢y¢z(¢zy¢1‘z e ¢y2¢z::)
. _ + ¢x¢z(¢ry¢y: - ¢zz¢yy)]
KGaussian — (¢3 T ¢§ T ¢g)2 . (11)

Suppose we consider flow of surfaces under Gaussian curvature. If the closed
hypersurface is convex, the Gaussian curvature will not change sign, and the sur-
face should collapse as it flows, see [24]. In Figure 9, the motion of a flat disk-like
surface collapsing under its Gaussian curvature is shown. The sharply curved re-
gions move in quickly, since they are regions of high Gaussian curvature, and the
hypersurface moves towards a spheroidal shape.

In the case of non-convex closed hypersurfaces, the problem acts like the back-
wards heat equation due to the fact that Gaussian curvature is the product of
the two principle curvatures. Thus, non-convex hypersurfaces go unstable in most
cases as shown in Figure 10.
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Construction of Minimal Surfaces

In this section, the level set perspective is used to construct minimal surfaces.
Consider a closed curve I'(s) in R% I' : [0,1] — R3. The goal is to construct a
membrane with boundary I' and mean curvature zero.

Given the bounding wire frame I, consider some initial surface S(t = 0) whose
boundary is I'. Let S({) be the family of surfaces parameterized by t obtained
by allowing the initial surface S(¢ = 0) to evolve under mean curvature, with
boundary given by I'. Defining the surface S by S = lim;_ S(t), one expects
that the surface S will be a minimal surface for the boundary I'. Thus, given an
initial surface S(0) passing through I', construct a family of neighboring surfaces
by viewing S(0) as the zero level set of some function ¢ over all of R3. Using
the level set Eqn. (5), evolve ¢ according to the speed law F(k) = —«. Then the
minimal surface S will be given by

S = lim {Z: ¢(2,1) = 0}. (12)

The difficult challenge with the above approach is to ensure that the evolving
zero level set always remains attached to the boundary T'. This is accomplished
by creating a set of boundary conditions on those grid points closest to the wire
frame and link together the neighboring values of ¢ to force the level set ¢ = 0
through I'. The details for this construction can be found in Chopp [5].

As a test examnple, the minimal surface spanning two rings has an exact solution
given by the catenoid

r(z) = acosh(z/a) (13)

where r(z) is the radius of the catenoid at a point x along the z axis, and a is the
radius of the catenoid at the center point z = 0. In Figure 11, the minimal surface
spanning two rings each of radius 0.5 and at positions z = 3.277259 is computed.
A cylinder spanning the two rings is taken as the initial level set ¢ = 0. Next, in
Figure 12, this same problem is computed, but the rings are placed far enough
apart so that a catenoid solution cannot exist. As the surface evolves, the middle
pinches off and the surface splits into two surfaces, each of which quickly collapses
into a disk. The final shape of a disk spanning each ring is indeed a minimal surface
for this problem.

This example illustrates one of the virtues of the level set approach. No special
cutting or ad hoc decisions are employed to decide when to break the surface.
Instead the characterization of the zero level set as but one member of a family of
flowing surfaces allows this smooth transition. More complex examples of minimal
surfaces are given in [6].

Surfaces of Constant Mean Curvature

The above technique can be extended to produce surfaces of constant but non-
zero mean curvature. In order to construct a surface of constant curvature kg,
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start with any initial surface passing through the initial wire frame and allow it
to propagate with speed

F(&) = rg — k. (14)

Here, the “constant advection term” ko is taken as the hyperbolic component
F4, and treated using the entropy-satisfying upwind difference solver, while the
parabolic term & is taken as Fig, and is approximated using central differences.

Using the two ring “catenoid” problem as a guide, in Figure 13 this technique is
used to compute the surface of constant curvature spanning the two rings. In each
case, the initial shape is the cylinder spanned by the rings. The final computed
shapes for a variety of different mean curvatures are shown.

Surfaces of Non-Constant Mean Curvature

Finally, this technique is extended to allow the calculation of surfaces of a pre-
scribed function of the curvature. Suppose we wish to find a surface of curvature
A(Z) passing through a.given wire frame, where A is some given function of a
point z in three-dimensional space. Using the above approach, the initial bounded
zero level surface is evolved with speed

F(k) = A(Z) — &. (15)

As a simple example, the surface spanning two rings with curvature at any point
z along the z-axis given by 10 cos(10z) is constructed. The obtained wavy surface
with prescribed curvature is shown in Figure 14d. The rings are located at £0.305,

with radius 0.5.

Geodesic Curvature Flow

The curvature flow algorithm can be generalized to other two-dimensional spaces.
For example, we may let the level set function ¢ be defined on a two-dimensional
differentiable manifold in R*® with speed depending on geodesic curvature. The
fixed boundary condition techniques for minimal surfaces can also be applied here.
In this case, a curve with fixed endpoints should flow towards a geodesic of the
manifold, i.e. a curve with constant geodesic curvature zero.

We begin the examples of geodesic curvature flow with flow on a sphete. The
gap in Figure 15 shows the boundary of the domain, the function is assumed to be
periodic across the gap. Figure 15 shows an initial cncle Just smaller than a great
circle shrinking to a point at the top.

