
ES APPM 446-2 Notes

Spectral Methods for Partial Differential Equations

Prof. David Chopp

Spring 2008

Contents

1 Introduction of Spectral Methods 2

2 Approximation Properties of Fourier Series 4

2.1 Basic Properties of Fourier Space . 4
2.2 Differentiation . 6
2.3 Sobolev Norms . 7
2.4 Spectral Interpolation . 8
2.5 Computing the Pseudo-Spectral Approximation . 11
2.6 Gibbs Phenomenon . 13

3 Fourier Methods for Partial Differential Equations 14

3.1 Pseudo-spectral method . 15
3.2 Conservation Properties . 16
3.3 The Galerkin Method . 19
3.4 Time Discretization for Pseudo-spectral Methods . 21

3.4.1 Stability Analysis for Time Discretization . 22
3.4.2 Parabolic Problems . 27

3.5 High-mode Filtering and Cutting . 28

4 Chebyshev Method 31

4.1 Chebyshev Expansion . 32
4.2 Differentiation of Tk(x) . 42
4.3 Boundary Conditions and Stability Analysis . 50
4.4 Adams-Bashforth Methods . 54
4.5 Adams-Moulton Methods . 55
4.6 Implicit Methods . 56
4.7 Parabolic Partial differential equations . 56
4.8 Hyperbolic Systems . 58
4.9 Chebyshev Tau Method . 60

5 Wavelets 61

5.1 Scaling functions . 62
5.2 The Orthogonal Complement . 65
5.3 Discrete Wavelet Transform . 67
5.4 B-Spline Multiresolution Analysis . 69
5.5 Biorthogonal Wavelets . 72

5.5.1 The Bi-orthogonal Wavelet Transform . 73

1

5.6 Differentiating the B-spline wavelet functions . 74

1 Introduction of Spectral Methods

This quarter we will discuss spectral methods for solving partial differential equations. Last quarter we used
finite differences to solve equations such as

ut = ux.

Spectral methods are an alternative way to approximate spatial derivatives such as ux.
Spectral methods break down into two steps. First, the function u is approximated using a finite series.

Fourier series are used for periodic functions and Chebyshev expansions otherwise. Second, the finite series
approximation is explicitly differentiated.

To put this in perspective to the finite difference methods we employed last quarter, suppose that we
approximate u(x) with a quadratic polynomial with nodes at (j − 1)h, jh, and (j + 1)h. The polynomial
approximation p(x) must satisfy p(jh) = u(jh) = uj , likewise p((j±1)h) = uj±1. Solving for the coefficients,
we get

p(x) =
1

2h2
(uj+1 − 2uj + uj−1)x

2 +
1

h

[

1

2
(uj+1 − uj−1) − j(uj+1 − 2uj + uj−1)

]

x

+ uj −
j

2
(uj+1 − uj−1) +

j2

2
(uj+1 − 2uj + uj−1)

We now differentiate p(x) at x = jh to get an approximation for ux(jh). If we do this, we get

p′(jh) =
1

h2
(uj+1 − 2uj + uj−1)(jh) +

1

h

[

1

2
(uj+1 − uj−1) − j(uj+1 − 2uj + uj−1)

]

=
1

2h
(uj+1 − uj−1)

We recognize this as D0uj which is the central finite difference approximation for ux. Likewise, we can
compute

p′′(jh) =
1

h2
(uj+1 − 2uj + uj−1) = D+D−uj ≈ uxx(jh)

or the standard three point stencil for the second derivative.
Assume that we are solving on an interval [0, 2π], and N points are used to divide up the interval, so

h = 2π
N . We saw last quarter that the truncation error for D0uj is given by

D0uj = ux +
h2

6
uxxx +O(h4)

where h2

6 uxxx is the truncation error. Note that the approximation is exact if u(x) is a quadratic polynomial.
Otherwise, the error drops like O(1/N2).

Now let us compare to a Fourier approximation. Suppose u(x) is periodic on the interval [0, 2π]. We can
represent the function u(x) by a Fourier series

u(x) =

∞
∑

ℓ=−∞
aℓe

iℓx

Now suppose we take a finite number of terms, say

u(x) ≈ uN (x) = PNu(x) =
N
∑

ℓ=−N

aℓe
iℓx.

2

The operator PN is a projection operator called the spectral L2 operator or the spectral Galerkin projector.
The derivative is then approximated by

ux ≈ uN ;x(x) =

N
∑

ℓ=−N

iℓaℓe
iℓx.

It is reasonable to now ask what the order of accuracy of this method must be. Suppose that u(x) is Cm

where m may be +∞ and let r be any integer r ≤ m. we know that the coefficients of the Fourier expansion
are given by

aℓ =
1

2π

∫ 2π

0

u(y)e−iℓy dy

If we integrate by parts, we get

=
1

2π

[−1

iℓ
u(y)e−iℓy|2π

0 +

∫ 2π

0

1

iℓ

du

dx
(y)e−iℓy dy

]

=
1

2π

[−1

iℓ
(u(2π) − u(0)) +

∫ 2π

0

1

iℓ

du

dx
(y)e−iℓy dy

]

=
1

2π

1

iℓ

∫ 2π

0

du

dx
(y)e−iℓy dy

...

=
1

2π

1

(iℓ)r

∫ 2π

0

dru

dxr
(y)e−iℓy dy

Thus,

|aℓ| ≤
C

ℓr

for some constant C.
To compute the error for this method, we will look for the largest error on the whole interval [0, 2π].

Therefore, the error is measured by

max
x∈[0,2π]

|ux(x) − PNu(x)| = max
x∈[0,2π]

∣

∣

∣

∣

∣

∣

∑

|ℓ|>N

iℓaℓe
iℓx

∣

∣

∣

∣

∣

∣

≤ max
x∈[0,2π]

∑

|ℓ|>N

ℓ|aℓ|

≤ max
x∈[0,2π]

∑

|ℓ|>N

ℓ
C

ℓr

= O

(

1

N r−2

)

To see this last statement, look at
∫ +∞

N
1
xr dx. Therefore, the order of the approximation of ux is limited

only by the smoothness of the function u. If u happens to be C∞, then this has what is sometimes called
infinite order accuracy, i.e. convergence is faster than O(1/N r) for any r. In contrast, the finite difference
method was only able to muster O(1/N2) regardless of the smoothness of the function.

This gives us the motivation to investigate and understand spectral methods further to see what they
have to offer and what the pitfalls may be.Lec. 1

3

2 Approximation Properties of Fourier Series

2.1 Basic Properties of Fourier Space

We are now going to make the example above more precise. Let L2(0, 2π), (or L2 for short) be the space of
all complex valued square integrable periodic functions on the interval [0, 2π]. Clearly L2 is a linear infinite
dimensional vector space. Also, we can define the inner product on L2 by

〈u, v〉 =

∫ 2π

0

u(x)v̄(x) dx.

The L2 norm then becomes

||u||2 = 〈u, u〉 =

∫ 2π

0

|u(x)|2 dx

The addition of the inner product means that L2 is a Hilbert space. Therefore, we can express any element
in L2 as a linear combination of a linearly independent set of basis functions {φj(x)}+∞

j=−∞. Recall that a

set {φj(x)}+∞
j=−∞ is called orthogonal if

〈φi, φj〉 = 0 for i 6= j.

The basis is orthonormal if also ||φi|| = 1 for all i.
Consider the functions {eijx}+∞

j=−∞. We have

〈eikx, eijx〉 =

∫ 2π

0

eikxe−ijx dx

=

∫ 2π

0

ei(k−j)x dx

=

{

2π k = j

0 otherwise

Thus, the set {eijx}+∞
j=−∞ is mutually orthogonal, but not orthonormal (though that could be remedied

with an appropriate scaling of 1/
√

2π). In fact, Fourier series theory states that the set {eijx}+∞
j=−∞ is also

complete. This means that for any u ∈ L2, we can write

u(x) =
+∞
∑

k=−∞
ake

ikx

To determine the coefficients ak, we take the inner product to get

〈u, eijx〉 =

〈

+∞
∑

k=−∞
ake

ikx, eijx

〉

=

+∞
∑

k=−∞
ak〈eikx, eijx〉

= 2πaj

Thus,

aj =
1

2π
〈u, eijx〉 =

1

2π

∫ 2π

0

u(x)e−ijx dx

4

The convergence of the sum is in norm, in other words,
∥

∥

∥

∥

∥

u−
N
∑

k=−N

ake
ikx

∥

∥

∥

∥

∥

→ 0, as N → 0. (1)

Now we define the operator PN where

PNu =

N
∑

k=−N

ake
ikx.

The operator PN has the property that P 2
N = PN , and hence PN is a projection operator. In terms of PN ,

we can rewrite equation (1) as
lim

N→∞
||u− PNu|| = 0

Next, note that

||PNu||2 = 〈PNu, PNu〉

=

〈

N
∑

k=−N

ake
ikx,

N
∑

j=−N

aje
ijx

〉

=

N
∑

k=−N

ak

N
∑

j=−N

āj〈eikx, eijx〉

=
N
∑

k=−N

akāk2π

= 2π

N
∑

k=−N

|ak|2

This is the finite dimensional version of Parseval’s equation

||u||2 = 2π

∞
∑

k=−∞
|ak|2

To prove this result, we begin by using the Schwarz’ inequality |〈u, v〉| ≤ ||u|| ||v||. We then have

||u− v||2 = 〈u− v, u− v〉
= ||u||2 + ||v||2 − 〈u, v〉 − 〈v, u〉
≥ ||u||2 + ||v||2 − 2|〈u, v〉|
≥ ||u||2 + ||v||2 − 2||u|| ||v||
= (||u|| − ||v||)2

Recall that we had lim
N→∞

||u− PNu|| = 0, so therefore we have lim
N→∞

||u|| − ||PNu|| = 0. Finally, we have

||u||2 = lim
N→∞

||PNu||2

= lim
N→∞

2π

N
∑

k=−N

|ak|2

= 2π

∞
∑

k=−∞
|ak|2

which proves Parseval’s equality.

5

2.2 Differentiation

Again, let

u =

∞
∑

k=−∞
ake

ikx

then formally we can differentiate the series to get

du

dx
=

∞
∑

k=−∞
ikake

ikx

Note that this does not mean that the series converges. In fact, we have made no assumptions about the
differentiability of the elements in L2. However, it is true that the series converges if and only if u is
differentiable, and furthermore, the series converges to du

dx .
We define the operator D to be the differentiation operator given by

Du =

∞
∑

k=−∞
ikake

ikx

As such, D is an unbounded linear operator on L2. This means that D is not defined for all u ∈ L2 and it is
not true that there exists a constant C such that

||Du|| ≤ C||u||.

The operator D is also a diagonal operator on the basis {eikx} because it maps basis elements onto multiples
of themselves (like a diagonal matrix in linear algebra).Lec. 2

This brings us to an important point which we came across earlier, the convergence of the derivative
series is dependent upon the smoothness of u. If we use Parseval’s equation, we get

∥

∥

∥

∥

du

dx

∥

∥

∥

∥

2

= 2π

∞
∑

k=−∞
|ikak|2 = 2π

∞
∑

k=−∞
|k|2|ak|2.

For convergence, it is necessary that |k| |ak| → 0 as |k| → +∞. Likewise for higher derivatives we get

∥

∥

∥

∥

dru

dxr

∥

∥

∥

∥

2

= 2π
∞
∑

k=−∞
k2r|ak|2.

For this series to converge, it now must be that k2r|ak|2 → 0 as k → ±∞. Therefore, the smoother the
function u, the faster the high modes must go to zero as |k| → +∞.

Now, we want to look again at the convergence rate of ||u− PNu||. Again using Parseval’s equation, we
have

||u− PNu||2 = 2π
∑

|k|>N

|ak|2

=
2π

N2r

∑

|k|>N

N2r|ak|2

≤ 2π

N2r

∑

|k|>N

|k|2r|ak|2

≤ 2π

N2r

∞
∑

k=−∞
|k|2r|ak|2

≤ 1

N2r

∥

∥

∥

∥

dru

dxr

∥

∥

∥

∥

2

.

6

We can do the same thing for the derivatives. The spectral approximation for ux is d
dxPNu and we have

ux − d

dx
PNu =

∑

|k|>N

ikake
ikx

||ux − d

dx
PNu||2 = 2π

∑

|k|>N

|k|2|ak|2

=
2π

N2r−2

∑

|k|>N

N2r−2|k|2|ak|2

≤ 2π

N2r−2

∑

|k|>N

|k|2r|ak|2

≤ 2π

N2r−2

∞
∑

k=−∞
|k|2r|ak|2

=
1

N2(r−1)

∥

∥

∥

∥

dru

dxr

∥

∥

∥

∥

2

where we have assumed u has r derivatives. In general, we have

∥

∥

∥

∥

dq

dxq
u− dq

dxq
PNu

∥

∥

∥

∥

≤ 1

N r−q

∥

∥

∥

∥

dru

dxr

∥

∥

∥

∥

for any q ≤ r.
Note that if u is only Cr, then this puts a limit on the order of accuracy of the spectral approximation.

Furthermore, every derivative has one less order of accuracy.
On the other hand, suppose that u is C∞, then ||u − PNu|| ≤ 1

Nr

∥

∥

dru
dxr

∥

∥ for any r. Clearly, 1
Nr → 0 as

r → ∞. If
∥

∥

dru
dxr

∥

∥ < C for some constant independent of r, then this would imply ||u−PNu|| = 0. In general,

this is not the case, so for most cases this means that
∥

∥

dru
dxr

∥

∥ → ∞ as r → ∞. Thus, the order of accuracy
is determined by

∥

∥

∥

∥

dq

dxq
u− dq

dxq
PNu

∥

∥

∥

∥

≤ inf
r=0,1,...

1

N r−q

∥

∥

∥

∥

dr

dxr
u

∥

∥

∥

∥

.

This shows why it is difficult to predict the actual order of accuracy of spectral methods.

2.3 Sobolev Norms

We can simplify the error bounds if we introduce Sobolev norms. Define

‖u‖2
q =

q
∑

r=0

∥

∥

∥

∥

dru

dxr

∥

∥

∥

∥

2

.

Then, if u is Cr, and q ≤ r, then

‖u− PNu‖q ≤ C

N r−q
‖u‖r.

Note that ‖u‖0 is equivalent to the standard 2-norm we were using before.
The space of functions with q derivatives is then the qth Sobolev space and || · ||q is the norm on that

space.

7

2.4 Spectral Interpolation

The projection PN enables us to compute derivatives using 2N + 1 degrees of freedom. Given

u =

∞
∑

k=−∞
ake

ikx,

the projection is

PNu =

N
∑

k=−N

ake
ikx.

The operator PN is called the spectral projection operator because 〈u− PNu, PNu〉 = 0.
Recall that

ak =
1

2π

∫ 2π

0

u(x)e−ikx dx. (2)

If we are to implement this numerically, then we are normally only given u in the form of a discrete set of
points xj , say uniformly spaced xj = 2π

2N j for j = 0, . . . , 2N − 1. The integral (2) is then approximated by
the trapezoidal rule. We would then get

ak ≈ 1

2N

2N−1
∑

j=0

u(xj)e
−ikxj (3)

There is a problem with this approximation. When k = N , then

eiNxN = eiN 2π
2N N = eiπN = (−1)N = e−iπN = e−iNxN .

Thus, on the grid {xj}, the modes eiNx and e−iNx cannot be distinguished. In order to get a symmetricLec. 3
set of coefficients, we will assign half to j = N and half to j = −N . We thus rewrite the approximation (3)
as

ãk =
1

2N

1

ck

2N−1
∑

j=0

u(xj)e
−ikxj , k = −N, . . . , N

where

ck =

{

1 |k| < N

2 |k| = N

Note that we are using only 2N points {uj}2N−1
j=0 to compute 2N + 1 values {ãj}N

j=−N . If this is to be

an invertible process, we need to reconcile the difference. In fact, {ãj}N
j=−N is only 2N values because as

observed above, ãN = ã−N .
Now we define P̃N to be the projection

P̃Nu =

N
∑

k=−N

ãke
ikx.

The operator P̃N is called the spectral interpolation operator and P̃Nu is called the spectral interpolant or
the pseudo-spectral approximation. The values {xj} are called the collocation points. Similar to the operator
PN , the derivative approximation is obtained by the sum

d

dx
P̃Nu =

N
∑

k=−N

ãkike
ikx.

Note too, that this sum can be evaluated at any x, not just at the collocation points.
What we need to check now is, how well does P̃Nu approximate u. Before we can show this, we will need

a simple lemma.

8

Lemma 1
2N−1
∑

k=0

θk =

{

θ2N−1
θ−1 θ 6= 1

2N θ = 1

Proof 1

This is obvious if θ = 1. If θ 6= 1, let S =
∑2N−1

k=0 θk, then we get

θS =
2N−1
∑

k=0

θk+1

=

2N
∑

k=1

θk

= θ2N − 1 +

2N−1
∑

k=0

θk

= θ2N − 1 + S

Solving for S gives the result.

Now let’s evaluate P̃Nu at xj :

P̃Nu(xj) =

N
∑

k=−N

ãke
ikxj

=

N
∑

k=−N

ãke
ik(jπ

N)

=

N
∑

k=−N

[

1

2Nck

2N−1
∑

ℓ=0

uℓe
−ikxℓ

]

eik(jπ
N)

=
1

2N

2N−1
∑

ℓ=0

uℓ

N
∑

k=−N

1

ck
e−ik(ℓπ

N)eik(jπ
N)

=
1

2N

2N−1
∑

ℓ=0

uℓ

N
∑

k=−N

1

ck
eik(j−ℓ)π/N

=
1

2N

2N−1
∑

ℓ=0

uℓ

2N
∑

k=0

1

ck−N

(

ei(j−ℓ)π/N
)k−N

=
1

2N

2N−1
∑

ℓ=0

uℓ

[

2N−1
∑

k=1

(

ei(j−ℓ)π/N
)k−N

+
1

2

(

e−i(j−ℓ)π + ei(j−ℓ)π
)

]

=
1

2N

2N−1
∑

ℓ=0

uℓ

[

e−i(j−ℓ)π
2N−1
∑

k=1

(

ei(j−ℓ)π/N
)k

+
1

2
e−i(j−ℓ)π

(

1 + ei2(j−ℓ)π
)

]

=
1

2N

2N−1
∑

ℓ=0

uℓ

[

e−i(j−ℓ)π
2N−1
∑

k=1

(

ei(j−ℓ)π/N
)k

+ e−i(j−ℓ)π

]

=
1

2N

2N−1
∑

ℓ=0

uℓ

[

e−i(j−ℓ)π
2N−1
∑

k=0

(

ei(j−ℓ)π/N
)k
]

9

Now note that

2N−1
∑

k=0

(

ei(j−ℓ)π/N
)k

=

{

(ei(j−ℓ)π/N)2N−1

ei(j−ℓ)π/N −1
j 6= ℓ

2N j = ℓ

=

{

0 j 6= ℓ

2N j = ℓ

Thus,

P̃Nu(xj) =
1

2N

2N−1
∑

ℓ=0

uℓe
−i(j−ℓ)π2Nδjl = uj.

