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Abstract

A new numerical method to model the dynamic behavior of lipid vesicles under gen-
eral flows is presented. A gradient-augmented level set method is used to model the
membrane motion. To enforce the volume- and surface-incompressibility constraints a
four-step projection method is developed to integrate the full Navier-Stokes equations.
This scheme is implemented on an adaptive non-graded Cartesian grid. Convergence re-
sults are presented, along with sample two-dimensional results of vesicles under various
flow conditions.
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1. Introduction

Lipid molecules introduced into aqueous solutions will self-assemble into fluid-filled
vesicles to minimize free energy. These vesicles have been of recent interest as a model
system for non-nucleated biological cells such as red-blood cells [1], showing similar equi-
librium shapes [2] and non-equilibrium behavior such as tumbling [3, 4]. Vesicles have
also been proposed as possible drug delivery systems [5], which would allow for targeted
drug therapies, and as possible biological micro-reactors for extremely small scale re-
actions [6, 7). To be of general use the behavior of lipid vesicles in general fluid flows
must be understood. The response of vesicles to external flows is due to a competi-
tion between the bending, in-extension, and hydrodynamic forces acting on the vesicle
membrane. This is non-trivial behavior and in most cases can not be determined a priori.

Recent experimental work with vesicles has demonstrated a rich and varied behavior
in response to viscous fluid flow. A transition in behavior was observed to depend
on the material properties of the system, specifically the viscosity ratio between the
encapsulated and surrounding fluids [3, 4]. Vesicles in Poiseuille flow have been shown
to migrate towards the centerline of the flow [8, 9], unlike solid particles which do not
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demonstrate cross-stream migration [10]. Vesicles in wall-bounded shear flow have also
been shown to experience a lifting force in response to the flow field [11].

To better understand the behavior of lipids vesicles theoretical and numerical inves-
tigations have appeared. A number of studies on nearly-spherical vesicles in linear flows
have been performed, recovering behavior observed experimentally [12, 13]. Theoretical
analysis also predicts behavior not yet observed experimentally, including lipid density
variations in the membrane [14] and various modes of motion [15].

Numerical investigations of lipid vesicle motion have also been performed. Some of
these do not include an external fluid and instead focus on the bending effects of the
membrane [16, 17]. Most of the works that do include fluid effects investigate creeping
flow, as characterized by Reynolds numbers much less than one. Included in the previ-
ous investigations are models based on the phase-field method [18, 19, 20, 21, 22, 23],
boundary integral formulations [22, 24, 25, 26, 27|, and spectral methods [28]. In the
creeping flow regime these models match well with known experimental and analytical
results and have been able to track multiple vesicles [25].

Many previous numerical investigations of lipid vesicles look at only the limitation
of creeping flow. To use vesicles as a model for red blood cells and as a drug delivery
system the behavior of vesicles in physiological situations must be addressed. Consider
the human cardiovascular system. Creeping flow is observed in human capillaries [29].
If other areas are considered, though, this is no longer true. The shear rate in arterioles
is on the order of 8000 s~! while the diameter is approximitly 50 pum [30]. Consider a
lipid vesicle with a diameter of 40 pym being used as a drug delivery mechanism. This
gives a velocity difference across the vesicles of 0.32 m/s. Using a blood density of 1050
kg/m?3 [31] and a viscosity of 6 x 1073Pa s [30] this gives a Reynolds number of 2.24,
well outside of the creeping flow regime. To allow for investigations of vesicles in a wide
range of flow conditions a new model must be developed

In section 2 the problem formulation is presented, including the derivation of the
interfacial membrane conditions. Section 3 details the numerical implementation of the
model. Two-dimensional numerical results and verification are presented in Section 4.
Future work, including extension to three dimensional simulations, is discussed in the
conclusions.

2. Development of the Model

Consider a single vesicle suspended in a viscous flow. The fluid enclosed by the
vesicle may have different material properties than the surrounding fluid. The response
of the vesicle to the external flow will depend on the various forces acting on the vesicle
membrane. These forces can be determined by examining the free energy of the closed
membrane.

The total free energy of a vesicle membrane has contributions from the bending of
the membrane, the total number of lipids in the membrane, and the total encapsulated
volume [2]. The bending energy contribution is directly related to the bending rigidity
of a lipid membrane. This bending rigidity has a magnitude comparable to the thermal
energy, on the order of 107!? J [32]. The total energy contribution from the total
number of lipids in the membrane relates to the area compression modulus of a lipid
membrane, which has a magnitude about 250 mN/m [32]. Considering a spherical
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vesicle with a radius of 10 pm this leads to an energy contribution on the order of
10719 J, much larger than the contribution from bending and the thermal energy. The
energy associated with the encapsulated volume is due to the osmotic pressure induced
by concentration variations between the inner and outer fluids. This energy scales as
RTcV/2, where R ~ 8.31 JmolK ! is the gas constant, T is the temperature, c is
the total concentration in moles per unit volume of the active molecules, and V is the
enclosed volume [2]. Again taking a vesicle with a radius of 10 wm and assuming a
concentration of ¢ = 107% mol m™3 this leads to an energy contribution on the order of
10716 J, much larger than the bending contribution and the thermal energy [2]. For the
systems of interest there is not enough energy in the system to change the number of
lipids on the membrane or the enclosed volume. Thus these two quantities are considered
fixed for a given vesicle. The high compressibility modulus of a lipid membrane indicates
that the number of lipids directly relates to the local surface area of a vesicle. Thus the
local surface area, in addition to the enclosed volume, is fixed. This information will
influence the hydrodynamic equations in the next section. In Section 5.3 we will give
an example illustrating the difference between solutions found enforcing only the global
area constraint and solutions which satisfy the surface incompressibility constraint. See
Ref. [2] for additional discussion of these constraints.

