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Attractive Bose-Einstein condensates are investigated with numerical continuation methods capturing
stationary solutions of the Gross-Pitaevskii equation. The branches of stable (elliptic) and unstable
(hyperbolic) solutions are found to meet at a critical particle number through a generic Hamiltonian
saddle node bifurcation. The condensate decay rates corresponding to macroscopic quantum tunneling,
two and three body inelastic collisions, and thermally induced collapse are computed from the exact
numerical solutions. These rates show experimentally significant differences with previously published
rates. Universal scaling laws stemming from the bifurcation are derived. [S0031-9007(99)08550-6]
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Experimental Bose-Einstein condensation (BEC)
ultracold vapors of7Li atoms [1] opened a new field in th
study of macroscopic quantum phenomena. Condens
with attractive interactions are known to be metasta
in spatially localized systems, provided that the num
of condensed particles is below a critical valueNc [2].
Various physical processes compete to determine
lifetime of attractive condensates. Among them one
distinguish macroscopic quantum tunneling (MQT) [3,
inelastic two and three body collisions (ICO) [5–7], an
thermally induced collapse (TIC) [4,8]. The MQT an
TIC contributions were evaluated in the literature usi
a variational Gaussian approximation to the condens
density. However, this approximation is known to
in substantial quantitative error—e.g., as high as17%
on Nc [3,9]—when compared to the exact solutio
of the Gross-Pitaevskii (GP) equation. Experimenta
the recent observations of Feshbach resonances in
of sodium atoms offer new possibilities to investiga
the dynamics of condensates with negative scatte
lengths close to zero temperature (in the nK ran
[10]. Reliable theoretical evaluations of the lifetime
metastable condensates are thus needed for quantit
comparisons with experiments.

The basic goal of the present Letter is to numerica
compute the bifurcation diagram of the stationary so
tions of the GP equation. Both the stable (elliptic) a
unstable (hyperbolic) branches of solutions will then
used to obtain decay rates and compare them to the kn
(Gaussian approximation) ones. At low enough tempe
ture, neglecting the thermal and quantum fluctuations
Bose condensate can be represented by a complex w
function csx, td that obeys the dynamics of the GP equ
tion [11,12]. Specifically, we consider a condensate
N particles of massm and (negative) effective sca
tering lengtha in a radial confining harmonic potentia
V srd ­ mv2r2y2. Using variables rescaled by the nat
ral quantum harmonic oscillator units of timet0 ­ 1yv
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and lengthL0 ­
p

h̄ymv: t̃ ­ tyt0, x̃ ­ xyL0, andã ­
4payL0, the condensate is described by the action

A ­
Z

dt̃

(Z
d3x̃

i
2

√
c̄

≠c

≠t̃
2 c

≠c̄

≠t̃

!
2 F

)
, (1)

with F ­ E 2 mN , whereN ­
R

d3x̃jcj2 and

E ­
Z

d3x̃

√
1
2

j=x̃cj2 1
1
2

jx̃j2jcj2 1
ã
2

jcj4

!
.

(2)

The Euler-Lagrange equation corresponding toA is our
working form of the Gross-Pitaevskii equation:

2i
≠c

≠t̃
­ 2

dF

dc̄
­

1
2

=2
x̃c 2

1
2

jx̃j2c

2 sãjcj2 2 mdc . (3)

We use the following experimental data correspond
to 7Li atoms in a radial trap:m ­ 1.16 3 10226 kg,
a ­ 223.3a0 (with a0 the Bohr radius), and
v ­ svxvyvzd1y3 ­ 908.41 s21. These values yield
ã ­ 25.74 3 1023. With these parameters (3) is
mean-field approximation expected to be very reliab
Note that we ignore the contributions of noncondens
atoms. They interact with the condensate only throu
a nearly constant background density term, inducing
significant change in the dynamics of the system [13].

