ES_APPM 446-2 Notes
Spectral Methods for Partial Differential Equations

Prof. David Chopp
Spring 2008

Contents

Introduction of Spectral Methods

Approximation Properties of Fourier Series

2.1 Basic Properties of Fourier Space L
2.2 Differentiation oL
2.3 Sobolev NOTIS o o e e e e e
2.4 Spectral Interpolation L
2.5 Computing the Pseudo-Spectral Approximation,
2.6 Gibbs Phenomenon
Fourier Methods for Partial Differential Equations
3.1 Pseudo-spectral method
3.2 Conservation Properties
3.3 The Galerkin Method
3.4 Time Discretization for Pseudo-spectral Methods
3.4.1 Stability Analysis for Time Discretization
3.4.2 Parabolic Problems.
3.5 High-mode Filtering and Cutting L
Chebyshev Method
4.1 Chebyshev Expansion L e
4.2 Differentiation of T(x) o o
4.3 Boundary Conditions and Stability Analysis oL
4.4 Adams-Bashforth Methods
4.5 Adams-Moulton Methods e
4.6 Implicit Methods o
4.7 Parabolic Partial differential equations Lo Lo
4.8 Hyperbolic Systems L
4.9 Chebyshev Tau Method e
Wavelets
5.1 Scaling functions L e
5.2 The Orthogonal Complement
5.3 Discrete Wavelet Transform e
5.4 B-Spline Multiresolution Analysis o
5.5 Biorthogonal Wavelets e
5.5.1 The Bi-orthogonal Wavelet Transform

5.6 Differentiating the B-spline wavelet functions 74

1 Introduction of Spectral Methods

This quarter we will discuss spectral methods for solving partial differential equations. Last quarter we used
finite differences to solve equations such as
Ut = Uy

Spectral methods are an alternative way to approximate spatial derivatives such as .

Spectral methods break down into two steps. First, the function u is approximated using a finite series.
Fourier series are used for periodic functions and Chebyshev expansions otherwise. Second, the finite series
approximation is explicitly differentiated.

To put this in perspective to the finite difference methods we employed last quarter, suppose that we
approximate u(z) with a quadratic polynomial with nodes at (j — 1)h, jh, and (j + 1)h. The polynomial
approximation p(x) must satisfy p(jh) = u(jh) = u;, likewise p((j£1)h) = uj+1. Solving for the coefficients,
we get

1 5 1701 .
p(z) = 575 (U541 = 2uj +uj1)2” + & [§(Uj+1 —uj1) = J(uje1 — 2u; + uj—l)] x
2

+uj — %(uﬂl —uj-1) + %(%‘H — 2uj + uj-1)

We now differentiate p(x) at @ = jh to get an approximation for u,(jh). If we do this, we get
. 1) 11 .
P(7h) = 55 (W1 = 2uj +uj—1) (Gh) + o 1 5 (w1 = wj1) = G(ujn — 2uj +uj-1)
1
= o5 (i1 = uj-1)

We recognize this as Dou; which is the central finite difference approximation for u,. Likewise, we can
compute

. 1 .
p'(h) = 25 (i = 205+ ujm1) = Do D_uj = uga(jh)
or the standard three point stencil for the second derivative.

Assume that we are solving on an interval [0,27], and N points are used to divide up the interval, so
h= QW” We saw last quarter that the truncation error for Dyu; is given by

h2
Douj = uy + g Uzac + O(h%)
where %umx is the truncation error. Note that the approximation is exact if u(x) is a quadratic polynomial.

Otherwise, the error drops like O(1/N?).
Now let us compare to a Fourier approximation. Suppose u(z) is periodic on the interval [0, 27]. We can
represent the function u(x) by a Fourier series

oo

u(x) = Z age®

l=—o0

Now suppose we take a finite number of terms, say

N
u(z) = un(zr) = Pyu(x) = Z apet®.
(=—N

The operator Py is a projection operator called the spectral Lo operator or the spectral Galerkin projector.
The derivative is then approximated by

N

Uy R UN;z(T) = Z ilage™™.
=—N

It is reasonable to now ask what the order of accuracy of this method must be. Suppose that u(z) is C™
where m may be +o00 and let r be any integer » < m. we know that the coefficients of the Fourier expansion
are given by

1 271' é
= — -y d
ar = 5 /0 u(y)e Yy

If we integrate by parts, we get

N e / T ldu iy
1 [-1 T ldu, i,
=3 [7(“(%) —u(0)) +/0 ﬁ@() dy}

1 1 [du y
= — Yy d
27 ()" /0 dx” (e Y

ThuS,
ap| > g,r

for some constant C.
To compute the error for this method, we will look for the largest error on the whole interval [0, 27].
Therefore, the error is measured by

zg{l&;{ﬁ] |uz(z) — Pyu(x)| = zgﬁ;{ﬁ] Z ilage™™®

< > tadl
z€[0,27]

A
=
"

To see this last statement, look at |, ;,r * w% dz. Therefore, the order of the approximation of u, is limited
only by the smoothness of the function u. If w happens to be C'°°, then this has what is sometimes called
infinite order accuracy, i.e. convergence is faster than O(1/N") for any r. In contrast, the finite difference
method was only able to muster O(1/N?) regardless of the smoothness of the function.
This gives us the motivation to investigate and understand spectral methods further to see what they
Lec. 1 have to offer and what the pitfalls may be.

2 Approximation Properties of Fourier Series

2.1 Basic Properties of Fourier Space

We are now going to make the example above more precise. Let La(0,27), (or Lo for short) be the space of
all complex valued square integrable periodic functions on the interval [0, 27]. Clearly Lo is a linear infinite
dimensional vector space. Also, we can define the inner product on Lo by

2m
<u,v):/0 u(z)v(x) du.

The L norm then becomes
2
ull? = () = / fu(z)[? da

The addition of the inner product means that L, is a Hilbert space. Therefore, we can express any element

in Ly as a linear combination of a linearly independent set of basis functions {¢;(z) j;’i - Recall that a
set {¢;(x) ;:ioo is called orthogonal if

<¢i7¢j>20 fOI’Z;'éj

The basis is orthonormal if also ||¢;|| = 1 for all 7.
Consider the functions {eijw}j;’i - We have

<e’Lk:E,e’Lj:E> _ / e’Lk:EefZ‘]m dr
0

27))
= / e F=0)T gy
0
2 k=3
10 otherwise

Thus, the set {e¥"}7°° is mutually orthogonal, but not orthonormal (though that could be remedied
with an appropriate scaling of 1/v/27). In fact, Fourier series theory states that the set {eijx}j;’o_ o 1s also

complete. This means that for any u € Ly, we can write

—+oo
u(z) = Z ape'™®

k=—o0

To determine the coefficients ay, we take the inner product to get

—+oo
<’U,,€ijm> _ < Z akeikm,eijw>
k=—o0

+oo
_ Z ak<eikm7eijm>
k=—o00

= 27mj
Thus,

2m
a; = i<u ey = L u(z)e % dx
Y 2m Jo

The convergence of the sum is in norm, in other words,

N
w— E akezkm
k=—N

Now we define the operator Py where

— 0, asN —0. (1)

N
Pyu = E ape™®.
k=—N

The operator Py has the property that P2 = Py, and hence Py is a projection operator. In terms of Py,
we can rewrite equation (1) as
lim ||u— Pyul||=0
N—o0
Next, note that

||Pyull? = (Pyu, Pyu)

N N
_< Z akeikm, Z Gjeijx>
k=—N j=—N
N N

Z ar Z C—Lj<eik;v7eijm>
j:

k=—N -N

N
= E apaR2m
k=N

N
=27 Y okl
k=—N

This is the finite dimensional version of Parseval’s equation

oo
lul? =27 > ax/?

k=—o0

To prove this result, we begin by using the Schwarz’ inequality |(u,v)| < ||u||||v||. We then have
l[u—v||* = (u —v,u—v)
= [l + ol = {u,v) = (v, u)
> [Jull® + [Jv]* = 2[(u,)]
> [Jull* + ([l = 2[lull |[v]]
= (lull = lvl))*

Recall that we had J\}im [lu — Pnul| = 0, so therefore we have Nlim [lul| — ||Pnul| = 0. Finally, we have

[l 2

lim ||Pyul?
N —oc0

N
lim 2w Z lax|?
N—o00
k=—N

=27 i |a;€|2

k=—o0

which proves Parseval’s equality.

Lec. 2

2.2 Differentiation

Again, let
o0
u = Z ape*e
k=—oc0
then formally we can differentiate the series to get
du =
— = ikape™®
dr Z k
k=—o0

Note that this does not mean that the series converges. In fact, we have made no assumptions about the
differentiability of the elements in L. However, it is true that the series converges if and only if u is
differentiable, and furthermore, the series converges to %.

We define the operator D to be the differentiation operator given by
o0
Du= Z ikage™™®
k=—o00
As such, D is an unbounded linear operator on Lo. This means that D is not defined for all u € Ly and it is
not true that there exists a constant C' such that

||Dul| < Clful.

The operator D is also a diagonal operator on the basis {e?**} because it maps basis elements onto multiples
of themselves (like a diagonal matrix in linear algebra).

This brings us to an important point which we came across earlier, the convergence of the derivative
series is dependent upon the smoothness of u. If we use Parseval’s equation, we get

=21 Y likal> =27 Y [kPlaxl®.

k=—0o0 k=—o0

du ||?

|3

For convergence, it is necessary that |k||agx| — 0 as |k| — +oc. Likewise for higher derivatives we get
2 oo
‘ =27 Z k2" |ag|?.

k=—oc0
For this series to converge, it now must be that k*"|ay|*> — 0 as k — +oo. Therefore, the smoother the
function w, the faster the high modes must go to zero as |k| — +oo.
Now, we want to look again at the convergence rate of ||u — Pyul|. Again using Parseval’s equation, we

have
21 Z |a;€|2
|k|>N

2T
Nz Do Nlaxf?
|k|>N

27 -
Ner Z |k ax|?
|k|>N

d"u

dx”

[l — Pyul|*

oo

2T -
< Nor Z k> |ax|?

k=—o00
d"u
dx”

1 2

S N2r

We can do the same thing for the derivatives. The spectral approximation for u, is d%PNu and we have

d . .
Uy — — Pyu = E ikage™™®
dx
|k|>N

|[ug — diPNU||2 =21 > |k[*|ax|?
x |E|>N
27 2r—217.12 2
= N2 2 N=72[k|"|a|
|k|>N

27
< s O K laxf?
|k|>N

27 > .
< v D K laxf?

k=—o0
d"u
dx”

1 2

N2(r—1)

where we have assumed u has r derivatives. In general, we have

for any ¢ <.

Note that if w is only C", then this puts a limit on the order of accuracy of the spectral approximation.
Furthermore, every derivative has one less order of accuracy.

On the other hand, suppose that u is C*°, then ||lu — Pyu|| < % H d’u || for any r. Clearly, % — 0 as

dx™
r — oo. If ||4%|| < C for some constant independent of r, then this would imply ||lu— Pyu|| = 0. In general,
d"u
dx™

e e
dzd " dxd

1
<
=

d"u
dxz”

PNU

this is not the case, so for most cases this means that ||
is determined by

H — 00 as r — o0o. Thus, the order of accuracy

This shows why it is difficult to predict the actual order of accuracy of spectral methods.

< inf L d
- r:lg,ll,... NT™a || dx"

2.3 Sobolev Norms

We can simplify the error bounds if we introduce Sobolev norms. Define

q 2

lully =

r=0

d"u
dxz”

Then, if u is C", and ¢ < r, then

lu— Pryullq < [l

c
N7
Note that ||ul|o is equivalent to the standard 2-norm we were using before.

The space of functions with ¢ derivatives is then the ¢** Sobolev space and || - ||, is the norm on that
space.

Lec. 3

2.4 Spectral Interpolation

The projection Py enables us to compute derivatives using 2N + 1 degrees of freedom. Given

oo
U= g ake“”,

k=—0o0

the projection is
N
Pyu = Z ape*®.
k=—N

The operator Py is called the spectral projection operator because (u — Pyu, Pyu) = 0.

Recall that
1 27

ay u(z)e " dg. (2)

If we are to implement this numerically, then we are normally only given u in the form of a discrete set of
points x;, say uniformly spaced x; = 22—]’\7/1' for j =0, ..., 2N — 1. The integral (2) is then approximated by
the trapezoidal rule. We would then get

2N—-1

1 7ikI]‘
Uk N oo j;o u(z;)e (3)

There is a problem with this approximation. When k& = N, then

eiNen _ JNZEN _

eiTrN _ (_1)N _ e—iﬂ'N _ e—iNLIJN'

Thus, on the grid {z,}, the modes ¢¥® and e~*N* cannot be distinguished. In order to get a symmetric
set of coefficients, we will assign half to j = N and half to j = —N. We thus rewrite the approximation (3)
as

where

Note that we are using only 2N points {uj}?zvo_l to compute 2N + 1 values {dj}é-vsz. If this is to be

an invertible process, we need to reconcile the difference. In fact, {a; };if N is only 2N values because as
observed above, a N =a-N.
Now we define Py to be the projection

N
Pyu = E ape'r®.
k=—N

The operator Py is called the spectral interpolation operator and Pyu is called the spectral interpolant or
the pseudo-spectral approzimation. The values {z;} are called the collocation points. Similar to the operator
Py, the derivative approximation is obtained by the sum

d N
— Pyu = apike*?.
dz- N Z k
k=—N
Note too, that this sum can be evaluated at any z, not just at the collocation points.
What we need to check now is, how well does Pyu approximate u. Before we can show this, we will need
a simple lemma.

Lemma 1

2N—-1 2N _
Z ek _ 09711 ¢ # 1
2N =1

k=0
Proof 1
This is obvious if 6 = 1. If 6 # 1, let S = ZQN 1 9%, then we get
2N -1
0S = Z gF+1
k=0

2N
:§ ok
k=1
2N -1

=N —14) o
k=0
=N -1+8
Solving for S gives the result.