The local incompressibility of the vesicle interface makes this a challenging problem
in comparison to the dynamics of drops and bubbles. Enforcing the surface incompress-
ibility is the novel aspect of the numerical methods that have been designed to study
this problem. A number of previous approaches assume that the membrane is a thin
elastic shell. This approach has been used to study the dynamics of red blood cells and
leukocytes [26, 27]. With the proper choice of parameters the surface area is almost
conserved. For bilayer vesicles the model due to Helfrich [2, 33] has become the accepted
model, showing good agreement between theory and experiment. This model accounts
for the bending rigidity of the interface and enforces the surface incompressibility as an
additional constraint. How to enforce this constraint in a computational method has
been a topic of significant research. In the Stokes flow limit [25, 29, 34] this is usually
done by allowing surface tension to be a Lagrange multiplier selected to enforce the local
area constraint. Another approach recently proposed by Ghigliotti et al. [22] uses a
penalty method to enforce the area constraint. For flows governed by the Navier-Stokes
equations phase field methods have been used to investigate the dynamic dynamics of
vesicles. For example, Du and colleagues [19, 20, 21] have used a penalty method with
the phase field approach, but their method constrains only the total area, not the local
area. Du, et al. [20] have stated that that although their method does not incorporate a
constant differential area constraint, it is a feature of their phase field method. Another
approach [18] adds an additional evolution equation for the surface tension in the phase
field method. This idea was justified by thermodynamic arguments by Jamet and Misbah
[23], but a consistent convergence analysis was not presented. None of these methods
directly enforeces a local area constraint, i.e. the incompressibility of the interface, when
studying a finite Reynolds number flow.

Here a level-set method which will enforce the incompressibility of the interface is
developed. A projection method is presented which will determine the surface tension at
each time step necessary to enforce the area constraint. This idea has the advantage over
current approaches to solve the Navier-Stokes equations associated with vesicles in that
a clearly defined model is presented which enforces the local area constraint. Solving for
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a membrane tension in this manner to enforce the incompressibility is in spirit to several
of the Stokes flow investigations noted above, but the numerical implementation and
method is new. The method allows for the determination of the dynamics of a vesicle in
finite Reynolds number regimes. The formulation and results will be presented for two-
dimensional flows. The method described here is equally applicable to three-dimensional
flows as many of the individual basic underlying techniques have been demonstrated in
three dimensions, including the level set method [35], closest point method [36], fast-
marching method [37], and the projection method for Navier-Stokes equations [38].

2.1. Hydrodynamic Equations

Consider a single vesicle suspended in a viscous flow, Fig. 1. Denote the entire domain
as €. A fluid membrane, denoted as I', splits the domain into two exclusive regions.
The region enclosed by I' is given by 7 while the rest of the domain is €y such that
Q = Q1UQ5. The fluids in ©; and 9 are different and have different material properties.
Within each domain exists a velocity and pressure field, u; and pg, respectively, where
k =1 or 2. Both fluids are incompressible and Newtonian, leading to the following fluid
model in each domain:

Du
Pk Dtk =—Vpr + V- (e (Vur + V7)), (1)
V-UkZOian. (2)

The first equation is the standard momentum equation for viscous fluids where p is the
density, Du/Dt is the convective (material) derivative, and u is the fluid viscosity. The
second equation is the standard incompressibility constraint and imposes conservation of
volume in the domain.

Q

Q

Figure 1: Sample domain, €2, contain a fluid membrane, I', enclosing the vesicle, 21. The second region,
o, contains the external fluid.

The response of the fluid in each domain is coupled by conditions imposed on the
membrane. Assume continuity of the velocity field and a jump in the hydrodynamic



stress, o = —prI + pg (Vuk + VTuk):

[u] =0, (3)
[0' ) n] =F, (4)

where n is the outward normal pointing from €2, into 25 and F' is the force per unit area
on the membrane and is derived below. In addition to this the velocity field projected
onto the surface must be divergence free:

Vs-u=0 onT, (5)

where Vy = PV the surface gradient and P = (I — n ® n) is the projection operator.
This condition is enforced to ensure area-conservation and has been previously proposed
[12, 25, 34].

The forces acting on the membrane can be calculated from the free energy of the
membrane. Taking into account the energy discussion in Sec. 2 the free energy is written

as [33]
o /F (1’2%2 + ”y) dA. (6)

Here b,, is the bending rigidity, x is the mean curvature, and 7 is a membrane tension.
The force on the membrane is then calculated from a variation of energy with respect to
a change in membrane shape. This leads to

1
F=b, <V3n + 2I€3> n+ vEn — Vs, (7)

with s being the tangential vector and V2 = V- V, the surface Laplacian. To complete
the hydrodynamic equations a description of the interface needs to be presented.

2.2. Description of the Membrane

The level set method is implemented to track the membrane over time. A brief
overview of the method will be presented below. The interested reader can refer to the
review articles by Sethian and Smereka [39] or Osher and Fedkiw [40].

Consider the domain described in Sec. 2.1, with I' being the interface separating
domains 21 and Q. Let x be a position in space. Define an auxiliary mathematical
function, ¢(x,t), in the entire domain ) such that at any time ¢ the interface I'(¢) can
be determined by

r(t) = {2 : o, 1) = 0} (8)

This simply states that the zero of the function ¢ corresponds to the interface. According
to convention the level set function is ¢ < 0 in 7 and ¢ > 0 in Q5. While any function
which satisfies this description may be used, for stability reasons the level set function
is restricted to signed distance functions. The major advantage of such an implicit
representation is that large changes in the interface, such as the merging of bodies or
the pinching off of a portion of a body, can be handled naturally without the need for



complex remeshing [41, 42]. Using this representation the outward normal and mean
curvature can be calculated as

V¢
__r 9
Vol ©)
Vo
=V —-. 10
"=V 1l (10)

The motion of the interface due to an underlying flow field, u, carries the associated
level set function as if ¢ was a material property. Accordingly the motion of the level set
function is described by

¢

o TurVe=0. (11)

Material properties at any point x in the domain €2 can be determined by the level
set value at . For example, let the density in the domain be given by p; and ps
for ©; and Qo, respectively. The density at any point can be calculated as p(x) =
p1+ (p2 — p1)H(p(x)), where H(y) is the Heaviside function such that H(y) = 0 for
y <0, Hly) =1 for y >0, and H(0) = 0.5.

2.8. Single-Fluid Model

Using the interface description given in Sec. 2.2 it is now possible to write the
hydrodynamic equations (1)-(5) and (7) in the single-fluid formulation. Following the
work of Chang, et al. [43] the membrane conditions (3) and (4) can be written as body-
force terms in the momentum equation. These contributions are localized around the
membrane through the use of a Dirac-delta function, §(y) = dH(y)/dy. This leads to
the following system:

P2 TV (i (Yt V)

Dt
+0(0) (VoIV.y = 1050) 4 b,0(0) (Vi + 3°) Vo (12
V.-u=0inQ (13)
Vs-u=0onTl. (14)

Note that this system is valid in the entire domain. Material properties such as density
and viscosity are calculated through the use of the level set function. To complete the
formulation of the problem the velocity is specified at infinity, u,. For the special case
of a two-dimensional shear flow this results in a far-field condition of u., = 4(y,0), where
4 is the shear rate and y is the vertical location.