This shows that P̃Nu(xj) = u(xj) at the collocation points and can be used to interpolate u. Because

of this, P̃Nu is sometimes called the Fourier interpolant of u. Note that this interpolation is not unique
because the nodes e±iNx cannot be distinguished on the grid {xj}. However, it is unique with the additional
restriction that ãN = ã−N .

The next task is to compare P̃Nu to PNu, which is a good approximation to u, between the collocation
points. It is not true that P̃Nu = PNu. To see this, let u = ei(2N+r)x for some 0 < r < N . For this u,
PNu = 0. On the other hand,

u(xj) = ei(2N+r)(2π
2N j) = eirjπ/N = eirxj

Thus, the mode ei(2N+r)x cannot be resolved by the grid and instead is seen as a lower order frequency. This
problem of high frequency modes being represented on the grid as low frequency modes is called aliasing.

In the pseudo-spectral method, the highest frequency that can be resolved by the grid is eiNxj where
there are two gridpoints per wavelength. Of course, the modes eiNxj and e−iNxj cannot be distinguished.

This highlights the key difference between spectral and pseudo-spectral approximations. For spectral
methods, the high frequency modes vanish while for pseudo-spectral approximations they alias to lower
frequency modes.

We can use aliasing to get a relationship between the Fourier coefficients and the coefficients of P̃Nu. Let

u =

∞
∑

k=−∞
ake

ikx

The pseudo-spectral approximation is

P̃Nu =

N
∑

k=−N

ãke
ikx

where

ãk =
1

2N

1

ck

2N−1
∑

j=0

uje
−ikxj

=
1

2N

1

ck

2N−1
∑

j=0

(∞
∑

ℓ=−∞
aℓe

iℓxj

)

e−ikxj

=
∞
∑

ℓ=−∞

1

2N

1

ck

2N−1
∑

j=0

aℓe
i(ℓ−k)xj

=

∞
∑

ℓ=−∞

1

2N

1

ck
aℓ

2N−1
∑

j=0

ei(ℓ−k)(π
N j)

=

∞
∑

ℓ=−∞

1

2N

1

ck
aℓαkℓ

10

where

αkℓ =

{

ei(ℓ−k)2π−1
ei(ℓ−k)π/N−1

ei(ℓ−k)π/N 6= 1

2N ei(ℓ−k)π/N = 1

=

{

0 ei(ℓ−k)π/N 6= 1

2N ei(ℓ−k)π/N = 1

Now, ei(ℓ−k)π/N = 1 if and only if ℓ− k = 2rN for some integer r. In other words, ℓ = k + 2rN . Thus,

ãk =
1

ck

∞
∑

r=−∞
ak+2rN .

Lec. 4
If u is smooth, then all the terms ak+2rN are small except for r = 0. This fact allows us to bound the

error of the pseudo-spectral approximation by

‖u− P̃Nu‖q ≤ C‖u‖p

Np−q

where p, q are integers, p > 0, 0 ≤ q ≤ p.

2.5 Computing the Pseudo-Spectral Approximation

In practice, if we are given u on the collocation points, we compute the pseudo-spectral approximation by
the formula

ãj =
1

2N

1

cj

2N−1
∑

k=0

uke
−ijxk , for j = −N ,. . . ,N (4)

Then to compute the approximation to the rth derivative, we use

dr

dxr
P̃Nu

∣

∣

∣

∣

x=xk

=

N
∑

j=−N

(ij)rãje
ijxk

Notice that equation (4) requires O(N2) computations in order to compute all the ãj . Compare this to
finite difference approximations which are O(N). So we take a computational cost hit when using pseudo-
spectral methods. The impact can be reduced for particular values of N , say N = 2m for some integer m.
Then the number of operations can be reduced to O(N logN) using the Fast Fourier Transform or FFT.
The idea is to organize the order of computing the terms in the sums. We won’t discuss this any further in
this course.

An alternative approach to computing the derivatives dru
dxr

∣

∣

x=xk
is to treat it as a linear function of the

values uk. Let

U = U (0) =

u0

...
u2N−1

and U (r) =

u
(r)
0
...

u
(r)
2N−1

where u
(r)
k is the pseudo-spectral approximation of dr

dxr u
∣

∣

x=xk
. We want to then write a differential operator

D so that U (r) = DU (r−1) = DrU . The operator D is called the pseudo-spectral differentiation matrix.

11

There are a couple ways we can derive the entries of the matrix D. One way is to compute D on the unit
vectors, namely E0, . . . , E2N−1 where Ek = δjk. Let U = Eℓ, then

ãj =
1

2N

1

cj

2N−1
∑

k=0

uke
−ijxk

=
1

2N

1

cj

2N−1
∑

k=0

δkℓe
−ijxk

=
1

2N

1

cj
e−ijxℓ

So,

P̃Nu(x) =

N
∑

j=−N

ãje
ijx

=
N
∑

j=−N

1

2N

1

cj
e−ijxℓeijx

=

N
∑

j=−N

1

2N

1

cj
eij(x−xℓ)

DP̃Nu(x) =

N
∑

j=−N

ij
1

2N

1

cj
eij(x−xℓ)

DP̃Nu(xk) =

N
∑

j=−N

ij
1

2N

1

cj
eij(xk−xℓ)

A more concise formula for the entries of D can be obtained by writing down trigonometric polynomials
gk which have the property that gk(xℓ) = δkℓ. For example, let

gk(x) =
1

2N
sin(N(x− xk)) cot((x− xk)/2)

Clearly, gk(xℓ) = δkℓ. The matrix D can then be constructed by computing

d

dx
gk(x)

∣

∣

∣

∣

x=xj

= Djk

Thus, the matrix D has the entries

Djk =

{

1
2 (−1)j+k cot((xj − xk)/2) j 6= k

0 j = k

Lec. 5
The operator D as computed above has some important properties that we will use later.

1. D is a real skew-symmetric matrix, i.e. DT = −D. To see this, we have

Dkj =
1

2
(−1)j+k cot((xk − xj)/2)

=
1

2
(−1)j+k(− cot((xj − xk)/2))

= −Djk

Note that the same is true if we were to define D in terms of finite differences on a periodic function.

12

2. D has eigenvalues 0, ±i, ±2i, . . . , ±(N − 1)i, 0. Note that if u = eikx, then Du = ikeikx = iku
and if k < N , the spectral approximation is exact, hence {eikx}N−1

k=−(N−1) are eigenvectors. The last

eigenvector is uk = (−1)k which corresponds to e±iNx (and the two modes cannot be distinguished).
Applying D to this mode gives 0. This shows that ‖D‖ = O(N).

3. Note that if the original function U has real data, then ¯̃ak = ã−k. We can use this to note that we
need only compute ãk for k = 0, . . . , N and the reverse process means the sum need only be computed
using half the sum (ignoring the imaginary part). There are specialized FFT routines which do this
job for you. However, using the matrix method doesn’t allow you to take advantage of this fact.

4. In practical terms, we do not actually build the matrix D, but do the equivalent using the FFT. Given
U , we apply the FFT to get a new vector A which contains the computed Fourier coefficients a−N ,
a−N+1,. . . , aN−1. Now we must convert this into the corresponding pseudo-spectral approximation to
get

ãk = ak, for k = −N + 1,. . . ,N − 1

ã−N = ãN =
1

2
a−N

Next, we compute the derivative of P̃Nu

d

dx
P̃Nu =

d

dx

N
∑

k=−N

ãke
ikx

N
∑

k=−N

d̃ke
ikx =

N
∑

k=−N

ikãke
ikx

where the d̃k are the pseudo-spectral coefficients for the derivative. Note that in order to apply the
inverse FFT, we must recombine d̃−N and d̃−N to get

d−N = d̃N + d̃−N = iNãN − iNã−N = 0

Therefore, the vector of data that we pass back through the inverse Fourier transform is

[

0 i(−N + 1)a−N+1 · · · ikak · · · i(N − 1)aN−1

]

It is important to note that the first entry is not −iNa−N as might be guessed.

2.6 Gibbs Phenomenon

Suppose u(x) is not smooth. For example, let u be defined by

u(x) =

{

1 x1 ≤ x ≤ x2

0 otherwise

Notice that our results on convergence assumed at least a C0 function, so those results are not valid.
Fourier theory states, with some additional restrictions, that PNu(x1) → 1

2 (u(x+
1) + u(x−1)) as N → ∞

where u(x±1) are the one-sided limits of u at x1. However, convergence is not uniform near the discontinuity.
For any λ, one can show

uN

(

x+
λ

N + 1
2

)

∼ 1

2
[u(x+) + u(x−)] + [u(x+) − u(x−)] Si(λ)

13

0 1 2 3 4 5 6 7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Example of Gibbs phenomemon overshoot.

where

Si(λ) =
1

π

∫ λ

0

sin(η)

η
dη.

What this shows is that if u has a jump discontinuity, then the points which are O(1/N) away from the
discontinuity differ from the mean by O(1). Note that Si(λ) has a maximum at λ = π and one can show
that

uN

(

x+
π

N + 1
2

)

− u(x+) ∼ (u(x+) − u(x−))(0.09)

This is known as the 9% Gibbs overshoot. The solution will look like Figure 1. These oscillations are global.
The utility of spectral methods for problems with jump discontinuities is the subject of research.Lec. 6

3 Fourier Methods for Partial Differential Equations

Let us return to partial differential equations and make use of the spectral approximation. Consider a partial
differential equation of the form

ut = Su

u(x, 0) = u0(x)

where S is a spatial differential operator and u is assumed to be periodic on [0, 2π]. Examples of such
equations are

• Baby wave equation: S = ∂
∂x , ut = ux

• Burger’s equation: S = u ∂
∂x , ut = uux

• Heat equation: S = ∂2

∂x2 , ut = uxx

There are two methods for solving such a partial differential equation using spectral methods. Pseudo-
spectral methods solve the equation using ũN in real space, and Galerkin spectral methods compute uN by
evolving the coefficients in Fourier space.

14

3.1 Pseudo-spectral method

We introduce collocation points xk = 2π
2N k, for k = 0, . . . , 2N − 1 and let uk = u(xk). We wish to solve for

uk(t). Let ûN be the trigonometric polynomial which interpolates uk. The approximate equation is then

duk

dt
= S(ûN)|x=xk

The procedure is then

1. Compute ûN = P̃Nu.

2. Solve in time the differential equation

∂ûN

∂t
= P̃NS(ûN), ûN (x, 0) = P̃Nu0(x)

Note that it is not true that ûN = P̃Nu for t > 0. If we write the original equation and apply P̃N to it
we get

P̃N
∂

∂t
u = P̃NS(u)

P̃Nu(x, 0) = P̃Nu0(x)

This is different from

∂

∂t
(P̃Nu) = S(P̃Nu)

P̃Nu(x, 0) = P̃Nu0(x)

In the first case, we transform the entire differential equation into Fourier space where the equation is then
solved before transforming the result back into real space. This is called a Galerkin method. In the second
case, we apply the differential equation to the spectral approximation in real space. The two methods are
different because they generate error in different ways. The first method has an additional error due to the
approximation of the partial differential equation itself.

In the pseudo-spectral method, we must solve for uk(t), the value of u at the collocation points. The
Fourier transform is used only for computing derivatives.

Example 3.1:

Consider the baby wave equation

ut = ux

u(x, 0) = u0(x)

The easiest way to express the algorithm is in terms of the derivative operator D. We can express D in
matrix form, and let ũk(0) = P̃Nu(xk, 0). Then the equation is solved by computing the equation

∂

∂t
Ũ = DŨ

where

Ũ =

ũ0

...
ũ2N−1

.

15

The method of stepping in time is not specified, but any high order method could be used.
To illustrate, let us do one step in time using Euler’s method. Compute ũk(0) = P̃Nu(xk, 0), and express

as Ũ0. At the same time, compute ∂
∂x Ũ0 = DŨ0. Now advance Ũ0 by

1

∆t
(Ũ1 − Ũ0) = DŨ0

Ũ1 = (I + ∆tD)Ũ0

3.2 Conservation Properties

Consider the partial differential equation ut = ux, and multiply by u to get

∫ 2π

0

uut dx =

∫ 2π

0

uux dx =

∫ 2π

0

1

2

∂

∂x
(u2) dx =

1

2
u2

∣

∣

∣

∣

2π

0

= 0

At the same time, we have

∫ 2π

0

uut dx =

∫ 2π

0

1

2

∂

∂t
(u2) dx =

d

dt

∫ 2π

0

1

2
u2 dx

Therefore, we have shown
d

dt

∫ 2π

0

u2 dx = 0

In fact, this is the conservation of energy property where
∫ 2π

0 u2 dx represents the energy in the system.

How well does the pseudo-spectral method conserve energy? The discrete analog of
∫ 2π

0
u2 dx is given by

∑2N−1
j=0 ũ2

j . Define Ũ = [ũ0, . . . , ũ2N−1]
T

to be the vector of data at the collocation points. The pseudospec-

tral method can then be written as d
dt Ũ = DŨ where D is the pseudospectral differentiation matrix, and we

see that
d

dt
ŨT Ũ = 2ŨT d

dt
Ũ = 2ŨTDŨ.

Now, ŨTDŨ is a scalar, so it is equal to its transpose, hence

ŨTDŨ = (ŨTDŨ)T = ŨTDT Ũ = −ŨTDŨ

where recall that D is skew symmetric. Therefore, ŨTDŨ = 0 and hence

d

dt
ŨT Ũ =

d

dt

N
∑

j=−N

ũ2
j = 0.

One might be led to conclude that this implies the pseudo-spectral method is unconditionally stable.
However, we have assumed exact integration in time. Stability of the full numerical method will depend on
the choice of time integration.Lec. 7

The next level of complication would be to add variable coefficients. Consider the equation

ut = b(x)ux

u(x, 0) = u0(x)

In matrix format, this becomes
dŨ

dt
= ADŨ

16

where D is the differentiation matrix and

A =

a(x0) 0
. . .

0 a(xN)

.

Again, if a(x) > 0, then we have a conservation of energy:

d

dt

〈

u,
1

a
u

〉

=

〈

∂u

∂t
,
1

a
u

〉

+

〈

u,
∂

∂t

1

a
u

〉

=

〈

∂u

∂t
,
1

a
u

〉

+

〈

u,
1

a

∂u

∂t

〉

=

〈

a
∂u

∂x
,
1

a
u

〉

+

〈

u,
∂u

∂x

〉

=

〈

∂u

∂x
, u

〉

+

〈

∂u

∂x
, u

〉

= 2ℜ
〈

∂u

∂x
, u

〉

= 2ℜ
∫ 2π

0

ū
∂u

∂x
dx

= ℜ
∫ 2π

0

ū
∂u

∂x
+ u

∂ū

∂x
dx

= ℜ
∫ 2π

0

∂

∂x
|u|2 dx

= |u|2
∣

∣

2π

0
= 0

Likewise, in the discrete case,

1

2

d

dt
〈Ũ , A−1Ũ〉 =

1

2

〈

∂Ũ

∂t
, A−1Ũ

〉

+
1

2

〈

Ũ , A−1 ∂Ũ

∂t

〉

=
1

2
〈ADŨ,A−1Ũ〉 +

1

2
〈Ũ , A−1ADŨ〉

= ŨTDŨ = 0

We can also apply this technique to the heat equation to see that it properly dissipates energy. Consider
the equatiion

ut = uxx

u(x, 0) = u0(x)

For the analytic case, we have

d

dt
〈u, u〉 = 2 〈ut, u〉

= 2 〈uxx, u〉

= 2

∫ 2π

0

uxxu dx

= 2

[

uux|2π
0 −

∫ 2π

0

u2
x dx

]

= −2‖ux‖2

17

For the discrete case, we have ∂Ũ
∂t = D2Ũ , and hence

d

dt

〈

Ũ , Ũ
〉

= 2

〈

Ũ ,
d

dt
Ũ

〉

= 2
〈

Ũ ,D2Ũ
〉

= 2ŨTD2Ũ

= 2Ũ(−DTD)Ũ

= −2
(

DŨ
)T

DŨ

= −2
〈

DŨ,DŨ
〉

.

This shows that the pseudospectral method will dissipate at the same rate as the analytic equation.
Next, let us consider a non-linear problem such as Burger’s equation:

ut = uux =
1

2
(u2)x

We rewrite this as

ut =
1

3
(u2)x +

1

3
uux

Given u defined on the collocation points, compute the spectral interpolants ũN = P̃Nu and ṽN = P̃Nu
2.

We then approximate the equation as

∂

∂t
ũk =

1

3

∂

∂x
ṽN

∣

∣

∣

∣

x=xk

+
1

3
uk

∂

∂x
ũN

∣

∣

∣

∣

x=xk

.

In matrix form, this method becomes

d

dt
Ũ =

1

3
DΛŨ +

1

3
ΛDŨ (5)

where

Λ =

u0 0
. . .

0 u2N−1

.

Again, we get a conserved quantity in 〈u, u〉. From the exact equation, we get

d

dt
〈u, u〉 = 2〈u, ut〉

= 2〈u, uux〉

= 2

∫ 2π

0

u2ux dx

=
2

3

∫ 2π

0

∂

∂x
(u3) dx

=
2

3
u3

∣

∣

∣

∣

2π

0

= 0

Thus, d
dt 〈u, u〉 = 0.

18

If we do the same thing using equation (5), we get

d

dt
ŨT Ũ = 2

(

d

dt
Ũ

)T

Ũ

= 2

(

1

3
DΛŨ +

1

3
ΛDŨ

)T

Ũ

=
2

3
ŨT (DT ΛT + ΛTDT)Ũ

=
2

3
ŨT (−DΛ + (DΛ)T)Ũ

=
2

3
(ŨT (DΛ)T Ũ − ŨT (DΛ)Ũ)

But, ŨT (DΛ)T Ũ = (ŨT (DΛ)T Ũ)T = ŨT (DΛ)Ũ . Thus,

d

dt
ŨT Ũ =

2

3
(ŨT (DΛ)Ũ − ŨT (DΛ)Ũ) = 0.

The fact that writing the method in this forms conserves the energy is why writing the equation in the form
of equation (5) is done.