Now let’s evaluate]5Nu at z;:

N .
Pyu(z;) = Y axe’™™
N

= Z dkelk(%)

A (i)
—ikx ik(22
[2]\7% Z Uge f] e\~

1 AR :
= Uy Z —e_ik(%)eik(%)

I _
M- |

2N D o
LS N
_ L ik(j—o)m/N
2N = " k:Z—N o
9N—1 2N
1 1 . k=N
- z@—f)w/zv)
w5 a
aN—-1 [2N-1
1 L | L L
_ i(j—0)m /N - —i(j—O)m i(j—0)m
o 2 | X () T (et
1 2N—-1 B 2N—-1 k
- —i(j—é)ﬂ etd—0Om/N e~ iG—Om i2(j—0)m
5 uy e —i— l1+e
=0 L k 1
LS IN—1 i
= o R R (i(G— ewzv) te 1
£=0 L k=1
2N—-1 M 2N—-1
I I emili=0m (iG— ewzv)’“
2 £=0 L k=0

Now note that

2N-1 k elG—Om/NY2N _y
Z (ei(j—é)w/N> _ {W J#L
k=0 2N j=t
_ 0 j#EL
OIN j=¢
Thus,
. AR N
PNu(xj) = ﬁ Z ’U,ge_z(]_g)ﬂQNéj[= Uj.
=0

This shows that Pyu(z;) = u(x;) at the collocation points and can be used to interpolate u. Because
of this, Pyu is sometimes called the Fourier interpolant of u. Note that this interpolation is not unique
because the nodes e**N* cannot be distinguished on the grid {z;}. However, it is unique with the additional
restriction that ay = a_y.

The next task is to compare Pyu to Pyu, which is a good approximation to u, between the collocation
points. It is not true that Pyu = Pyu. To see this, let v = e!@N+77 for some 0 < r < N. For this u,
Prnu = 0. On the other hand,
i2N+r)(254) _ oirim/N irz;

u(z;) =e =e

Thus, the mode e!?N+7)% cannot be resolved by the grid and instead is seen as a lower order frequency. This
problem of high frequency modes being represented on the grid as low frequency modes is called aliasing.
In the pseudo-spectral method, the highest frequency that can be resolved by the grid is e?V®i where
there are two gridpoints per wavelength. Of course, the modes e'N% and e~*V®i cannot be distinguished.
This highlights the key difference between spectral and pseudo-spectral approximations. For spectral
methods, the high frequency modes vanish while for pseudo-spectral approximations they alias to lower
frequency modes.
We can use aliasing to get a relationship between the Fourier coefficients and the coefficients of Pyu. Let

[e'S)
E ag e’Lk:E

k=—oc0

The pseudo-spectral approximation is

N
PNu = E dkezkm

k=—N
where
2N—-1
~ 1 1 7ikm]‘
ap = Wa Z uje
7=0
2N—-1 00
1 1 il —ikx;
= Fi J
2N ¢ <Z—Z e)
[e%S) 2N—-1
_ i(l—k)w;
e 2N x Z e
[e'S) 2N—-1
11 x
_ L1 i(l—k)(E3)
Z ON ! =

10

Lec. 4

where

et(l—k)2m _ P
U = Sy e TRTN o
ke 2N pilt—k)m/N _ |

0 ei(@—k)ﬂ'/N 75 1
= ON ei(@—k)ﬂ'/N =1

Now, e!=R)7/N — 1 if and only if ¢ — k = 2rN for some integer r. In other words, £ = k + 2rN. Thus,

1 oo
ap = — g Qk42rN-
Ck

T=—00

If w is smooth, then all the terms a2,y are small except for » = 0. This fact allows us to bound the
error of the pseudo-spectral approximation by

Cllullp

||u_PNqu S NpP—a

where p, g are integers, p > 0, 0 < ¢ < p.

2.5 Computing the Pseudo-Spectral Approximation

In practice, if we are given u on the collocation points, we compute the pseudo-spectral approximation by
the formula
A

a; 2N c; k:O ure) or j)) ()

Then to compute the approximation to the r*" derivative, we use
N

> (ig) ;e

T=Tp j=—N

PNU

dz”

Notice that equation (4) requires O(N?) computations in order to compute all the ;. Compare this to
finite difference approximations which are O(N). So we take a computational cost hit when using pseudo-
spectral methods. The impact can be reduced for particular values of N, say N = 2™ for some integer m.
Then the number of operations can be reduced to O(N log N) using the Fast Fourier Transform or FFT.
The idea is to organize the order of computing the terms in the sums. We won’t discuss this any further in
this course.

An alternative approach to computing the derivatives
values uy. Let

d"u
dz"

is to treat it as a linear function of the

T=Tf

(r)

() Uqg
U=U0=| : | andU" =

U2N-1 “g\){—l

(r)

where u;, ’ is the pseudo-spectral approximation of d

dx"

D so that U™ = DU(=1) = D"U. The operator D is called the pseudo-spectral differentiation matrix.

u‘wzmk. We want to then write a differential operator

11

There are a couple ways we can derive the entries of the matrix D. One way is to compute D on the unit
vectors, namely Ey, ..., Eony_1 where Ej, = §;;. Let U = Ej, then

2N—-1
11
a; = —— — Uge
J 2N Cj
k=0

—ijTy

2N—-1

11 y
- = 51 o0k
2N ¢ kz_; hee
Lie*ijw
2N Cj

So,

N
Pyu(z) = Z a;e'

—N

N

T
Jj=
_ E 11 e—ijmgeij;ﬂ
. 2N Cj
j=—N

_ 1 1 ..
DPyu(z) = Z ij—— —e (@)
J

o 1 1 ..
DPN’U,(JJ;C) = Z ij__‘elﬂ(bc*mz)

A more concise formula for the entries of D can be obtained by writing down trigonometric polynomials
gr which have the property that gi(z¢) = 0x¢. For example, let

grx(z) = 1 sin(N(x — ay)) cot((x — x)/2)

2N
Clearly, gi(x¢) = 0ge. The matrix D can then be constructed by computing
d
—-9k(@) = Djy,

T=2;

Thus, the matrix D has the entries

Dji = {%(_WM cot((z; —ax)/2) j#k

J=k
Lec. 5
The operator D as computed above has some important properties that we will use later.
1. D is a real skew-symmetric matrix, i.e. DT = —D. To see this, we have
1 .
Dij = 5(= 1)+ cotl(ax — 2)/2)
1 .
B 5(—1)”'“(— cot((zj — zx)/2))

Note that the same is true if we were to define D in terms of finite differences on a periodic function.

12

2. D has eigenvalues 0, 44, +2i, ..., (N — 1)i, 0. Note that if u = e**, then Du = ike’*® = iku

and if k£ < N, the spectral approximation is exact, hence {eikm}kN___l(N-_1) are eigenvectors. The last
+iNz

eigenvector is uy = (—1)* which corresponds to e (and the two modes cannot be distinguished).
Applying D to this mode gives 0. This shows that || D] = O(N).

3. Note that if the original function U has real data, then ar = a_p. We can use this to note that we
need only compute ay, for k =0, ..., N and the reverse process means the sum need only be computed
using half the sum (ignoring the imaginary part). There are specialized FFT routines which do this
job for you. However, using the matrix method doesn’t allow you to take advantage of this fact.

4. In practical terms, we do not actually build the matrix D, but do the equivalent using the FFT. Given
U, we apply the FFT to get a new vector A which contains the computed Fourier coefficients a_ p,
A—N+1, -+, any—1. Now we must convert this into the corresponding pseudo-spectral approximation to
get

ar = ag, fork=—-N+1,...,N—1

_ _ 1
a_N = anN = §G_N

Next, we compute the derivative of Pyu

N
%PNu: % Z ape’t®
k=—N
N N
Z Jkeikm = Z ikdkeilm
k=—N k=—N

where the d, are the pseudo-spectral coefficients for the derivative. Note that in order to apply the
inverse FFT, we must recombine d_x and d_pn to get

d_-y =dy +d_y =iNay —iNa_n =0
Therefore, the vector of data that we pass back through the inverse Fourier transform is
[0 Z(—N + 1)G_N+1 s ikak ce ’L(N — 1)@]\[_1]

It is important to note that the first entry is not —iNa_pn as might be guessed.

2.6 Gibbs Phenomenon

Suppose u(z) is not smooth. For example, let u be defined by

1 zy<z<2
u(x) = .
0 otherwise

Notice that our results on convergence assumed at least a C° function, so those results are not valid.
Fourier theory states, with some additional restrictions, that Pyu(z1) — (u(zf) 4+ u(z7)) as N — oo
where u(ac{t) are the one-sided limits of u at x;1. However, convergence is not uniform near the discontinuity.

For any A, one can show
uy (24 57) ~ glul™) + a4 fue®) = e ISION

13

Lec. 6

12

0.4r q

0.2 4

Figure 1: Example of Gibbs phenomemon overshoot.

where \
1 .
Si(A) = —/ sin(m) .
T Jo n
What this shows is that if v has a jump discontinuity, then the points which are O(1/N) away from the
discontinuity differ from the mean by O(1). Note that Si(A) has a maximum at A\ = 7 and one can show
that

un (x + NL+§> —u(z®) ~ (u(z) — u(z7))(0.09)

This is known as the 9% Gibbs overshoot. The solution will look like Figure 1. These oscillations are global.
The utility of spectral methods for problems with jump discontinuities is the subject of research.

3 Fourier Methods for Partial Differential Equations

Let us return to partial differential equations and make use of the spectral approximation. Consider a partial
differential equation of the form

ur = Su
u(z,0) = up(x)

where S is a spatial differential operator and u is assumed to be periodic on [0,27]. Examples of such
equations are

e Baby wave equation: S = aﬁ U = Uy
T

x?

e Burger’s equation: S = uai, Up = Uy

. 2
e Heat equation: S = %, Uy = Uga

There are two methods for solving such a partial differential equation using spectral methods. Pseudo-
spectral methods solve the equation using % in real space, and Galerkin spectral methods compute uy by
evolving the coefficients in Fourier space.

14

3.1 Pseudo-spectral method

We introduce collocation points xp = 22—17\’[k:, for k=0, ..., 2N — 1 and let ux = u(xx). We wish to solve for
ug(t). Let 4 be the trigonometric polynomial which interpolates uy. The approximate equation is then

duy, .
e S,

The procedure is then
1. Compute uny = PNU.
2. Solve in time the differential equation

6/‘ - R . ~
% = PnS(an), an(x,0) = Pyug(z)

Note that it is not true that 4y = Pyu for t > 0. If we write the original equation and apply Py to it
we get

This is different from

ot
Pryu(z,0) = Pyuo(z)

In the first case, we transform the entire differential equation into Fourier space where the equation is then
solved before transforming the result back into real space. This is called a Galerkin method. In the second
case, we apply the differential equation to the spectral approximation in real space. The two methods are
different because they generate error in different ways. The first method has an additional error due to the
approximation of the partial differential equation itself.

In the pseudo-spectral method, we must solve for ug(t), the value of u at the collocation points. The
Fourier transform is used only for computing derivatives.

Example 3.1:

Consider the baby wave equation

Ut = Uy

u(z,0) = up(x)

The easiest way to express the algorithm is in terms of the derivative operator D. We can express D in
matrix form, and let @ (0) = Pyu(zg,0). Then the equation is solved by computing the equation

o - .
gU = DU
where ~
o
U=| :
UaN—1

The method of stepping in time is not specified, but any high order method could be used.
To illustrate, let us do one step in time using Euler’s method. Compute @,(0) = Pyu(wg,0), and express
as Up. At the same time, compute 3 2 Uo = DU,. Now advance U, by

1

— (U, = U.) = DU
7 (U1 = Uo) = DUy

Uy = (I + AtD)U,

3.2 Conservation Properties

Consider the partial differential equation u; = u,, and multiply by u to get

2 2 2m
10 1
/ uutdxz/ uumd:vz/ ——(u?)dr = u?

At the same time, we have

Therefore, we have shown
d 2
— u?dr =0
In fact, this is the conservation of energy property where fo% u? dx represents the energy in the system.

How Well does the pseudo-spectral method conserve energy? The discrete analog of fozﬂ u? dx is given by

ZfNO ' %2, Define U = [tgy - -, UaN— 1]T to be the vector of data at the collocation points. The pseudospec-
tral method can then be written as dtU DU where D is the pseudospectral differentiation matrix, and we
see that

d ~~ _d o~ o
—UTU =20"—U =20"DU.
dt dt

Now, UTDU is a scalar, so it is equal to its transpose, hence
UTDU = (UTDU)! =0"DTU = -UT DU
where recall that D is skew symmetric. Therefore, UTDU = 0 and hence

- d
UU—
d:_

&|&.

One might be led to conclude that this implies the pseudo-spectral method is unconditionally stable.
However, we have assumed exact integration in time. Stability of the full numerical method will depend on
Lec. 7 the choice of time integration.
The next level of complication would be to add variable coefficients. Consider the equation

ur = b(x)uy
u(z,0) = up(x)

In matrix format, this becomes

where D is the differentiation matrix and

0 ' a(zn)

Again, if a(z) > 0, then we have a conservation of energy:
A/ AN _ LN o0
aa\“a") "~ 8t’au u’atau
(2w LN/ 10
N 8t’au u’aat
(21N
“\“r " “ Bz
(0w N T
“\az" oz
Ju
=2R
(3
27
—23%/ u—dw

o 2|27
= [uP" =0
Likewise, in the discrete case,
1d T O 1/~ 00
§d_<UA U>_2<8’A U>+2<U,A 2
:1<ADUA 10y + %(ﬁ,A‘UlDU)
:UTDU:O

We can also apply this technique to the heat equation to see that it properly dissipates energy. Consider
the equatiion

For the analytic case, we have

For the discrete case, we have %—[t] = D20, and hence

=20(-DTD)U
-2 (DU)T DU
-9 <Dﬁ,Dﬁ>.