2.4. Normalization

Dimensionless units for two-dimensional vesicles can be introduced by following the
analysis of ref. [44]. Consider a vesicle of encapsulated area A with a membrane arc
length L. A characteristic length is defined as the radius of a circle with a perimeter
of L: Ry = L/27. The bending rigidity, b,, sets the energy scale. In combination with
the the bulk viscosity, 12, and R a characteristic time can be defined as 7 = pa R /b,,.
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All velocities are scaled as ug = Rp/7. The membrane tension is scaled by the quantity
70 = (p2b?)/(13R3). This results in the following normalized Navier-Stokes equation:

Du N Sy T
pﬁ——Vp—i-BnV (a(Va+V'a))

+006) VoIV~ 38V0) + 70(0) (V4 1) Vo, (15)

where dimensionless numbers are denoted with a hat. Note that p = p/p2 and i = p/pus
are the density and viscosity normalized by their counterparts in the bulk fluid, and
Bn = (p2b,)/(Rop3) is a bending number giving the relative strength of the bending
effects. This number can also be thought of as bending capillary number relating the
bending to surface tension effects, Bn = vy R32/b,, using the definition of v above [12, 14].
From this point forward the hat notation is dropped with the understanding that all
quantities are normalized.

Two-dimensional vesicles are classified by two quantities, a viscosity ratio n = pq/u2
and the reduced area, v = A/mR3 = 4An/L?. The reduced area measures how much
lower the encapsulated area is compared to a circle with the same perimeter. The shear
rate is normalized with the characteristic time, x = 47 = YuaR3 /by, giving a dimen-
sionless velocity condition of u. = x(y,0) at infinity. Under shear flow conditions the
Reynolds number is given by Re = xBn.

3. Numerical Implementation

In this section the numerical implementation of the level set and fluid equations are
discussed. The methods described here will be first-order in time and second-order in
space. Higher order implementations are possible.

3.1. Level Set Discretization

The motion of the membrane is modeled by the advection of the level set function,
Eq. (11). Due to the nature of the flow and its dependence on high-order derivatives
of the level set function the ¢ field must be smooth and accurate at all times. This is
accomplished using augmented level set methods.

A gradient-augmented level set scheme introduced by Nave et. al is used to advance
the membrane forward in time [35]. In this method both the level set function ¢ and its
gradient, 9 = V¢, are advanced forward by solving the following evolution equations in
Lagrangian form:

D¢
Dt (16)
Dy
Dy = Ve (17)

where D /Dt represents the Lagrangian (material) derivative. To advance the membrance
forward in time material particles are traced backwards in time from a grid point at time
tn+1 to their departure location at time ¢,,. Using accurate interpolation techniques on



the values at time ¢,, the new updated values at time ¢,,11 can be obtained. To first order
in time the semi-discrete form of Eqs. (16) and (17) is written as

Ty =x — Atu,, (18)
Pn+1 =0n (Ta), (19)

The values of ¢ and 1 at the departure location x4 are calculated through the use of a
Hermite bicubic interpolant defined over a cell surrounding the point x,. The level set
and gradient values are already available and do not need to be calculated. To fully define
the Hermite interpolant the second-order derivatives ¢, is defined as an average of the
derivatives of 1, and v, in the y- and x-directions, respectively. The Navier-Stokes solver
below does not provide an explicit updating rule for the velocity deformation matrix Vu,,.
Instead the matrix is approximated using standard finite difference approximations of the
velocity derivatives.

To aid in the stability of the method periodic reinitialization is required. In reini-
tialization a current level set function is replaced with a signed distance function having
the same zero contour. In [45] a new extension to the standard fast marching method
is shown. Let ¢ represent a signed distance function which has the property | V|| = 1.
The fast marching method is an optimal method for solving equations of this type [46].
The idea is to enforce |[Vo|| = 1 at every grid point by using upwind finite differences.
This upwinding induces a causality in the order in which nodes can be udpated. Let the
grid point y be farther away from a given interface than the grid point . Thus we have
o(x) < ¢(y). Due to the upwing scheme the value at & needs to be updated before the
value at y. The use of an efficient sorting algorithm controls the order in which nodes
are updated. More information about the basic fast marching method can be found in
references [37, 46, 47, 48].

A limitation of using FMM for reinitialization is that quantities which depend on high
derivates of the level set function are not smooth due to the strictly one-sided nature of
the update scheme. To address this the following augmented system is updated at every
computational node:

Vo Vo =1, (21)
V (V- V) =0, (22)
VV (Vé- V) =0. (23)

In two dimensions this results in six unique equations at every grid point for up to
second order derivatives of the level set, ¢, ¥, and V1. Replacing derivatives with finite
difference approximations results in a set of nonlinear equations to be solved at every
grid point. While this nonlinear system is larger than the systems in other fast marching
methods such as ref. [46] the additional solution cost is small.

3.2. Hydrodynamic Time Discretization

In addition to advecting the level set function a scheme is needed to solve for the fluid
field. Here a novel semi-Lagrangian, semi-implicit, 4-step projection method is developed



to accomplish this. Information regarding standard projection methods for the Navier-
Stokes equations can be found in references [38, 49, 50] while the semi-Lagrangian method
is outlined in ref. [51].

A major difficulty in solving the Navier-Stokes equations is the application of the
divergence-free conditions. In this work there are two conditions which need to be sat-
isfied, Eq. (13) and (14). Consider solving the Navier-Stokes equations in the computa-
tional domain € with a boundary of 9Q). The 4-step projection method here is written
as:

a—uq 1 T 1 2 1 3
At B W) g (VS'H p ) LIV 2
b _
p Ata = — Vppy1 with V- upp =01in Q, (25)
c—b 1
Par "B WV 0
Unp —C i
% = 5(¢) (‘v¢|vs'7n+l - 'Yn+1’iv¢) with Vg - upy1 =0on I (27)

where At is the current time step and a, b, ¢ are intermediate velocity fields.