3.3 The Galerkin Method

The method we have described so far works with approximate function values. In other words, the approxi-
mations are all in real-space. The Galerkin method is a method where the approximation is done in Fourier
space.

Consider the equation

∂u

∂t
= Su

u(x, 0) = u0(x)

where S is some differential operator. For fixed N , compute the Fourier coefficients ak where

u(x) ≈ PNu =

N
∑

k=−N

ake
ikx

Note that here we are computing the ak via the exact formula

ak =
1

2π

∫ 2π

0

u0(x)e
−ikx dx.

If the integral is done numerically, and u0(x) is given explicitly, use a maximally accurate method to compute

ak so as to avoid initial aliasing problems. We then have u(x) ≈ PNu(x) =
∑N

k=−N ak(t)eikx.

Next, we obtain ordinary differential equations for each of the ak by substituting PNu into ∂u
∂t = Su. We

get an equation of the form

N
∑

k=−N

d

dt
ak(t)eikx = S

N
∑

k=−N

ak(t)eikx =

N
∑

k=−N

ck(a−N (t), . . . , aN(t), t)ak(t)eikx

for some functions ck(a−N (t), . . . , aN (t), t) which are independent of x and may depend non-linearly on the
ak(t)’s. We then get a system of differential equations of the form

d

dt
ak(t) = ck(a−N (t), . . . , aN (t), t) for k = −N , . . . , N

19

For example, consider the baby wave equation ut = ux and assume u ≈ PNu(x, t) =
∑N

k=−N ak(t)eikx.
Plugging this approximation into the differential equation gives

N
∑

k=−N

d

dt
ak(t)eikx =

N
∑

k=−N

ikak(t)eikx.

Thus, we got the evolution equation for the coefficients

d

dt
ak(t) = ikak(t), for k = −N ,. . . , N.

The Galerkin method is to compute these individual ordinary differential equations and reconstruct the
solution u(x, t) from the coefficients only when necessary.Lec. 8

The Galerkin method works well for linear problems, the difficulty is when the differential operator is
not linear, or there are variable coefficients. For example, consider the equation

ut = b(x)ux

Suppose b(x) =
∑∞

j=−∞ bje
ijx and let PNu =

∑∞
k=−∞ ake

ikx where ak = 0 for k > N . We then get

∞
∑

k=−∞

d

dt
ak(t)eikx =

(∞
∑

k=−∞
bje

ijx

)(∞
∑

k=−∞
ikake

ikx

)

=

∞
∑

k=−∞
cke

ikx

where

ck =

∞
∑

j=−∞
ijajbk−j =

N
∑

j=−N

ijaj(t)bk−j .

The Galerkin method now becomes a coupled linear system of ordinary differential equations given by

d

dt
ak(t) =

N
∑

j=−N

ijaj(t)bk−j

For another example, consider the Burger’s equation,

ut = uux.

Following the same algebra as above, we see that we get the system of ordinary differential equations

d

dt
ak(t) =

N
∑

j=−N

ijaj(t)ak−j(t)

Now we have a non-linear coupled system of ordinary differential equations which further complicates the
computation of the solution. These examples show how products become convolutions for the Galerkin
method.

We now will formalize the Galerkin method. For generality, let φℓ = eiℓx be an orthogonal basis set.
Approximate

PNu =
N
∑

k=−N

akφk(x)

20

and assume we wish to solve the equation
ut = Su.

The Galerkin procedure requires the residual, given by

∂

∂t
PNu− SPNu

to be in the orthogonal complement of the space spanned by the basis vectors {φj}N
j=−N . For this to be

true, it must be that

〈

φj ,
∂

∂t
PNu− SPNu

〉

= 0

d

dt
〈φj , PNu〉 = 〈φj , SPNu〉

Clearly, this is the method we described above where we found the equations for the time evolution of the
Fourier coefficients. In other words, we are solving the equation

∂PNu

∂t
= SPNu

where PN is the orthogonal spectral projection.
For summary purposes, we present a comparison between Galerkin and Pseudo-spectral methods.

• For non-linear or non-constant coefficient problems, the Galerkin method is more expensive because
products are evaluated as convolutions.

• There are applications, such as in turbulence, where the Fourier modes are as important as the real
function values, so Galerkin methods make sense in that context.

• Pseudo-spectral methods work in real space and products are handled naturally.

• Galerkin methods project high frequency modes to zero while Pseudo-spectral methods alias high
frequencies to lower frequencies.

Lec. 9

3.4 Time Discretization for Pseudo-spectral Methods

Suppose we have the partial differential equation

ut = Su, u(x, 0) = u0(x)

where again, S is a possibly non-linear differential operator. So far, we have discussed only how to handle
the right hand side. Now we will discuss how to advance in time.

When considering the time stepping method, it is important to understand the relative error introduced
by the time step method compared to the error in the spatial direction. If a time accurate solution is required,
then one must be careful to take small time steps or the time error can dominate the total error and negate
the advantage of using spectral methods.

On the other hand, if a steady state solution is sought, or the time evolution is slow compared to the
spatial behavior, the larger time steps are appropriate.

21

3.4.1 Stability Analysis for Time Discretization

Consider the equation
ut = ux

If we again write

U =

u0

...
u2N−1

where uk = u(xk), then the pseudo-spectral approximation to this equation is

d

dt
U = DU

Let Un = U(n∆t). The most general time discretization method can be written as

r
∑

j=−r

αjU
n+j =

r
∑

j=−r

βjpj(D)Un+j

where pj(D) is a polynomial in D.
If we take α±1 = ±1

2∆t , β0 = 1, then we get the Leap-Frog method:

Un+1 − Un−1

2∆t
= DUn

You may recall from last quarter that we computed

Un+1 − Un−1

2∆t
= DUn +O(∆t2)

Now let us discuss the stability. Consider the simpler difference equation

r
∑

j=−r

αjU
n+j = DUn

We look for solutions of the form Un = znU0 where z is a scalar.

r
∑

j=−r

αjz
n+jU0 = DznU0

r
∑

j=−r

αjz
j

 znU0 = DznU0

Thus, Un = znU0 must be an eigenvector of D. Suppose D = PΛP−1 where Λ is the diagonal matrix
with the eigenvalues of D, then let Wn = P−1Un = znP−1U0. We thus have a decoupled equation of the
form

r
∑

j=−r

αjz
j

Wn = ΛWn

q(z)Wn = ΛWn

Therefore, we have a system of decoupled equations of the form

q(z)wn
k = λkw

n
k

22

For each equation, we solve for zk which will depend on λk.
Recall that for stability, we require

max
0≤k≤2N−1

|zk| ≤ 1 + a∆t

which is sufficient to allow bounded growth, hence stability. Note here that a is a constant which is inde-
pendent of the choice of N and ∆t.

This condition puts a cap on the growth of |Wn|. But P depends on N through D, can we make the same
conclusion? The answer is yes, because D is a normal matrix (D∗D = DD∗). Normal matrices have the
property that they can be diagonalized by unitary matrices. This means that P is unitary, and consequently,

||Wn||2 = ||P−1Un||2 = ||Un||

Therefore, it is sufficient to show the bound on the growth of the zk’s to prove stability.
Let us apply this technique to the Leap-Frog method for the equation ut = ux. The method is

Un+1 − Un−1

2∆t
= DUn

Let Un = znU0 and plug into the equation to get

zn+1U0 − zn−1U0

2∆t
= DznU0

1

2∆t
(z2 − 1)U0 = zDU0

Let U0 be an eigenvector of D with eigenvalue λ, then we have

1

2∆t
(z2 − 1) = λz

Recall that λ = ±iℓ for some integer ℓ, 0 ≤ ℓ ≤ N − 1 and so we get

z2 − 1 = ±2∆tiℓz

Solving for z gives

z = ∓iℓ∆t±
√

1 − ℓ2∆t2

If we assume 1 − ℓ2∆t2 ≥ 0, then

|z|2 = (1 − ℓ2∆t2) + ℓ2 + ∆t2 = 1

Therefore, if ∆t ≤ 1
|ℓ| for each ℓ = ±1,. . . , ±N − 1, then we have stability. The stability limit is then

∆t ≤ 1

N − 1
.

Recall that for the collocation points, ∆x = 2π
2N = π

N and note that for large N , 1
N ∼ 1

N−1 so that

1

N − 1
∼ 1

N
=

∆x

π

Thus, we have stability if ∆t ≤ 1
π ∆x. This is smaller than the stability limit for the corresponding finite

difference approximation.
We note here without proof, that solving the corresponding hyperbolic system of equations

Ut = AUx

23

where A is an m×m matrix, then the stability limit is

∆t ≤ 1

(N − 1)λmax

where λmax is the largest eigenvalue of A in absolute value.
By contrast, we can also analyze Euler’s method given by

Un+1 = Un + ∆tDUn

If we assume Un = znU0, then we get

zn+1U0 = znU0 + ∆tDznU0

(z − 1) = ∆tiℓ

z = 1 + ∆tiℓ

|z| =
√

1 + ∆t2ℓ2

≤
√

1 + 2ℓ∆t+ ℓ2∆t2

=
√

(1 + ℓ∆t)2

= 1 + ℓ∆t

Therefore, |zmax| ≤ 1 + (N − 1)∆t. For stability, we then need ∆t = O
(

1
N2

)

which is very restrictive.Lec. 10
We can also study an implicit method such as Crank-Nicolson:

Un+1 − Un

∆t
=

1

2
D(Un+1 + Un)

Again, set Un = znU0 to get
z − 1

∆t
U0 =

1

2
(z + 1)DU0

If U0 is an eigenvector of D with eigenvalue iℓ, then we get

1

∆t
(z − 1) =

1

2
(z + 1)iℓ

z

(

1 − ∆t

2
iℓ

)

= 1 +
∆t

2
iℓ

z =
1 + ∆t

2 iℓ

1 − ∆t
2 iℓ

and hence,

|z|2 =
1 + 1

4∆t2ℓ2

1 + 1
4∆t2ℓ2

= 1

Therefore, Crank-Nicolson is unconditionally stable. This is not an endorsement for large steps however,
because there is still the temporal error that is to be considered.

The implementation of Crank-Nicolson is not trivial. The matrix equation looks like

(

I − ∆t

2
D

)

Un+1 =

(

I +
∆t

2
D

)

Un

24

This time, the matrix on the left is a full matrix. It is not a crisis, however, because if F is the FFT operator,
then FDF−1 is a diagonal matrix, hence D = F−1ΛF . Substituting into the equation, we get

F−1

(

I − ∆t

2
Λ

)

FUn+1 = F−1

(

I +
∆t

2
Λ

)

FUn

(

I − ∆t

2
Λ

)

FUn+1 =

(

I +
∆t

2
Λ

)

FUn

Un+1 = F−1

(

I − ∆t

2
Λ

)−1(

I +
∆t

2
Λ

)

FUn

Note that this inversion of D by F does not help in the case of variable coefficient problems. In that case,
D must be inverted as a full matrix which is expensive.

Another common high-order time stepping scheme is the Runge-Kutta class of methods. We have already
seen that the first order Runge-Kutta class method, i.e. Euler’s method, is not a good choice for time
stepping. Let us try the second order Runge-Kutta method. The method is

U (1) = Un +
1

2
∆tDUn

U (2) = Un + ∆tDU (1)

Un+1 = U (2)

In this case,

Un+1 = U (2)

= (Un + ∆tDU (1))

= Un + ∆tD

(

Un +
1

2
∆tDUn

)

=

(

I + ∆tD +
1

2
∆t2D2

)

Un

We assume Un = znU0, and plug in to get

zn+1U0 =

(

I + ∆tD +
1

2
∆t2D2

)

znU0

z =

(

1 + ∆tiℓ+
1

2
∆t2(iℓ)2

)

=

(

1 − 1

2
∆t2ℓ2

)

+ i∆tℓ

|z|2 =

(

1 − 1

2
∆t2ℓ2

)2

+ ∆t2ℓ2

= 1 − ∆t2ℓ2 +
1

4
∆t4ℓ4 + ∆t2ℓ2

= 1 +
1

4
∆t4ℓ4

Thus, as for Euler’s method, all modes grow, but can be made weakly stable.
The third and fourth order Runge-Kutta methods are better choices. If we are solving the equation

d

dt
U = DU

25

with the third order Runge-Kutta method, we get

U (0) = Un

U (1) = Un + α1∆tDU
n

U (2) = Un + α2∆tDU
(1)

U (3) = Un + α3∆tDU
(2)

Un+1 = U (3)

where α1 = 1
3 , α2 = 1

2 , and α3 = 1.
To analyze this method, we again assume Un = znU0 and combine all the steps to get

U (0) = znU0

U (1) = znU0 + α1∆tDz
nU0

U (2) = znU0 + α2∆tD(znU0 + α1∆tDz
nU0)

zn+1U0 = Un+1 = U (3) = znU0 + α3∆tD[znU0 + α2∆tD(znU0 + α1∆tDz
nU0)]

Thus, we get
zU0 = [I + α3∆tD + α2α3∆t

2D2 + α1α2α3∆t
3D3]U0 = AU0

Note that A has the same eigenvectors as D, and the eigenvalues of A are

(1 + α3∆tiℓ− α2α3∆t
2ℓ2 − α1α2α3∆t

3iℓ3) for ℓ = −N − 1,. . . ,N − 1.

Thus, we must have

z = 1 − α2α3∆t
2ℓ2 + i(α3∆tℓ − α1α2α3∆t

3ℓ3)

|z|2 = (1 − α2α3∆t
2ℓ2)2 + (α3∆tℓ− α1α2α3∆t

3ℓ3)2

= 1 − 2α2α3∆t
2ℓ2 + α2

2α
2
3∆t

4ℓ4 + α2
3∆t

2ℓ2 − 2α1α2α
2
3∆t

4ℓ4 + α2
1 + α2

2α
2
3∆t

6ℓ6

= 1 − 1

12
∆t4ℓ4 +

1

36
∆t6ℓ6

If we want |z|2 ≤ 1, then we get

1 − 1

12
∆t4ℓ4 +

1

36
∆t6ℓ6 ≤ 1

1

36
∆t2ℓ2 ≤ 1

12

∆t2 ≤ 3

ℓ2

∆t ≤
√

3

|ℓ|

Therefore, the stability requirement is ∆t ≤
√

3
(N−1) .

Fourth order Runge-Kutta can also used. This is the same as third order Runge-Kutta except there are
four stages.

U (1) = Un + α1∆tDU
n

U (2) = Un + α2∆tDU
(1)

U (3) = Un + α3∆tDU
(2)

U (4) = Un + α4∆tDU
(3)

Un+1 = U (4)

26

where α1 = 1
4 , α2 = 1

3 , α3 = 1
2 , and α4 = 1. In this case, the stability bound is

∆t ≤ 2
√

2

N − 1
≈ 2.8

N − 1

For non-linear problems, the Runge-Kutta methods tend to give only second order accuracy but are also
more robust than the Leap-Frog method.Lec. 11

3.4.2 Parabolic Problems

Next, let us look at the stability of parabolic problems. Consider the heat equation

ut = uxx

u(x, 0) = u0(x)

The discrete pseudo-spectral approximation is

dU

dt
= D2U

Clearly, the eigenvalues of D2 are O(N2), so we have to expect a more restrictive time step for explicit
methods. Let us first try Euler’s method.

Un+1 = Un + ∆tD2Un

Plug in Un = znU0 to get

zn+1U0 = znU0 + ∆tD2znU0

z = 1 + ∆t(iℓ)2

= 1 − ∆tℓ2

Thus,

|1 − ∆tℓ2| ≤ 1

−1 ≤ 1 − ∆tℓ2 ≤ 1

−2 ≤ −∆tℓ2 ≤ 0

∆t ≤ 2

ℓ2

So we must have ∆t ≤ 2
(N−1)2 .

For a larger time step, we could try the Crank-Nicolson method

1

∆t
(Un+1 − Un) =

1

2
D2(Un+1 + Un)

Plugging in Un = znU0, we get

1

∆t
(zn+1U0 − znU0) =

1

2
D2(zn+1U0 + znU0)

z

(

I − ∆t

2
D2

)

U0 =

(

I +
∆t

2
D2

)

U0

z

(

1 − ∆t

2
(iℓ)2

)

=

(

1 +
∆t

2
(iℓ)2

)

z =
1 − ∆t

2 ℓ
2

1 + ∆t
2 ℓ

2

≤ 1

27

Thus, Crank-Nicolson is again unconditionally stable.
Backward Euler is also a good choice for a method if steady state solutions are desired, but not if a time

accurate solution is needed.
Un+1 − Un

∆t
= D2Un+1

This method is also unconditionally stable.
While Crank-Nicolson and Backward Euler are unconditionally stable, they also will require inversion of

a full matrix. The diagonalization of D2 using the FFT operator F can again be employed for the linear
constant coefficient problem.

By contrast, The Leap Frog method is not a good choice for parabolic problems (as we also saw for finite
differences). Plugging Un = znU0 into the equation becomes

Un+1 − Un−1

2∆t
= D2Un

zn+1U0 − zn−1U0

2∆t
= D2znU0

(z2 − 1) = 2∆tz(−ℓ2)
z2 + 2∆tℓ2z − 1 = 0

z =
−2∆tℓ2 ±

√
4∆t2ℓ4 + 4

2

= −∆tℓ2 ±
√

1 + ∆t2ℓ4

Hence,

z = −∆tℓ2 −
√

1 + ∆t2ℓ4 < −1,

and therefore, Leap Frog is not stable.
As for finite differences, we can also apply semi-implicit methods to avoid the time step restrictions of

some equations. For example, consider an equation of the form

ut = uxx +N(u)

where N(u) = uuxx or some other type of reaction term. We can combine Crank-Nicolson for the parabolic
terms and use an explicit multistep method for the non-linear term.

Un+1 − Un

∆t
=

1

2
D2(Un+1 + Un) +

(

3

2
N(Un) − 1

2
N(Un−1)

)

The resulting matrix on the left hand side can be inverted using the FFT operator as before.

3.5 High-mode Filtering and Cutting

When using a pseudo-spectral method for a partial differential equation, you are approximating u by a
partial Fourier sum.

uN =
∑

|k|≤N

ãke
ikx

If the function u is not well resolved, then aliasing can cause high mode oscillations to appear. In addition,
many non-linear problems have instabilities causing the growth of high mode oscillations. One way to control
high mode oscillations is to use filtering.