This shows that the pseudospectral method will dissipate at the same rate as the analytic equation.
Next, let us consider a non-linear problem such as Burger’s equation:

1
Up = Uy = §(u2)m
We rewrite this as
(u), + ruu
Ut = ;U)z 5 Uty
T3 3

Given u defined on the collocation points, compute the spectral interpolants @y = Pyu and oy = Pyu?.
We then approximate the equation as

0 . 10 . n 1 0.
— Uk = = —0 —Up—=—1U
ot " 30z Nz:mk 3 " ox Nz:mk
In matrix form, this method becomes
d~ 1 ~ 1 ~
—U = -DAU + -ADU 5
dt 3 + 3 5)
where
U 0
A = oL .
0 UaN—1
Again, we get a conserved quantity in (u,u). From the exact equation, we get

d
E(u,u) = 2(u, uy)

= 2(u, uu,)

27
= 2/ w?u, dx
0

2 27 8 5
2w
=0

Thus, 4 (u,u) = 0.

18

If we do the same thing using equation (5), we get
- d-\" -
—U'U=2(-U) U
dt <dt >

1.~ 1. -\T.
=2(=DAU +-ADU | U
3 3
2

= JUT(DTAT +ATDT)T
_ ;UT(—DA + (DA
- ;(UT(DA)TU — 0T (DAYD)
But, UT(DA)TU = (UT(DA)TU)T = UT(DA)U. Thus,
%UTU - ;ajT(DA)U _ T (DAY = 0.

The fact that writing the method in this forms conserves the energy is why writing the equation in the form
of equation (5) is done.

3.3 The Galerkin Method

The method we have described so far works with approximate function values. In other words, the approxi-
mations are all in real-space. The Galerkin method is a method where the approximation is done in Fourier
space.

Consider the equation

ou
E—Su

u(z,0) = up(x)

where S is some differential operator. For fixed IV, compute the Fourier coefficients a; where

N
u(z) = Pyu = Z ape’™®
k=—N

Note that here we are computing the aj via the exact formula

1 2w

ay uo(z)e”* da.

= % .
If the integral is done numerically, and ug(x) is given explicitly, use a maximally accurate method to compute
ax, so as to avoid initial aliasing problems. We then have u(z) =~ Pyu(z) = Efcvsz ap(t)e=.

Next, we obtain ordinary differential equations for each of the aj by substituting Pyu into %—1; = Su. We
get an equation of the form

N N N
Z Eak(t)eikm =5 Z ay(t)e™ = Z ck(a—n(t), ..., an(t), t)ax(t)e™
k=—N k=—N k=—N
for some functions ci(a_n(t),...,an(t),t) which are independent of z and may depend non-linearly on the
ar(t)’s. We then get a system of differential equations of the form
d
Eak(t):ck(a_N(t),...,aN(t),t) fork=-N,...,N

19

Lec. 8

For example, consider the baby wave equation u; = u, and assume u ~ Pyu(z,t) = ZngN ap(t)e=.
Plugging this approximation into the differential equation gives

N N

Z aak(t)elkx = Z ikay (t)e'™®.

k=—N k=—N

Thus, we got the evolution equation for the coefficients

d
Eak(t) = ikay(t), fork=—-N,..., N.

The Galerkin method is to compute these individual ordinary differential equations and reconstruct the
solution u(z,t) from the coefficients only when necessary.

The Galerkin method works well for linear problems, the difficulty is when the differential operator is
not linear, or there are variable coefficients. For example, consider the equation

ur = b(x)u,

Suppose b(z) = >0 b;je® and let Pyu =Y p __ are’*® where aj, =0 for k > N. We then get

j=—00
i %ak(t)eikx = < i bjeij””> (i ikakeikm>

k=—o00 k=—oc0 k=—o00
)
— E Ckezkm
k=—o0
where
[e%S) N
C = E ijajbk,j = E ijaj(t)bk,j.
j=—00 j=—N

The Galerkin method now becomes a coupled linear system of ordinary differential equations given by
d iy
() = Z ija;(t)br—;

For another example, consider the Burger’s equation,
Up = Ully.

Following the same algebra as above, we see that we get the system of ordinary differential equations

d N
o)=Y iyt ()

=—N

Now we have a non-linear coupled system of ordinary differential equations which further complicates the
computation of the solution. These examples show how products become convolutions for the Galerkin
method.

We now will formalize the Galerkin method. For generality, let ¢, = € be an orthogonal basis set.

Approximate
N

Pnu = Z ardr ()

k=—N

20

Lec. 9

and assume we wish to solve the equation
uy = Su.

The Galerkin procedure requires the residual, given by

0
gPN’u — SPNU

to be in the orthogonal complement of the space spanned by the basis vectors {¢; ;Lf - For this to be
true, it must be that

0
<(]5j, EPNU — SPNU> =0

d

Clearly, this is the method we described above where we found the equations for the time evolution of the
Fourier coefficients. In other words, we are solving the equation

8PN’U,
ot

= SPNU

where Py is the orthogonal spectral projection.
For summary purposes, we present a comparison between Galerkin and Pseudo-spectral methods.

e For non-linear or non-constant coefficient problems, the Galerkin method is more expensive because
products are evaluated as convolutions.

e There are applications, such as in turbulence, where the Fourier modes are as important as the real
function values, so Galerkin methods make sense in that context.

e Pseudo-spectral methods work in real space and products are handled naturally.

e Galerkin methods project high frequency modes to zero while Pseudo-spectral methods alias high
frequencies to lower frequencies.

3.4 Time Discretization for Pseudo-spectral Methods

Suppose we have the partial differential equation
uy = Su, u(z,0) = ug(x)

where again, S is a possibly non-linear differential operator. So far, we have discussed only how to handle
the right hand side. Now we will discuss how to advance in time.

When considering the time stepping method, it is important to understand the relative error introduced
by the time step method compared to the error in the spatial direction. If a time accurate solution is required,
then one must be careful to take small time steps or the time error can dominate the total error and negate
the advantage of using spectral methods.

On the other hand, if a steady state solution is sought, or the time evolution is slow compared to the
spatial behavior, the larger time steps are appropriate.

21

3.4.1 Stability Analysis for Time Discretization

Consider the equation
Ut = Uy

If we again write
ug

U =
U2N -1

where ur = u(zy), then the pseudo-spectral approximation to this equation is

d
—U =DU
dt

Let U™ = U(nAt). The most general time discretization method can be written as
T T
D U = Bip (DU
j=-r j==r

where p;(D) is a polynomial in D.
If we take a4 = %, Bo = 1, then we get the Leap-Frog method:

Un+1 _ Un—l

=DU"
2At
You may recall from last quarter that we computed
UnJrl _ Unfl
— = DU"4 O(A#?
oAl +OAr)

Now let us discuss the stability. Consider the simpler difference equation

XT: ;U™ = DU™

Jj=-—r
We look for solutions of the form U™ = 2"UY where z is a scalar.

Z ozjz"HUO = Dz"U°

j=—r

r

E o2’ 2"U° = D2"U°
j=—r

Thus, U™ = 2"U° must be an eigenvector of D. Suppose D = PAP~! where A is the diagonal matrix
with the eigenvalues of D, then let W™ = P~1U" = z"P~1U°. We thus have a decoupled equation of the
form

i oejzj W™ = AW"
j=-—r

q(z)W" = AW"
Therefore, we have a system of decoupled equations of the form

q(2)w = Aww;

22

For each equation, we solve for z; which will depend on Ag.
Recall that for stability, we require

max |zi| <14 aAt
0<k<2N-1
which is sufficient to allow bounded growth, hence stability. Note here that a is a constant which is inde-
pendent of the choice of N and At.
This condition puts a cap on the growth of [IW™|. But P depends on N through D, can we make the same
conclusion? The answer is yes, because D is a normal matrix (D*D = DD*). Normal matrices have the
property that they can be diagonalized by unitary matrices. This means that P is unitary, and consequently,

W™ l2 = ||P~HU |2 = [[U"]]

Therefore, it is sufficient to show the bound on the growth of the z;’s to prove stability.
Let us apply this technique to the Leap-Frog method for the equation u; = u,. The method is

UnJrl _ Unfl
—— =DU"
2At
Let U™ = z"U° and plug into the equation to get
ZnJrlUO _ anlUO _ DanO

2At

1
(22 = 1)U° = 2DU°

2At
Let U° be an eigenvector of D with eigenvalue)\, then we have

1
2At

Recall that A = +if for some integer ¢, 0 < ¢ < N — 1 and so we get

(22 —1) = \z

22 —1=+2Atilz

Solving for z gives
z = FilAt £ /1 — (2A?

If we assume 1 — £2At? > 0, then
|22 = (1 - CAP) + 2 + A2 =1

Therefore, if At < \T}\ for each £ = +1,..., =N — 1, then we have stability. The stability limit is then

1
At < .
“N-1
Recall that for the collocation points, Az = 22—]’\7, = & and note that for large IV, % ~ ﬁ so that
1 1

_A:z:
N-1 N =

Thus, we have stability if At < %Aw. This is smaller than the stability limit for the corresponding finite
difference approximation.
We note here without proof, that solving the corresponding hyperbolic system of equations

U, = AU,

23

where A is an m X m matrix, then the stability limit is

1

At < oo
(N = 1DAnax

where Apax is the largest eigenvalue of A in absolute value.
By contrast, we can also analyze Euler’s method given by

Urtt = U™ + AtDU"
If we assume U™ = z"UY, then we get
20 = 2"U° 4 AtD2"U°
(z—1) = Atit
z =14 Atil
2| = 1+ Are?
< V14 20At + 2A¢2

= /(I + (AL)?
=1+ (At

Lec. 10 Therefore, |zmax| < 1+ (N — 1)At. For stability, we then need At = O () which is very restrictive.
We can also study an implicit method such as Crank-Nicolson:

grtt —pgn 1
- - _—-D U’n,+1 Un
At PO AU
Again, set U™ = 2"U" to get

z—1_4, 1 0
— U == 1)D
AtU 2(z+)DU

If U° is an eigenvector of D with eigenvalue i/, then we get

1 1
At At
z<1—7i€> :1+7i€
1+ 4tit
2= —7"3—
1— &t
and hence,
2P = 1+ 2A202
[ERYNEE
=1

Therefore, Crank-Nicolson is unconditionally stable. This is not an endorsement for large steps however,
because there is still the temporal error that is to be considered.
The implementation of Crank-Nicolson is not trivial. The matrix equation looks like

(I — %D) gntl = (I+ %D) un

24

This time, the matrix on the left is a full matriz. It is not a crisis, however, because if F' is the FF'T operator,
then FDF~! is a diagonal matrix, hence D = F~'AF. Substituting into the equation, we get

F1 (1 - %A) Fynrtl = p1 (I + %A) FU"
(I — %A) FUnt! = (I + %A) FU™
-1
gntt = p1 (1 - %A) (I+ %A) FU"

Note that this inversion of D by F' does not help in the case of variable coefficient problems. In that case,
D must be inverted as a full matrix which is expensive.

Another common high-order time stepping scheme is the Runge-Kutta class of methods. We have already
seen that the first order Runge-Kutta class method, i.e. Euler’s method, is not a good choice for time
stepping. Let us try the second order Runge-Kutta method. The method is

1
v =y 4+ 5AwUn

U® =um+ Atpu™m)
Un+1 _ U(2)

In this case,

UnJrl — U(2)
= (U™ + AtDUW)

1
=U"+ AtD (U" + §AtDU”)
1
= (I + AtD + §At2D2) un
We assume U™ = z"U°, and plug in to get

1
T = [T+ AtD + §At2D2> 2"UY

z= (1 + Atil + %At2(i£)2)
1 242
= (1 AP) +iAu
1 2
|2 = (1 - §At2€2> + At?¢?
) 1

— At20% + ZA## + At??
_ 1 4 p4
=1+ 4At V4

Thus, as for Euler’s method, all modes grow, but can be made weakly stable.
The third and fourth order Runge-Kutta methods are better choices. If we are solving the equation

d
—U =DU
dt

25

with the third order Runge-Kutta method, we get
v =gnr
UM =U" + a1 AtDU™
U® =U"+ a;AtDUM
UB) =U" + azAtDU®)
Un+1 _ U(S)
1

where a; = 3, as = %, and ag = 1.
To analyze this method, we again assume U™ = 2"U° and combine all the steps to get

U = ny°
UM =2"U° + a0y AtD2"U°
U = 2"U° + au AtD(z"U° + oy AtD2"U°)
20 = gt = UG = U0 4 az AtD[2"U° + ap AtD(2"U° + ay AtD2"U°)]
Thus, we get
2UY = [I + azAtD + azazAt*D? + a3 AP D3UC = AU
Note that A has the same eigenvectors as D, and the eigenvalues of A are
(1 + azAtil — a3 At 1% — ajanazAt3il3) for = —N —1,...,N — 1.
Thus, we must have
2 =1 — asas A0 + i(az At — ayanaz At33)
|22 = (1 — agaz At 0?)? + (a3 At — ajagaz AtP13)?
=1 — 20003 A12 02 + 032 ALY + Q2 A2 — 201003 A 4+ 0F + adai At (O
=1- %At‘lﬁ‘l + %Atﬁeﬁ
2

If we want |z|* < 1, then we get

1 1
1— —At* + A% <1
12 * 36 =

iAt%Q < 1

36 12

3

2

A2 < 7
3
Ar< V3

=

Therefore, the stability requirement is At < (N—‘/f’l)

Fourth order Runge-Kutta can also used. This is the same as third order Runge-Kutta except there are
four stages.

UM =U" + oy AtDU™

U® =U" + apAtDUM

U® =U" + azAtDU®?

U = U™ + auAtDU®)
yntl — @)

26

, Qg = %, and a4 = 1. In this case, the stability bound is

2v/2 2.8
N-1 N-1
For non-linear problems, the Runge-Kutta methods tend to give only second order accuracy but are also
Lec. 11 more robust than the Leap-Frog method.

where oy = %, g =

3.4.2 Parabolic Problems
Next, let us look at the stability of parabolic problems. Consider the heat equation
Ut = Ugg
u(z,0) = up(x)
The discrete pseudo-spectral approximation is

dU
— = DU
dt

Clearly, the eigenvalues of D? are O(N?), so we have to expect a more restrictive time step for explicit
methods. Let us first try Euler’s method.