Stationary states of (3) corresponding to minima ofE

at a given value ofN are obtained by integrating to
relaxation the diffusion equation

≠c

≠t̃
­ 2

dF

dc̄
­

1
2

=2
x̃c 2

1
2

jx̃j2c 2 sãjcj2 2 mdc ,

(4)

where the Lagrange multiplierm is fixed by the condition
≠N y≠t̃ ­ 0. Note that dynamical solutions of (3) ar
only affected bym through a homogeneous rotating pha
© 1999 The American Physical Society



VOLUME 82, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 22 FEBRUARY 1999

t

th

a-
un
ing
in

s
ity

e
lu

-
th
lu
-

t

d
o

ed
o

f a
a

r.
e

ro

e

icle

)

ch.
es:

al
ra-
by a
the
trix
n-
tion
be-
s

en-

pa-
med

ion
. 1
ob-

rt-

for

uce
factor eimt̃. Pseudospectral methods [14] are used
solve (4). The radially symmetriccsr, t̃d is expanded
as csr , t̃d ­

PNRy2
n­0 ĉ2nst̃dT2nsryRd, whereTn is the nth

order Chebyshev polynomial and̂cNR is fixed to satisfy
the boundary conditioncsR, t̃d ­ 0. The results reported
below were generated withR ­ 4 and NR ­ 256. To
integrate (4) we use the time stepping scheme

cst̃ 1 sd ­ Q21hcst̃d 2 sfr2cy2 1 sãjcj2 2 mdcgj ,

(5)

where Q ­ 1 2 s=2y2. This relaxation method is
equivalent to that used in [9] and can only reach
stable stationary solutions of (4).

In order to numerically compute the full bifurcation di
gram of (4) we also capture the previously unknown
stable stationary solutions using Newton branch follow
[15,16]. We start from a stable state obtained by relax
(4) at a small value ofN . We search for fixed point
of (5), a condition strictly equivalent to the stationar
of (3). Calling cs jd the value of the fieldc over thejth
collocation point, we look forcp such thatfs jdscpd ;
c

p
s jdst̃ 1 sd 2 c

p
s jdst̃d ­ 0. At every Newton step we

numerically solve
P

kfdfs jdydcskdgdcskd ­ 2fs jdscd, for
dcskd [17], wheres controls the preconditioning of th
Newton step [18]. Once the converged stationary so
tions of (3) are obtained,2idF ydc is linearized around
them. The eigenvaluesln of the corresponding linear op
erator are computed by constructing and diagonalizing
associated matrix [16]. When the smallest absolute va
l is purely imaginary,jlj is the (adimensionalized) en
ergy of small excitations.

The values of the energy functionalE and the (smalles
absolute value) square eigenvaluel2 versus particle
numberN are shown as solid lines in Fig. 1 (top an
bottom, respectively). The eigenvalues are imaginary
the metastable elliptic lower branch (l2 , 0) and real on
the unstable hyperbolic upper branch (l2 . 0). Using
(1) on stationary solutions we obtaindE ydN ­ m.
Thus m is the slope ofE and the lower branchesE2,
l2

2 (respectively, upper branchesE1, l2
1) are scanned

for m . mc (respectively,m , mc). The pointm ­ mc

determines the maximum number of particlesN ­ Nc

for which stationary solutions exist. We have check
that all the other pairs of eigenvalues are imaginary
both branches (data not shown).

This qualitative behavior is the generic signature o
Hamiltonian saddle node (HSN) bifurcation defined,
lowest order, by the normal form [19]

meffQ̈ ­ d 2 bQ2, (6)

where d ­ 1 2 N yNc is the bifurcation paramete
The critical amplitudeQ is related to the radius of th
condensate [16] and the parametersb and meff can be
linked to critical scaling laws. Indeed, defining the app
priate energyE ­ E0 1 meff

ÙQ2y2 2 dQ 1 bQ3y3 2

gd, it is straightforward to derive from (6), close to th
o
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FIG. 1. Stationary solutions of the GP equation versus part
numberN . Top: value of the energy functionalE1 on the
stable (elliptic) branch andE2 on the unstable (hyperbolic
branch. Bottom: square of the bifurcating eigenvalue (l2

6);
jl2j is the energy of small excitations around the stable bran
Solid lines: exact solution of the GP equation. Dashed lin
Gaussian approximation.

critical pointd ­ 0, the universal scaling laws

E6 ­ Ec 2 Eld 6 EDd3y2, (7)

l2
6 ­ 6l

2
Dd1y2, (8)

where Ec ­ E0, El ­ g, ED ­ 2y3
p

b, and l
2
D ­

2
p

bymeff. The dynamical content of the HSN norm
form (6) can be understood by the following conside
tions. The phase space is separated in two regions
separatrix (homoclinic orbit) that starts and ends at
hyperbolic fixed point. Trajectories inside the separa
remain bounded near the elliptic fixed point. If the co
densate is taken beyond the separatrix by a perturba
(e.g., thermal excitations or quantum tunneling, see
low), it will fall into unbounded (hyperbolic) trajectorie
and collapse. AsN approachesNc, the bounded region
around the elliptic fixed point is reduced and the cond
sate becomes more unstable. AtN ­ Nc the elliptic
fixed point meets the hyperbolic fixed point and the se
ratrix disappears. No stationary condensate can be for
for N . Nc.