Filtering is an adjustment of the wave numbers. Suppose that

∂

∂x
uN =

N
∑

k=−N

ikake
ikx

28

then we instead use

∂

∂x
UN =

N
∑

k=−N

ikf(k)ake
ikx

The function f(k) is called a filter function. Examples of filter functions are

f(k) =

{

1 |k| ≤ k0

0 otherwise
or f(k) =

{

e−α(|k|−|k0|)2 |k| > k0

1 |k| ≤ k0

A high decay rate can be achieved with the filter function

f(k) =

{

1 |k| ≤ k0

e−α(|k|−k0)
4 |k| > k0

Rewriting

e−α(|k|−k0)
4

= e
−α̃

“

|k|−k0
N−k0

”4

we can see that for wave mode k = N , the amount that the highest mode is cut is

e
−α̃

“

N−k0
N−k0

”4

= e−α̃

The parameters α̃ and γ where k0 ∼ γN , γ < 1 are tunable according to the problem.
Obviously, filters will reduce the accuracy of the spectral approximation, but it is essential for solving

problems which involve jump discontinuities or are highly non-linear with rapid spatial variation.Lec. 12
One common filter when using Leap-Frog is to use

f(k) =
sin(k∆t)

k∆t

To see how to use such a filter function, consider the wave equation

ut = ux

and the Leap-Frog approximation
Un+1 − Un−1 = 2∆tDUn

The normal algorithm proceeds as follows. Given

Un =

u0

...
u2N−1

,

1. Compute the pseudo-spectral approximation

α̃k =
1

2N

1

ck

2N−1
∑

j=0

uje
−ikxj

2. Compute the derivative approximation ux

ux ≈ d

dx
P̃Nu(x) =

N
∑

k=−N

ikãje
ijx

29

3. Evaluate the approximate derivative at the collocation points

ux(xj) ≈
d

dx
P̃Nu(x)

∣

∣

∣

∣

x=xj

=
N
∑

k=−N

ikãke
ikxj

Now, let us look at the expression 2∆tDU . The jth element of this expression is

2

N
∑

k=−N

ik∆tãke
ikxj

Now we use the filter function to replace this with

2

N
∑

k=−N

ik∆tf(k)ãke
ikxj

= 2

N
∑

k=−N

ik∆t
sin(k∆t)

k∆t
ãke

ikxj

= 2

N
∑

k=−N

i sin(k∆t)ãke
ikxj

Let us now see where this filter function comes from. Recall that the time step restrictions on Leap-Frog
are determined by the high wave modes corresponding to the largest eigenvalues of D. Note that an exact
solution of ut = ux is u(x, t) = eik(x+t) and if we apply Leap-Frog to this solution, we get

1

2∆t
(u(t+ ∆t) − u(t− ∆t)) =

1

2∆t
(eik(x+t+∆t) − eik(x+t−∆t))

=
1

2∆t
(eik∆t − e−ik∆t)eik(x+t)

=
1

2∆t
(2i sin(k∆t))eik(x+t)

= i
sin(k∆t)

∆t
eik(x+t)

= ik
sin(k∆t)

k∆t
u(t)

On the other hand, the pseudo-spectral method would give

1

2∆t
(ũ(t+ ∆t) − ũ(t− ∆t)) = ikũ(t)

This shows that f(k) = sin(t∆t)
k∆t is a good choice for the filter function.

If we look at the replacement for 2∆tDU , we get

2

N
∑

k=−N

i sin(k∆t)ãke
ikxj .

We see that we have replaced the large eigenvalues of D by eigenvalues of size 1. This means that we get
unconditional stability while maintaining spectral accuracy.

Applying this to the heat equation, we replace −k2ãk with − sin(k2∆t)ãk.

30

4 Chebyshev Method

One drawback to the pseudo-spectral method is that it assumes a periodic solution. We will now expand our
class of possible functions to those which are not assumed to be periodic. To do this, we will do expansions
in Chebyshev polynomials.

We begin the discussion of Chebyshev polynomials with a discussion of cosine series. Let g(θ) be defined
for 0 ≤ θ ≤ π. Now define f(θ) on the interval 0 ≤ θ ≤ 2π by

f(θ) =

{

g(θ) 0 ≤ θ ≤ π

g(2π − θ) π ≤ θ ≤ 2π

The function f(θ) is periodic on [0, 2π], so we can compute the Fourier series for f as

f(θ) =
∞
∑

k=−∞
ake

ikθ

where

ak =
1

2π

∫ 2π

0

f(θ)e−ikθ dθ

=
1

2π

[∫ π

0

g(θ)e−ikθ +

∫ 2π

π

g(2π − θ)e−ikθ dθ

]

=
1

2π

[∫ π

0

g(θ)e−ikθ −
∫ 0

π

g(θ)e−ik(2π−θ) dθ

]

=
1

2π

[∫ π

0

g(θ)(eikθ + e−ikθ) dθ

]

=
1

π

∫ π

0

g(θ) cos(kθ) dθ

From this we can see that ak = a−k, and we getLec. 13

f(θ) =

∞
∑

k=−∞

(

1

π

∫ π

0

g(θ) cos(kθ) dθ

)

eikθ

=
−1
∑

k=−∞

(

1

π

∫ π

0

g(θ) cos(kθ) dθ

)

eikθ +
1

π

∫ π

0

g(θ) dθ +
∞
∑

k=1

(

1

π

∫ π

0

g(θ) cos(kθ) dθ

)

eikθ

=
1

π

∫ π

0

g(θ) dθ +

∞
∑

k=1

(

1

π

∫ π

0

g(θ) cos(kθ) dθ

)

(eikθ + e−ikθ)

=
1

π

∫ π

0

g(θ) dθ +
∞
∑

k=1

(

2

π

∫ π

0

g(θ) cos(kθ) dθ

)

cos(kθ)

Thus,

g(θ) =

∞
∑

k=0

ak cos(kθ)

where

ak =
2

ckπ

∫ π

0

g(θ) cos(kθ) dθ

31

and

ck =

{

1 k 6= 0

2 k = 0

Recall that convergence of the Fourier series for f depended upon the smoothness of f . In turn, the
smoothness of f depends upon both the smoothness of g and also the number of odd derivatives that match
at θ = π. To see this, consider

∫ π

0

g(θ) cos(kθ) dθ

=
1

k
sin(kθ)g(θ)

∣

∣

∣

∣

π

0

−
∫ π

0

1

k
g′(θ) sin(kθ) dθ

= −
∫ π

0

1

k
g′(θ) sin(kθ) dθ

=
1

k2
g′(θ) cos(kθ)

∣

∣

∣

∣

π

0

−
∫ π

0

1

k2
g′′(θ) cos(kθ) dθ

If g′(0) = g′(π) = 0, then

ak ∼ −
∫ π

0

1

k2
g′′(θ) cos(kθ) dθ

= − 1

k3
g′′(θ) sin(kθ)

∣

∣

∣

∣

π

0

+

∫ π

0

1

k3
g′′′(θ) sin(kθ) dθ

=

∫ π

0

1

k3
g′′′(θ) sin(kθ) dθ

= − 1

k4
g′′′(θ) cos(kθ)

∣

∣

∣

∣

π

0

+

∫ π

0

1

k4
g(iv)(θ) cos(kθ) dθ

= O

(

1

k4

)

If g′(0) 6= g′(π), then

ak ∼ 1

k2
((−1)kg′(π) − g′(0)) = O

(

1

k2

)

This is true regardless of how smooth g is. If integration by parts continues, we get terms of the form

g(ℓ)(θ)
cos(kθ)

kℓ+1

∣

∣

∣

∣

π

0

, ℓ = 1, 3, 5, . . .

which will be zero only if g(ℓ)(0) = g(ℓ)(π) = 0, for ℓ = 1, 3, 5, . . . and this does not vanish otherwise.
Thus, if g does not match derivatives at the boundary, we will see Gibbs phenomenon and high mode

oscillations due to the non-smooth behavior of the function g at the boundary.

4.1 Chebyshev Expansion

Now let f(x) be a function defined on [−1, 1] and consider the mapping x = cos(θ), 0 ≤ θ ≤ π and let

g(θ) = f(cos(θ))

Now, g(θ) is defined on [0, π] and
g′(θ) = f ′(cos(θ))(− sin(θ))

32

so g′(0) = g′(π) = 0. From this, we claim that g has a cosine expansion. Furthermore, g(2ℓ+1)(0) =
g(2ℓ+1)(π) = 0 for all ℓ = 0, 1, 2, Therefore, we can expect a very good cosine series approximation for
g(θ).

Let

g(θ) =
∞
∑

k=0

ak cos(kθ)

and define Tk(x) = cos(k cos−1(x)), then we have

f(x) = f(cos(θ))

= g(θ)

=

∞
∑

k=0

ak cos(kθ)

=

∞
∑

k=0

ak cos(k cos−1(x))

=
∞
∑

k=0

akTk(x)

The function Tk(x) is the kth Chebyshev polynomial.Lec. 14
We now wish to derive some properties of the Tn(x). First, Tn(x) is an nth degree polynomial. To see

this, we will use induction. Clearly,

T0(x) = cos(0) = 1

T1(x) = cos(cos−1(x)) = x

Now for the inductive step,

Tn+1(x) = cos((n+ 1) cos−1(x))

= cos(n cos−1(x)) cos(cos−1(x)) − sin(n cos−1(x)) sin(cos−1(x))

Tn−1(x) = cos((n− 1) cos−1(x))

= cos(n cos−1(x)) cos(cos−1(x)) + sin(n cos−1(x)) sin(cos−1(x))

Tn+1(x) + Tn−1(x) = 2xTn(x)

Thus,
Tn+1(x) = 2xTn(x) − Tn−1(x)

The inductive hypothesis gives that Tn(x) and Tn−1(x) are polynomials of degree n and n− 1 respectively,
and therefore, Tn+1 must be a polynomial of degree n+ 1.

Now, we wish to expand a function f(x) as

f(x) =

∞
∑

k=0

akTk(x)

so we must determine the values of the ak. From the derivation, we have that

ak =
2

ckπ

∫ π

0

f(cos(θ)) cos(kθ) dθ

33

Let x = cos(θ), dx = − sin(θ) dθ = −
√

1 − x2 dθ, and we have

ak =
2

ckπ

∫ 1

−1

f(x) cos(k cos−1(x))√
1 − x2

dx

=
2

ckπ

∫ 1

−1

f(x)√
1 − x2

Tk(x) dx

The function w(x) = (1 − x2)−1/2 is called the Chebyshev weight function.
Next, note that

∫ π

0

cos(kθ) cos(ℓθ) dθ

=

∫ π

0

1

2
(cos((k + ℓ)θ) + cos((k − ℓ)θ)) dθ

=
1

2

(

1

k + ℓ
sin((k + ℓ)θ) +

1

k − ℓ
sin((k − ℓ)θ)

)∣

∣

∣

∣

π

0

= 0 if k 6= ℓ

If k = ℓ 6= 0, then

∫ π

0

cos2(kθ) dθ

=

∫ π

0

1 + cos(2θ)

2
dθ

=

(

θ

2
+

1

4
sin(2θ)

)∣

∣

∣

∣

π

0

=
π

2

If k = ℓ = 0, then
∫ π

0
dθ = π. Now translate this integral back into x to get

∫ 1

−1

w(x)Tk(x)Tℓ(x) dx =

0 k 6= ℓ
π
2 k = ℓ 6= 0

π k = ℓ = 0

This shows that if we define the inner product 〈u, v〉w as

〈u, v〉w =

∫ 1

−1

w(x)u(x)v̄(x) dx

then the Tn(x) are mutually orthogonal. Let C be the space of all functions u such that

〈u, u〉w =

∫ 1

−1

w(x)|u(x)|2 dx <∞

Then C is a Hilbert space with norm ||u|| = 〈u, u〉1/2
w and inner product 〈·, ·〉w . Note that w(x) = 1√

1−x2
is

singular at x = ±1, but still integrable.Lec. 15
The Chebyshev expansion is equivalent to the cosine expansion of f(cos(θ)) and using the same integration

by parts argument we see that the coefficients ak = O
(

1
kr

)

if f has r derivatives. It is important to realize
that this is true regardless of the behavior of f at ±1. Therefore, the Chebyshev expansion is an analogous
approximation to the Fourier expansion for functions which are not periodic.

34

Next, let us find the derivative of Tn. Consider again x = cos(θ). Thus, for any function u,

du

dθ
=
du

dx

dx

dθ
=
du

dx
(− sin(θ)) =

du

dx
(−
√

1 − x2)

and we can write
d

dθ
= −

√

1 − x2
d

dx
Now, since

d2

dθ2
cos(nθ) + n2 cos(nθ) = 0

we use the x = cos(θ) transformation to get

d2

dθ2
Tn(x) + n2Tn(x) = 0

d

dθ

(

−
√

1 − x2
d

dx
Tn(x)

)

+ n2Tn(x) = 0

−
√

1 − x2
d

dx

(

−
√

1 − x2
d

dx
Tn(x)

)

+ n2Tn(x) = 0

d

dx

(

√

1 − x2
d

dx
Tn(x)

)

+
n2

√
1 − x2

Tn(x) = 0

d

dx

(

1

w

d

dx
Tn(x)

)

+ n2wTn(x) = 0 (6)

with Tn(±1) bounded. Equation (6) is a singular Sturm-Liouville problem solved by Tn with eigenvalue n2.
Unfortunately, differentiation in x is not diagonal in the basis Tn(x). In fact, it is easy to see that d

dxTn(x)
is a polynomial of degree n− 1, one degree less than Tn(x).

Next, let us look at the structure of the functions Tn(x). Let’s find the zeros of Tn(x). To do this, we
must solve the equation

0 = cos(n cos−1(x))

n cos−1(x) =
(2ℓ+ 1)π

2

cos−1(x) =
(2ℓ+ 1)π

2n

x = cos

(

(2ℓ+ 1)π

2n

)

So the roots of Tn(x) are at xℓ = cos
(

(2ℓ+1)π
2n

)

for ℓ = 0, . . . , n− 1.

Clearly, |Tn(x)| ≤ 1 since Tn(x) = cos(n cos−1(x)) and Tn(x) = (−1)n whenever n cos−1(x) = ℓπ and
hence x = cos

(

ℓπ
n

)

for ℓ = 0, . . . , n. These points cluster at the boundary much the same way that the roots
cluster near the boundary. In fact, Tn(x) oscillates between ±1. This is called the equi-oscillation property.

Next, note that T2n(x) is an even function and T2n−1(x) is an odd function. If Tn(x) =
∑

j ajx
j , then

the aj ’s alternate in sign.
Next, we need to analyze the accuracy of the Chebyshev approximations. Suppose f is defined on [−1, 1].

Note here that the interval [a, b] can be mapped to [−1, 1] by the mapping

S =
2x

b− a
− b+ a

b− a
.

Let f have the Chebyshev expansion

f(x) =
∞
∑

k=0

akTk(x)

35

where

ak =
2

ckπ

∫ 1

−1

w(x)f(x)Tk(x) dx

=
2

ckπ

∫ 1

−1

f(x)(w(x)Tk(x)) dx

= − 2

k2ckπ

∫ 1

−1

f(x)
d

dx

(

√

1 − x2
dTk

dx

)

dx (from (6))

= − 2

k2ckπ
f(x)

√

1 − x2
dTk

dx

∣

∣

∣

∣

1

x=−1

+
2

k2ckπ

∫ 1

−1

f ′(x)
√

1 − x2
dTk

dx
dx

=
2

k2ckπ

∫ 1

−1

f ′(x)
√

1 − x2
dTk

dx
dx

Note here that this does not mean that ak = O
(

1
k2

)

. In fact, dTk

dx = O(k) and hence ak = O
(

1
k

)

. Integrate
by parts again to get

=
2

k2ckπ
f ′(x)

√

1 − x2Tk(x)

∣

∣

∣

∣

1

−1

− 2

k2ckπ

∫ 1

−1

d

dx

(

f ′(x)
√

1 − x2
)

Tk(x) dx

=
−ck
k2π

∫ 1

−1

d

dx

(

√

1 − x2f ′(x)
)

Tk(x) dx

=
−ck
k2π

∫ 1

−1

(1 − x2)1/4 d

dx

(

√

1 − x2f ′(x)
) Tk(x)

(1 − x2)1/4
dx

From this we get

|ak| =
2

k2ckπ

∣

∣

∣

∣

∫ 1

−1

(1 − x2)1/4 d

dx
(
√

1 − x2f ′(x))
Tk(x)

(1 − x2)1/4
dx

∣

∣

∣

∣

≤ 2

k2ckπ

(

∫ 1

−1

√

1 − x2

[

d

dx
(
√

1 − x2f ′(x))

]2

dx

)1/2
(∫ 1

−1

T 2
k (x)√
1 − x2

dx

)1/2

=
2

k2ckπ

(

∫ 1

−1

√

1 − x2

[

d

dx
(
√

1 − x2f ′(x))

]2

dx

)1/2

〈Tk, Tk〉1/2
w

=
2

k2ckπ

(

∫ 1

−1

√

1 − x2

[

d

dx
(
√

1 − x2
d

dx
)f(x)

]2

dx

)1/2
(πck

2

)1/2

=
1

k2

(

∫ 1

−1

√

1 − x2

[

d

dx
(
√

1 − x2
d

dx
)f(x)

]2

dx

)1/2
(

2

ckπ

)1/2

Therefore, if f has two derivatives, then ak decays as 1
k2 . In general, we can continue this process and

conclude that if f has 2r derivatives, then ak decays as ak = O
(

1
k2r

)

.
Next, we need to project a function f onto a subspace of the Tk, so we define the Chebyshev Galerkin

approximation (spectral approximation)

fN (x) = PNf(x) =
N
∑

k=0

akTk(x)

Thus, PN is an N th degree polynomial and has the first N + 1 terms of the Chebyshev expansion.

36

To see how good this approximation is, we need to estimate |f−PNf |. We hope that |f−PNf | = O
(

1
N2r

)

provided f has 2r derivatives. To give a complete picture, we must first recall the Sobolev norms which are
now weighted by w. The qth weighted Sobolev norm is given by

||f ||2q,w =

q
∑

j=0

∥

∥

∥

∥

dj

dxj
f(x)

∥

∥

∥

∥

2

w

Based upon the Sobolev norm, if f has q derivatives, then it is possible to show

‖f − fN‖0,w ≤ C

N q
‖f‖q,w

and if 1 ≤ r ≤ q,

‖f − fN‖r,w ≤ C

N q−2r+ 1
2

‖f‖q,w

This shows that the weighted L2 norm of the error is O
(

1
Nr

)

and that approximating the rth derivative
results in the loss of 2r powers of N (as opposed to r in pseudo-spectral).