Uttt =un + AtD*U"
Plug in U™ = 2"U" to get
U0 = U + AtD?2"U°
z =1+ At(il)?
=1— At?
Thus,
I1—At? <1
—1<1-At? <1

—2< —AH? <0

2
At < 72
So we must have At < ﬁ
For a larger time step, we could try the Crank-Nicolson method

1 1
E(Un+1 _ Un) — §D2(Un+l 4 U’n,)

Plugging in U™ = z"U°, we get
1 1

_n+10_nO:_2n+lO nyrr0
At(z U”—z"0"%) 2D(z U”+2"U")

2 (I - %DQ) Ul = (I + %DQ) U

z (1 — %(Mf) = (1 + %(Mf)

At p2

Zzl—ff

t

1+ 582
<1

27

Thus, Crank-Nicolson is again unconditionally stable.

Backward Euler is also a good choice for a method if steady state solutions are desired, but not if a time
accurate solution is needed.

UnJrl _ Un B D2Un+1
At B

This method is also unconditionally stable.

While Crank-Nicolson and Backward Euler are unconditionally stable, they also will require inversion of
a full matrix. The diagonalization of D? using the FFT operator F' can again be employed for the linear
constant coefficient problem.

By contrast, The Leap Frog method is not a good choice for parabolic problems (as we also saw for finite

differences). Plugging U™ = z"U" into the equation becomes

UnJrl _ Unfl

_ D2Un
2At
ZnJrlUO _ anlUO
_ D2 nUO
2AL ?

(22 — 1) = 2At2(—1?)
224 2A072—1=0
O 2AUP £ VAN + 4
2
= —At? £/1 4 A4

z

Hence,
2= —At? — 1+ At24 < —1,

and therefore, Leap Frog is not stable.
As for finite differences, we can also apply semi-implicit methods to avoid the time step restrictions of
some equations. For example, consider an equation of the form

Ut = Ugy + N(u)

where N(u) = uu,, or some other type of reaction term. We can combine Crank-Nicolson for the parabolic
terms and use an explicit multistep method for the non-linear term.
Un+1 —_yn
At

1 n n 3 n 1 n—
= ;DU +U") + (EN(U)= 5NW 1))

The resulting matrix on the left hand side can be inverted using the FFT operator as before.

3.5 High-mode Filtering and Cutting

When using a pseudo-spectral method for a partial differential equation, you are approximating u by a
partial Fourier sum.

If the function u is not well resolved, then aliasing can cause high mode oscillations to appear. In addition,
many non-linear problems have instabilities causing the growth of high mode oscillations. One way to control
high mode oscillations is to use filtering.

Filtering is an adjustment of the wave numbers. Suppose that

N

1o) .
—unN = E ikage™™®
ox

k=—N

28

then we instead use
N

_ ; ikx
8_xUN = Z ik f(k)are
k=—N
The function f(k) is called a filter function. Examples of filter functions are

f(k:)_{l i or f(k)‘{e_a(lkl_'k()y] > ko

0 otherwise 1 |k] < ko

A high decay rate can be achieved with the filter function

1 k| < ko

Rewriting

_ = (k=Ko *
e—allkl—ko)t _ —a (¥

we can see that for wave mode £ = N, the amount that the highest mode is cut is

a(35) e
e \N-ko) —e7@

The parameters & and vy where kg ~ vN, v < 1 are tunable according to the problem.
Obviously, filters will reduce the accuracy of the spectral approximation, but it is essential for solving
Lec. 12 problems which involve jump discontinuities or are highly non-linear with rapid spatial variation.
One common filter when using Leap-Frog is to use

Flk) = sink(iﬁt)

To see how to use such a filter function, consider the wave equation
Ut = Uy

and the Leap-Frog approximation
Uttt —unt =2AtDU™

The normal algorithm proceeds as follows. Given

U
Uu" = : ,
U2N -1
1. Compute the pseudo-spectral approximation

2N-1
A = L1 E uje—ikwj
2N ¢p, 4
J=0

2. Compute the derivative approximation u,

29

3. Evaluate the approximate derivative at the collocation points

N

= E ikdkelkzj

T=Tj; g=—N

Q

Ug ()

Now, let us look at the expression 2AtDU. The j*" element of this expression is

N
2 Z ik Ataget s
k=—N

Now we use the filter function to replace this with

N
2) ikAtf(k)age
k=—N

N .
=2} ikAt%dke””f
k=—N
N
=2) isin(kAt)age’s
k=—N

Let us now see where this filter function comes from. Recall that the time step restrictions on Leap-Frog
are determined by the high wave modes corresponding to the largest eigenvalues of D. Note that an exact
solution of u; = g is u(z,t) = @+t and if we apply Leap-Frog to this solution, we get

1 1

- 4 AD —ult — AD)) = —— ik(z+t+AL) _ ik(z+t—At)
S (ult + A0 —ult — At = (e ‘)

ﬁ(eikAt o efikAt)eik(acht)

= ﬁ(% sin(kAt))et* @+t
isin(AktAt) Sk)

- ikismk(Z?t) u(t)

On the other hand, the pseudo-spectral method would give

1 N .~
g (At + At) =t — At) = ika(t)

This shows that f(k) = Sir;g(ZAtt) is a good choice for the filter function.

If we look at the replacement for 2AtDU, we get

N
2) isin(kAt)age™ .
k=—N

We see that we have replaced the large eigenvalues of D by eigenvalues of size 1. This means that we get
unconditional stability while maintaining spectral accuracy.
Applying this to the heat equation, we replace —k2ay, with — sin(k2At)ax.

30

4 Chebyshev Method

One drawback to the pseudo-spectral method is that it assumes a periodic solution. We will now expand our
class of possible functions to those which are not assumed to be periodic. To do this, we will do expansions
in Chebyshev polynomials.

We begin the discussion of Chebyshev polynomials with a discussion of cosine series. Let g(#) be defined
for 0 < 6 < . Now define f(#) on the interval 0 < 6 < 27 by

[0 = > ae
k=—o0
where
1 27)
ap = — / f(0)e~™*? dp
2T 0
1 ropm) 2)
=5 / g(0)e~k? —|—/ g(2m — 0)e~ 0 dﬁ}
LJO ™
1 [/7 , 0 ,
— % / g(e)e—zke _/ g(e)e—zk(%r—e) d9:|
LJO ™
- / g(6)(e™? + &) do}
0

™

_ ! /0 9(6) cos(k8) 6

Lec. 13 From this we can see that ar = a_g, and we get
- /0 ! g(0) cos(k0) do) et
/077 9(0) cos(k6) dé‘) ef 4 % /077 g(0)do + i (% /077 g(0) cos(k0) d9> ethf
k=1
i g(0)do + ki (% /OTr g(0) cos(k0) db‘) (™0 + e~ k?)
=1

L[o ,é (2 [a0 costi) a0 costi)

I
M-

7 N 7 N\
3=

I
hg

Thus,
g(0) = ax cos(k0)
k=0
where) .
ap = — g(0) cos(k0) do
CkT Jo

31

and

1 k#0
C =
2 k=0

Recall that convergence of the Fourier series for f depended upon the smoothness of f. In turn, the
smoothness of f depends upon both the smoothness of g and also the number of odd derivatives that match
at 6 = 7. To see this, consider

- %g’(@) sin(kd) do

%g"(@) cos(k6) df

If ¢’(0) = ¢’(7) = 0, then

= —13—49/"(9) cos(k@) . + /077 %g(w) (0) cos(k0) df
1
-0 ()
If ¢’(0) # ¢'(m), then X '
o~ (1) - o0) = 0 ()

This is true regardless of how smooth ¢ is. If integration by parts continues, we get terms of the form

cos(k6) ™
g(l)(H)kl%l)‘ ., £=1,3,5,...
0

which will be zero only if ¢g(©(0) = g()(r) =0, for £ =1, 3, 5, ...and this does not vanish otherwise.
Thus, if g does not match derivatives at the boundary, we will see Gibbs phenomenon and high mode
oscillations due to the non-smooth behavior of the function g at the boundary.
4.1 Chebyshev Expansion
Now let f(x) be a function defined on [—1,1] and consider the mapping « = cos(#), 0 < § < 7 and let
9(0) = f(cos(9))

Now, g(6) is defined on [0, 7] and
g'(0) = f'(cos(6))(—sin(6))

32

so ¢’(0) = ¢/(x) = 0. From this, we claim that g has a cosine expansion. Furthermore, g2*t1)(0) =
gP* D (r) =0 forall £ =0, 1, 2, Therefore, we can expect a very good cosine series approximation for

9(0).
g(0) = Z ay, cos(k6)
k=0

and define Ty (x) = cos(kcos™1(x)), then we have

f(x) = f(cos(0))
9(0)

= Z ay, cos(k6)
k=0

= Z ay, cos(k cos ™! (x))
k=0

= Z aka (CL‘)
k=0

Lec. 14 The function Ty (z) is the k" Chebyshev polynomial.
We now wish to derive some properties of the T),(x). First, T,,(x) is an n*® degree polynomial. To see
this, we will use induction. Clearly,

Now for the inductive step,

Thus,
Tni1(x) = 22T (x) — Th—1(2)

The inductive hypothesis gives that T,,(x) and T;,—1(x) are polynomials of degree n and n — 1 respectively,
and therefore, T}, 11 must be a polynomial of degree n + 1.
Now, we wish to expand a function f(x) as

flx) =) arTi(x)
k=0

so we must determine the values of the a;. From the derivation, we have that
2 T
a = — f(cos(8)) cos(kB) db

CkT Jo

33

Lec. 15

Let x = cos(f), de = —sin() df = —v/1 — 22 df, and we have

f(x) cos(k cos™1(x))
= C]ﬂT/ dx

V1—22

Ty (x) dx

%7[1 \/1—x2

The function w(z) = (1 — 2)~'/2 is called the Chebyshev weight function.
Next, note that

/ cos(k) cos(£0) do
0

(cos((k 4 €)0) + cos((k — £)0)) do

N~

S~

T

sin((k + £)0) +

I
=7 sin((k — E)H))

1
+/ 0

|
S N =
T~
Bk

If k = ¢ # 0, then

If k=¢=0, then foﬂ df = w. Now translate this integral back into x to get

1 0 k#L
/ w(x) Ty (x)Te(x)de =45 k=L0+#0
! T k=¢=0

This shows that if we define the inner product (u,v),, as

then the T}, (x) are mutually orthogonal. Let C be the space of all functions u such that

1
(U, u)yy = / w(zx)|u(z)]? de < oo

-1

Then C is a Hilbert space with norm ||u|| = (u, u>%u/2 and inner product (-, -),. Note that w(x) = \/11_? is
singular at x = £1, but still integrable.

The Chebyshev expansion is equivalent to the cosine expansion of f(cos(#)) and using the same integration
by parts argument we see that the coefficients ar, = O (F) if f has r derivatives. It is important to realize
that this is true regardless of the behavior of f at +1. Therefore, the Chebyshev expansion is an analogous
approximation to the Fourier expansion for functions which are not periodic.

34

Next, let us find the derivative of T,,. Consider again x = cos(). Thus, for any function u,

du dudzx du du
- = = _— (=g — — (— _ 2
a0 dwdp a0 = EvIi=a)

d_ Al

and we can write

do dx
Now, since
2
T cos(nf) + n? cos(nf) =0
we use the x = cos(#) transformation to get
d2
WTn(I) + 12T (z) =0
d d
d d
—V1- :102% (—\/1 - :CQETn(x)) +n?T,(z) =0
d d n?
12 v —
o (1—z dITn(:E)> + an(x) =0
d (1d
@(aaﬂu0+ﬁwuw=0 (6)

with T7,(41) bounded. Equation (6) is a singular Sturm-Liouville problem solved by T, with eigenvalue n?.

Unfortunately, differentiation in z is not diagonal in the basis T}, (x). In fact, it is easy to see that %Tn(x)
is a polynomial of degree n — 1, one degree less than T, (z).

Next, let us look at the structure of the functions T),(z). Let’s find the zeros of T, (z). To do this, we
must solve the equation

0 = cos(ncos *(z))
20+ 1)
2

1 o (2[+ 1)71'
cos™ (x) = o

o= eos (2307

ncos (x) =

2n
So the roots of T),(z) are at xy = cos (W) for{=0,...,n—1.
Clearly, |T,,(z)| < 1 since Ty, (z) = cos(ncos™(x)) and T, (z) = (—1)" whenever ncos™!(z) = ¢r and
hence x = cos (%’T) for £ =0, ..., n. These points cluster at the boundary much the same way that the roots

cluster near the boundary. In fact, T, (z) oscillates between +1. This is called the equi-oscillation property.
Next, note that 75, () is an even function and T»,—1(z) is an odd function. If T,,(2) = >, ajz’, then
the a;’s alternate in sign.
Next, we need to analyze the accuracy of the Chebyshev approximations. Suppose f is defined on [—1, 1].
Note here that the interval [a, b] can be mapped to [—1,1] by the mapping

2x b+a

S:b—a_b—a'

Let f have the Chebyshev expansion

f(x) = axTi(x)
k=0

35

where

2 1

ap = g 71w(x)f(x)Tk (x)dx
9 1
= 2 [@) () T@) de
ET J—1
2 ! d di
— _mﬁl f(z)dx (\/1— E) dx (from (6))
2 ——dT | 2 [t dT
=—mf($) 1—952%1:1 %/_H[(UC) L—z dr dx
di
k%;ﬂr/ f _ de

Note here that this does not mean that ap = O (

by parts again to get

1

). In fact, % = O(k) and hence aj, = O (4). Integrate

e 2 Ya /.,
- k%;ﬂr 1= 22T (x B W/ﬂ@ (f (517)\/1—1172) Ty () da
. 1
:k%/_l(l i (Vs)%dw
From this we get
2 1 T
o = oo | [, (= VT) e

2 1 "4 / 9 1/2 - 12
< s (/_1\/1—952 _5(\/1—9521‘ (x))] d:v) (_1\/%_””3:2@)
2 (T e) e
" Ko 71\/1 v dx(\/l 2f'(x))| dx| (Tw,Tk)

9 1 :d d 2 1/2 — 12
- ([vl o))

(1l

Therefore, if f has two derivatives, then aj decays as k_12

1/2
/ 2

CLT

Wt

dx

()"

In general, we can continue this process and

)#@) 2 dx>

conclude that if f has 2r derivatives, then a; decays as a = O (k%)
Next, we need to project a function f onto a subspace of the T}, so we define the Chebyshev Galerkin

approximation (spectral approximation)

In(z) =

Py f(x

Z CLka

Thus, Py is an N degree polynomial and has the first N + 1 terms of the Chebyshev expansion.