The first step, Eq. (24), calculates an explicit intermediate velocity field, a, using
the non-linear viscous portion of the momentum equation and the contribution from the
bending of the membrane. The convective derivative is not split. Instead the departure
velocity at time t,, ug, is used to explicitly calculate this derivative. Consider a fluid
particle located at the grid point x,; at time ¢,;. The departure location of this
particle at time t, is denoted as x4. As in level set advancement to first order this
departure location can be calculated as €4 = 11 — Atu,. In almost all instances this
departure location will not land on a grid point at time ¢,, so an accurate interpolation
scheme, such as a bicubic interpolation function, is needed to calculate ug = w,(x4).

The second step, Eq. (25), is the standard pressure-projection step to enforce the
incompressibility of the velocity field. Further information regarding this step, including
the necessary boundary conditions and solution methods can be found in references
[38, 49]. Next a semi-implicit update is performed, Eq. (26), to ensure the stability of the
method. During the semi-implicit update the domain boundary, 92, is split into a portion
with Dirilicht velocity boundary conditions, 924, and a portion with periodic boundary
conditions, 02, such that 9Q = 9Q4 |J 0€2,. For example, to simulate simple shear on a
square domain a known velocity can by applied in the y-direction while periodicity can
be enforced in the x-direction. As long as the period of the computational domain is
large the numerical results should simulate well the problem of an isolated vesicle. For
smaller periods an effect will be seen and this will be mentioned when present in the
numerical results. Finally, Eq. (27), calculates the needed membrane tension, 7,11, to
ensure that the velocity on the membrane is surface area conserving. This step will be
described in more detail below.

3.2.1. Surface-Projection Method
Focus will now shift to the surface area conserving step of the projection method
described above. Combine the expressions in Eq. (24)-(27) to obtain

Up+1 — Q@

1
At =—Vpp1 + an “(BVUn41) +0(8) (IVOVsrni1 — vap16VY) . (28)
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On the interface, I', Eq. (14) is applied and the result is rearranged. To ensure all scalars
are explicit defined the pressure and velocity field values at time ¢, 41 are replaced by
the respective values at time t,. This leads to the following equation:

a 1

6(¢)vs ' ('ynJrIHV(ZS - |V¢|VS’Y”+1) = vs . (pAt - Vpn + Rev ! (Mvun)) . (29)

This equation is only valid on the interface. Instead of discretizing the interface
the closest point method [36, 52] is utilized to solve for the tension in a small region
surrounding the interface. Consider the computational region {2, near the interface.
Modify Eq. (29) by dropping the §(¢) term and assume that |V¢| = 1 everywhere. This
last condition should be approximately true if the level set field is maintained as a signed
distance function. Also note that Vsf -m = 0 for any scalar f defined on the interface
and that kK = Vg - n. Thus, the PDE of interest is now

a 1
Y16 = Viynsr = Vs - (pAt - Vp, + EV' (Mvun)> . (30)

The main idea behind the closest point method is to replace an intrinsic PDE with one
valid in the embedding space by replacing quantities, such as tension, by values on the
interface. Let « be a point away from the interface I" and let ep(x) be the closest point
on I' to . It follows that points in the normal direction away from the interface will have
the same closest point location. This leads to the following two principles on the interface
[36, 52]: Vf(ep(x)) = Vsf for a scalar f and V-v = V, - v for a vector field tangent to
the interface. These two principles also give the relationship V - V f(ep(x)) = Vs - Vs f
on the interface. Using these relationships, Eq. (30) can be written in Eulerian form at
a point x as

n(ep(@)i = Vafep@) = - (P (o = Tnat 37 (0w ), 61

It is now possible to discritize Eq. (31) using standard finite difference discretizations.
Consider the 2"?-order discretization of the right hand side of Eq. (31) at a grid point
x; j on a 2D Cartesian grid with grid spacing h: (y(ep(xi;))(4+ K7 ;) —v(ep(®i-1,5)) —
y(ep(ziv1,;)) — v(ep(xij—1)) — v(ep(xi;+1)))/h?. Typically the closest point location
will not lie on a grid point. The values y(cp(x; ;)) are thus replaced by an interpolation
stencil, I,(ep(x;,;)), which is an interpolation polynomial evaluated at the closest point.
Given a p'"-order spatial discretization of the underlying PDE and an interpolation
order of ¢ > p + 1 the overall order of the closest point discretization will be p**-order
[36, 53]. In this work second-order accurate derivative approximations are used and thus
the interpolant chosen is 3"%-order (bicubic).

There are two major advantages of the closest point formulation given above. First,
the resulting computational domain, €2, can be wholly determined by the interpolation
stencil. All of the grid points in the PDE stencil are replaced by their closest point
interpolation stencil. Thus the domain €2, consists of those grid points needed to create
the interpolation stencils.

The second advantage of the closest point representation is that no artificial boundary
conditions are needed to solve the resulting PDE. Consider a discretization where the
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grid point x;;1,; is not in the domain €.,. As the value at x;y;; is replaced with
the interpolation stencil, I,(cp(xit1,;)), which is contained within €2, no additional
information is needed.
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4. Verification of Methods

In this section the methods outlined above are verified by presenting convergence
results.

4.1. Calculation of the Tension

To verify the membrane tension calculated using Eq. (30) convergence studies using
a known shape and an imposed velocity field are performed. The three shapes considered
here are an ellipse with a minor axis of 3/5 and a major axis of 2, a Cassini Oval with
the implicit function of ((z —a)? +y?) ((z 4+ a)® +y?) = b* with parameters a = 1
and b = 1.01, and a five-point star given by the parametric equation r(6) (cos(8), cos(6)),
where r(0) = 1+sin(56)/4, see Fig. 2. In the first check mean curvature flow is prescribed
on the interface, u = kn, resulting in V, - u = x2. This results in an analytic solution
of v =1 on the membrane. The membrane tension is calculated using the closest point
method outlined above. To compare to the analytic solution bicubic interpolation is
used to determine the calculated membrane tension on the interface. These interpolated
values are then compared to the analytic solution in both the i? and [*° norms, Fig. 3.
In both cases convergence on the order of h? is observed.

. Cassini
Ell
Ipse Oval Star

Figure 2: The shapes used for verification of the tension calculation. There is an ellipse with a minor
axis of 3/5 and major axis of 2, a Cassini Oval with parameters a = 1 and b = 1.01, and a star shape
given by a parametric equation of r(8) (cos(0), cos(0)), where r(0) = 1 + sin(56) /4.