Next, let us construct the corresponding pseudo-spectral approximation. To obtain the results above,
we must compute the coefficients ak exactly. However, we may only know the function f at discrete data
points. Therefore, we need a quadrature rule as we did for Fourier series. We have

ak =
2

ckπ

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx =
2

ckπ

∫ π

0

f(cos(θ)) cos(kθ) dθ

Now introduce a uniform grid in θ, θj = jπ
N , for j = 0, . . . , N and use the trapezoidal rule approximation to

get

ak ≈ 2

ckπ

π

N

N
∑

j=0

f(cos(θj)) cos(kθj)

γj
= ãk

where γ0 = γN = 2, γj = 1 for 1 ≤ j ≤ N − 1. Pulling back to x, we have that xj = cos
(

jπ
N

)

and we get

ãk =
2

Nck

N
∑

j=0

f(xj)Tk(xj)

γj

We must modify this to accommodate for the highest mode, TN(xj) = (−1)j and we get

ãk =
2

Nγk

N
∑

j=0

f(xj)Tk(xj)

γj
, f̃N(x) =

N
∑

k=0

ãkTk(x)

is the pseudo-spectral Chebyshev approximation.Lec. 16
To look at the accuracy of the quadrature rule we are using, consider the following: Let g(θ) be defined

on [0, π], and we have the trapezoidal rule

∫ π

0

g(θ) dθ ≈ π

N

N
∑

j=0

g(θj)

γj

Suppose that g(θ) = cos(ℓθ), then
∫ π

0

cos(ℓθ) dθ =

{

π if ℓ = 0

0 if ℓ 6= 0

37

If ℓ = 0, the approximation gives

π

N

N
∑

j=0

1

γj
=

π

N

(

1

2
+N − 1 +

1

2

)

= π

If ℓ = 2m, then

π

N

N
∑

j=0

cos(2mθj)

γj
=

π

N

N
∑

j=0

1

γj
cos
(

2m
π

N
j
)

=
π

2N
+
π

N

N−1
∑

j=1

cos
(

2m
π

N
j
)

+
π

2N

=
π

2N
− π

N
+
π

N

N−1
∑

j=0

cos
(

2m
π

N
j
)

+
π

2N

=
π

2N

N−1
∑

j=0

(

ei2m π
N j + e−i2m π

N j
)

=
π

2N

N−1
∑

j=0

(

ei2m π
N

)j
+

N−1
∑

j=0

(

e−i2m π
N

)j

=
π

2N

(

ei2m π
N N − 1

ei2m π
N − 1

)

+
π

2N

(

e−i2m π
N N − 1

e−i2m π
N − 1

)

= 0

If ℓ = 2m + 1, then note that cos
(

(2m+ 1) π
N (N − j)

)

= − cos
(

(2m+ 1) π
N j
)

so that if N is odd, all the

terms cancel, and if N is even, all the terms cancel except the middle term which is cos
(

(2m+ 1) π
2MM

)

= 0.

Thus, we again have π
N

∑N
j=0

1
γj

cos(ℓθj) = 0. Finally, if ℓ = 2N , then

π

N

N
∑

j=0

1

γj
cos
(

2N
π

N
j
)

=
π

N

N
∑

j=0

1

γj
= π

Now, if we carry back the approximation

∫ π

0

g(θ) dθ ≈ π

N

N
∑

j=0

g(θj)

γj

via x = cos(θ), we get
∫ 1

−1

f(x)√
1 − x2

dx ≈ π

N

N
∑

j=0

f(xj)

γj

and this is exact for polynomials up to degree 2N−1. Using this result, we can show the interpolation result
given f(x). Define

P̃Nf =

N
∑

j=0

ãjTj(x)

where

ãj =
2

γjN

N
∑

k=0

f(xk)

γk
Tj(xk)

38

Then P̃Nf is the unique N th degree polynomial which interpolates f at the collocation points xj = cos
(

jπ
N

)

.
To see this, let pN be the N th degree polynomial which interpolates f at {xj}. Then

pN (x) =

N
∑

k=0

bkTk(x)

for some constants bk. We must show that bk = ãk. By definition of pN , we must have that

f(xj) =
N
∑

k=0

bkTk(xj), for j = 0, . . . , N

Now, for ℓ < N ,

N
∑

j=0

1

γj
f(xj)Tℓ(xj) =

N
∑

j=0

1

γj

N
∑

k=0

bkTk(xj)Tℓ(xj)

=
N
∑

k=0

bk

N
∑

j=0

1

γj
Tk(xj)Tℓ(xj)

=

N
∑

k=0

bk
N

π

∫ 1

−1

w(x)Tk(x)Tℓ(x) dx

because the quadrature is exact for polynomial of degree ≤ 2N − 1

=
N
∑

k=0

bk
N

π

πck
2
δℓk

= bℓ
Ncℓ
2

= bℓ
Nγℓ

2

If ℓ = N , then

N
∑

j=0

1

γj
f(xj)TN (xj) =

N
∑

k=0

bk

N
∑

j=0

1

γj
Tk(xj)TN (xj)

=

N−1
∑

k=0

bk

N
∑

j=0

1

γj
Tk(xj)TN (xj) + bN

N
∑

j=0

1

γj
T 2

N (xj) (7)

Now note that

N
∑

j=0

1

γj
T 2

N (xj) =

N
∑

j=0

1

γj
cos2

(

N
π

N
j
)

=

N
∑

j=0

1

γj

[

cos2
(

N
π

N
j
)

− sin2
(

N
π

N
j
)]

=

N
∑

j=0

1

γj
cos
(

2N
π

N
j
)

=
N
∑

j=0

1

γj
= N

39

Plugging this into equation (7) gives

N
∑

j=0

1

γj
f(xj)TN (xj) =

N−1
∑

k=0

bk

N
∑

j=0

1

γj
Tk(xj)TN(xj) +NbN

=
N−1
∑

k=0

bk
N

π

∫ 1

−1

w(x)Tk(x)TN (x) dx +NbN

=

N−1
∑

k=0

bk
N

π
δkN

π

2
+NbN

= NbN

= bN
NγN

2

Therefore,

N
∑

j=0

1

γj
f(xj)Tℓ(xj) = bℓ

Nγℓ

2

bℓ =
2

πγℓ

π

N

N
∑

j=0

1

γj
f(xj)Tℓ(xj) = ãℓ

Lec. 17
Let us now put together the pieces. Given f(x) on [−1, 1], we evaluate f(xj) where xj = cos

(

π
N j
)

for
j = 0,. . . ,N , and compute for ℓ = 0, . . . , N

ãℓ =
2

Nγℓ

N
∑

j=0

1

γj
f(xj)Tℓ(xj)

and the pseudo-spectral Chebyshev approximation becomes

f̃N(x) =

N
∑

ℓ=0

ãℓTℓ(x)

and for j = 0, . . . , N , f̃N (xj) = f(xj).
It is worth noting that the evaluation of the ãk can be simplified by using the fact that since xj = cos(θj),

Tk(xj) = cos(k cos−1(cos(θj)))

= cos(kθj)

= cos
(

kj
π

N

)

Therefore,

ãk =
2

Nγk

N
∑

j=0

1

γj
f(xj) cos

(

kj
π

N

)

This relationship can also be used to demonstrate that aliasing is a problem for this method as well.

40

Consider the mode TN+r(x) for 0 < r ≤ N . We have

TN+r(xj) = cos
(

(N + r)j
π

N

)

= cos
(

jπ + rj
π

N

)

= cos(jπ) cos
(

rj
π

N

)

− sin(jπ) sin
(

rj
π

N

)

= cos(jπ) cos
(

rj
π

N

)

+ sin(jπ) sin
(

rj
π

M

)

= cos
(

jπ − rj
π

N

)

= cos
(

(N − r)j
π

N

)

= TN−r(xj)

Therefore, TN+r aliases to the mode TN−r. In particular, this means that T2N aliases to T0 ≡ 1. Similarly,
consider the mode T2mN+r(x), 0 ≤ r < 2N , m ≥ 0. In this case, we get

T2mN+r(xj) = cos
(

(2mN + r)j
π

N

)

= cos(2mjπ) cos
(

rj
π

N

)

− sin(2mjπ) sin
(

rj
π

N

)

= cos
(

rj
π

N

)

= Tr(xj)

To illustrate, the pattern of aliasing can be seen in the figure below:

0 1 2 N-2
N-1

N
N+1

N+2 2N-2
2N-1

2N
2N+1

2N+2 3N-2
3N-1

3N.

Aliasing relationships of Chebyshev polynomials

Just like for the Fourier case, we can relate the Chebyshev expansion coefficients ak to the pseudo-spectral
Chebyshev coefficients ãk. The relationship is similar as well where

ãk = ak +
∑

aℓ

41

where the sum is taken over all ℓ for which Tℓ aliases to Tk. The polynomials which alias to Tk are Tj where
j = 2mN + k for m = 1, 2, . . . and j = (2m− 1)N +N − k for m = 1, 2, It can be shown that

‖f − P̃Nf‖∞ ≤ C log(N)‖f − PNf‖∞

(‖f − P̃Nf‖∞ is called the spectral interpolation error). Sobolev norm estimates for the pseudo-spectral
approximation similar to the bounds for the spectral approximation can also be derived.

Next, we will see how to use the FFT to implement this method. Recall that we can now compute the
ãk by means of a cosine transform.

ãk =
π

N

2

πγk

N
∑

j=0

1

γj
f(xj) cos

(

jkπ

N

)

where γ0 = γN = 2, γj = 1 otherwise. Suppose f is a real-valued function, then

ãk =
π

N

2

πγk

1

2

[

f(x0) cos

(

0kπ

N

)

+ f(xN) cos

(

NKπ

N

)]

+
π

N

2

πγk

N−1
∑

j=1

f(xj) cos

(

jkπ

N

)

(8)

Now, define fj = f(xj) and set f2N−j = fj for j = 1, . . . , N − 1 and we have

2N−1
∑

ℓ=N+1

fℓ cos

(

ℓπk

N

)

=

N−1
∑

j=1

fj cos

(

kπj

N

)

Plugging this into equation (8) gives

ãk =
π

N

2

πγk

1

2

[

f0 cos

(

0kπ

N

)

+ fN cos

(

Nkπ

N

)]

+
π

N

2

πγk

1

2

N−1
∑

j=1

fj cos

(

jkπ

N

)

+
π

N

2

πγk

1

2

2N−1
∑

j=N+1

fj cos

(

jkπ

N

)

=
1

Nγk

2N−1
∑

j=0

fj cos

(

jkπ

N

)

=
1

Nγk
Re

2N−1
∑

j=0

fje
ijkπ

N

This last term is easily evaluated using an FFT.

4.2 Differentiation of Tk(x)

Before we can use this expansion to solve partial differential equations, we need to be able to compute the
derivative of the expansion. Consider

P̃Nf =

N
∑

j=0

ãjTj(x) ≈ f(x)

Then,

fx ≈ dP̃Nf

dx
=

N
∑

j=0

ãjT
′
j(x)

42

Since dP̃N f
dx is a polynomial of degree N − 1 and the {TN} are complete, it follows that we can express dP̃N f

dx
as a sum

dP̃Nf

dx
=

N
∑

j=0

ãj
dTj

dx
=

N
∑

j=0

bjTj(x)

Clearly, bN = 0 because dP̃N f
dx is a polynomial of degree N − 1. Computing the remainder of the bj’s is more

complicated than in the Fourier case because the d
dx operator is not a diagonal operator.

We can generate a recursive relation for the T ′
ks by looking at

Tm(x) = cos(mθ), x = cos(θ)

d

dx
Tm(x) =

dT

dθ

dθ

dx
= −m sin(mθ)

dθ

dx
dx

dθ
= − sin(θ), so

dθ

dx
=

−1

sin(θ)

Hence, we get the relations

d

dx
Tm(x) =

m sin(mθ)

sin(θ)

d

dx
Tm−2(x) =

(m− 2) sin((m− 2)θ)

sin(θ)

Now,

sin(mθ) = sin((m− 1 + 1)θ) = sin((m− 1)θ) cos(θ) + sin(θ) cos((m− 1)θ)

sin((m− 2)θ) = sin((m− 1 − 1)θ) = sin((m− 1)θ) cos(θ) − sin(θ) cos((m− 1)θ)

Then we get

1

m

d

dx
Tm(x) =

1

sin(θ)
(sin((m− 1)θ) cos(θ) + sin(θ) cos((m− 1)θ))

1

m− 2

d

dx
Tm−2(x) =

1

sin(θ)
(sin((m− 1)θ) cos(θ) − sin(θ) cos((m− 1)θ))

1

m

d

dx
Tm(x) − 1

m− 2

d

dx
Tm−2(x) = 2 cos((m− 1)θ)

= 2Tm−1(x)

for m ≥ 3. For smaller m, we have

T0(x) = 1, T ′
0(x) = 0

T1(x) = x, T ′
1(x) = 1

T2(x) = 2x2 − 1, T ′
2(x) = 4x = 4T1

Lec. 18

43

Returning to the computation of the bk, recall

〈P̃Nf
′(x), Tℓ(x)〉w =

〈

N
∑

k=0

bkTk(x), Tℓ(x)

〉

w

=

N
∑

k=0

bk〈Tk(x), Tℓ(x)〉w

=

N
∑

k=0

bk
πcℓ
2
δkℓ

= bℓ
πcℓ
2

where

cℓ =

{

2 ℓ = 0

1 ℓ > 0

Also,

〈P̃Nf
′(x), Tℓ(x)〉w =

〈

N
∑

k=0

ãkT
′
k(x), Tℓ(x)

〉

w

=
N
∑

k=0

ãk〈T ′
k(x), Tℓ(x)〉w

Therefore,

bℓ =
2

πcℓ

N
∑

k=0

ãk〈T ′
k, Tℓ〉w

So now we have to compute 〈T ′
k, Tℓ〉w. We break this into three cases.

Case 1: ℓ ≥ k. In this case, if we express T ′
k(x) as

∑k−1
m=0 αmTm(x), we get

〈

k−1
∑

m=0

αmTm(x), Tℓ(x)

〉

w

=

k−1
∑

m=0

αm〈Tm, Tℓ〉w = 0

because m < ℓ for m = 0, . . . , k − 1. Thus, 〈T ′
k, Tℓ〉w = 0.

Case 2: k+ ℓ is even. If k is odd, then T ′
k is an even function with only even powers of x. At the same time, ℓ

must also be odd, and hence Tℓ is an odd function and thus, w(x)T ′
k(x)Tℓ(x) is an odd function, so

〈T ′
k(x), Tℓ(x)〉w =

∫ 1

−1

w(x)T ′
k(x)Tℓ(x) dx = 0

Case 3: k + ℓ is odd. If ℓ 6= 0, then k = ℓ + 2r − 1 for some r ≥ 1. If r = 1, then k = ℓ+ 1 and the recursion
relation becomes

2Tℓ(x) =
T ′

ℓ+1(x)

ℓ+ 1
−
T ′

ℓ−1(x)

ℓ− 1

which is valid for ℓ > 1 and still alright for ℓ = 1 if we assume the last term is taken to be zero. Now
take the inner product with Tℓ to get

2〈Tℓ, Tℓ〉w =
1

ℓ+ 1
〈T ′

ℓ+1, Tℓ〉w − 1

ℓ− 1
〈T ′

ℓ−1, Tℓ〉w

2(ℓ+ 1)
πcℓ
2

= 〈T ′
k, Tℓ〉w

πk = π(ℓ + 1) = (ℓ + 1)πcℓ = 〈T ′
k, Tℓ〉w

Thus,
〈T ′

k, Tℓ〉w = πk

44

Now from the recursion relation, we have

2Tℓ+2r(x) =
1

ℓ+ 2r + 1
T ′

ℓ+2r+1(x) −
1

ℓ+ 2r − 1
T ′

ℓ+2r−1(x)

Taking the inner product with Tℓ gives

2〈Tℓ+2r, Tℓ〉w =
1

ℓ+ 2r + 1
〈T ′

ℓ+2r+1, Tℓ〉w − 1

ℓ+ 2r − 1
〈T ′

ℓ+2r−1, Tℓ〉w (9)

By the inductive hypothesis, 〈T ′
ℓ+2r−1, Tℓ〉w = (ℓ+ 2r − 1)π. Thus,

〈T ′
ℓ+2r+1, Tℓ〉w =

ℓ+ 2r + 1

ℓ+ 2r − 1
〈T ′

ℓ+2r−1, Tℓ〉w

=
ℓ+ 2r + 1

ℓ+ 2r − 1
(ℓ+ 2r − 1)π

= (ℓ+ 2r + 1)π

Therefore, 〈T ′
k, Tℓ〉w = kπ provided ℓ 6= 0.

Next, if ℓ = 0, then T ′
1(x) = 1 = T0(x) and

〈T ′
1, T0〉w = 〈T0, T0〉w = 1 · π

Using the same inductive argument as in equation (9), we can conclude 〈T ′
k, T0〉w = kπ.

Recall now that we are looking for the bk such that

N
∑

k=0

bkTk(x) =
N
∑

k=0

ãkT
′
k(x)

and we found that

bℓ =
2

πcℓ

N
∑

k=0

ãk〈T ′
k, Tℓ〉w

=
2

cℓ

N
∑

k=ℓ+1

ãk
k

2
(1 − (−1)ℓ+k)

We can derive a recursion relation for the bℓ’s to reduce the computational cost of this formula. If 0 ≤ ℓ <
N − 1, then

bℓ =
2

cℓ

(

ãℓ+1(ℓ+ 1)
1

2
(1 − (−1)2ℓ+1) +

N
∑

k=ℓ+2

ãkk
1

2
(1 − (−1)k+ℓ)

)

=
2

cℓ
(ℓ+ 1)ãℓ+1 +

2

cℓ

N
∑

k=ℓ+3

ãkk
1

2
(1 − (−1)k+ℓ)

(Note that k = ℓ+ 2 produces a zero term)

=
2

cℓ
(ℓ+ 1)ãℓ+1 + bℓ+2

If ℓ = N − 1, then

bN−1 =
2

cN−1
ãNN

1

2
(1 − (−1)N+N−1) = 2ãNN

1

2
2 = 2NãN

45

Combining these different results, we get the formulae for bℓ to beLec. 19

bN = 0

bN−1 = 2NãN (10)

bℓ =
1

cℓ
(2(ℓ+ 1)ãℓ+1 + bℓ+2), ℓ = 0, . . . , N − 2 (11)

where

cℓ =

{

2 ℓ = 0

1 ℓ > 0
.

This is the Chebyshev recursion relation to express f ′
N as a sum of the Tk.

Note that this formulation is equally valid for the spectral approximation PNf
′(x) =

∑N
k=0 akT

′
k(x) where

the ãk are replaced with ak.
An important note about parallelization and the recursion relations in (10) is that this type of recursion

relation must be computed sequentially and does not easily lend itself to parallel computation.
We can now outline the procedure for computing

d

dx
P̃Nf

∣

∣

∣

∣

x=xk

≈ d

dx
f

∣

∣

∣

∣

x=xk

1. Compute the ãk where

ãk =
π

N

2

πγk

N
∑

j=0

f(xj)

γj
cos

(

kπj

N

)

.