The results obtained with the Gaussian approximat
for the condensate density [20,21] are also shown in Fig
as dashed lines. These approximate results can be
tained analytically by the following procedure: Inse
ing csr , t̃d ­ Ast̃d expf2r2y2r2

Gst̃d 1 ibst̃dr2g inside the
action (1) yields a set of Euler-Lagrange equations
rGst̃d, bst̃d, and the (complex) amplitudeAst̃d. The sta-
tionary solutions of the Euler-Lagrange equations prod
the following values [16]:

N smd ­
4
p

2p3s28m 1 3
p

7 1 4m2d
7jãj s22m 1

p
7 1 4m2d3y2

, (9)

E ­ N smd s2m 1 3
q

7 1 4m2dy7 . (10)
1617



VOLUME 82, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 22 FEBRUARY 1999

n
]

ia
n

e
ne
n
u

n
io
e

a

f
e
at
h
ic

th
f
od
n

ua
tic

r

ton
ajec-
ac-
led

o-
e

e

ns

a-
ed

ce

lity
3)

c

ose

for
n in
the
hen
ce
ed
one

. 3.

ble
the
e
the

en
are

im-

CO
N is maximal atN G
c ­ 8

p
2p3yj55y4ãj for m ­ mG

c ­
1y2

p
5. Linearizing the Euler-Lagrange equations arou

the stationary solutions, we obtain the eigenvalues [16

l2smd ­ 8m2 2 4m

q
7 1 4m2 1 2 . (11)

As apparent in Fig. 1, the exact criticalN E
c ­ 1258.5

is smaller than the Gaussian oneN G
c ­ 1467.7 [3,9].

The critical amplitudes corresponding to the Gauss
approximation can be computed from (9) and (10). O
finds Ec ­ 4

p
2p3yj53y4ãj, ED ­ 64

p
p3yj59y4ãj, and

l
2
D ­ 4

p
10. For the exact solutions, we obtain th

critical amplitudes by performing fits on the data. O
finds ED ­ 1340 and l

2
D ­ 14.68. Thus, the Gaussia

approximation captures the bifurcation qualitatively b
with quantitative17% error onNc [9], 24% error onED,
and14% error onl

2
D. Figure 2 shows the physical origi

of the quantitative errors in the Gaussian approximat
By inspection it is apparent that the exact solution is w
approximated by a Gaussian only for smallN on the
stable (elliptic) branch.

The TIC decay rateGT is estimated using the formul
[22]

GT yv ­ jl1y2pj expf2h̄vsE1 2 E2dykBT g , (12)

where h̄vsE1 2 E2d is the (dimensionalized) height o
the nucleation energy barrier,T is the temperature of th
condensate, andkB is the Boltzmann constant. Note th
the prefactor characterizes the typical decay time whic
controlled by the slowest part of the nucleation dynam
the top-of-the-barrier saddle point eigenvaluel1 and not
l2 as used in [4]. However, near the bifurcation bo
eigenvalues scale in the same way and the behavior oGT

can be obtained directly from the universal saddle n
scaling laws (7) and (8). Thus the exponential factor a
the prefactor vanish, respectively, asd3y2 andd1y4.
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FIG. 2. Condensate densityjcj2 versus radiusr, in reduced
units (see text). Solid lines: exact solution of the GP eq
tion. Dashed lines: Gaussian approximation. Stable (ellip
solutions are shown for particle numberN ­ 252 (a) and
N ­ 1132 (b). (c) is the unstable (hyperbolic) solution fo
N ­ 1132 (see inset).
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We estimate the MQT decay rate using an instan
technique that takes into account the semiclassical tr
tory giving the dominant contribution to the quantum
tion path integral [3,4]. We approximate this so-cal
bounce trajectory by the solution of the equation of m
tion d2qstdydt2 ­ 2dV sqdydq starting and ending at th
fixed point qf of the phase space whereE sqfd ­ E2.
V sqd is a polynomial such that2V sqd reconstructs th
Hamiltonian dynamics. Fixingq ­ 0 at the top,E1