36

To see how good this approximation is, we need to estimate | f — Py f|. We hope that | f— Py f| = O (5%)
provided f has 2r derivatives. To give a complete picture, we must first recall the Sobolev norms which are
now weighted by w. The ¢** weighted Sobolev norm is given by

2

Y fw)

dxd

q
2
111G w =
§=0
Based upon the Sobolev norm, if f has ¢ derivatives, then it is possible to show

1f = Inllow < qu\fl\qw

and if 1 <r <gq,

C
If = fnllrw < Wﬂfﬂq,w

This shows that the weighted Lo norm of the error is O (T) and that approximating the 7" derivative
results in the loss of 2 powers of N (as opposed to r in pseudo-spectral).

Next, let us construct the corresponding pseudo-spectral approximation. To obtain the results above,
we must compute the coefficients aj exactly. However, we may only know the function f at discrete data
points. Therefore, we need a quadrature rule as we did for Fourier series. We have

f(2)Tk(x) 2 [T
_ CM/ 1_x2 :Ck_W/O F(cos(6)) cos(k0) b

Now introduce a uniform grid in 0, 6; = %, for 5 =0, ..., N and use the trapezoidal rule approximation to
get
2 1 f(cos(8;)) cos(kB;) .
L - = g
v N vj
j=0

where y0 =yv =2, 7; =1 for 1 < j < N — 1. Pulling back to z, we have that z; = cos (JW) and we get

We must modify this to accommodate for the highest mode, T (z;) = (—1)7 and we get

Lec. 16 is the pseudo-spectral Chebyshev approzimation.
To look at the accuracy of the quadrature rule we are using, consider the following: Let ¢g(#) be defined
on [0, 7], and we have the trapezoidal rule

Suppose that g(6) = cos(¢6), then

37

If £ = 0, the approximation gives

If ¢ = 2m, then

. . N-—1

2N+N;COS(mN) T aN

T T N o N (2) N T
==+ = cos | 2m— —

INTNTN & N7) T aN

. N—-1
_ 2m-J 2m3-j
= — (e NS + e N)

ON prd

. N-—1 N-—1

2m =\ J —i2m = \J

= (€*m®) +) (e77mw)

2N = =
- T eiQW%N -1 N T e—iQW%N -1
TN \ ei2mF 1 2N \ e 2my — 1
=0

If ¢ = 2m + 1, then note that cos ((2m + 1)%(N — j)) = —cos ((2m + 1)%j) so that if N is odd, all the
terms cancel, and if N is even, all the terms cancel except the middle term which is cos ((2m+1)55; M) = 0.

Thus, we again have % Z;VZO ,Y—l] cos(¢6;) = 0. Finally, if £ = 2N, then

N T AR |
_COS(2NN]):_Z_:7T

Vi

=] =
=

Jj=0

Now, if we carry back the approximation

x N
/0 o0 do ~ =3~ 90

=0 Vi

via x = cos(f), we get

N
/1 f(z) d ~ izf(xj)
1V1—2? Nj:O Vi
and this is exact for polynomials up to degree 2N — 1. Using this result, we can show the interpolation result
given f(x). Define

N
Pnf=>_aTj(x)
j=0

where

aj:

2 O flzw),,
VijZ:o "r Tj(xk)

38

Then Py f is the unique N'*" degree polynomial which interpolates f at the collocation points Z; = cos (%)

To see this, let py be the N degree polynomial which interpolates f at {z;}. Then

N
v) =Y bTi(z)
k=0

for some constants by. We must show that by = ai. By definition of py, we must have that

xj):Zkak(xj), forj=0,...,N

Now, for / < N,

because the quadrature is exact for polynomial of degree < 2N — 1

N 7e
= Zbk__k5lk

Nc
=

If ¢ = N, then

Now note that

39

Lec. 17

Plugging this into equation (7) gives

N No1N
Z Fl@)Tn(z;) =Y b > —Til(w;)Tn(x;) + Nby
=0 k=0 j=0 !
N-1 N 1
- bk—/ w(@)Te(2)Tx (z) dz + Nby
T J
k=0
N-1
N
= by—0dkn+ + Nbyn
=0
= Nby
N
- bN%
Therefore,
N
N
Z ,TJ Tg .’L']) = bg%
=0
N
2 7 ~
:TF_N 25 fxi)Te(xj) = ae

Let us now put together the pieces. Given f(z) on [—1,1], we evaluate f(z;) where z; = cos (&

Nj) for
7=0,...,N, and compute for £ =0 N

cey

9 N
ngN—Z ,TJ Tg .’L'])

and the pseudo-spectral Chebyshev approximation becomes

= aT(x)

£=0

and for j =0, ..., N, fx(z;) = f(z;).
It is worth noting that the evaluation of the aj can be simplified by using the fact that since z; = cos(6;),

Ty (z) = cos(k cos™*(cos(6;)))
= cos(k0;)

= cos (k]%)

Therefore,

ay = N”Yk Z f xj)Ccos (kj—)

This relationship can also be used to demonstrate that aliasing is a problem for this method as well.

40

Consider the mode Tn4,(z) for 0 < r < N. We have

Tyvsr () = cos (N + 7)1)

— cos (jw + rj%)
— cos(j7) cos (rj%) — sin(jn) sin (rj%)
— cos(j) cos (rj%) + sin(j) sin (rj%)
= cos (jw - rj%)

= cos ((N - r)j%)
=Tn—r(z;)

Therefore, T, aliases to the mode Tn_,. In particular, this means that T5x aliases to Ty = 1. Similarly,
consider the mode Toyn4r(z), 0 <7 < 2N, m > 0. In this case, we get

T
TomN+r(z;) = cos ((2mN +7)j N)

= cos(2myjm) cos (rj%) — sin(2mj) sin (rj%)

= cos (rj%)
= T:(z;)

To illustrate, the pattern of aliasing can be seen in the figure below:

2\

012 N-2 N N+2 2N-2 2N 2N+2 3N-2 3N
N-1 N+1 2N-1 2N+1 3N-1

&

Aliasing relationships of Chebyshev polynomials

Just like for the Fourier case, we can relate the Chebyshev expansion coefficients aj to the pseudo-spectral
Chebyshev coefficients ag. The relationship is similar as well where

dk:ak—i—Zag

41

where the sum is taken over all ¢ for which T} aliases to 7). The polynomials which alias to 7}, are T} where
j=2mN+kform=1,2,...and j=2m—1)N+ N —kform=1,2,.... It can be shown that

If = P fllos < Clog(N)[|f = Pr fllos

(Ilf = Pxflloo is called the spectral interpolation error). Sobolev norm estimates for the pseudo-spectral
approximation similar to the bounds for the spectral approximation can also be derived.

Next, we will see how to use the FFT to implement this method. Recall that we can now compute the
ay, by means of a cosine transform.

2 & jkm
CLk = NTZO :ZTJ COs (T)

where v9 = yv = 2, 7; = 1 otherwise. Suppose f is a real-valued function, then
N—

akz%%% [f(:v@cos(OkTW) +f(xN)cos<N]]V{7T)] %Wi Z (z; cos(;) (8)

Now, define f; = f(z;) and set foy_; = f; for j =1,..., N —1 and we have

s () K ()

{=N+1

Plugging this into equation (8) gives

a —iil fo cos Ok—w + fn cos —Nkﬂ
T N2 [° N N N

Tk =0
1 2N -1 .
ijkm
— — Re fie
Ny ; ’

This last term is easily evaluated using an FFT.

4.2 Differentiation of T (z)

Before we can use this expansion to solve partial differential equations, we need to be able to compute the
derivative of the expansion. Consider

N
Pyf =7 aTj(x) ~ f(x)
j=0

Then,

~ N
dP N
fo ™ d;ff = a;T)(x)
j=0

42

Lec. 18

Since dl;g Lisa polynomial of degree N — 1 and the {Ty} are complete, it follows that we can express

as a sum

dPn f
dx

~ N N
dPy f ATy
dz JZZO Y T JZIO b;Tj()

Clearly, by = 0 because dzfl I is a polynomial of degree N — 1. Computing the remainder of the b;’s is more
complicated than in the Fourier case because the d% operator is not a diagonal operator.

We can generate a recursive relation for the T}s by looking at

T (x) = cos(mb), x = cos(h)

d drT df . do
@Tm(l") =W " sm(m@)%
dx) dé -1
i — sin(#), so pt S0 (0)
Hence, we get the relations
d _ msin(m#)
=)
d _ (m —2)sin((m — 2)0)
@de(z) sin(6)
Now,
sin(mf) = sin((m — 1 4 1)) = sin((m — 1)0) cos(#) + sin(f) cos((m — 1)6)
sin((m — 2)0) = sin((m — 1 — 1)) = sin((m — 1)8) cos(f) — sin(f) cos((m — 1)6)
Then we get
1d 1 . .
— m(z) = (o) (sin((m — 1)0) cos(8) + sin(8) cos((m — 1)0))
ﬁ%Tm,g(x) = 51n1(9) (sin((m — 1)0) cos(f) — sin(6) cos((m — 1)0))
1 1 d
——me() — — dem,Q(x) = 2cos((m —1)0)
= 2Tm_1($)

43

Returning to the computation of the by, recall

N
(Pn (), To(2))w = <Z b Ti (), Te(w)>

= bk75kl
k=0
T
=bi
where
2 (=0
Cp =
1 >0
Also,
N N
(Pnf'(z), Te(x)) —<deTk($)aTé(w)> = (T (), Te(@))w
k=0 w k=0
Therefore,
5 N
by = — a1y, Tp)w
0 ”kazzoak< i Te)

So now we have to compute (T}, T;),,. We break this into three cases.

k—1
m=0

k—1 k—1
<Z ozme(a:),Tg(x)> = Z O Ty Tt = 0
m=0 w m=0

because m < ¢ for m =0, ..., k— 1. Thus, (T}, T¢), = 0.

Case 1: £ > k. In this case, if we express T} () as > am T (), we get

Case 2: k+{is even. If k is odd, then Ty, is an even function with only even powers of z. At the same time, ¢
must also be odd, and hence T} is an odd function and thus, w(x)T} (z)Ty(z) is an odd function, so

1

(Ty(2), Te(x))w = / w(x) T} (x)Ty(x) dx = 0

-1
Case 3: k+ (is odd. If £ # 0, then k = ¢+ 2r — 1 for some r > 1. If r = 1, then kK = £+ 1 and the recursion
relation becomes
Té+1(517) _ Té—l(x)
(+1 £—1

which is valid for £ > 1 and still alright for £ = 1 if we assume the last term is taken to be zero. Now
take the inner product with 7y to get

2Tg (CL‘) =

1
[<Té+1aTE> 0 — 1<Té—1;TE>w

200+ 1) = (T5, Tt)w
=7(l+1)=(L+ 1)7TC¢ (T}, Ty)w

2<Tg,T[>w =

Thus,
<T;g, Tz>w =7k

44

Now from the recursion relation, we have

1 1
2T y2r(z) = mTé+2r+l(I) - mTé/—k%“—l(I)

Taking the inner product with T, gives

1 1

2(Tev2r, Te)w = m<Té+2r+1aTé>w - m<Té+2r—1aT€>w

By the inductive hypothesis, (T}, 4,_1,T¢)w = (£ 4+ 2r — 1)7. Thus,

{4+ 2r+1
(Tiors1: To)w = m<Té/+2r—lle>w
{4+2r+1
=— (¢/+2r—1
Trar b
={+2r+1)m

Therefore, (T}, Ty)., = km provided ¢ # 0.
Next, if £ =0, then T (z) = 1 = Ty(z) and

(T, To)w = (To, To)w =1-7

Using the same inductive argument as in equation (9), we can conclude (T}, Tp)., = k.
Recall now that we are looking for the by such that

N N
Z kak (;v) = Z dleé (CL‘)
k=0

k=0

and we found that

9 N
by = — a T/,T w
0 chkz:% &{Ty, Te)
N
2 -
_2 5 ek e
€ =11

We can derive a recursion relation for the by’s to reduce the computational cost of this formula. If 0 < ¢ <

N — 1, then

be= 2 (amm(e+1)ia 1)*+t N~k11 1)F+e
t= aé+1(+)§(—(—))+Zak 5(—(—))

k=0+2
N
2 2 1
=20+ 1)a = ark—(1— (—1)F+¢
Cl(+)a€+1+cek:%+3ak 2((=1)")

(Note that k = ¢ + 2 produces a zero term)

_2

(L4 1)aps1 + bega
Cy
If { = N — 1, then
2 1 1
anN=(1 — (=1)N+tN=1) =25y N-2 = 2Nay
CN—-1 2 2

by_1=

45

Lec. 19

Combining these different results, we get the formulae for b, to be

by =0
by_1 =2Nay (10)
1
by = C—(2(€+1)&g+1+b2+2), {=0,...,N =2 (11)
74

where

2 (=0
Cyp = .
1 >0

This is the Chebyshev recursion relation to express fy as a sum of the Tj.

Note that this formulation is equally valid for the spectral approximation Py f'(z) = Ziv:o axTy.(x) where
the ay are replaced with ay.

An important note about parallelization and the recursion relations in (10) is that this type of recursion
relation must be computed sequentially and does not easily lend itself to parallel computation.

We can now outline the procedure for computing

1. Compute the ay where

2. Compute the by’s using the recursive formula in (10).

3. Evaluate at the collocation points

Thus, the pseudo-spectral Chebyshev method reduces to two cosine transforms and a recursion relation.

fo
Alternatively, we can write the differential operator as a matrix. As in the Fourier case, let F' = | :
IN
and write F, = DF where F;, is the vector with entries d};g’f and D is an (N + 1) x (N + 1) matrix.