Next turn to the case where an analytic solution does not exist. Consider a membrane
with a prescribed velocity of u = n, resulting in V, - u = . Solve Eq. (30) using this
prescribed velocity. The exact solution is obtained by discretizing the one-dimensional
differential equation yx2 — dysy = k, where s is arc-length, on the interface. Assuming
periodicity a very accurate membrane tension can be calculated. The exact tension and
the tension obtained using our projection-operator are shown Fig. 4(a) for the star-shape,
while the convergence of the solution is shown in Fig. 4(b). Convergence of both norms
is 2" order.
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Figure 3: Convergence of the surface-divergence operator with a prescribed velocity of u = kn. The
overall convergence order is at least 2"%-order in both the /2 and I°° norm cases.
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------- Closest Point Method
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Figure 4: Convergence of the surface-divergence operator with a prescribed velocity of uw = m. (a) The
membrane tension computed by solving the PDE on the interface is compared to the tension computed

using the closest point method for the five-point star shape. (b) The overall convergence is at least
27d_order 2 in both the I? and [°° norm cases.
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4.2. Spatial and Temporal Convergence

The spatial and temporal convergence of the overall scheme is now presented. Two
test cases are considered: a vesicle evolving due to purely bending effects and a vesicle
exposed to an externally applied shear flow. As a first test case consider an initially
elliptical vesicle with a major axis of 2.15 and a minor axis of 0.61 with v = 0.6 and
n = 1 placed in a stationary (y = 0) fluid. The computational domain is a box of size
[—3, 3] x [—3, 3] with zero velocity prescribed on the domain boundary. The vesicle will
relax to reduce the bending energy. Here two bending numbers, Bn = 10~* and Bn = 1,
are considered. Note that despite the lack of any external forcing, the system observes
fluid flow due to the bending eneregy of the membrane.

The temporal convergence of the scheme for the bending energy relaxation case is
presented in Figs. 5 and 6. Here the grid spacing is fixed at h = 6 x 277 and the
time step is varied. As no analytic solution exists results for time steps At > At,in
are compared to the result using At,,in = 2 x 107°. Results are compared at times of
t = 0.5. The method demonstrates first order convergence in time for this test case.
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Figure 5: Convergence of the level set function versus time step for a vesicle reaching an equilibrium
shape with Bn = 1074 and Bn = 1. Results from a large time step are compared to results using
At =2 x 1072, Results indicate approximately first order convergence in both norms.

The second test case considered is a vesicle undergoing a shear flow of strength y = 1.
The same vesicle with ¥ = 0.6 and = 1 is utilized and placed in a computational domain
of size [—3,3] x [-3,3]. The domain is periodic in the x-direction and has Dirilicht
boundary conditions in the y-direction. As before the simulation is run up to a time of
t = 0.5 for various time steps. All results are compared to a simulation performed with
a time step of At = 2 x 1075, Convergence for both the level set and the velocity field
is seen in Fig. 7 and 8. Again first order convergence in time is observed.

Spatial convergence is now considered. The time step is set at At = 0.1h? where
h is the grid spacing. With this time step restriction it is expected that the method
should show second order convergence with respect to grid spacing. As with the temporal
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Figure 6: Convergence of the velocity field versus time step for a vesicle reaching an equilibrium shape
with Bn = 10~% and Bn = 1. Results from a large time step are compared to results using At = 2x 102,
Results indicate approximately first order convergence in both norms.
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Figure 7: Convergence of the level set function versus time step for a vesicle in a shear flow of strength
x = 1 with Bn = 10~% and Bn = 1. Results from a large time step are compared to results using
At =2 x 1075, Results indicate approximately first order convergence in both norms.

convergence study two cases are considered, the relaxation due to bending and an induced
shear flow. The result from the first case is shown in Figs. 9 and 10. The convergence
of the level set function demonstrates the expected second-order convergence. The fluid
field demonstrates a convergence order of 3/2.

16



12 Error 1%© Error

1074

Error

10+ 103 10+ 103
Time Step Time Step

Figure 8: Convergence of the velocity field versus time step for a vesicle in a shear flow of strength
x = 1 with Bn = 10~% and Bn = 1. Results from a large time step are compared to results using
At =2 x 1075, Results indicate approximately first order convergence in both norms.
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Figure 9: Convergence of the level set function versus grid spacing for a vesicle reaching an equilibrium
shape with Bn = 1074 and Bn = 1. Results are compared to a solution from a mesh equivalent to
1024 x 1024 (grid spacing of 6 x 2719). Results indicate second-order convergence in both norms.

The resultant convergence for the shear flow test case is show in Figs 11 and 12. The
results again indicate second order convergence in the level set function and convergence
on the order of 3/2 for the velocity fluid field.

17



]2 Error 100 Error

-3t 0
10 s Bn=1074 10 -Bn=10"*

------ Bn=1 ------Bn=1

Error
Error

. 4 A.;' )
0.02 0.04 0.06 0.08 0.1 0.2 0.02 0.04 0.06 0.08 0.1 0.2
Grid Spacing Grid Spacing

Figure 10: Convergence of the velocity versus grid spacing for a vesicle reaching an equilibrium shape
with Bn = 10~* and Bn = 1. Results are compared to a solution from a mesh equivalent to 1024x1024
(grid spacing of 6 x 2710). Results indicate convergence on the order of 3/2 in both norms.
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Figure 11: Convergence of the level set function versus grid spacing for a vesicle in a shear flow of
strength x = 1 with Bn = 10~% and Bn = 1. Results are compared to a solution from a mesh equivalent
to 1024 x 1024 (grid spacing of 6 x 2710). Results indicate second-order convergence in both norms.
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Figure 12: Convergence of the velocity versus grid spacing for a vesicle in a shear flow of strength x =1
with Bn = 10~* and Bn = 1. Results are compared to a solution from a mesh equivalent to 1024x1024
(grid spacing of 6 x 2719). Results indicate convergence on the order of 3/2 in both norms.
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4.8. Conservation of Enclosed Area and Membrane Length

As an example of the conservation properties of the method the enclosed area and
membrane length is tracked over time for an initially elliptical vesicle with a reduced
area of v = 0.6. The vesicle is placed in a square domain with zero velocity boundary
conditions and allowed to relax to an equilibrium shape under the influence of bending
with Bn = 10~%. Example equilibrium shapes for various reduced areas are shown in Fig.
(15). The resultant area and length, shown in Fig. (13), shows excellent convervation in
both the enclosed area and membrane length is obtained. For comparison the evolution
of the same vesicle without using Eq. (27) is also calculated. In this situation the vesicles
behaves as a droplet and evolves towards a circle.
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Figure 13: The enclosed area and interfacial length of a relaxing vesicle of reduced area v = 0.6. Two
cases are considered: with the surface projection method obtain tension as described in Sec. (3.2.1, and
the no tension.
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5. Results: Single Vesicle

In this section results utilizing the numerical scheme outlined above are presented.
Multiple vesicle results are shown in the next section. Unless otherwise stated the fluid is
initially stationary and any boundary conditions, such as shear flow or pressure gradient,
are applied instantaneously at time ¢ = 0.