point, the reconstruction condition implies the relatio
V s0d ­ 2E1, V sqfd ­ 2E2, ≠2

qV s0d ­ jl1sN dj, and
≠2

qV sqfd ­ 2jl2sN dj that uniquely determinesV sqd ­
a0 1 a2q2 1 a3q3 1 a4q4. We thus obtain a semian
lytical polynomial expression with coefficients determin
from the values presented in Fig. 1. OnceV sqd and the
bounce pointqb [V sqbd ­ V sqfd] are known, the MQT
rate is estimated as

GQ

v
­

s
jl2jy

2
0

4p
exp

"
24
p

2

Z qb

qf

q
V sqd 2 V sqfd dq

#
,

(13)

wherey0 is defined by the asymptotic form of the boun
trajectoryqstd [4]: qstd , qf 1 sy0yjl2jd expf2jl2tjg.
Universal scaling laws can be derived close to critica
from (6), (7), and (8). The exponential factor in (1
follows the same scaling as

p
jE 2 E2j dq. It therefore

vanishes as
p

d3y2 d1y2 ­ d5y4. From the asymptoti
form of qstd, dq follows the same law asy0yjl2j. Thus
y0 , d3y4 and the prefactor vanish as

p
d1y4 d3y4 ­ d7y8.

Note that these universal scaling laws agree with th
already derived in the Gaussian case in [3].

The TIC (12) and MQT (13) decay rates obtained
the exact and Gaussian stationary states are show
Fig. 3. To validate these results we checked that
Gaussian TIC decay rates computed in [8] are found w
we (incorrectly at a finite distance from criticality) repla
l1 by l2 in Eq. (12) (data not shown). We also check
that our Gaussian MQT decay rate agrees with the
previously computed in [3].

The ICO atomic decay rates are also shown in Fig
They are evaluated using the formuladN ydt ­ fCsN d
with fCsN d ­ K

R
jcj4 d3x̃ 1 L

R
jcj6 d3x̃, where

K ­ 3.8 3 1024 s21 and L ­ 2.6 3 1027 s21. Note
that the ICO rate can be evaluated from the sta
branch alone as done in [5,6]. In order to compare
particle decay ratefCsN d to the condensate collectiv
decay rates obtained for TIC and MQT, we compute
condensate ICO half-life ast1y2sN d ­

RN
N y2 dnyfCsnd

and plott21
1y2 in Fig. 3.

It is apparent by inspection of Fig. 3 that for a giv
value ofN the exact and Gaussian approximate rates
dramatically different. We now compare the relative
portance of the different exact decay rates. AtT # 1 nK
the MQT effect becomes important compared to the I
decay in a region very close toN E

c (d # 8 3 1023) as it
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FIG. 3. Condensate decay rates versus particle number.
inelastic collisions. MQT: macroscopic quantum tunnelin
TIC: thermally induced collapse at temperatures1 nK (1),
2 nK (2), 50 nK (3), 100 nK (4), 200 nK (5), 300 nK (6), and
400 nK (7). The inset shows the details of the crossover reg
between quantum tunneling and thermal decay rate. Solid li
exact solution of the GP equation. Dashed lines: Gaus
approximation.

was shown in [3] using Gaussian computations but ev
ating them with the exact maximal number of conden
particlesN E

c . Considering thermal fluctuations for tem
peratures as low as2 nK, it is apparent in Fig. 3 (see in
set) that the MQT will be the dominant decay mechan
only in a region extremely close toNc (d , 5 3 1023)
where the condensates will live less than1021 s. Thus,
in the experimental case of7Li atoms, the relevant effect
are ICO and TIC, with crossover determined in Fig. 3.

In summary, we found both the elliptic and hyperbo
exact stationary solutions of the GP equation, showing
presence of a generic HSN bifurcation. The Gaussian
plitudes for bifurcation scaling laws were found to be
substantial ($14%) error. The decay rates for the pr
cesses of MQT, ICO, and TIC were computed from
exact GP solutions. They were shown to obey univ
:

s:
n

-

e
-

-

sal scaling laws. Experimentally significant quantitati
differences were found between the exact and Gaus
approximate rates. Future experimental determination
decay processes should thus be compared to the pre
GP based rates.
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