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Decay Rates in Attractive Bose-Einstein Condensates
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Attractive Bose-Einstein condensates are investigated with numerical continuation methods capturing
stationary solutions of the Gross-Pitaevskii equation. The branches of stable (elliptic) and unstable
(hyperbolic) solutions are found to meet at a critical particle number through a generic Hamiltonian
saddle node bifurcation. The condensate decay rates corresponding to macroscopic quantum tunneling,
two and three body inelastic collisions, and thermally induced collapse are computed from the exact
numerical solutions. These rates show experimentally significant differences with previously published
rates. Universal scaling laws stemming from the bifurcation are derived. [S0031-9007(99)08550-6]
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Experimental Bose-Einstein condensation (BEC) inand lengthLy = \/ii/mw: 7 = t/79, X = x/Lo, anda =
ultracold vapors of Li atoms [1] opened a new field in the 47a/Lo, the condensate is described by the action
study of macroscopic quantum phenomena. Condensates . -
with attractive interactions are known to be metastable 4 = d?[/ d3% L (lﬁ % - %) — j—“], (1)
in spatially localized systems, provided that the number 2 a1 a1
of condensed patrticles is below a critical valdé. [2]. . . o .

Various physical processes compete to determine th‘('evIth F =T - uN, whereN' = [d’x|y|* and
lifetime of attractive condensates. Among them one can 1 1. a
distinguish macroscopic quantum tunneling (MQT) [3,4], = [ d3x<§ IVsip® + P} Pl l® + DX |‘M4>'
inelastic two and three body collisions (ICO) [5-7], and 2
thermally induced collapse (TIC) [4,8]. The MQT and

TIC contributions were evaluated in the literature usingThe Euler-Lagrange equation correspondingAois our
a variational Gaussian approximation to the condensat&orking form of the Gross-Pitaevskii equation:
density. However, this approximation is known to be

in substantial quantitative error—e.g., as high 1a%o —i % = —ﬁ = lV,%‘(// 1 |%|%
on N, [3,9]—when compared to the exact solution ot o 2 2
of the Gross-Pitaevskii (GP) equation. Experimentally, — (alyl® — wy. 3

the recent observations of Feshbgc_h_ resonances in BE\%e use the following experimental data corresponding
of sodium atoms offer new possibilities to |nvest|gateto 7Li atoms in a radial trapmm = 1.16 X 10-26 kg

the dynamics of condensates with negative scatterln? — 2334, (with a, the Bohr radius), and

lengths close to zero temperature (in the nK range) (@owyw.)/> = 90841 s-|. These values yield
X y z o .

. . . . . w
[10]. Reliable theoretical evaluations of the lifetime of _°  * 3 . .
metastable condensates are thus needed for quantitati\cfe f57|3 X 1077 W'th these rzjarambeters (3) II'S b?
comparisons with experiments, mean-field approximation expected to be very reliable.

) . . Note that we ignore the contributions of noncondensed
The basic goal of the present Letter is to numerically . .
! X : . atoms. They interact with the condensate only through
compute the bifurcation diagram of the stationary solu-a nearlv constant backaround densitv term. inducing no
tions of the GP equation. Both the stable (elliptic) and y 9 y ! 9

' X : significant change in the dynamics of the system [13].
unstable (hyperbolic) branches of solutions will then be Stationary states of (3) corresponding to minimafbf

used to obtain decay rates and compare them to the knovxéq a given value ofN' are obtained by intearating to
(Gaussian approximation) ones. At low enough tempera: g e X y 9 9

X ) relaxation the diffusion equation
ture, neglecting the thermal and quantum fluctuations, a

Bose condensate can be represented by a complex wawi) o6F 1, 1. SR

function ¢ (x, t) that obeys the dynamics of the GP equa- 37 Y - Evi‘/’ ) %1%y — @lyl” = wy,
tion [11,12]. Specifically, we consider a condensate of )
N particles of massn and (negative) effective scat-

tering lengtha in a radial confining harmonic potential where the Lagrange multipligg is fixed by the condition
V(r) = mw?r?/2. Using variables rescaled by the natu- 9N" /97 = 0. Note that dynamical solutions of (3) are
ral quantum harmonic oscillator units of timg = 1/w only affected byu through a homogeneous rotating phase
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factor ¢/*!. Pseudospectral methods [14] are used to 3000 [~
solve (4). The radially symmetrigs(r,7) is expanded 2500 |
as(r, 1) = SN2 0 (DTan(r/R), WhereT, is the nth . 2000 |
order Chebyshev polynomial anfly, is fixed to satisfy 1500
the boundary conditiog(R,7) = 0. The results reported 1000
below were generated witR = 4 and Ny = 256. To 500
integrate (4) we use the time stepping scheme
Wi + o) = 0 w® — olPy/2 + @l - welh, 00

~< 20.0

®) L

where ® =1 — ¢V?/2. This relaxation method is 00 F x WE NG
equivalent to that used in [9] and can only reach the 20000 800 1000 1200 1 4looy 1600
stable stationary solutions of (4). N