2. Compute the bk’s using the recursive formula in (10).

3. Evaluate at the collocation points

d

dx
P̃Nf

∣

∣

∣

∣

x=xk

=

N
∑

j=0

bj cos

(

kπj

N

)

Thus, the pseudo-spectral Chebyshev method reduces to two cosine transforms and a recursion relation.

Alternatively, we can write the differential operator as a matrix. As in the Fourier case, let F =

f0
...
fN

and write Fx = DF where Fx is the vector with entries dPN f
dx

∣

∣

∣

x=xk

and D is an (N + 1) × (N + 1) matrix.

D is now called the Chebyshev differentiation matrix.
In order to compute the columns of D, we will apply it to N th degree polynomials pk which have the

property that pk(xj) = δjk. The kth column of D is then

p′k(x0)
...

p′k(xN)

In fact, we can construct a formula for pk(x). Recall that TN(x) has an extremum at each collocation
point x1, . . . , xN−1. Therefore, T ′

N (xj) = 0 for j = 1, . . . , N − 1. This means that (1 − x2)T ′
N(x) must

vanish at x0, . . . , xN . Finally, we want a polynomial that is non-zero at xk and so we divide by (x− xk) to
get

(1 − x2)T ′
N (x)

x− xk

46

We also need pk(xk) = 1, so we need to scale this polynomial appropriately. In order to do that we will need
some things about T ′

N (x). From TN(x) = cos(N cos−1(x)), we get

T ′
N (x) = sin(N cos−1(x))

N√
1 − x2

T ′′
N (x) =

−N2

1 − x2
cos(N cos−1(x)) − Nx

(1 − x2)3/2
sin(N cos−1(x))

From these we get that T ′
N (xj) = 0 for j = 1, . . . , N − 1 and

T ′
N(xN) = T ′

N (−1) = lim
x→−1+

N sin(N cos−1(x))√
1 − x2

= lim
x→−1+

N cos(N cos−1(x)) −N√
1−x2

−x√
1−x2

= lim
x→−1+

N2

x
cos(N cos−1(x))

= N2(−1)N+1

Likewise,

T ′
N(x0) = lim

x→+1−

N2

x
cos(N cos−1(x)) = N2

Also,Lec. 20

T ′
N (xj) = 0

T ′′
N (xj) =

−N2

1 − x2
j

cos

(

N
πj

N

)

=
N2

1 − x2
j

(−1)j+1, j = 1, . . . , N − 1

T ′′
N (x0) =

1

3
N2(N2 − 1)

T ′′
N (xN) =

1

3
N2(1 −N2)(−1)N+1

T ′′′
N (xj) = 3

N2(−1)j+1xj

(1 − x2
j)

2

Now, assume

pk(x) =
Ak(1 − x2)T ′

N (x)

x− xk
, for k = 1,. . . ,N − 1

Then,

pk(xk) = lim
x→xk

Ak(1 − x2)T ′
N (x)

x− xk

= lim
x→xk

Ak[(1 − x2)T ′′
N(x) − 2xT ′

N(x)]

= Ak[(1 − x2
k)T ′′

N(xk) − 2xkT
′
N (xk)]

and we have for 0 < k < N ,

1 = pk(xk)

= Ak(1 − x2
k)T ′′

N (xk)

= Ak(1 − x2
k)

(−N2

1 − x2
k

)

cos(πk)

= AkN
2(−1)k+1

47

and hence Ak = (−1)k+1

N2 . For k = 0, we have (x0 = 1),

1 = p0(x0)

=
A0(1 − x)(1 + x)T ′

N (x0)

x− x0

= −A0(1 + x0)N
2

= −2A0N
2

and hence A0 = (−1)0+1

2N2 . Similarly, AN = (−1)N+1

2N2 and therefore, we get

Ak =
(−1)k+1

γkN2

and hence

pk(x) = Ak
(1 − x2)T ′

N (x)

x− xk
=

(1 − x2)T ′
N(x)(−1)k+1

γkN2(x− xk)

Next, in order to get the entries of D, we must evaluate p′k(xj) = Djk. We get for j 6= k, j = 1,. . . ,N −1,

p′k(xj) =
[−2xT ′

n(x)(−1)k+1 + (1 − x2)T ′′
N (x)(−1)k+1]γkN

2(x− xk) − (1 − x2)T ′
N (x)(−1)k+1γkN

2

γ2
kN

4(x− xk)2

∣

∣

∣

∣

x=xj

=
(1 − x2

j)T
′′
N(xj)(−1)k+1γkN

2(xj − xk)

γ2
kN

4(xj − xk)2

=
(1 − x2

j)T
′′
N(xj)(−1)k+1

γkN2(xj − xk)

=
(1 − x2

j)
N2

1−x2
j
(−1)j+1(−1)k+1

γkN2(xj − xk)

=
(−1)j+k

γk(xj − xk)

If j = 0, then

p′k(x)|x=x0
=

−2x0T
′
n(x0)(−1)k+1γkN

2(x0 − xk)

γ2
kN

4(x0 − xk)2

=
−2N2(−1)k+1

γkN2(x0 − xk)

=
2(−1)k+0

γk(x0 − xk)

=
γ0

γk

(−1)k+0

x0 − xk

Similarly, we get this result for j = N , so that if j 6= k, we have

p′k(xj) =
γj

γk

(−1)k+j

xj − xk

If j = k, k 6= 0, N , then

p′k(x)|x=xk
=

−xk

2(1 − x2
k)

48

and

p0(x) =
−(1 − x2)T ′

N(x)

2N2(x− 1)

=
(1 + x)T ′

N (x)

2N2

p′0(x)|x=x0
=

1

2N2
(T ′

N (x0) + 2T ′′
N(x0))

=
1

2N2

(

N2 + 2
1

3
N2(N2 − 1)

)

=
1

2

(

1 +
2

3
(N2 − 1)

)

=
1

2

(

1

3
+

2

3
N2

)

=
1 + 2N2

6

pN (x) =
(1 − x2)T ′

N(x)(−1)N+1

2N2(x+ 1)

=
(1 − x)T ′

N (x)(−1)N+1

2N2

p′N (x)|x=xN
=

1

2N2
(−T ′

N(xN)(−1)N+1 + (1 − xN)T ′′
N (xN)(−1)N+1)

=
1

2N2

(

−N2(−1)N+1(−1)N+1 + 2
1

3
N2(1 −N2)(−1)N+1(−1)N+1

)

=
1

2

(

−1 +
2

3
(1 −N2)

)

=
−(1 + 2N2)

6

Putting it all together, we get the matrix entries

djk =

γj

γk

(−1)j+k

xj−xk
j 6= k

− 1
2

xk

1−x2
k

j = k, k = 1, . . . , N − 1
2N2+1

6 j = k = 0
−(2N2+1)

6 j = k = N

Notice that DT 6= −D. In fact, D has terms that are O(N2). While it is obviously true for d00, dNN , it

is also true near the endpoints. If N is large and k is small, then xk = cos
(

kπ
N

)

≈ 1 − 1
2

(

kπ
N

)2
. Thus,

xk −x0 ≈ 1− 1
2

(

kπ
N

)2−1 = O
(

1
N2

)

. Thus, dk0 = O(N2). The same is true near the other endpoints as well.
Since the entries of D are O(N2), then we expect ‖D‖ = O(N2). Therefore, it we are solving ut = ux,

using d
dtU = DU , then the time steps will be bounded by O

(

1
N2

)

as opposed to O
(

1
N

)

as in the Fourier and
finite difference cases.Lec. 21

To compute higher derivatives, the operator D can be applied repeatedly or one can use the recursion
relation. In that case, the recursive operation to compute the bk’s is repeated to get higher derivatives. For

49

example, to compute d2

dx2 P̃Nf , use the FFT to compute the ãk. From this, we compute the bk’s:

bN = 0

bN−1 = 2NãN

bk =
1

γk
(2(k + 1)ãk+1 + bk+2), k = N − 2, . . . , 0

To get the second derivative, set ãk = bk and then recompute the bk’s using the same recursive procedure.

Finally, the FFT is used to compute d2

dx2 P̃Nf at the collocation points.

4.3 Boundary Conditions and Stability Analysis

We now have most of the pieces to solve partial differential equations using the Chebyshev polynomials. We
are missing the procedure for incorporating boundary conditions. Let us consider first, the problem

ut = ux, −1 ≤ x ≤ 1 (12)

u(x, 0) = u0(x)

u(1, t) = g(t)

We assume g(0) = u0(1). Recall we have the collocation points xj = cos
(

πj
N

)

and we are trying to compute
uj(t) where uj(t) is the approximate solution to equation (12) at time t at xj .

The procedure for solving (12) using Chebyshev pseudo-spectral methods is similar to the Fourier case,
except we must impose the boundary conditions at x0 = 1. First we initialize the values uj via uj = u0(xj).
Then we solve

d

dt
U = DU

Finally, we set u0(t) = g(t).
It is important to note that D is a global operator, so we cannot simply replace one line of the system

d
dtU = DU because this would cause errors in the computation of the derivative. Instead, we compute the
derivative as we did for the Fourier method and then replace the results with the boundary conditions.

Note that no special procedure is necessary at the boundary as was the case for finite differences. There
is no difficulty in computing the derivatives at the boundary.

Next, we will look at the time discretization methods. To do this, we will define a new matrix D̂ which
has the property that

D =

d00 · · · d0N

...

dN0 D̂

We therefore have
d

dx
P̃Nu

∣

∣

∣

∣

x=xj

= D̂Û + dj0u0, j = 1, . . . , N

Substituting in the boundary conditions dives

d

dx
P̃Nu

∣

∣

∣

∣

x=xj

= D̂Û + dj0g(t), j = 1, . . . , N

where Û =

u1

...
uN

. For homogeneous boundary data, (g ≡ 0), we get

d

dt
Û = D̂Û .

50

Next let’s try a simple time-stepping scheme such as forward Euler. In that case, a time step is

1

∆t
(Ûn+1 − Ûn) = D̂Ûn

Again, we assume Ûn = znÛ0 to find the stable range for ∆t. We get

1

∆t
(z − 1)Û0 = D̂Û0

and hence we must have that Û0 is an eigenvector of D̂ with eigenvalue λ. Using this, we get

1

∆t
(z − 1) = λ

and z = 1 + ∆tλ. The problem is calculating λ.
What can we say about the eigenvalues of D̂? We can say that D̂ is not skew symmetric and is not

normal. Also, we have already seen that it must have eigenvalues that are O(N2). It is known that the
eigenvalues have negative real part.

Let us now do some stability analysis for the Chebyshev method. Consider the equation ut = ux. We
have shown that this results in the pseudo-spectral approximation

dÛ

dt
= D̂Û

We reduce this to the scalar equation du
dt = λu where λ is an eigenvalue for D̂. What we must show for

stability is that solving this ordinary differential equation results in only bounded growth. We saw last
quarter that this reduces to showing

|un| ≤ CeKT |u0|
where C, K are supposed to be independent of N , ∆t. In practice, K depends on both N , ∆t and in order
to prevent uncontrolled growth, K is required to be small. For example, if K = N2∆t, then the stability
requirement is N2∆t < ǫ for some ǫ. Of course, the longer the method is run, the worse the solutions get
(T is increasing).

In order to get absolute stability, i.e. |un| ≤ |u0|, we must find values of λ∆t in the complex plane such
that this is guaranteed. The set of all values λ∆t in the complex plane for a given time-stepping method
is called the region of absolute stability. These regions are well known for the most common time-stepping
methods. Of course, for this to apply to the pseudo-spectral methods, λ∆t must lie in the region of absolute
stability for every eigenvalue λ of D̂.

Unfortunately, the eigenvalues of D̂ are not known explicitly, but can be computed numerically. We do
know that they are of order O(N2).

We look now at different time-stepping methods and see what their region of absolute stability looks like.
We consider first, Euler’s method. For Euler’s method we have

un+1 = un + ∆tλun

Plugging in un = znu0, we see that
z = 1 + ∆tλ

For what values of ∆tλ do we get |z| ≤ 1?

51

-1

-0.5

0

0.5

1

y

-2 -1.5 -1 -0.5
x

Region of absolute stability for Forward Euler

To see this, let ∆tλ = α+ iβ, then 1 = |z|2 = |1 + α+ iβ|2 = (1 + α)2 + β2 which is a circle of radius 1
centered at −1 in the complex plane.

Recall that for the Fourier pseudo-spectral method, the D operator had all pure-imaginary eigenvalues,
and hence ∆tλ will never be in the region of absolute stability.

It is important to note here the eigenvalues of D̂ have negative real part and if ∆t is taken sufficiently
small, the ∆tλ can all be made to lie inside the disk.

Next, let us consider the Runge-Kutta fourth order method. Given the ordinary differential equation
y′ = f(y, t), the Runge-Kutta fourth order method for one time step is

K1 = ∆tf(yn, tn)

K2 = ∆tf

(

yn +
1

2
K1, tn +

1

2
∆t

)

K3 = ∆tf

(

yn +
1

2
K2, tn +

1

2
∆t

)

K4 = ∆tf(yn +K3, tn + ∆t)

yn+1 = yn +
1

6
(K1 + 2K2 + 2K3 +K4)

To use this scheme, we apply it to the system

dÛ

dt
= D̂Û + dj0g(t)

as we saw earlier. Note that the right hand side has a time dependence. This is alright because the Runge-
Kutta fourth order method intermediate steps also include the time t to evaluate the right hand side.

We can analyze the region of absolute stability for this method and we get (where f(y, t) = λy)

K1 = ∆tλzny0

K2 = ∆tλ

(

zny0 +
1

2
∆tλzny0

)

K3 = ∆tλ

(

zny0 +
1

2
∆tλ

(

zny0 +
1

2
∆tλzny0

))

K4 = ∆tλ

(

zny0 + ∆tλ

(

zny0 +
1

2
∆tλ

(

zny0 +
1

2
∆tλzny0

)))

zn+1y0 =

(

1 + ∆tλ+
1

2
∆t2λ2 +

1

6
∆t3λ3 +

1

24
∆t4λ4

)

52

and the plot of the region of stability can be seen below:

-3

-2

-1

0

1

2

3

y

-2.5 -2 -1.5 -1 -0.5
x

Region of absolute stability for Runge-Kutta 4

We find that we get absolute stability for ∆t ≤ K
N2 where K ≈ 30 for Chebyshev methods.

There are alternative forms of the Runge-Kutta methods which require less storage, however, the time
value at each stage is ambiguous causing problems with time-dependent boundary conditions. Also, for
non-constant coefficient problems, these low-storage variants reduce to second order accurate.

The second order Runge-Kutta method is

K1 = ∆tf(yn, tn)

K2 = ∆tf(yn +K1, tn + ∆t)

yn+1 = yn +
1

2
(K1 +K2)

This method is similar to Euler’s method in that the region of absolute stability does not include the
imaginary axis. This means that this method is absolutely stable only for the Chebyshev method and not
for the Fourier methods. For the Chebyshev method stability is achieved for ∆t ≤ K

N2 where K ≈ 16. The
region of absolute stability for Runge-Kutta 2 and 3 are below:

-1.5

-1

-0.5

0

0.5

1

1.5

y

-2 -1.5 -1 -0.5
x

Region of absolute stability for Runge-Kutta 2

53

-2

-1

0

1

2

y

-2.5 -2 -1.5 -1 -0.5
x

Region of absolute stability for Runge-Kutta 3

In general, how does one impose the boundary conditions using a Runge-Kutta scheme? Consider again
the system

ut = ux

u(x, 0) = u0(x)

u(1, t) = g(t)

At each stage of the Runge-Kutta process you can either (A) use the equation

dÛ

dt
= D̂Û + dj0g(t)

which imposes the boundary conditions at each stage, or (B) Use the equation

dU

dt
= DU

at each stage, then impose u(1, t) = g(t) at the end.
In practice, method A is better if you are using the full fourth-order method. It allows a larger time

step and is best when the boundary data is not time-dependent. Method B requires a smaller time step for
stability, but experiments have shown that this method is more accurate when the boundary data is time
dependent.

4.4 Adams-Bashforth Methods

Another class of explicit methods are based upon a multi-step approach similar to Leap Frog. In this case,
more than one previous time level is used to advance to the new time level. These methods require a separate
start-up procedure.

For the ordinary differential equation y′ = f(y, t), the Adams-Bashforth second order method is

yn+1 = yn + ∆t

[

3

2
f(yn, tn) − 1

2
f(yn−1, tn−1)

]

The third order method is

yn+1 = yn + ∆t

[

23

12
f(yn, tn) − 16

12
f(yn−1, tn−1) +

5

12
f(yn−2, tn−2)

]

Again, this method can be made absolutely stable for ∆t ≤ K
N2 where K ≈ 9 for the second order method

and decreasing for higher order methods. The regions of absolute stability for the second and third order
methods are shown below:

54

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

-1 -0.8 -0.6 -0.4 -0.2
x

Region of absolute stability for Adams-Bashforth 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y

-0.5 -0.4 -0.3 -0.2 -0.1 0.1
x

Region of absolute stability for Adams-Bashforth 3

4.5 Adams-Moulton Methods

A companion set of methods called the Adams-Moulton are multi-step implicit methods and are uncondi-
tionally stable. We have seen the first and second order methods already, they are backward Euler and
Crank-Nicolson respectively. The third order method is

yn+1 = yn +
1

12
∆t(5f(yn+1, tn+1) + 8f(yn, tn) − f(yn−1, tn−1))

In our context, we then must solve
(

I − 5

12
∆tD̂

)

Ûn+1 =

(

I +
8

12
∆tD̂

)

Ûn − 1

12
∆tD̂Ûn−1

It is common practice to turn this implicit method into an explicit method by turning it into a predictor-
corrector. A predictor is the Adams-Bashforth method of one lower order as the Adams-Moulton method.
Then the Adams-Moulton step is used as a corrector. In other words, a third order predictor-corrector pair
can be written as

ŷn+1 = yn +
1

2
∆t(3f(yn, tn) − f(yn−1, tn−1))

yn+1 = yn +
1

12
∆t(5f(ŷn+1, tn+1) + 8f(yn, tn) − f(yn−1, tn−1))

Of course we lose the unconditional stability of the fully implicit method, but the resulting method is still
more stable and more accurate than the Adams-Bashforth method alone.