Tr=x
D is now called the Chebyshev differentiation matrix. ’

In order to compute the columns of D, we will apply it to N*" degree polynomials p; which have the
property that pi(x;) = §;5. The k'™ column of D is then

P (20)
Pi(xN)

In fact, we can construct a formula for py(z). Recall that T (x) has an extremum at each collocation
point @1, ..., xx—_1. Therefore, Tx(z;) = 0 for j =1, ..., N — 1. This means that (1 — 2®)T} (z) must
vanish at xg, ..., zx. Finally, we want a polynomial that is non-zero at zj and so we divide by (z — z},) to
get

(1 —a*)Ty(z)

r — Tk

46

We also need pg(x) = 1, so we need to scale this polynomial appropriately. In order to do that we will need
some things about T (z). From T (x) = cos(N cos™1(z)), we get

N
TX (z) = sin(N cos ! (7)) ———=
—N? N
T (z) = T2 cos(N cos™*(z)) — m sin(N cos™(z))
From these we get that T (z;) =0for j=1,..., N —1 and
. Nsin(Ncos™(x))
/ 1y
Thten) =T = 1, SR
N cos(N cos™!(z)) 2
= lim+ — -z
r——1 Nl

2
= lim — cos(Ncos '(z))
x

z——11
_ N2(_1)N+1
Likewise,
/ N2 1 2
T = 1l — N cos™ =N
(o) = lim = cos(N cos™ (@)
Lec. 20 Also,
Tn(z;) =0
—N? T N2 ;
T (z;) = N—= | = —1)y*t j=1,...,N-1
N(‘r]) 1_x§COS< N) l—xf()) j) 9

1
Ty (20) = s N3 (N? — 1)

T (an) = 3N?(1— N3V
N2 (=1)*ay

J

Ty (w5) =3

Now, assume

AL = 23T ()

pr(z) = , fork=1,....N—1
r — Tk
Then,
Ap(1 — 2T}
pr(zr) = lim k= 27Ty (@)
T—Tk r — Tk
= lim Ap[(1 — 2*) Ty (x) — 22T ()]
T—Tp

= Ap[(1 — 2) Ty (xx) — 204 Ty (w1)]
and we have for 0 < k < N,

1 = pr(zk)
= Ap(1 — 27) Ty ()
N2
= Ap(1 —23) (q) cos(mk)

= AR N2 (—1)k+

47

(—pkH

and hence Ay, = *—5m—. For k = 0, we have (zo = 1),

1 = po(wo)

_ Aol —2)(1 +)T (wo)

- T — X0

= —Ap(1+ 29)N?

= —24,N?

and hence Ag = (721]3[0;1 . Similarly, Ay = % and therefore, we get
-1 k+1
4= 0

N

and hence
o =Ty (2) (1= a2?)Th(z) (=)
pr() = Ax T — fchv B %NQ]EZZE — Tk)

Next, in order to get the entries of D, we must evaluate p).(z;) = Dji. We get for j #k, j=1,... N—1,

=20 () (=) + (1= 2T (@) (=DM N2 —) — (1= 22) Ty () (=) N?

/ L) =
Dk (xj) ’72N4(£L' — (Ek)2 e,
_ - a3 TH () (1) 1y N2 (5 —)
VN4 (xj — x,)?
(= a) TR () (=)
VN2 (25 — x)
2 .
(1—a3) 111[15 (=1)F T (=1)k+t
VN2 (zj — x1)
(_1)j+k
Yi(T; — k)
If 7 =0, then

=207}, (w0) (1) 4y N2 (a0 — k)

B YEN*(zo — x1)?
_ONZ(—1)kH

VN2 (zo — 21)

2(_1)k+0

Ve (zo — zx)

- Yo (_1)k+0

T e 0 — T

Similarly, we get this result for j = N, so that if j # k, we have

/ Vi (_1)k+‘j
€T, =
Pi(z;) Ve Tj — T
If j=k, k#0, N, then
Po(@) gy, = 5
2(1—z3)

48

Lec. 21

and

—(1 = 2?)Ty(x)

pO(I): 2N2(£L'—1)
(4 0)Th()
2N?2
() sy = 75 (T (0) + 2T ()
_ 2_]1[2 (N2 + 2%N2(N2 - 1))

% <1+ ;(NQ - 1)>

Il
N~
7N
wl
+
wl o

%
"

(1 —2*)Ty(x)(=D)N*!
2N2%(z +1)
(1 —2)Ty(z)(=)N*
2N?2
PN (@) ey = #(—TJ/\/(CCN)(—UNH + (1= an)Tx(zn) (DN
1

=533 <—N2(—1)N+1(_1)N+1 + 2%]\[2(1 _ N2)(_1)N+1(_1)N+1)

= % <—1 + 2(1 - N2))

—(1+2N?)
6

pn(T) =

Putting it all together, we get the matrix entries

2 GOy

T Tj—Tk

1 2w j=k, k=1,...,N-1

d’k: _El—wi
J 2 .
2N°+1]:k:O

6
_(%2"‘1) j=k=N

Notice that DT # —D. In fact, D has terms that are O(N?2). While it is obviously true for do, dyy, it

is also true near the endpoints. If N is large and k is small, then x; = cos (%’T) ~1-— % (%”)2 Thus,

T —2To~1— % (%’)2 -1=0 (ﬁ) Thus, diy = O(N2). The same is true near the other endpoints as well.
Since the entries of D are O(N?), then we expect ||D|| = O(N?). Therefore, it we are solving u; = uy,
using %U = DU, then the time steps will be bounded by O (%) as opposed to O (%) as in the Fourier and
finite difference cases.
To compute higher derivatives, the operator D can be applied repeatedly or one can use the recursion
relation. In that case, the recursive operation to compute the b;’s is repeated to get higher derivatives. For

49

example, to compute j—:z]BNf, use the FFT to compute the ai. From this, we compute the by’s:

by =0
bN—l = 2N&N
1
be = 7—(2(1<:+1)ak+1+bk+2), k=N-2...,0
k

To get the second derivative, set ar = by and then recompute the by’s using the same recursive procedure.
s
Finally, the FFT is used to compute %PN f at the collocation points.

4.3 Boundary Conditions and Stability Analysis

We now have most of the pieces to solve partial differential equations using the Chebyshev polynomials. We
are missing the procedure for incorporating boundary conditions. Let us consider first, the problem

U =u;, —-1<z<1 (12)
u(z,0) = up(z)
u(l,t) = g(t)

We assume ¢g(0) = up(1). Recall we have the collocation points z; = cos (%) and we are trying to compute
u;(t) where u;(t) is the approximate solution to equation (12) at time ¢ at x;.

The procedure for solving (12) using Chebyshev pseudo-spectral methods is similar to the Fourier case,
except we must impose the boundary conditions at xy = 1. First we initialize the values u; via u; = uo(z;).
Then we solve p

dtU =DU
Finally, we set ug(t) = g(t).

It is important to note that D is a global operator, so we cannot simply replace one line of the system
%U = DU because this would cause errors in the computation of the derivative. Instead, we compute the
derivative as we did for the Fourier method and then replace the results with the boundary conditions.

Note that no special procedure is necessary at the boundary as was the case for finite differences. There
is no difficulty in computing the derivatives at the boundary.

Next, we will look at the time discretization methods. To do this, we will define a new matrix D which

has the property that

doo -+ don
D= | :
dno D
We therefore have
%PNU . = DU +djoup, j=1,...,N

Substituting in the boundary conditions dives

—PN’U, :DU-Fdjog(t), jZl,...,N
d.T T=Tj
Uy
where U = : | . For homogeneous boundary data, (g = 0), we get
uUN
d - A
—U = DU.
dt

50

Next let’s try a simple time-stepping scheme such as forward Euler. In that case, a time step is

1 - N A
E(Un+1 _ Un) — DU’n,

Again, we assume U™ = 2"U0 to find the stable range for At. We get

1 A A A
—(z—-1)U"=DU°
At(z 1% U

and hence we must have that U° is an eigenvector of D with eigenvalue . Using this, we get

1
E(z —1)=2A
and z = 1 + AtA. The problem is calculating A.

What can we say about the eigenvalues of D? We can say that D is not skew symmetric and is not
normal. Also, we have already seen that it must have eigenvalues that are O(N?). It is known that the
eigenvalues have negative real part.

Let us now do some stability analysis for the Chebyshev method. Consider the equation u; = u,. We
have shown that this results in the pseudo-spectral approximation

au .-
— =DU
dt
We reduce this to the scalar equation ‘2—1; = A\u where X is an eigenvalue for D. What we must show for

stability is that solving this ordinary differential equation results in only bounded growth. We saw last

quarter that this reduces to showing
™| < CeXT[u|

where C, K are supposed to be independent of N, At. In practice, K depends on both N, At and in order
to prevent uncontrolled growth, K is required to be small. For example, if K = N2At, then the stability
requirement is N2At < e for some e. Of course, the longer the method is run, the worse the solutions get
(T is increasing).

In order to get absolute stability, i.e. |u"| < |u®], we must find values of AAt in the complex plane such
that this is guaranteed. The set of all values AAt in the complex plane for a given time-stepping method
is called the region of absolute stability. These regions are well known for the most common time-stepping
methods. Of course, for this to apply to the pseudo-spectral methods, AAt must lie in the region of absolute
stability for every eigenvalue A of D.

Unfortunately, the eigenvalues of D are not known explicitly, but can be computed numerically. We do
know that they are of order O(N?).

We look now at different time-stepping methods and see what their region of absolute stability looks like.
We consider first, Euler’s method. For Euler’s method we have

W = u” + At u”

0

Plugging in 4™ = 2"u", we see that

z =1+ At\

For what values of At do we get |z| < 17

51

Region of absolute stability for Forward Euler

To see this, let AtA = a +if3, then 1 = |2]?> = |1 + a +i8]?> = (1 + a)? + 3? which is a circle of radius 1
centered at —1 in the complex plane.

Recall that for the Fourier pseudo-spectral method, the D operator had all pure-imaginary eigenvalues,
and hence At\ will never be in the region of absolute stability.

It is important to note here the eigenvalues of D have negative real part and if At is taken sufficiently
small, the At can all be made to lie inside the disk.

Next, let us consider the Runge-Kutta fourth order method. Given the ordinary differential equation
y' = f(y,t), the Runge-Kutta fourth order method for one time step is

K, = Atf(ynatn)

1 1

Ky = Atf (yn v %Kg,tn + %At)
K, = Atf(yn + Ks,t, + At)

1
Yn+1 = Yn + E(KI + 2K+ 2K5 + Ky)

To use this scheme, we apply it to the system

as we saw earlier. Note that the right hand side has a time dependence. This is alright because the Runge-
Kutta fourth order method intermediate steps also include the time ¢ to evaluate the right hand side.
We can analyze the region of absolute stability for this method and we get (where f(y,t) = A\y)

Kl = At)\z"yo

Ky = AtA (z"yo + %AtAz"yo)
1 1
K3 = AtA (z"yo + §At)\ (z"yo + §At)\z"y0)>
1 1
Ky = AtA <z"y0 + At <z”yo + EAt)\ (z"yo + §At)\z”y0>>)

2y = (1 + AN+ %At2,\2 " %Ap/\s n 2—14At4/\4>

52

and the plot of the region of stability can be seen below:

Region of absolute stability for Runge-Kutta 4

We find that we get absolute stability for At < % where K ~ 30 for Chebyshev methods.

There are alternative forms of the Runge-Kutta methods which require less storage, however, the time
value at each stage is ambiguous causing problems with time-dependent boundary conditions. Also, for
non-constant coefficient problems, these low-storage variants reduce to second order accurate.

The second order Runge-Kutta method is

K, = Atf(ynatn)
K2 = Atf(yn + Kl, tn + At)

1
Yn+1 = Yn + E(Kl + KQ)

This method is similar to Euler’s method in that the region of absolute stability does not include the
imaginary axis. This means that this method is absolutely stable only for the Chebyshev method and not
for the Fourier methods. For the Chebyshev method stability is achieved for At < % where K ~ 16. The
region of absolute stability for Runge-Kutta 2 and 3 are below:

Region of absolute stability for Runge-Kutta 2

93

Region of absolute stability for Runge-Kutta 3

In general, how does one impose the boundary conditions using a Runge-Kutta scheme? Consider again
the system

u(z,0) = up(x)
u(l,t) = g(t)

At each stage of the Runge-Kutta process you can either (A) use the equation

T = ﬁU-i-djog(t)

which imposes the boundary conditions at each stage, or (B) Use the equation

du
i DU
at each stage, then impose u(1,t) = g(¢) at the end.

In practice, method A is better if you are using the full fourth-order method. It allows a larger time
step and is best when the boundary data is not time-dependent. Method B requires a smaller time step for
stability, but experiments have shown that this method is more accurate when the boundary data is time
dependent.

4.4 Adams-Bashforth Methods

Another class of explicit methods are based upon a multi-step approach similar to Leap Frog. In this case,
more than one previous time level is used to advance to the new time level. These methods require a separate
start-up procedure.

For the ordinary differential equation y’ = f(y,t), the Adams-Bashforth second order method is

3 1
Yn+1 = Yn + At |:§f(yna tn) - §f(y’ﬂ—17 tn—l):|

The third order method is

23 16 5
n = Yn At | — nvtn - 15 n— 7tn7 a n— 7tn7
Ynt1 = Yn + {12f(y) = o -t tn—1) + 5 f (yn2 2)]

Again, this method can be made absolutely stable for At < % where K =~ 9 for the second order method
and decreasing for higher order methods. The regions of absolute stability for the second and third order
methods are shown below:

54

Region of absolute stability for Adams-Bashforth 2

Region of absolute stability for Adams-Bashforth 3

4.5 Adams-Moulton Methods

A companion set of methods called the Adams-Moulton are multi-step implicit methods and are uncondi-
tionally stable. We have seen the first and second order methods already, they are backward Euler and
Crank-Nicolson respectively. The third order method is

1
Yn+1 = Yn + EAt(5f(yn+la tn—i—l) + 8f(yn7tn) - f(yn—lu tn—l))
In our context, we then must solve
5 2 rn+1 8 a rn 1 ArFrn—1
(I 12AtD) U = (I+ 12AtD) U 12AtDU

It is common practice to turn this implicit method into an explicit method by turning it into a predictor-
corrector. A predictor is the Adams-Bashforth method of one lower order as the Adams-Moulton method.
Then the Adams-Moulton step is used as a corrector. In other words, a third order predictor-corrector pair
can be written as

. 1
Yn+1 = Yn + §At(3f(yn,tn) = f(Yn-1,tn-1))

1 .
Ynt+1 = Yn + EAt(5f(yn+1a tn+1) + Sf(ynvtn) - f(yn71, tnfl))

Of course we lose the unconditional stability of the fully implicit method, but the resulting method is still
more stable and more accurate than the Adams-Bashforth method alone.