In order to numerically compute the full bifurcation dia- . . ) .
FIG. 1. Stationary solutions of the GP equation versus particle

gram of (4) we also capture the previously unknown UN T umber V. Top: value of the energy function&, on the

stable stationary solutions using Newton branch followingsizpje (elliptic) branch andE_ on the unstable (hyperbolic)
[15,16]. We start from a stable state obtained by relaxingranch. Bottom: square of the bifurcating eigenvalué )(

(4) at a small value ofN". We search for fixed points [A-|is the energy of small excitations around the stable branch.
of (5), a condition strictly equivalent to the stationarity Solid lines: exact solution of the GP equation. Dashed lines:
of (3). Callingy; the value of the fields over thejth ~ G2ussian approximation.

collocation point, we look fory™ such thatf(; (") =

lﬂ(*j)(; + o) — lp("‘j)(i) = 0. At every Newton step we critical pointé = 0, the universal scaling laws

numerically solved [df(;)/d¥w 1w = —f (), for _ B 32
oY) [17], where o controls the preconditioning of the Ee =T~ 5o = Ead™, (7)
Newton step [18]. Once the converged stationary solu- A2 = +A%8'2, (8)

tions of (3) are obtained;ié F/d is linearized around
them. The eigenvalues, of the corresponding linear op- Where E. = E,, F, =y, Fx =2/3/B, and A} =
erator are computed by constructing and diagonalizing thé«/B/mest.  The dynamical content of the HSN normal
associated matrix [16]. When the smallest absolute valuform (6) can be understood by the following considera-
A is purely imaginary,A| is the (adimensionalized) en- tions. The phase space is separated in two regions by a
ergy of small excitations. separatrix (homoclinic orbit) that starts and ends at the
The values of the energy functiordl and the (Sma”est hyperbolic fixed pOint. TrajeCtOl’ies inside the Separatrix
absolute value) square eigenva]u’é versus particle remain bounded near the e”lptIC fixed pOint. If the con-
number N are shown as solid lines in Fig. 1 (top and densate is taken beyond the separatrix by a perturbation
bottom, respectively). The eigenvalues are imaginary of€-9., thermal excitations or quantum tunneling, see be-
the metastable elliptic lower branch?(< 0) and real on low), it will fall into unbounded (hyperbolic) trajectories
the unstable hyperbolic upper branch? (> 0). Using and collapse. ASN" approachesN,, the bounded region
(1) on stationary solutions we obtaidE /dN = w.  around the elliptic fixed point is reduced and the conden-
Thus 4 is the slope ofE and the lower branche®_, Sate becomes more unstable. Af = N, the elliptic
)12, (respectively’ upper branché5+, /\%r) are scanned fixed pOint meets the hyperbOIiC fixed pOint and the sepa-
for w > w. (respectivelyu < u.). The pointu = u.  ratrixdisappears. No stationary condensate can be formed
determines the maximum number of partictds = N,  for N > N..
for which stationary solutions exist. We have checked The results obtained with the Gaussian approximation
that all the other pairs of eigenvalues are imaginary orfor the condensate density [20,21] are also shown in Fig. 1
both branches (data not shown). as dashed lines. These approximate results can be ob-
This qualitative behavior is the generic signature of afained analytically by the following procedure: Insert-
Hamiltonian saddle node (HSN) bifurcation defined, ating #(r.7) = A() exq{—r?/2r&(7) + ib())r?] inside the
lowest order, by the normal form [19] action (1) yields a set of Euler-Lagrange equations for
. 2 rg(?), b(7), and the (complex) amplitudé(?). The sta-
merQ = 06 — BO7, 6) tionary solutions of the Euler-Lagrange equations produce
where § = 1 — N'/N. is the bifurcation parameter. the following values [16]:
The critical amplitudeQ is related to the radius of the

condensate [16] and the paramet@sand m.s; can be N () = d2m3(—8u + 3{7 + 4pu?) ©)
linked to critical scaling laws. Indeed, defining the appro- TNal (=2; + J7 + 4u2)3/2’

priate energyE = Fy + me;0%/2 — 6Q + BQ3/3 —

v§8, it is straightforward to derive from (6), close to the F=N(u)(—p + 37 + 4u2)/7. (10)
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N is maximal atV.¢ = 8v/273/|55%a| for u = ub = We estimate the MQT decay rate using an instanton
1/2+/5. Linearizing the Euler-Lagrange equations aroundechnique that takes into account the semiclassical trajec-
the stationary solutions, we obtain the eigenvalues [16] tory giving the dominant contribution to the quantum ac-

) ) tion path integral [3,4]. We approximate this so-called
A(u) = 8u” — 4pq|7 + 4u? + 2. (11)  bounce trajectory by the solution of the equation of mo-
O rack i . .
As apparent in Fig. 1, the exact critic&% F = 1258.5 Eog dd qo('tn)t/ dr of th:V(ﬁgé qust:Crgng r?g%(en()jlrlg %t the
is smaller than the Gaussian od&C = 1467.7 [3,9]. oo PoIntgy P pace w a5) = =