Figure 16 shows a single curve flowing on a torus. In order to implement the
level set method on this surface, the computations must be done on a collection
of coordinate patches. For the full details of how coordinate patches are used and
connected, see Chopp [5].



Flow under curvature ' 177

Another example of flow on a submanifold is when the manifold is thaway from
the center over a ridge.

Finally, in Figures 18, 19, we show flows on a cube. The cube is constructed
with six coordinate patches corresponding to the faces of the cube. Additional
examples can be found in [5].

Part III. Physical Applications

In this part, we discuss several physical problems that have been analyzed using
the above level set technique.

Flame Propagation

The original motivation for our use of a level set approach arose from problems in
flame propagation and combustion, where the propagating flame front can become
extremely convoluted, due to cusping and wrinkling. The dynamics of a burning
front are complex, depending in part on vorticity released at the front whose
strength depends on the local curvature at the interface. A level set approach is
well-suited to such problems, since the accurate determination of the curvature
can be used to generate the proper amount of flame-induced vorticity. Here, the
basic idea is to use an idealized model of combustion and view the flame as an
infinitely thin front across which the reactants undergo a single step irreversible on
by means of a second-order finite difference projection scheme for fluid mechanics.
A random vortex method is coupled to the level set technique in {26] to study
the dynamics of a flame attached to a flame holder in confined channel. The full
effects of exothermicity and vorticty-production are analyzed, showing wrinkling,
cusping, and the development of flame brushes as a function of turbulence levels.

Two Fluid Problems

Another fluid dynarnic application of the level set approach was performed in [23].
Here, the level set technique was used to track the boundary between two different
fluids in the Rayleigh-Taylor instability. Analysis of two different approaches was
done: one in which the level set equation was solved directly, and one in which a
conservative form of the equation was incorporated into the other four conservation
laws. Results show the development of large convective rolls and the effects of
viscosity on the instabilities in the flow.
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Crystal Growth and Dendritic Solidification

In [30], the level set approach was applied to computing the motion of dendritic
boundaries in unstable solidification. The motivation here was the ability of the
level set approach to accurately compute the curvature which is required in the
evaluation of the correct jump conditions across the solid/liquid interface.

The physical motivation for the problem is as follows. Begin with a supercooled
liquid in a box. Under certain conditions, a seed of frozen material placed in the
bath will grow in an unstable manner as the boundary freezes, producing complex
shapes such as those produced in snowflakes. One model of this growth assumes
the heat equation in both the solid and liquid phases, together with a set of jump
conditions across the interface which determine the normal velocity of the interface
in terms of the temperature and the local curvature.

The application of the level set approach to this problem begins with a bound-
ary integral formulation of the problem due to Strain..This boundary integral
formulation gives the normal velocity of the interface in terms of the current and
past positions of the interface. The central idea is to view the boundary as the zero
level set of the level set function, and to then extend the boundary integral for-
mulation to provide a velocity field throughout the entire domain. This extension
velocity field is then used to move all the level sets and thus update the position
of the freezing boundary. For details, see [30].

Using this technique, the motion of dendritic boundaries under such effects as
heat release, kinetic effects, crystalline anisotropy, initial shape, and undercooling
are considered. Results show a variety of physical phenomena, including tip split-
ting, side growth, cusping, and morphological changes. A complete description of
this algorithm and the results may be found in [30].

Droplet Dynamics

An application currently under way links the level set technique to a projection
method in order to study the dynamics of a droplet falling into a bath. Here,
the local curvature determines the surface tension which is responsible for the
”crown”-like structure that develops in the splash. The two-dimensional results
show the change of topology as the falling droplet merges with the still bath,
and the resulting symmetric spiking of the fluid into the air. A three-dimensional
simulation is underway. For details, see [1].

Image Processing

A different application of a level set approach is in the .area of edge detection
in bitmap images. Here, the main idea is extract from a pixel map the location
of the edges of a potentially complex collection of boundaries. In [22] level set



Flow under curvature 179

schemes are merged with propagating snake techniques to produce an algorithm
which robustly identifies images in tomographic scans and density maps.
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Figure 3: Collapsing 2-dimensional spiral
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Figure 4: Burning spiral

Figure 6: Collapse of a periodic lattice, small tubes
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Figure 9: Collapse of a surface under Gaussian curvature

Figure 10: Collapse of a non-convex surface under Gaussian curvature
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Figure 12: Splitting catenoid evolution

Survaturs = 2.5 Lurvaturs = 1.9 Lorvaturs = 2.3C Curvstura = G.33 Curvature = 0,38 Cuvature = 1.03

Figure 13: Constant mean curvature surfaces with fixed boundary

Figure 14: Non-constant prescribed curvature surface
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Figure 15: Circle shrinking on a sphere Figure 16: A single curve flowing on a
torus

Figure 17: A curve flowing on the graph  Figure 18: A single loop flowing on a cube
of f(z,y) = 2cos(24/z2 + y?) with orthogonal edges
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Figure 19: A single loop pulled over al-
ternating corners