55

4.6 Implicit Methods

Two common implicit methods are Backward Euler and Crank-Nicolson. For the equation

dÛ

dt
= D̂Û

we have

Ûn+1 = Ûn + ∆tD̂Ûn+1

Ûn+1 − Ûn =
1

2
∆t(D̂Ûn+1 + D̂Ûn)

respectively. Both of these methods can be rewritten in a δ-formulation as

Ûn+1 − Ûn = ∆tD̂(Ûn+1 − Ûn + Ûn)
(

I − 1

2
∆tD̂

)

δn = ∆tD̂Ûn

The update step is then Ûn+1 = Ûn + δn.
Backward Euler is first order accurate and Crank-Nicolson is second-order accurate. Both methods are

unconditionally stable.
In summary, a fully explicit method will have a stability limit of ∆t = O(N−2). The Runge-Kutta

methods are generally the best. For the solutions with large spatial variations, the largest problem is the
oscillations of the high modes, but this is unavoidable due to the Gibbs phenomenon. For semi-implicit
methods, Adams-Bashforth is a good choice for the explicit part. The implicit methods are good for larger
time steps. Use Crank-Nicolson for time-accurate solutions and Backward Euler for steady state solutions.

Lec. 22

4.7 Parabolic Partial differential equations

We next consider parabolic problems like the heat equation

ut = uxx, −1 ≤ x ≤ 1

u(x, 0) = u0(x)

Again, we need boundary conditions in order to make the problem have a unique solution. Two common
boundary conditions are Dirichlet boundary conditions, u(±1, t) = g±(t), and Neuman boundary conditions,
ux(±1, t) = g±(t). We will first consider the homogeneous Dirichlet condition u(±1, t) = 0.

As in the hyperbolic case, we will trim the vector U =

u0

...
uN

down to Û =

u1

...
uN−1

where here we must

impose boundary conditions at each endpoint. As in the hyperbolic case, we then have some left over terms

∂2

∂x2
U ≈ D̂2Û + δ̂0u0 + δ̂NuN

where D̂2, δ̂0, and δ̂N are given by

D2 =

d00 · · · d0N

... D̂2

...
dN0 · · · dNN

δ̂0 =

d1,0

...
dN−1,0

δ̂N =

d1,N

...
dN−1,N

56

The stability of any time stepping routine is based upon the eigenvalues of D̂2 which must be calculated
numerically.

In fact, the eigenvalues of D̂2 are negative (good) and grow as O(N4) (bad). As in the hyperbolic case,
the rapid growth of the eigenvalues is related to the clustering of the nodes. This means that time steps
for explicit methods will be restricted by ∆t = O(N−4). This is very bad and makes explicit time stepping
impractical. For this reason, we look at implicit methods.

The two most common methods are backward Euler and Crank-Nicolson. Both methods are uncondi-
tionally stable

1

∆t
(Ûn+1 − Ûn) = D̂2Û

n+1 + δ̂0u
n+1
0 + δ̂Nu

n+1
N

1

∆t
(Ûn+1 − Ûn) =

1

2
D̂2(Û

n+1 + Ûn) +
1

2
δ̂0(u

n+1
0 + un

0) +
1

2
δ̂N (un+1

N + un
N)

Crank-Nicolson is second order and backward Euler damps higher frequency modes more effectively. These
two methods can be combined by

1

∆t
(Ûn+1 − Ûn) = D̂2(θÛ

n+1 + (1 − θ)Ûn) + δ̂0(θu
n+1
0 + (1 − θ)un

0) + δ̂N(θun+1
N + (1 − θ)un

N)

This method is unconditionally stable for any 1
2 ≤ θ ≤ 1. A typical value for θ is θ = 1

2 + α∆t. This keeps
the method second order accurate while improving the damping of high frequency modes.Lec. 23

Next, we will discuss Neumann boundary conditions, ux(±1, t) = h±(t). In this case, we first apply D
to U to get

∂

∂x
U ≈ DU

We now impose the boundary conditions followed by a second application of D to get an approximation for
uxx. In matrix form, let

D =

d0,0 · · · d0,N

...
...

d1,0 · · · dN,N

and then define

D̂ =

0 · · · 0
d1,0 · · · d1,N

...
...

dN−1,N · · · dN−1,N

0 · · · 0

, Hn =

h+(tn)
0
...
0

h−(tn)

We then have
uxx ≈ D[D̂U +H]

and hence, the Crank-Nicolson method becomes

1

∆t
(Un+1 − Un) =

1

2
D[D̂(Un+1 + Un) + (Hn+1 +Hn)]

Again, this method can be put into a δ−formulation.
Finally, we can impose mixed boundary conditions such as ux + αu = g(t) in a similar way.
Note that we are using boundary conditions imposed with spectral accuracy. This is in contrast to

finite difference methods where lower order accurate derivatives are needed at the boundary to impose the
boundary conditions.

57

4.8 Hyperbolic Systems

We next look at systems of hyperbolic equations. Consider the system

ut = Aux

where u is an m−vector and A is an m×m matrix. Recall that for this to be a hyperbolic system, A must
have all real distinct eigenvalues. If all the eigenvalues of A are the same sign, then we solve this system in
the same way as the scalar case.

We will now consider the case where A has both positive and negative eigenvalues in which case we have
inflow/outflow boundary conditions. For example, consider the first order system

[

u
p

]

t

=

[

0 −1
ρ

−ρc2 0

] [

u
p

]

x

p(1) = p(−1) = 0

In order to implement the boundary conditions, we must first find the eigenvalues and eigenvectors of A.

0 = det

[−λ −1
ρ

−ρc2 −λ

]

= λ2 − c2 = (λ− c)(λ + c)

λ = c,

[

1
−ρc

]

λ = −c,
[

1
ρc

]

[

0 −1
ρ

−ρc2 0

]

=

[

1 1
−ρc ρc

] [

c 0
0 −c

] [1
2

−1
2ρc

1
2

1
2ρc

]

and we then get
[1

2
−1
2ρc

1
2

1
2ρc

] [

u
p

]

t

=

[

c 0
0 −c

] [1
2

−1
2ρc

1
2

1
2ρc

] [

u
p

]

x

Multiply this by 2ρc and we get

[

ρc −1
ρc 1

] [

u
p

]

t

=

[

c 0
0 −c

] [

ρc −1
ρc 1

] [

u
p

]

x

The characteristic variables are thus w1 = ρcu− p and w2 = ρcu+ p with speeds c and −c respectively.

Now we can write a complete algorithm. Let Un =

un
0
...
un

N

, Pn =

pn
0
...
pn

N

, then the Runge-Kutta second

order method becomes

1.

Û = Un − 1

2
∆t

1

ρ
DPn

P̂ = Pn − 1

2
∆tρcDUn

2.

p̂N = 0

p̂0 = 0

58

3.

Un+1 = Un − ∆t
1

ρ
DP̂

Pn+1 = Pn − ∆tρcDÛ

4.

pn+1
N = 0

pn+1
0 = 0

Unfortunately, this does not work because we are not respecting the flow of information. While finite
difference methods often have built-in dissipation keeping the method stable, spectral methods typically do
not.

To make a stable method, we need to look at the characteristic variables. The variable w1 = ρcu− p has
speed c, and hence travels right to left, while w2 = ρcu + p travels left to right. At the right endpoint, we
want w2 in terms of w1, i.e.

w2 = αw1

ρcu+ p = α(ρcu − p)

and we are given that p = 0, hence we must have α = 1 and we get two equations to solve at the boundary:

p̂0 = 0

ρcû0 + p̂0 = ρcû0 − p̂0

where the right hand side of the above equation comes from the output of the interior method. In other
words, the algorithm becomes

1.

Û = Un − 1

2
∆t

1

ρ
DPn

P̂ = Pn − 1

2
∆tρc2DUn

2.

ˆ̂uj = ûj, j = 1,. . . ,N − 1

ˆ̂pj = p̂j , j = 1,. . . ,N − 1

ˆ̂p0 = 0

ˆ̂pN = 0

ρcˆ̂u0 + ˆ̂p0 = ρcû0 − p̂0

ρcˆ̂uN − ˆ̂pN = ρcûN + p̂N

where the last four equations must be solved simultaneously if necessary.

3.

Ũ = Un − ∆t
1

ρ
D

ˆ̂
Pn

P̃ = Pn − ∆tρc2D
ˆ̂
Un

59

4.

un+1
j = ũj , j = 1,. . . ,N − 1

pn+1
j = p̃j , j = 1,. . . ,N − 1

pn+1
0 = 0

pn+1
N = 0

ρcun+1
0 + pn+1

0 = ρcũ0 − p̃0

ρcun+1
N − pn+1

N = ρcũN + p̃N

where again, the last four equations must be solved simultaneously if necessary.

4.9 Chebyshev Tau Method

Recall that for the Fourier case, we derived different methods, the pseudo-spectral method and the Galerkin
method. In the Galerkin method, we insisted that if we are solving ut = Su, then the residual

∂uN

∂t
− SuN

must be orthogonal to each of the Fourier modes. This resulted in evolution equations for the Fourier
coefficients themselves. The method had the advantage of no aliasing, but often involved convolutions.

The equivalent method for initial boundary value problems is complicated by the fact that the Tk do
not necessarily satisfy the boundary conditions (unlike the Galerkin method). Consider the initial boundary
value problem

ut = ux, −1 ≤ x ≤ 1

u(x, 0) = g(x)

u(1, t) = h(t)

Ordinarily, we would expand u ≈∑N
j=0 ajTj(x). However, there is nothing to enforce the boundary condi-

tions.
In order to enforce the boundary condition, we change the expansion to become

u = uN+1 ≈
N
∑

j=0

ajTj(x) + aN+1TN+1(x)

where the extra aN+1 is used to enforce the boundary condition. As in the Galerkin method, we require
that the residual be orthogonal to each of the T0,. . . , TN , i.e.

〈

Tk,
∂uN+1

∂t
− ∂uN+1

∂x

〉

w

= 0, k = 0, . . . , N

Recall that we have 〈Tk, Tℓ〉w = ckπ
2 δkℓ. Thus, we have

〈

Tk,
∂uN+1

∂t

〉

w

=

〈

Tk,

N+1
∑

j=0

daj

dt
Tj(x)

〉

w

=

N+1
∑

j=0

daj

dt
〈Tk, Tj〉w

=
N+1
∑

j=0

daj

dt

ckπ

2
δkj

=
ckπ

2

dak

dt

60

and

〈

Tk,
∂uN+1

∂x

〉

w

=

N+1
∑

j=0

aj〈Tk, T
′
j〉w

=

N+1
∑

j=k+1

ajπj
1

2
(1 − (−1)j+k)

Therefore, for k = 0,. . . ,N , we have

dak

dt
=

2

πck
π

1

2

N+1
∑

j=k+1

ajj(1 − (−1)j+k)

=
1

ck

N+1
∑

j=k+1

jaj(1 − (−1)j+k)

and the boundary conditions equation

aN+1 =
1

TN+1(1)

h(t) −
N
∑

j=0

ajTj(1)

Using the fact that Tj(1) = 1, this becomes

aN+1 = h(t) −
N
∑

j=0

aj

Plugging this back into the first equation, we get the evolution equation for the ak’s:

dak

dt
=

1

ck

N
∑

j=k+1

jaj(1 − (−1)j+k) +
1

ck
(N + 1)

h(t) −
N
∑

j=0

aj

 (1 − (−1)N+k+1)

and the reconstruction is

u ≈
N
∑

k=0

akTk(x) +

(

h(t) −
N
∑

k=0

ak

)

TN+1(x)

= h(t) +

N
∑

k=0

ak(Tk(x) − TN+1(x))

Note that more than one boundary condition would result in additional expansion terms:

u ≈
N
∑

k=0

akTk(x) +

r
∑

k=1

aN+kTN+k(x)

where the first term is the Galerkin type approximation and the second term is used to enforce the r boundary
conditions.

5 Wavelets

Wavelets are collections of basis functions that make up a multi-resolution analysis, basis functions which
can operate essentially at all wavelengths, and can be scaled in length hierarchically to produce varying levels
of detail for a given approximation. We present here a very basic introduction to the subject.

61

5.1 Scaling functions

The key to wavelets is the idea of a multi-resolution analysis generated by a scaling function, φ. A multi-
resolution analysis is a nested sequence of function spaces Vj such that

0 ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R).

In each of these function spaces, we will assume the standard inner product of L2(R):

〈u, v〉 =

∫ ∞

−∞
u(x)v(x) dx.

Let φ ∈ L2(R) be a function such that 〈φ, φ〉 = 1, then define Vj to be the space spanned by the set of
functions {φj,k}k∈Z where

φj,k(x) = 2j/2φ(2jx− k).

We then have

〈φj,k, φj,ℓ〉 =

∫ ∞

−∞

(

2j/2φ(2jx− k)
)(

2j/2φ(2jx− ℓ)
)

dx

= 2j

∫ ∞

−∞
φ(2jx− k)φ(2jx− ℓ) dx

If we substitute y = 2jx− k, then dy = 2jdx and we have

=

∫ ∞

−∞
φ(y)φ(y − (ℓ− k)) dy.

Now, if φ is such that the support of φ is confined to an interval of length one, then

∫ ∞

−∞
φ(y)φ(y − (ℓ− k)) dy =

{

0 k 6= ℓ

1 k = ℓ
.

Therefore, the set {φj,k}k∈Z form an orthonormal basis for the space Vj .

Example 5.1:

Let

φ(x) =

{

1 0 ≤ x < 1

0 otherwise
.

Then the basis functions can be seen as various square hat functions as illustrated below:

62

ϕ = ϕ
0,0

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

ϕ
0,k

ϕ
0,-3

ϕ
0,-2

ϕ
0,-1

ϕ
0,0

ϕ
0,1

ϕ
0,2

1

1

ϕ
1,k

ϕ
1,0

ϕ
1,4

ϕ
1,-3

21/2

ϕ
0,0

-3 -2 -1 0 1 2 3

ϕ
2,k

ϕ
2,0

ϕ
2,8

ϕ
2,-6

2

Illustration of nested wavelet basis functions for V0, V1, and V2

Next, define a set of coefficients, hn, which solve the refinement equation:

φ(x) = 2
∑

n

hnφ(2x− n) =
√

2
∑

n

hnφ1,n(x). (13)

This equation is also called a dilation equation and represents a connection between the nested spaces. More
generally, we get that

φj,k(x) =
√

2
∑

n

hnφj+1,n+2k(x).

To see this, we start by taking the inner product of (13) with φ1,m(x) to get

〈φ0,0, φ1,m〉 =
√

2
∑

n

hn〈φ1,n, φ1,m〉 =
√

2hm.

Thus, we get a formula for the hn:

hn =
1√
2
〈φ0,0, φ1,n〉.

Next, note that

〈φj,k, φj+1,n+2k〉 =

∫ ∞

−∞
2j/2φ(2jx− k)2(j+1)/2φ(2j+1x− (n+ 2k)) dx

63

Using the same substitution as before, y = 2jx− k, then 2j+1x− (n+ 2k) = 2y − n, and dy = 2jdx,

=

∫ ∞

−∞
φ(y)

√
2φ(2y − n) dy

= 〈φ0,0, φ1,n〉.
Now suppose

φi,j(x) =
∑

n

αnφj+1,n+2k(x),

for some coefficients, αn. Taking the inner product of this equation with φj+1,m+2k, we get

〈φj,k, φj+1,m+2k〉 =
∑

n

αn〈φj+1,n+2k, φj+1,n+2k〉 = αm.

Therefore,
αm = 〈φj,k, φj+1,m+2k〉 = 〈φ0,0, φ1,n〉 =

√
2hm

which is what we were trying to show.

Example 5.2:

For the basis functions generated by φ(x) =

{

1 0 ≤ x < 1

0 otherwise
, we can compute the coefficients hn:

√
2h0 = 〈φ0,0, φ1,0〉 =

∫ 1

0

√
2φ(2x) dx =

∫ 1/2

0

√
2 dx =

1√
2
.

Similarly,

√
2h1 = 〈φ0,0, φ1,1〉 =

∫ 1

0

√
2φ(2x− 1) dx =

∫ 1

1/2

√
2 dx =

1√
2
,

√
2h−1 = 〈φ0,0, φ1,−1〉 =

∫ 1

0

√
2φ(2x+ 1) dx = 0.

So for this particular choice of wavelet generator, the corresponding coefficients are

hn =

{

1
2 n = 0, 1

0 otherwise
.

Referring back to the figure in the previous example, it is clear that the nesting of the basis functions would
lead to this conclusion.

Before continuing, we should note a few properties of the coefficients, hn. The previous example illustrates
one important result, namely

∑

n

hn ≡ 1.

Furthermore, we have

δj−k = 〈φ0,j , φ0,k〉

=

〈

√
2
∑

m

hmφ1,m+2j ,
√

2
∑

n

hnφ1,n+2k

〉

,

= 2
∑

m

∑

n

hmhn〈φ1,m+2j , φ1,n+2k〉,

= 2
∑

n

hnhn+2(k−j).

64

We say that compactly supported in [k, ℓ] if hn = 0 for all n < k and n > ℓ.

5.2 The Orthogonal Complement

Given the coefficients hn given from the scaling function, φ(x), we next define a new wavelet function, ψ(x)
given by

ψ(x) = 2
∑

n

(−1)nh1−nφ(2x− n) =
√

2
∑

n

(−1)nh1−nφ1,n(x).

Starting with this, we can define a new set of basis functions, {ψj,k}k∈Z, where

ψj,k = 2j/2ψ(2jx− k).

This basis is also orthonormal. For orthogonality, we have

〈ψj,k, ψj,ℓ〉 = 〈2j/2ψ(2jx− k), 2j/2ψ(2jx− ℓ)〉,

=

〈

2j/2 · 2
∑

m

(−1)mh1−mφ(2(2jx− k) −m), 2j/2 · 2
∑

n

(−1)nh1−nφ(2(2jx− ℓ) − n)

〉

=

〈

21/2
∑

m

(−1)mh1−m2(j+1)/2φ(2j+1x− (m+ 2k)), 21/2
∑

n

(−1)nh1−n2(j+1)/2φ(2j+1x− (n+ 2ℓ))

〉

,

= 2
∑

m

∑

n

(−1)m+nh1−mh1−n〈φj+1,m+2k, φj+1,n+2ℓ〉,

= 2
∑

n

(−1)n+(n+2ℓ−2k)h1−nh1−(n+2ℓ−2k),

= 2
∑

n

h1−nh1−n+2(k−ℓ),

= 2
∑

n

hnhn+2(k−ℓ) = δk−ℓ.