5.1. Minimization of Bending Energy

A vesicle with Bn # 0 placed in a stationary fluid (x = 0) will attempt to minimize
the bending energy of the membrane. In a surfactant free bubble or droplet with a
uniform tension this would result in a circle. Due to the interface length constraint the
equilibrium shape for a vesicle will not be a circle, but a biconcave shape. Consider
the shape given in Fig. 14 at ¢ = 0. This shape has a reduced area of v = 0.3 and
is allowed to evolve in a stationary viscous fluid using the parameters Bn = 1073 and
n = 1. If the characteristic velocity for this instance is defined as ug = Ry /7, where T is
the characteristic time defined above, then the Reynolds number is equal to the Bending
number, Re = Bn. The relaxation of the shape and the bending energy over time are
presented in Fig. 14. The equilibrium shapes for vesicles of various reduced areas has
also been calculated and are shown in Fig. 15.

o
o

Bending Energy
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Normalized Time

Figure 14: Bending energy as a function of dimensionless time. The maximum time step is 0.1.
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Figure 15: Equilibrium shapes which minimize the bending energy. These were computed in a domain
of size [—3,3] x [~3,3] on a grid with minimum grid spacing of 6 x 279 and a maximum time step of
10=2.
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5.2. Shear Flow

Now consider a single vesicle suspended in a simple shear flow, where u., = (xy,0)
is prescribed far from the vesicle. If the viscosity ratio between the interior and exterior
fluids is below a critical value the vesicle will undergo what is called tank-treading [3,
12, 54]. This behavior is typified by the vesicle reaching an equilibrium inclination angle
with respect to the external flow direction. This type of behavior for a vesicle with
v =0.7, Bn = 1074, x = 10, and n = 1 is shown in Fig. 16. Note that the Reynolds
number in this case is Re = Bny = 1073. The computational domain is a box of
size [—3, 3] x [—3, 3] with periodic boundary conditions in the x-directions and Dirilicht
velocity boundary conditions in the y-direction. The minimum grid spacing is 6 x 278
with a maximum time step of 2 x 1072. To demonstrate the overall behavior the fluid
velocity field is also included. In this situation a vortex forms at the center of the vesicle
and the vesicle rotates in response. At equilibrium the fluid motion is aligned with the
vesicle membrane. This indicates that particles on the membrane would travel around
the vesicle.

In Ref. [44] it was shown that for Stokes flow the equilibrium inclination angle only
depends on the reduced area of the vesicle and is almost independent of the applied shear
rate. Here the effect of Reynolds number will be demonstrated. To see this effect consider
the case of Bn = 107* and n = 1 for various shear rates. The computed inclination
angle is given in Fig. 17 for shear rates of x = 1,10,100, and 10* corresponding to
Re = 1074,1072,1072, and 1. Fluctuations seen in the inclination angle are due to
calculation of the angle and not to the underlying method. For very small values of Re
the inclination angle is approximately independent of Re, consistent with the results in
Ref. [44]. When the Reynolds number is raised to Re = 1 a significant increase in the
inclination angle is observed. Investigations into this behavior are ongoing.

Our method also allows for the investigation of stiffness effects on the vesicle shape
and the fluid field. Consider a vesicle with a reduced area of v = 0.5 with n = 1. For
small shear rates this vesicle will reach an equilibrium angle that is independent of the
applied shear rate, see above. The relative influence of the bending on the behavior of
the vesicle can be captured by either fixing the shear rate and varying Bn or by fixing
Bn and varying . Here the value Bn = 10™% is fixed and the equilibrium angle for shear
rates of Y = 1 and x = 100 are determined. The resulting equilibrium shapes and internal
fluid fields are shown in Fig. 18. The inclination angle with respect to the horizontal
axis for membrane 18(a) is § = 0.25 while for membrane 18(b) it is calculated to be
6 = 0.23. Due to the large influence of stiffness (bending) of the membrane in Fig. 18(a)
the equilibrium shape is closer to the equilibrium shape observed in a stationary fluid,
Fig. 18, in that the ends of the vesicle are rounded. This shape results in two internal
vortices. For the case shown in Fig. 18(b) the stiffness is relatively small resulting in an
elliptical vesicle as was previously observed. In this instance there is only a single internal
vortex. The fluid field outside of both vesicles is not that different than the result seen
in Fig. 16 and thus are not shown. Knowledge of how the interior fluid behaves would
be crucial if vesicles are to be used as microreactors [6, 7].

A viscosity ratio above the critical value results in a change of behavior, from tank-
treading to tumbling, with the vesicle becoming slightly more solid-like [1]. In this
situation the vesicle will rotate about its center of mass. Consider a vesicle of reduced area
v = 0.7 with Bn = 10~* and x = 10, giving Re = 1073, Under these conditions Keller
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Figure 16: Behavior of a vesicle in simple shear flow with v = 0.7, Bn = 10~%, x = 10, Re = 10~3, and
n = 1 for the normalized times indicated. Notice that a stable equilibrium configuration is achieved and
a vortex forms in the interior of the vesicle and that the fluid is tangent to the membrane, indicating
the tank-treading behavior.

and Skalak predict a critical viscosity ratio of 4.1 [55]. Take as an example a vesicle with a
viscosity ratio of 7 = 5 placed in a computational domain of [—3, 3] x [—3, 3] with periodic
boundary conditions in the x-direction and Dirilicht velocity boundary conditions in the
y-direction. The behavior over time is shown in Fig. 19. In addition to the rotation of
the vesicle a large shape change is observed. A highly curved shape is observed when
the long-axis of the vesicle is aligned perpendicular to the flow field, Fig. 19(d). As the
vesicle rotates the shape becomes more elliptical, Figs. 19(b) and 19(e). This change in
shape is due to the relative effects of the shear flow and bending. When perpendicular to
the flow the bending energy can not overcome the forces associated with the fluid flow.
As the vesicle aligns itself to the flow field, the external fluid forces diminish allowing the
vesicle to relax and reduce the bending energy. This type of behavior has been previously
observed in numerical simulations of red blood cells in large domains [56].
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Figure 17: The equilibrium angle of inclination for vesicles of varying reduced areas under simple shear
flow. As seen in ref. [44] The observed inclination angle is nearly independent of shear rate.
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Figure 18: The equilibrium shape and fluid field in the interior of two vesicles in simple shear flow, both
with v = 0.5, Bn = 10~% and n = 1 for different applied shear rates. (a) x = 1 and Re = 10~%. (b)
X = 100 and Re = 1072, The result in (a) clearly show two vortexes while (b) has one. Both vesicles
demonstrate similar equilibrium inclination angles.