The critical amplitudes corresponding to the Gaussiary(q).IS a polynomla}l SUCh. t'hat—V(q) reconstructs the
approximation can be computed from (9) and (10). ondiamiltonian dynamics. Fixing; = 0 at the top, £+
finds E, = 4v2m3/|544|, Ex = 64v/73/15%%al, and pomt,_the reconstrucilon cond;tlon |rEpI|es the relations
AX = 44/10. For the exact solutions, we obtain the V2(0) =~ Vigy) = —F-, 0,V(0) = lA*.(‘N)l’ and
critical amplitudes by performing fits on the data. One?s" (/) B —|/\—(g\f)| tha'i uniquely determineg(q) =
finds £y = 1340 and A3 = 14.68. Thus, the Gaussian ®0 + @2¢” + asg” + asq”. We thus obtain a semiana-
approximation captures the bifurcation qualitatively butlytlcal polynomial expression with coefficients determined

with quantitativel7% error onN, [9], 24% error onE,,  [rom the values presenEad in Fig. 1. Onicey) and the
and14% error onA3. Figure 2 shows the physical origin PouUnce pointg, [V(g,) = V(q,)] are known, the MQT

of the quantitative errors in the Gaussian approximation'@t€ iS estimated as

By inspection it is apparent that the exact solution is well T’y A_|vd —4 (P
approximated by a Gaussian only for sma\l" on the > \ 1, & ﬁ/ \VV(g) — Vigs)dq |,
stable (elliptic) branch. K
The TIC decay ratd'r is estimated using the formula (13)
[22] whereuv is defined by the asymptotic form of the bounce
_ trajectoryq(z) [4]: q(7) ~ g5 + (vo/IA-]) exd—|A-7l].
Fr/o = 1A 2alexd—ho(Ey = E)/ksT]. (12)  yniversal scaling laws car{ be derived close to criticality
wherefiw(E+ — E_) is the (dimensionalized) height of from (6), (7), and (8). The exponential factor in (13)
the nucleation energy barrief, is the temperature of the follows the same scaling aflE — F_|dq. It therefore
condensate, anks is the Boltzmann constant. Note that vanishes asv83/26'/2 = 654, From the asymptotic
the prefactor characterizes the typical decay time which isgrm of q(t), dq follows the same law asy/|A_|. Thus
controlled by the slowest part of the nucleation dynamics;,, ~ §3/4 and the prefactor vanish a&51/4 §3/4 = §7/8.
the top-of-the-barrier saddle point eigenvalue and not  Note that these universal scaling laws agree with those
A— as used in [4]. However, near the bifurcation bOthaIready derived in the Gaussian case in [3].
eigenvalues scale in the same way and the behavibrof  The TIC (12) and MQT (13) decay rates obtained for
can be obtained direCtly from the universal saddle nOd@he exact and Gaussian Stationary states are shown in
scaling laws (7) and (8). Thus the exponential factor angtig. 3. To validate these results we checked that the
the prefactor vanish, respectively, 82 and5'/. Gaussian TIC decay rates computed in [8] are found when
we (incorrectly at a finite distance from criticality) replace
A+ by A_in Eq. (12) (data not shown). We also checked
that our Gaussian MQT decay rate agrees with the one
previously computed in [3].
The ICO atomic decay rates are also shown in Fig. 3.
They are evaluated using the formdd\ /dr = fc(N)
with  fc(N) =K [|y|*d’x + L [|y|°d*k, where
K=38X10"*s"! and L =26 %X 1077 s"!. Note
that the ICO rate can be evaluated from the stable
3 branch alone as done in [5,6]. In order to compare the
particle decay ratg’'c(N') to the condensate collective
decay rates obtained for TIC and MQT, we compute the
0 : : condensate ICO half-life as; »(N) = f%/z dn/fc(n)
r and plotr/} in Fig. 3.
It is apparent by inspection of Fig. 3 that for a given
FIG. 2. Condensate density/|* versus radius-, in reduced value of V" the exact and Gaussian approximate rates are
units (see text). Solid lines: exact solution of the GP equayramatically different. We now compare the relative im-
tion. Dashed lines: Gaussian approximation. Stable (eII|pt|c)portance of the different exact decav rates. TA& 1 nK
solutions are shown for particle numbéN = 252 (a) and ’ y '
N = 1132 (b). (c) is the unstable (hyperbolic) solution for the MQT effect becomes important compared to the ICO
N = 1132 (see inset). decay in a region very close t&.F (6 = 8 X 1073) as it
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sal scaling laws. Experimentally significant quantitative

TIC: 7 6 5 4376 5 4[3
/ differences were found between the exact and Gaussian

101 1 i ,
MQT—, o

B 1057 A0 approximate rates. Future experimental determinations of
o L decay processes should thus be compared to the present
E o0l > L B T GP based rates.
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