Therefore, the ψj,k form an orthonormal set of functions.
Furthermore, we have

〈ψj,k, φj,ℓ〉 = 〈2j/2ψ(2jx− k), φj,ℓ〉,

=

〈

√
2
∑

m

(−1)mh1−mφj+1,m+2k,
√

2
∑

n

hnφj+1,n+2ℓ

〉

,

= 2
∑

m

∑

n

(−1)mh1−mhn〈φj+1,m+2k, φj+1,n+2ℓ〉,

= 2
∑

n

(−1)nh1−n+2(k−ℓ)hn,

= 2
∞
∑

n=1+k−ℓ

(−1)nh1−n+2k−2ℓhn + 2
−∞
∑

n=k−ℓ

(−1)nh1−n+2k−2ℓ

= 2

∞
∑

n=0

(−1)n+1+k−ℓh1−n−1−(k−ℓ)+2(k−ℓ)hn+1+k−ℓ + 2

∞
∑

n=−k+ℓ

(−1)nh1+n+2k−2ℓh−n

= 2

∞
∑

n=0

(−1)n+k−ℓ+1h−n+k−ℓhn+1+k−ℓ + 2

∞
∑

n=0

(−1)n−k+ℓh1+n+k−ℓh−n+k−ℓ

= 0.

65

Thus, {ψj,k}k∈Z and {φj,k}k∈Z form an othogonal complement of basis functions for Vj+1.

Example 5.3:

Recall that for φ(x) =

{

1 0 ≤ x < 1

0 otherwise
, we found that h0 = h1 = 1

2 , and hn = 0 for n 6= 0, 1. We can

then construct ψ(x) by

ψ(x) = 2
∑

n

(−1)nh1−nφ(2x− n)

= 2

(

1

2
φ(2x) − 1

2
φ(2x− 1)

)

= φ(2x) − φ(2x− 1)

=

1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 otherwise

.

The resulting scaling and wavelet functions are shown below

0 1

1 ϕ
0,0

0 1

1 ψ
0,0

Haar scaling (φ0,0) and wavelet (ψ0,0) functions.

It is now easy to see how the wavelet functions form the complementary basis that takes Vj into Vj+1.

To summarize, the φ function is called the father wavelet, or the scaling function, and the ψ function is
called the mother wavelet, or the detail function. The combination of the scaling and detail functions are
what allow us to construct a multi-resolution analysis.

One final note about these functions. In higher dimensions, the wavelets are constructed by using tensor
products. For example, in two dimensions, there is one scaling function given by

φ(x, y) = φ(x)φ(y),

where φ(x) is the corresponding one-dimensional scaling function. However, there are now three wavelet
functions:

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y).

66

5.3 Discrete Wavelet Transform

Suppose we want to encode given discrete data, given by uj for j = 0, . . . , 2N − 1, into a wavelet form for
some integer N . It is easy to see that this data can be easily represented in the space VN , which is spanned
by the functions {φN,k}k∈Z, namely

u(x) ≈
∑

k

φN,k(x)uk.

Now, recall that the space VN can be decomposed into VN = VN−1⊕WN−1, where VN−1 is the coarser space
of scaling functions and WN−1 is the corresponding space of wavelet functions. Since VN−1 ⊂ VN , then it
must be that for any basis function φN−1,k, we have

φN−1,k =
∑

ℓ

〈φN−1,k, φN,ℓ〉φN,ℓ

=
∑

ℓ

〈φN−1,kφN,ℓ+2k〉φN,ℓ+2k

=
∑

ℓ

hℓφN,ℓ+2k

=
∑

ℓ

hℓ−2kφN,ℓ.

Similarly, we have

ψN−1,k =
∑

ℓ

〈ψN−1,k, φN,ℓ〉φN,ℓ,

where
〈ψN−1,k, φN,ℓ〉 = (−1)ℓ−2kh1−(ℓ−2k).

Therefore, we have

φN−1,k =
∑

ℓ

hℓ−2kφN,ℓ

ψN−1,k =
∑

ℓ

(−1)ℓ−2kh1−ℓ+2kφN,ℓ.

Let gn = (−1)nh1−n, so that

ψN−1,k =
∑

ℓ

gℓ−2kφN,ℓ.

Now, if we want to represent the data uj in VN−1, then

u(x) ≈
∑

k

〈φN−1,k, u〉φN−1,k,

where

〈φN−1,k, u〉 =

〈

∑

ℓ

hℓ−2kφN,ℓ, u

〉

=
∑

ℓ

hℓ−2k〈φN,ℓ, u〉

=
∑

ℓ

hℓ−2kuℓ = AN−1,k.

67

This is called the low-pass filter and sometimes called the trend. Similarly, we can construct the values

DN−1,k = 〈ψN−1,k, u〉

=

〈

∑

ℓ

gℓ−2kφN,ℓ, u

〉

=
∑

ℓ

gℓ−2k〈φN,ℓ, u〉

=
∑

ℓ

gℓ−2kuℓ.

This is called the band-pass filter or the details.
Note that after applying both filters, we now have 2N−1 trend values and 2N−1 detail values. This process

can be repeated on the trend values until only the details and one trend value are left.

Example 5.4:

Suppose data is u0, . . . , u15 and assume we are using the Haar wavelet so that h0 = h1 = g0 = 1
2 ,

g1 = − 1
2 . The space V4 is spanned by the basis φ4,k. The trend values are then:

A−1,0 =
∑

ℓ

hℓuℓ =
1

2
u0 +

1

2
u1

A−1,1 =
∑

ℓ

hℓ − 2uℓ =
∑

ℓ

hℓuℓ+2 =
1

2
u2 +

1

2
u3

...

A−1,7 =
1

2
u14 +

1

2
u15

and the details are

D−1,0 =
∑

ℓ

gℓuℓ =
1

2
u0 −

1

2
u1

D−1,1 =
1

2
u2 −

1

2
u3

...

D−1,7 =
1

2
u14 −

1

2
u15

Next, the filters are applied to the remaining trend values:

A−2,0 = 1
2A−1,0 + 1

2A−1,1 D−2,0 = 1
2A−1,0 − 1

2A−1,1

A−2,1 = 1
2A−1,2 + 1

2A−1,3 D−2,1 = 1
2A−1,2 − 1

2A−1,3

A−2,2 = 1
2A−1,4 + 1

2A−1,5 D−2,2 = 1
2A−1,4 − 1

2A−1,5

A−2,3 = 1
2A−1,6 + 1

2A−1,7 D−2,3 = 1
2A−1,6 − 1

2A−1,7

and then

A−3,0 = 1
2A−2,0 + 1

2A−2,1 D−3,0 = 1
2A−2,0 − 1

2A−2,1

A−3,1 = 1
2A−2,2 + 1

2A−2,3 D−3,1 = 1
2A−2,2 − 1

2A−2,3

68

and finally,

A−4,0 = 1
2A−3,0 + 1

2A−3,1 D−4,0 = 1
2A−3,0 − 1

2A−3,1

The original date can be reconstituted by reversing the steps:

A−3,0 = A−4,0 +D−4,0 A−3,1 = A−4,0 −D−4,0

A−2,0 = A−3,0 +D−3,0 A−2,1 = A−3,0 −D−3,0

A−2,2 = A−3,1 +D−3,1 A−2,2 = A−3,1 −D−3,1

In the end, we store the final trend value, and all the intermediate detail values and we can reconstruct
the original data. The cost of the transform is O(N).

5.4 B-Spline Multiresolution Analysis

The bases we have considered so far are not terribly smooth, and we want smooth basis functions so that
we can differentiate them as we have done before. One solution for this is to use B-splines.

We start with the Haar wavelet scaling function, φ(x), that we have been using as an example so far, but
we give it a new name:

β0(x) =

{

1 0 ≤ x < 1

0 otherwise
,

as shown below:

0 1

1

β
0
(x)

Haar basis function β0(x)

The next higher version will be obtained by taking a convolution:

β1(x) =

∫ ∞

−∞
β0(y)β0(x− y) dy =

∫ 1

0

β0(x− y) dy =

2 − x 1 ≤ x < 2

x 0 ≤ x < 1

0 x < 0 or x ≥ 2

.

If we shift the result back to 0, we get

β1(x) = [x+ 1]+ − 2[x]+ + [x = 1]+,

where [y]+ = max{y, 0}. This basis function is the standard hat function as shown below:

69

0 1

1

β
1
(x)

Basis function β1(x)

Higher order splines follow the same recipe:

βn(x) =

∫ ∞

−∞
β0(y)βn−1(x− y + (n mod 2)) dy,

where the extra n mod 2 comes from shifting the resulting convolution to be centered around zero for odd
values of n. Thus, we can get β2(x) by

β2(x) =

∫ ∞

−∞
β0(x)β1(x− y) dy

=

∫ 1

0

[x+ 1 − y]+ − 2[x− y]+ + [x− y − 1]+ dy

=

∫ x

x−1

[u+ 1]+ − 2[u]+ + [u− 1]+ du

=
1

2
[u+ 1]2+ − [u]2+ +

1

2
[u− 1]2+

∣

∣

∣

∣

x

x−1

=
1

2
[x+ 1]2+ − 3

2
[x]2+ +

3

2
[x− 1]2+ − 1

2
[x− 2]2+,

and it is illustrated below:

0

x

2

0.72

1−1

Basis function β2(x)

70

In general, we can write the formula for βn(x) as

βn(x) =

{

1
n!

∑n+1
j=0 (−1)j

(

n+1
j

) [

x+ n
2 − j

]n

+
n even,

1
n!

∑n+1
j=0 (−1)j

(

n+1
j

) [

x+ n+1
2 − j

]n

+
n odd,.

Note that these spline functions are not suitable scaling functions in our current framework because they
are not mutually orthogonal, i.e. 〈βn(x), βn(x− 1)〉 6= 0.

On the other hand, the βn(x) do have the two-scale property:

βn(x) =

{

1
2n

∑n+1
j=0

(

n+1
j

)

βn

(

2x+ n
2 − j

)

n even,
1
2n

∑n+1
j=0

(

n+1
j

)

βn

(

2x+ n+1
2 − j

)

n odd.

Example 5.5:

For n = 1, we have
β1(x) = [x+ 1]+ − 2[x]+ + [x− 1]+.

At the same time, we have

1

2
(β1(2x+ 1) + 2β1(x) + β1(2x− 1))

=
1

2
([2x+ 2]+ − 2[2x+ 1]+ + [2x]+ + 2[2x+ 1]+ − 4[2x]+ + 2[2x− 1]+ + [2x]+ − 2[2x− 1]+ + [2x+ 2]+)

=
1

2
(2[x+ 1]+ − 4[x]+ + 2[x− 1]+)

= β1(x).

So now we just need to orthogonalize these functions. Note that if we take the Fourier transform we get

β̂0(ω) =

∫ ∞

−∞
β0(x)e

−iωx dx

=

∫ 1

0

e−iωx dx

=
1

ıω
(1 − e−iω)

= e−iω/2 sinω/2

ω/2

Since βn is constructed as convolutions of β0, then

β̂n(ω) = e−iκω/2

(

sinω/2

ω/2

)n+1

,

where κ = n mod 2. Next, define

b(ω) =
∑

ℓ

∣

∣

∣β̂n(ω + 2πℓ)
∣

∣

∣

2

= (2 sinω/2)
2(n+1)

∑

ℓ

(ω + 2πℓ)−2(n+1)

= (2 sinω/2)2(n+1)S2(n+1)(ω),

71

where
Sn(ω) =

∑

ℓ

(ω + 2πℓ)−n.

It can be shown that

S2(ω) =
1

4 sin2 ω/2
,

and generally,

Sn(ω) =
(−1)n−2

(n− 1)!

dn−2

dωn−2
S2(ω).

The proper scaling function is then

φ̂(ω) =
β̂n(ω)
√

b(ω)
.

A concise formula for the scaling function is not available, so instead, let ck be such that

1
√

b(ω)
=
∑

k

cke
−iωk,

i.e. the ck are the discrete Fourier transform of 1/
√

b(ω), which is possible because b(ω) is a 2π peeriodic
function. Given the ck, then the scaling function becomes

φ(x) =
∑

k

ckβn(x− k).

Note that the ck must be truncated because there are an infinite number of non-zero entries, but instead
decay to zero as k → ∞.

5.5 Biorthogonal Wavelets

The problem with orthogonal wavelets is that it is difficult to build smooth orthogonal functions with compact
support. When we built smooth functions, e.g. the B-spline wavelets, they ended up not having compact
support. To circumvent the orthogonality condition, we weaken the condition to produce bi-orthogonal basis
functions.

Suppose u1, u2 ∈ R
2 are two linearly independent vectors. Any vector w ∈ R

2 can be wrtten as
w = α1u1 + α2u2 for some scalars α1, α2. If u1, u2 are orthogonal, then αi = 〈ui,w〉, but if 〈u1,u2〉 6= 0,
then the situation gets more complicated.

Now suppose v1, v2 are such that 〈vi,uj〉 = δi,j , then v1, v2 also form a basis of R
2 and

αi = 〈vi,w〉.

The vectors v1, v2 form a dual basis of u1, u2.
In terms of wavelets, we hope to construct dual scaling functions and dual wavelets so that φ̃ are the

dual scaling functions, ψ̃ are the dual wavelet functions that satisfy the following equations:

〈φ̃j,k, φj,ℓ〉 = δk,ℓ,

〈ψ̃j,k, φj,ℓ〉 = 0,

〈ψ̃j,k, ψℓ,m〉 = δj,ℓδk,m,

〈φ̃j,k, ψj,kℓ〉 = 0.

and where

φ̃j,k = 2j/2φ̃(2jx− k),

ψ̃j,k = 2j/2ψ̃(2jx− k).

72

The set {φ̃j,k}k∈Z forms the basis for a dual subspace Ṽj , and similarly {ψ̃j,k}k∈Z forms a basis for W̃j .
Now, we still want our scaling and wavelet functions to satisfy the scaling functions:

φ(x) =
√

2
∑

k

hkφ(2x− k),

ψ(x) =
√

2
∑

k

gkφ(2x − k),

φ̃(x) =
√

2
∑

k

h̃kφ̃(2x− k),

ψ̃(x) =
√

2
∑

k

g̃kψ̃(2x− k).

To get the coefficients, we take inner products:

φ0,0(x) =
∑

k

hkφ1,k(x)

〈φ̃1,k, φ0,0〉 =
∑

n

hn〈φ̃1,k, φ1,n〉

=
∑

n

hnδk,n = hk.

Similarly, we have

〈φ1,k, φ̃0,0〉 = h̃k,

〈φ̃1,k, ψ0,0〉 = gk,

〈φ1,k, ψ̃0,0〉 = g̃k.

Note that if the {φj,k} are orthogonal, then φj,k = φ̃j,k, and ψj,k = ψ̃j,k.

5.5.1 The Bi-orthogonal Wavelet Transform

The wavelet transform carries over from the orthogonal case with only minor modifications. In this case, the
coefficients hn, gn are used for decomposition, ahd h̃n, g̃n are used for reconstruction. Suppose our given
data is given by uj, then we can write u as an expansion in the dual basis:

u =
∑

k

〈φj,k, u〉φ̃j,k +
∑

k

〈ψj,k, u〉ψ̃j,k.

Next, recall that

φj−1,k =
∑

ℓ

hℓ−2kφj,ℓ,

ψj−1,k =
∑

ℓ

gℓ−2kφj,ℓ.

Let Aj,k = 〈φj,k, u〉 and Dj,k = 〈ψj,k, u〉, then

φj−1,k =
∑

ℓ

hℓ−2kφj,ℓ,

〈u, φj−1,k〉 =
∑

ℓ

hℓ−2k〈u, φj,ℓ,

Aj−1,k =
∑

ℓ

hℓ−2kAj,ℓ.

73

Similarly, we get Dj−1,k =
∑

ℓ gℓ−2kAj,ℓ. These relations show how to compute the trends, Aj,k, and details,
Dj,k, from the original data.

Recall that Vj = Vj−1 ⊕Wj−1, so we can express φj,k as a linear combination:

φjk = sumℓ〈φ̃j−1,ℓ, φj,k〉φj−1,ℓ +
∑

ℓ

〈ψ̃j−1,ℓ, φj,k〉ψj−1,ℓ

=
∑

ℓ

hk−2ℓφj−1,ℓ +
∑

ℓ

gk−2ℓψj−1,ℓ.

Thus,

Aj,k =
∑

ℓ

h̃k−2ℓAj−1,ℓ +
∑

ℓ

g̃k−2ℓDj−1,ℓ.

This shows that the transform is the same as before except we use h̃n, g̃n instead of hn, gn in the recon-
struction.

5.6 Differentiating the B-spline wavelet functions

Recall that the B-spline scaling function is

βn(x) =

{

1
n!

∑n+1
j=0 (−1)j

(

n+1
j

) [

x+ n
2 − j

]n

+
n even,

1
n!

∑n+1
j=0 (−1)j

(

n+1
j

) [

x+ n+1
2 − j

]n

+
n odd,.

Suppose n is even (the case for n odd is analogous), then

β′
n(x) =

1

(n− 1)!

n+1
∑

j=0

(−1)j

(

n+ 1

j

)

[

x+
n

2
− h
]n−1

+

=
1

(n− 1)!

[

x+
n

2

]n−1

+
+
[

x+
n

2
− (n+ 1)

]n−1

+
(−1)n+1 +

n
∑

j=1

(−1)j

(

n+ 1

j

)

[

x+
n

2
− j
]n−1

+

Now note that
(

n+ 1

j

)

=
(n+ 1)!

j!(n+ 1 − j)!
=

n+ 1

j(n+ 1 − j)

n!

(j − 1)!(n− j)!

=

(

1

j
+

1

n+ 1 − j

)

n!

(j − 1)!(n− j)!

=
n!

j!(n− j)!
+

n!

(j − 1)!(n+ 1 − j)!

=

(

n

j

)

+

(

n

j − 1

)

.

So,

β′
n(x) =

1

(n− 1)!

[

x+
n

2

]n−1

+
+ (−1)n+1

[

x+
n

2
− (n+ 1)

]n−1

+
+

n
∑

j=1

(−1)j

((

n

j

)

+

(

n

j − 1

))

[

x+
n

2
− j
]n−1

+

=
1

(n− 1)!

n
∑

j=0

(−1)j

(

n

j

)

[

x+
n

2
− j
]n−1

+
+

n+1
∑

j=1

(−1)j

(

n

j − 1

)

[

x+
n

2
− j
]n−1

+

=
1

(n− 1)!

n
∑

j=0

(−1)j

(

n

j

)

[

x+
n

2
− j
]n−1

+
−

n
∑

j=0

(−1)j

(

n

j

)

[

x− 1 +
n

2
− j
]n−1

+

= βn−1(x) − βn−1(x− 1).

74

Thus, we see that the B-splines have the special property that the derivatives are easy to construct making
it possible to do spatial derivatives easily within the framework.

75