The influence of the Reynolds number on the behavior of vesicles can be investigated
using the method developed. In addition to the result shown in Fig. 19 vesicles with
v = 0.7 and n = 5 are allowed to evolve in a simple shear of strength Y = 10~* under
bending numbers ranging from Bn = 1073 to Bn = 1. This results in Reynolds numbers
ranging from 1072 to 10. The results are shown in Fig. 20. To remove any difference
in observed behavior due to the longer startup times (the amount of time before the
vesicles begins to rotate) at higher Reynolds numbers the results shown here begin with
an initial velocity field of uy = (xy,0). Results show that at higher Reynolds numbers
the flow transitions back to the tank-treading case. The effects of Reynolds number on
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Figure 19: Snapshots of the dynamic behavior of a vesicle with ¥ = 0.7 and 7 = 5 under a simple shear
of strength of x = 10. The bending parameter is Bn = 104, resulting in Re = 1073. This viscosity
ratio is above the classical critical viscosity ratio given by Keller and Skalak [55].

lipid vesicles is a current research topic as it is yet to determined if the result seen here
is truly due to a change in Reynolds number or if it is due to change in the influence of
the bending rigidity of the interface.
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Figure 20: The instantaneous position of vesicles under simple shear at different Reynolds numbers at
time ¢ = 1. In all situations the shear flow strength is x = 10, resulting in a Reynolds number of
Re = 10Bn. The results in (a)-(c) are instantaneous positions while (d) is the equilibrium configuration.
Results show that a change in the Reynolds number of the system drastically changes the behavior of
the vesicle.
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5.3. Local versus Global Tension

The local, pointwise incompressibility constraint enforced in this scheme is not the
only possiblity for membrane conservation. It is also possible to only enforce global
membrane length conservation (but not local incompressibility) through the use of a time-
dependent uniform tension, similar to the Lagrange multipliers used by Du [19]. In the
global conservation scheme a uniform tension would be defined as v(t) = vo(L(t) — Lo),
where L(t) is the membrane length at the current time, L is the initial membrane length,
and 7y is a constant. To consider only global conservation the final step of the scheme,
Eq. (27), is ignored and a uniform tension body term is added to Eq. (24) in the form
of —b(6)y(1)AV 6.

To compare the local incompressiblity with the globally conservation scheme consider
a vesicle with a reduced area of v = 0.7, a bending number of Bn = 104, and a viscosity
ratio of n = 4.5 placed in a computational domain of size [—3, 3] x [—3, 3] with periodic
boundary conditions in the x-directions and Dirilicht velocity boundary conditions in the
y-direction. A shear flow of strength xy = 1 is then applied to the vesicle. The global con-
servation (uniform tension) scheme is implemented using a parameter of 75 = 107. Other
than the form of the tension all other computational parameters including grid spacing
and time step are equal. The result for various times is shown in Fig. 21. With these
parameters the classical lipid vesicle theory predicts that the vesicle should undergo tum-
bling. As the figures show the vesicle with local incompressibility does undergo tumbling
while that with a global conservation does not. This demonstrates that it is not enough
to only enforce global membrane length conservation when investigating lipid vesicles,
local incompressibility should also be enforced. It should be noted that our computa-
tions do show that a vesicle constrained only by global membrane length conservation
will have tumbling solutions. This tank treading - tumbling transition will occur at a
higher viscosity ratio than the one predicted by enforcing local incompressibility.
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Figure 21: A comparison of a single vesicle under simple shear using two different membrane length
conservation schemes. The first is the local, pointwise conservation scheme presented here. The other is
a global tension given by v(t) = 107 x (L(t) — Lo), where L(t) is the membrane length at the current
time and Lg is the initial membrane length. The behavior using the two different conservation schemes
is different.
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6. Results: Multiple Vesicles

Results involving multiple vesicles are now presented. The methods outlined above
handle multiple vesicles naturally.

6.1. Tumbling of Two Vesicles

First consider two isolated vesicles with a reduced area of v = 0.5 and viscosity ratio
of n = 5 in a shear flow of strength Y = 100 with Bn = 1074, giving Re = 1072, These
results are computed in the domain given by [—5,5] x [—5,5] with periodic boundary
conditions in the x-direction and Dirilicht boundary conditions in the y-direction. The
short-time results are shown in Fig. 22. Initially the two vesicles rotate as if they were
isolated. Due to the interaction between the two vesicles they begin to rotate about each
other before being captured by the external flow. This initial behavior is similar to the
Stokes flow result presented in Ref. [25].

15 15
1 1
0.5 0.5
0 0
05 05
1 1
15 15
C2 15105005 1 15 2 2151050 05 1 15 2
(a) t=0 (b) t = 0.01
15 1.5
1 1
0.5 0.5 ”
0 0
05 05 —
-1 -1
15 15
P 15105005 1 15 2 2151050 05 1 15 2
(c) t = 0.03 (d) t = 0.05

Figure 22: Snapshots of the position of two vesicles under the influence of a shear flow of strength
X = 100 with Bn = 10~% and = 5. The Reynolds number is Re = 10~2.
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The long-term results are shown in Fig. 23. The behavior of the vesicles is seen to
be a combination of rotation due to the shear flow and flattening of the vesicle due to
the high bending energy of the resulting configurations. The interactions of the vesicles
also induces further rotation of the vesicles.
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Figure 23: Snapshots of the position of two vesicles under the influence of a shear flow of strength
x = 100, with Bn = 10~% and n = 5, resulting in Re = 10~2. Two computational domains are shown
side-by-side. The figures only show the region given by |y| < 2.