95

Lec. 22

4.6 Implicit Methods

Two common implicit methods are Backward Euler and Crank-Nicolson. For the equation

we have
O+ = 07 4 At
. . 1 . .
urtt - = §At(DU"+1 +DU™)

respectively. Both of these methods can be rewritten in a d-formulation as

Untt —Un = AtD(OH - U + U™

<1 - %Atb) 5" = AtDU™

The update step is then U"+! = U™ + §7.

Backward Euler is first order accurate and Crank-Nicolson is second-order accurate. Both methods are
unconditionally stable.

In summary, a fully explicit method will have a stability limit of At = O(N~2). The Runge-Kutta
methods are generally the best. For the solutions with large spatial variations, the largest problem is the
oscillations of the high modes, but this is unavoidable due to the Gibbs phenomenon. For semi-implicit
methods, Adams-Bashforth is a good choice for the explicit part. The implicit methods are good for larger
time steps. Use Crank-Nicolson for time-accurate solutions and Backward Euler for steady state solutions.

4.7 Parabolic Partial differential equations

We next consider parabolic problems like the heat equation

Ut = Ugg, —1§$§1

u(z,0) = ug(x)

Again, we need boundary conditions in order to make the problem have a unique solution. Two common

boundary conditions are Dirichlet boundary conditions, u(+1,¢) = g4 (¢), and Neuman boundary conditions,

ug(£1,t) = g4 (t). We will first consider the homogeneous Dirichlet condition u(+1,t) = 0.

Uo Uy
down to U =

As in the hyperbolic case, we will trim the vector U = where here we must

UN UN—-1
impose boundary conditions at each endpoint. As in the hyperbolic case, we then have some left over terms

02 NN A
@U ~ DyU + dpug + dnun

where ﬁg, 50, and & N are given by

56

Lec. 23

The stability of any time stepping routine is based upon the eigenvalues of Dy which must be calculated
numerically.

In fact, the eigenvalues of Dy are negative (good) and grow as O(N*) (bad). As in the hyperbolic case,
the rapid growth of the eigenvalues is related to the clustering of the nodes. This means that time steps
for explicit methods will be restricted by At = O(N~*). This is very bad and makes explicit time stepping
impractical. For this reason, we look at implicit methods.

The two most common methods are backward Euler and Crank-Nicolson. Both methods are uncondi-
tionally stable

1 . A A A A A

(U =U") = DoU™ T+ doug ™ + onupy™!

1 - oy Lo oy L Lz 14

E(U"H -U") = §D2(U"+1 +U") + 560(%”1 +ug) + §5N(“?/H +uy)

Crank-Nicolson is second order and backward Euler damps higher frequency modes more effectively. These
two methods can be combined by

1 - N . N N o o
U U = Da(0U™ 4+ (1= 0)U™) + do(Buy ™ + (1 = O)ug) + on (Bui™ + (1 — O)u)
This method is unconditionally stable for any % <6 < 1. A typical value for 0 is 6 = % + aAt. This keeps
the method second order accurate while improving the damping of high frequency modes.
Next, we will discuss Neumann boundary conditions, u,(41,¢) = hy(t). In this case, we first apply D

to U to get

0
—U=D
(%cU U

We now impose the boundary conditions followed by a second application of D to get an approximation for
Uge. In matrix form, let

doo do,N
D = :
di,0 dn,N
and then define
0 - 0 ho(t)
di,0 o din 0
D= : : , H" = :
dN-i,N - dN-1N 0
0 0 h(tn)

We then have R
Uge = D[DU + H]

and hence, the Crank-Nicolson method becomes

é(U”+1 -U") = %D[D(U"“ +U™) + (H™ + H™)
Again, this method can be put into a d—formulation.

Finally, we can impose mixed boundary conditions such as u, + au = g(¢) in a similar way.

Note that we are using boundary conditions imposed with spectral accuracy. This is in contrast to
finite difference methods where lower order accurate derivatives are needed at the boundary to impose the
boundary conditions.

o7

4.8 Hyperbolic Systems
We next look at systems of hyperbolic equations. Consider the system
ur = Aug

where u is an m—vector and A is an m X m matrix. Recall that for this to be a hyperbolic system, A must
have all real distinct eigenvalues. If all the eigenvalues of A are the same sign, then we solve this system in
the same way as the scalar case.

We will now consider the case where A has both positive and negative eigenvalues in which case we have
inflow /outflow boundary conditions. For example, consider the first order system

b= 310

In order to implement the boundary conditions, we must first find the eigenvalues and eigenvectors of A.

_] =N -=A-—c)\+¢)

-2
= P
0 = det {—pc2 \

c 0][3 ;lc
o S

and we then get

Multiply this by 2pc and we get

pc =1 |ul _|c O[|]|pc —1||u
pc 1]|p], [0 —c|lpc 1]]|p],
The characteristic variables are thus w; = pcu — p and we = pcu + p with speeds ¢ and —c respectively.

ug PG
Now we can write a complete algorithm. Let U™ = | : |, P" = | . |, then the Runge-Kutta second
Uy PR
order method becomes
1.
A 1.1
U=U"—--At-DP"
2 p
A 1
P=PrP" - §AtpcDU"
2.
pn =0
Po =0

o8

1 ~
gntt =ym — At=DP
P

Pl = p" — AtpeDU

n+1l
PN =
n+1l
Do =

Unfortunately, this does not work because we are not respecting the flow of information. While finite
difference methods often have built-in dissipation keeping the method stable, spectral methods typically do
not.

To make a stable method, we need to look at the characteristic variables. The variable wy = pcu — p has
speed ¢, and hence travels right to left, while ws = pcu + p travels left to right. At the right endpoint, we
want ws in terms of wy, i.e.

W2 = w1
peu +p = a(pcu — p)

and we are given that p = 0, hence we must have o = 1 and we get two equations to solve at the boundary:
Po =0
pclio + po = pclio — Po

where the right hand side of the above equation comes from the output of the interior method. In other
words, the algorithm becomes

1.
0=vn—iallppr
2 p
. 1
P=p"— §Atp02DU"
2.

U =1,,j=1,..,N—1
pj=pjj=1,..,N—-1
Po=0
Py =0

petig + po = petio — Po
petiy — py = peily + PN

where the last four equations must be solved simultaneously if necessary.

U?Jrl:ﬁj,j:l,...,]\]—l

pitt =p,i=1....N-1

ptt =0

PR =0
peul ™t + pi = petig — po
peun™ = ptt = pean + p

where again, the last four equations must be solved simultaneously if necessary.

4.9 Chebyshev Tau Method

Recall that for the Fourier case, we derived different methods, the pseudo-spectral method and the Galerkin
method. In the Galerkin method, we insisted that if we are solving u; = Swu, then the residual

TR

must be orthogonal to each of the Fourier modes. This resulted in evolution equations for the Fourier
coefficients themselves. The method had the advantage of no aliasing, but often involved convolutions.

The equivalent method for initial boundary value problems is complicated by the fact that the T} do
not necessarily satisfy the boundary conditions (unlike the Galerkin method). Consider the initial boundary
value problem

Ut = Ug, -1<x<1
u(z,0) = g(z)
u(1,t) = h(t)

Ordinarily, we would expand u =~ Zj‘v:o a;T;(x). However, there is nothing to enforce the boundary condi-
tions.
In order to enforce the boundary condition, we change the expansion to become

N
U =UN+1 = ZajTj(x) + aNJrlTNJrl(x)
j=0

where the extra ay41 is used to enforce the boundary condition. As in the Galerkin method, we require
that the residual be orthogonal to each of the Ty,..., T, i.e.

Ouny1 Oungi
T — =0 k=0,....N
< ks ot O " 3))

Recall that we have (Ty, Ty).w = “5~0xe. Thus, we have

ou N da
N+1\ j
<Tk7 BN >w = <Tk, Z_: ETJ(I)>

w

and

7=0
N+1 1
= 3 amii- (1))
j=k+1
Therefore, for £ = 0,...,N, we have
N+1
dak 2 1
o s 2L Wil (DT
j=k+1
1 N
== > jay(1- ()7
Fjmkt1
and the boundary conditions equation
1 N
ant+1 = —— | h(t) — a;T;(1)
Tn+1(1) jz::o 7
Using the fact that T;(1) = 1, this becomes
N
aN+1 = h(t) — Z aj
j=0

Plugging this back into the first equation, we get the evolution equation for the ay’s:

N N
da 1 . . 1
d—: =— D a1 = (=) + (N + 1) | At) = D_a; | (1= (=)
R =kt k =0
and the reconstruction is
N N
U~ Z arTk(z) + (h(t) - Z ak) Tny1()
k=0 k=0
N
=h(t) + > an(Ti(x) — Ty (x))
k=0

Note that more than one boundary condition would result in additional expansion terms:

N T
S Z ar Ty (z) + Z an+kTN+E(2)
k=0 k=1

where the first term is the Galerkin type approximation and the second term is used to enforce the r boundary
conditions.

5 Wavelets

Wavelets are collections of basis functions that make up a multi-resolution analysis, basis functions which
can operate essentially at all wavelengths, and can be scaled in length hierarchically to produce varying levels
of detail for a given approximation. We present here a very basic introduction to the subject.

61

5.1 Scaling functions

The key to wavelets is the idea of a multi-resolution analysis generated by a scaling function, ¢. A multi-
resolution analysis is a nested sequence of function spaces V; such that

0C---CVaocVyacVocVicVecC - CLAR).

In each of these function spaces, we will assume the standard inner product of L%(R):

Let ¢ € L?(R) be a function such that (¢, ¢) = 1, then define V; to be the space spanned by the set of
functions {¢; i }xez where

djn(x) =2/2¢(27x — k).
We then have

Gtia) = [(20020 - 1)) (2702~ 0)) do

=2 o2z — k)p(27x — 0) dx
If we substitute y = 272 — k, then dy = 27dx and we have

— [swoty - - m)a
Now, if ¢ is such that the support of ¢ is confined to an interval of length one, then

0 k#¢

| ¢<y>¢><y—<é—k>>dy={1 T

Therefore, the set {¢; r}rez form an orthonormal basis for the space V.

Example 5.1:
Let

¢(x)_{1 0<a<l

0 otherwise

Then the basis functions can be seen as various square hat functions as illustrated below:

62

cp()yo CP = cp0,0

1
(p0,—3 cpO,—Z CPO,—] cp0,0 cp0,] cPO,Z cpO,k
-3 -2 -1 0 1 2 3
0 (/p],-3 /cp],O cp] 4
2 7 7 7
cpl,k
-3 -2 -1 0 1 2 3
(/p2, 6 /CPZ,O cp2 8
2 7
D,

3 -2 -1 0 1 2 3

Illustration of nested wavelet basis functions for Vg, Vi, and V,

Next, define a set of coeflicients, h,,, which solve the refinement equation:
$(2) =2 had(20 —n) = V2Y hudrn(@). (13)

This equation is also called a dilation equation and represents a connection between the nested spaces. More
generally, we get that

¢jk(T) = \@Z hn@jt1,nt2k ().
To see this, we start by taking the inner product of (13) with ¢1 ., (x) to get

<¢0,07 ¢1,m> - \/izhn<¢l,n7 ¢1,m> = \/ihm

Thus, we get a formula for the h,,:
1
hn - _2<¢0,07 ¢1,n>-
Next, note that

(k> Pj+1,nt2k) = / 29/2¢(20x — k)20 TD/2¢(20 ¢ — (n + 2k)) dz

— 00

63

Using the same substitution as before, y = 292 — k, then 2912 — (n + 2k) = 2y — n, and dy = 27dx,

- / T G)VEH2y —) dy
= (0,0, P1,n)-

Now suppose

ij(x) = Zan¢j+1,n+2k(17),
n
for some coefficients, ;. Taking the inner product of this equation with ¢4 1 m+2k, We get

(Diks Bjrtmi2n) = D On(dist ik, Bjtlnt2k) = Q.

Therefore,
m = (B Dit1mr2k) = (00,0, B1,0) = V2hin

which is what we were trying to show.

Example 5.2:

1 0<z<1
For the basis functions generated by ¢(z) = =7 ., we can compute the coefficients h,,:
0 otherwise

1 1/2
V2ho = (¢0.0, 1.0) = /0 V2¢(2z) do = /O V2dr = %

Similarly,
1

1 1
V2h1 = ($0,0,611) :/0 V2¢(2z — 1) dz = o V2da = 7

1
V2h_1 = (0,0, $1,-1) =/ V2622 4 1) dx = 0.
0

So for this particular choice of wavelet generator, the corresponding coefficients are
1 _
0 otherwise

Referring back to the figure in the previous example, it is clear that the nesting of the basis functions would
lead to this conclusion.

Before continuing, we should note a few properties of the coefficients, h,,. The previous example illustrates
one important result, namely
Z h, =1.
n

Furthermore, we have

8i—k = (00,5, Po.k)

= <\/§ Z R @1 m+25 5 \@Z hn¢1,n+2k> ,
=2 Z Z hnbn (D1,m+25 D1 042k

=2 Z hnhn+2(kfj) .

64

We say that compactly supported in [k, £] if h, =0 for all n < k and n > £.

5.2 The Orthogonal Complement

Given the coefficients h,, given from the scaling function, ¢(z), we next define a new wavelet function, ()
given by
—22 D)"h1-n¢(2z —n) \/—Z) hi—n 1 n(2).

Starting with this, we can define a new set of basis functions, {¢; x } ez, where
big =222z — k).
This basis is also orthonormal. For orthogonality, we have

(Wi hs0) = (207202 — k), 20292z — 1)),
21/2. 22 D)™h1—md(2(2 2 — k) —m), 2772 . 22 1) hy_no((2jx—€)—n)>

m n

= <21/2 D (=1)"hy 20D 2H(20 g — (m + 2K)), 212 (= 1)"hy 202620 g — (n + 2£))> ,
=2 ZZ(—l)m+nh1—mh1—n<¢j+1,m+2k, Bjt1nt20)
=2 Z(_l)n-‘r(n—i_%_zk)hl—nhlf(n+2572k)7

=2 Z hi—nhi_nyok—r),

=2 Z Pyl ok—e) = Sk—-

Therefore, the ;5 form an orthonormal set of functions.
Furthermore, we have

<2/Jj7/€7 ¢j,€> = <2J/2¢(2J$ - k)u ¢j,f>7
<\/_Z "R — @1, mt2k \/_Z hn@ji1, n+2e>
= 22 Z D)™ hi—mhn(@j41,m+2ks Gj1,n+2e),

—22)" h1—nt2(k—0)hn,

=2 Z)" hi—ntok—20hn + 2 Z)" hi—ntok—20
n=1+k—¥¢ n=k—~

:22()R (e—t)r2(b—0) Pt 1h—e + 2 Z)" hignyok—20h—n
n=0 n=—k+~

=2 Z(_1)n+k_€+1h—n+k—ffhn+1+k—é +2 Z(_1)n_k+€hl+n+k—€h—n+k—é
n=0

=0.

65

Thus, {9k }kez and {@; k trez form an othogonal complement of basis functions for Vj41.

Example 5.3:

1 0<z<1 .
Recall that for ¢(z) = ., we found that ho = hy = 3, and h,, = 0 for n # 0,1. We can
0 otherwise

then construct ¢ (x) by

V() =2 (=1)"h1_nd(22 — n)

—2(5o(20) - o(20 - 1))

= ¢(2z) — (22 — 1)
1 0<z<1/2
=q-1 1/2<z<1.
0 otherwise

The resulting scaling and wavelet functions are shown below

1
Poo

Haar scaling (¢o,0) and wavelet (1g,0) functions.

It is now easy to see how the wavelet functions form the complementary basis that takes V; into V.

To summarize, the ¢ function is called the father wavelet, or the scaling function, and the 1 function is
called the mother wavelet, or the detail function. The combination of the scaling and detail functions are
what allow us to construct a multi-resolution analysis.

One final note about these functions. In higher dimensions, the wavelets are constructed by using tensor
products. For example, in two dimensions, there is one scaling function given by

o(x,y) = d(x)p(y),

where ¢(z) is the corresponding one-dimensional scaling function. However, there are now three wavelet
functions:

V1(z,y) = ¢(x)(y)
Yo(x,y) = Y(z)p(y)
Ys3(z,y) = P(x)Y(y).

< &

5.3 Discrete Wavelet Transform

Suppose we want to encode given discrete data, given by u; for j =0, ..., 2N — 1, into a wavelet form for
some integer N. It is easy to see that this data can be easily represented in the space Vi, which is spanned
by the functions {¢n i }rez, namely

u(x) = > dnk(@)ur.
k

Now, recall that the space Vi can be decomposed into Vy = Vy_1@® Wn_1, where Viy_; is the coarser space
of scaling functions and Wy _; is the corresponding space of wavelet functions. Since Vy_1 C Vi, then it
must be that for any basis function ¢n_1 x, we have

N1k =Y _(ON—1k ON.L)ON .0

14

= (SN-1.kON.012k) DN 0426
¢
= Z hed N e+2k

¢
= Z he—2r®nN .-
¢

Similarly, we have

UN-1k =D _(UN-1k DN DN 1,

Y4

where

(WUN-1,6,dn,) = (—1) % hy_(o—an).

Therefore, we have
PN-1k = Z he—2r®N.
¢

YN—1,k = Z(—l)lﬁkhl—uzk(ﬁz\r,e-

14

Let g, = (—1)"hi_p, so that
YN-1,k = de—%(bzv,e-
¢

Now, if we want to represent the data u; in Viy_1, then

u(z) ~ Z<¢N—l,kau>¢N—l,ka

k

where

(pN-1,u) = <Z hé—2k¢N,éaU>
¢
= Z he—ok{dn e, w)
¢

= g he—orue = AN_1 k.
¢

67

This is called the low-pass filter and sometimes called the trend. Similarly, we can construct the values

Dn_1k = (UN_1,u)

= <Z Je—2kPN ¢, U>
¢
= 29272k<¢N,£7 u)
¢

= de—%w-
4

This is called the band-pass filter or the details.
Note that after applying both filters, we now have 2V ! trend values and 2! detail values. This process
can be repeated on the trend values until only the details and one trend value are left.

Example 5.4:

Suppose data is ug, ...

, u15 and assume we are using the Haar wavelet so that hg = hy = g9 = %,

g1 = —%. The space V} is spanned by the basis ¢4 ;. The trend values are then:

and the details are

1 1
A1 = Z heug = U0 + he
¢

1 1
A—l,l = Zh[— 2’(},@ = Zhéué+2 = §U2 + §u3
J4 £

1 1
A7 = U4 + FU1
1 1
D_q10= ;géuf = gu ~ 3
1 1
D_11= JU2 ~ U3
1 1
D_q17= U4~ 515

Next, the filters are applied to the remaining trend values:

and then

A_2p
A o1
A9
A_o3

A_3p
A 31

_ 1 1
= EA_l)Q + §A_171
_ 1 1
=3A12+5A 13
_ 1 1
=3A 14+5A 15

1 1
D _20=35A10—-354-11

s 2 s

1 1
D 21=35A12—-5413

s 2 s

1 1
D 2s=35A14—5415

s 2 s

1 1 1 1
=3A 4 6+5407 D 23=35A16—54-17
1 1 1 1
=5A 20+ 354 21 D 30=5A20—5A 21
2 2 2 2
1 1 1 1
=35A 22+5A 23 D _31=5A22—-5A 23

68

and finally,
A_yo=3A 350+ %A 5, D_yo=3A 30— %A 31

The original date can be reconstituted by reversing the steps:

A 30=A_40+D_4sp A 31=A_40—D_4p
A oo=A30+D_3)p A o1=A30—-D_3p
A_9o=A_31+D_3, A_9o=A_31—-—D_3,

In the end, we store the final trend value, and all the intermediate detail values and we can reconstruct
the original data. The cost of the transform is O(N).

5.4 B-Spline Multiresolution Analysis

The bases we have considered so far are not terribly smooth, and we want smooth basis functions so that
we can differentiate them as we have done before. One solution for this is to use B-splines.
We start with the Haar wavelet scaling function, ¢(x), that we have been using as an example so far, but

we give it a new name:
1 0<x<1
x) = ,
bol) {O otherwise

as shown below:

\

Haar basis function Gy(x)

The next higher version will be obtained by taking a convolution:

2—x 1<x<?2

'] 1
ﬁl<w>=/ 5o(y)ﬁo(w—y)dy=/ bole—y)dy=dz O<z<l
o 0 0 r<0orxz>2

If we shift the result back to 0, we get
Pr(z) = [z + 1)1 = 2[z]4+ + [z = 1]4,

where [y]+ = max{y, 0}. This basis function is the standard hat function as shown below:

69

B,(x)

Y

A

Y
Basis function g (x)

Higher order splines follow the same recipe:
uta) = [Bol)ucs(a -+ (n mod 2)) d

where the extra n mod 2 comes from shifting the resulting convolution to be centered around zero for odd
values of n. Thus, we can get G2(z) by

Bo() = [" Bol)Bi(x —) dy

—/O [z+1-yls =2z -yl + [z -y -1 dy

/ml[u + 1)y —2Mu)y + u—1]4du

1 1
= Jlut %~} + a1
x—1
1 3 3 1
:§[I+1]i—§[$]i+§[$—1]i—5[33—2]37
and it is illustrated below:
072 —|
T T T [T T T T T T T T
1 2

Basis function fG2(x)

70

In general, we can write the formula for 8, (z) as

B(z) = {— S () a5 5] even,

L =1 () fe+ 2 — 5] noodd,

Note that these spline functions are not suitable scaling functions in our current framework because they
are not mutually orthogonal, i.e. (8, (x),Bn(z — 1)) # 0.
On the other hand, the 3, (z) do have the two-scale property:

Bu(x) = 7 Z;liol (njl)ﬁ” (22 + % —7) n even,
T E S ()8, o+ 22—) modd.

Example 5.5:

For n = 1, we have
Ar(@) =[x+ 1]4 = 2[z]+ + [z — 1]+

At the same time, we have

S(B1(2 4 1)+ 261(2) + fr (20— 1)
= %([23; + 2]+ — 2[2x 4+ 1]+ + [22]+ + 2[2x 4+ 1]+ — 4[22]+ + 2[22 — 1]+ + [22]+ — 2[22 — 1]+ + [22 4+ 2]4)
= 2@+ 1)1 —4lals + 20— 1]4)
= fri(x).

So now we just need to orthogonalize these functions. Note that if we take the Fourier transform we get

Bo(w) = /OO ﬁo(x)e_i“”” dx
1

:/ e "“*dx
0

1 .
:_1_ —w
—(1 =)

_ eﬂ-w/Qsmw/2
w/2

Since (3, is constructed as convolutions of 3y, then
. n+1
- _inw)2 sinw/2
fule) e (T2)
where x = n mod 2. Next, define

bw) =)

L

= (2sinw/2) Y (w4 2m0) 2D
¢
= (2 sinw/2)2("+l)52(n+1)(w)7

~ 2
B(w + W)‘

71

where

It can be shown that

1
S =—)
2(@) = 5o
and generally,
(_1)7172 dn72
Sp(w) = -—""—"=——=S .
() (n—1)! dwn—2 2(«)
The proper scaling function is then .
n Bn w
by = 2l
b(w)

A concise formula for the scaling function is not available, so instead, let ¢; be such that

1 _ Ce—iwk
i e

i.e. the ¢ are the discrete Fourier transform of 1/4/b(w), which is possible because b(w) is a 27 peeriodic
function. Given the ¢, then the scaling function becomes

o(x) = chﬁn(x — k).
k

Note that the ¢; must be truncated because there are an infinite number of non-zero entries, but instead
decay to zero as k — oo.

5.5 Biorthogonal Wavelets

The problem with orthogonal wavelets is that it is difficult to build smooth orthogonal functions with compact
support. When we built smooth functions, e.g. the B-spline wavelets, they ended up not having compact
support. To circumvent the orthogonality condition, we weaken the condition to produce bi-orthogonal basis
functions.

Suppose uy, us € R? are two linearly independent vectors. Any vector w € R? can be wrtten as
W = aju; + asuy for some scalars oy, as. If uy, uy are orthogonal, then «; = (u;, w), but if (uj,us) # 0,
then the situation gets more complicated.

Now suppose v1, vy are such that (v;,u;) = §; ;, then vy, vo also form a basis of R? and

a; = (Vi, W).

The vectors vy, vy form a dual basis of uy, us. ~
In terms of wavelets, we hope to construct dual scaling functions and dual wavelets so that ¢ are the
dual scaling functions, 1 are the dual wavelet functions that satisfy the following equations:

(Djks b = Okt
(W), $je) =0,
(k> Yem) = 65.00k,m,
(Bjhes Yjke) = 0.
and where
Qg)j.,k = 2j/2<;3(2jx — k),
Vin = 292920 — k).

72

The set {¢; 4 }rez forms the basis for a dual subspace V;, and similarly {1); 1 }xez forms a basis for ;.
Now, we still want our scaling and wavelet functions to satisfy the scaling functions:

=V2> he(22 — k),
= ﬁzk:gm@w — k),
= \/izk: hid(2z — k),
- \/Ez::gkdj(zx — k).

To get the coefficients, we take inner products:

¢o,0(x th¢1 k

(G1k: Po0) = Zh (G1k, B1,m)

= Z hnék,n = hk-

Similarly, we have

(b1, Do0) = hu,
(b1.5,%0,0) = Gk,
(b1.5,%0,0) = G-

Note that if the {¢; 4} are orthogonal, then ¢;, = ¢; 1, and ;& = 1, k.

5.5.1 The Bi-orthogonal Wavelet Transform

The wavelet transform carries over from the orthogonal case with only minor modifications. In this case, the
coefficients h,,, g, are used for decomposition, ahd h,, g, are used for reconstruction. Suppose our given
data is given by u;, then we can write u as an expansion in the dual basis:

w=Y (Gim ik + > (Wi u)thjk.
k

k
Next, recall that

b1k = hi-okdjs,
‘

bicik =Y g oxbje-
‘

Let Aj)k = <¢j)k,u> and Dj_’k = <1/)j_,k,u>, then

Gj- 1k:Zhl 26Pj.¢,
ud)J 1k Zhl 2kU¢J27

Aj1 k= Z he—2kAje.
¢

73

Similarly, we get D1 = >, g¢e—21A; ¢. These relations show how to compute the trends, A; j, and details,
Dj i, from the original data.
Recall that V; = V;_1 @ W,_1, so we can express ¢; as a linear combination:

Gik = sume(dj—1.0, bjk)bj—1.0 + Z<1Ej—1,€7 Gj)i—1.0
¢

= Z hi—200j—1,0 + Z Jr—2005—1,0.
¢ ¢

Thus,
Ajk = Z hi—20Aj_1,0+ Z Gr—20Dj_1.0.

This shows that the transform is the same as before except we use hn, Gn instead of h,, g, in the recon-
struction.

5.6 Differentiating the B-spline wavelet functions

Recall that the B-spline scaling function is

bo(e) = {— SN (Y [p 42— 5] neven,

LS (=1 () [o 4+ 2 — 5] nodd,.

Suppose n is even (the case for n odd is analogous), then

, W n+1 n n—1
Bn(x: n—l'z <)[I+§_h}+

n—1

:ﬁ [x+g]+ —l—{x—l—g—(n—i—l)y:l "“+Z (n+1> [x+g—j}7:1

Now note that

<n+1>: (n+1! n+tl n!
JMn+1=5)t jln+1-74)G—Dln—j)!

So,
o=t e 31 o e o] S () + (7)) e -
i (n_l b g(_ly (?) =+ 3 _‘7}?1 +7§(—1)J (J ! 1) [+ —J}Tl

74

Thus, we see that the B-splines have the special property that the derivatives are easy to construct making
it possible to do spatial derivatives easily within the framework.

75