6.2. Many Vesicles in Shear Flow

Next consider a large number of vesicles under the influence of shear flow. Specifically,
consider 30 vesicles of reduced area v = 0.5 arranged in a regular array contained in
a [—5,5] x [=5,5] computational domain with periodic boundary conditions in the x-
direction and wall boundary conditions in the y-direction, Fig. 24. Apply a shear flow
with strength y = 100 and assume parameters of Bn = 1072 and = 10. The Reynolds
number here is Re = 1. Due to the highly packed nature of the system the vesicles are
not able to rotate as seen in Figs. 22 and 23. Instead the vesicles reach an equilibrium
angle and undergo linear motion. The upper and lower rows have normalized speeds of
150 to the right and left, respectively. The center row does not migrate, only undergoing
a slight rotation.

Next, consider 10 vesicles with ¥ = 0.5 and n = 5 randomly placed in a computational
domain of [—~2,2] x [~2, 2] subject to a shear flow of strength xy = 10%. Given Bn = 10~*
this gives a Reynolds number of Re = 1. Periodic boundary conditions are applied in the
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Figure 24: Snapshots of the position of many close-packed vesicles under the influence of a shear flow of
strength x = 100, with Bn = 1072 (Re = 1), and = 10. Individual vesicles have been marked to make
tracking easier. After an initial startup the vesicles reach a steady velocity, with both the upper and
lower row of vesicles moving at a normalized speed of 150. After reaching the shown angle the center
row is stationary.

x-direction while Dirilicht velocity conditions are applied in the y-direction. The result
up to a time of t = 8 x 10~ is given in Fig. 25. Unlike the close-packed case (Fig. 24),
the additional area surrounding the vesicles allows for a number of different behaviors,
including linear translation (upper and lower marked vesicles) and circulation (center
marked vesicle). Note that in general the vesicles align with the flow field, similar to the
tank-treading case of a single vesicle under simple shear.

6.3. Pressure Driven Flow
A result due to pressure-driven Poiseuille flow is also presented. Four vesicles with
v = 0.5 are placed into a domain given by [—2,2] x [-2,2] with periodic boundary
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Figure 25: Snapshots of the position of many randomly placed vesicles under the influence of a shear
flow of strength y = 10%, with Bn = 10~* (Re = 1), and 1 = 5. Several individual vesicles have been
marked to make tracking easier. A wide variety of behavior is observed, including linear translation and
vesicle circulation.

conditions in the x-direction and no-slip boundary conditions in the y-direction. Each
vesicle is placed slightly off the center line. It is expected that the close-packed nature
of the system will influence the result. A pressure gradient of magnitude Ap = —5000 is
applied in the x-direction. The relationship between the maximum velocity in a vesicle-
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free domain and the pressure gradient is given by e = —Bn x AP x H?/8, where H
is the total domain height. Assuming Bn = 1072 this gives w4, = 100. The viscosity
ratio is taken to be n = 5. The position of the vesicles over time can be seen in Fig. 26.

The behavior observed in Fig. 26 is similar to what has been experimentally observed
for highly packed cells traveling in a capillary tube of comparable size to the cell diameter
[67]. The cells arrange themselves into a single file, positioned slightly off the centerline.
The equilibrium shape of the cells has been described as slipper-like, with a thinner and
elongated portion of the cell away from the centerline and a slight bulge near the front
edge.

6.4. Vesicle Merging

As a final demonstration of the method the merging of two vesicles is presented. Here
two vesicles placed a small distance apart are considered. An attractive force is added to
the Navier-Stokes equations, specifically Eq. (24), in the form of F, = Hr/||r||3, where
H is a constant. The vector r represents the closest distance between interface points on
the seperate bodies. Let & be a grid point and ¢p 4(x) be the closest point to & on body
A. The vector r is equal to the spatial vector from ep 4 () to the closest point to ep4(x)
on the other body, B. The overall force scales as the seperation distance between the
two bodies squared, similar to the attractive van der Waals force between macroscopic
spherical bodies. Please note that while the force is similar to realistic forces, it was
not chosen to model any particular physical process, but simply as a means to induce
merging.

The merging of two vesicles with an initial reduced area of v = 0.96 and a viscosity
ratio of n = 5 with Bn = 0.02 is shown in Fig. 27. The attraction parameter is taken to
be H = 2x10%. The vesicles are placed in a computational domain of size [—3, 3] x [—3, 3]
with zero velocity boundary conditions. The initial shape of the vesicles was chosen to
ensure that the point of initial contact would occur at the center of the domain. After
merging the vesicle begins to relax due to the bending energy. The new reduced area is
v = 0.48 and thus the vesicle will attempt to reach a biconcave shape.

7. Conclusion and Future Work

Here a new level-set based model for the motion of lipid vesicles in general flows has
been presented. The level set method allows for general situations to be investigated,
including single and multiple-vesicle systems. To address the multiple constraints on the
fluid system a novel four-step projection method to solve for the fluid field has been devel-
oped. The additional projection step is required to enforce the surface-incompressibility
of the vesicle membrane, and can easily be added to existing code bases.

Convergence studies verify the projection operator and the overall scheme. While
only presented as first-order in time and second-order in space, higher order schemes are
possible. The dynamic behavior of a lipid vesicles under various flow conditions have
also been presented.

Improvements to the scheme presented here include improving the time-integration
scheme. Future work utilizing this scheme will include the addition of external field effect
such as electrostatic interactions. The constraint that the boundaries of the domain
remain flat will also be relaxed. This is needed to model more physiologically interesting
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Figure 26: Snapshots of the position of multiple vesicles under pressure induced Poiseuille flow with an
applied pressure gradient of Ap = —5000, Bn = 0.01, and n = 1. Due to the initial vesicle positions
being off the center line non-symmetric shapes are observed.

situations. Finally, it is planned to extend this work to three dimensions. The mechanics
of the membrane become more complicated and can be modelled using the complete
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Helfrich surface energy of a vesicle [33]. Once the new surface energy is taken into
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Figure 27: Snapshots of the merging of two vesicles under the influence of an attractive force scaling as
1/d? where d is the distance between the two vesicles. The bending number was set to Bn = 0.02 while
a viscosity ratio of n = 5 was used.

account the extension to three dimensions becomes straightforward. [33]
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