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Abstract
The dynamics of the finite-time blowup solutions of a parabolic–elliptic
system of partial differential equations is studied. These equations arise
when modelling chemotactic aggregation or a dissipative gravitational collapse.
Radial self-similar blowup solutions on a bounded domain are analysed by
perturbing the known analytic solutions of the corresponding unbounded
problem. The dynamics followed by general initial conditions leading to these
blowup solutions is studied numerically. They are shown to converge to the
self-similar profile in a non-uniform way. In similarity coordinates (where self-
similar blowup solutions appear as stationary), their convergence properties are
characterized by the eigensystem associated to the linearized time evolution
equations. The resulting eigenvalues λn and eigenvectors are presented for
various values of the space dimension parameter d. The asymptotic behaviours
of λn are found for d → 2 and for large d. A simple numerical formulation
for this problem, obtained by reparametrizing the blowup profile dynamics,
is presented in the appendix. It simplifies the numerical task by reducing
the number of resolution points needed to describe the blowup profile when
approaching the singularity.

Mathematics Subject Classification: 35B35, 35J55, 35J60, 47H06, 65F15

1. Introduction

Finite-time blowup dynamics appear in several physical realizations. The pinch-off when
a fluid breaks up into two separate bodies [1–3], the gravitational collapse of a star into a
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black hole [4,5] and the blowup solutions in the nonlinear Schrödinger equation [6,7], among
others [8–11], are all examples of the same class of problem [12]. In these systems, smaller and
smaller scales are produced in a finite time. When a certain critical blowup time Tc (in which
the equations develop singularities) is approached, the lack of typical external scales leads
naturally to a self-similar behaviour.

The numerical study of blowup solutions presents several difficulties. As the system
approaches the singularity, smaller scales need to be resolved in space and time. Although
the balance of the governing terms in the equations of motion often gives us the scaling laws
near Tc, it is, in general, not known how to use this analytical information to produce efficient
numerical algorithms.

In this paper, we study a parabolic–elliptic system of partial differential equations for which
the analytic blowup solutions on an unbounded domain are known [13]. We explore the self-
similar blowup solutions for other boundary conditions and perform a linearized perturbation
analysis to understand how generic blowup solutions converge to a self-similar profile. We also
present a simple numerical technique that helps us resolve the small spatial scales that appear
when the system approaches Tc. By studying in detail this relatively simple mathematical
system, we expect to understand some general properties of the blowup dynamics and to gain
insight that will help us develop more efficient numerical tools for this class of problems.

The paper is organized as follows. In section 2 we present the equations and introduce the
changes of variables that take them to our working forms. Section 3 studies the self-similar
blowup solutions on bounded domains, and relates them to perturbations over the known
analytic solutions on unbounded domains. The dynamics towards the self-similar blowup
profile is shown in section 4. In section 5 we study the stability and convergence properties
of the blowup profile as a function of the dimension d. Finally, section 6 concludes. The
appendix describes the numerical techniques we used to integrate the equations in time.

2. Definition of the system

Consider the parabolic–elliptic system of equations for ρ(�x, t) and c(�x, t):

∂tρ = �ρ − ∇ · (ρ∇c)

−�c = ρ,
(1)

where ∇ and � are defined in a d-dimensional space. This system is a simplification of
the Keller–Segel model for chemotactic aggregation, with ρ and c the bacteria and chemo-
attractant densities, respectively [14]. It can also be interpreted as describing the dissipative
dynamics of a mass density ρ interacting with itself through the gravitational potential c [15].

In this paper, we will concentrate on the study of radial solutions for ρ and c that blow up
at the origin2. Our analysis will be restricted to d � 2, which is a necessary condition for (1)
to produce finite-time singularities [16]. In this framework, it is useful to define

h(r, t) = 1

2rd−2

∫ r

0
ρ(r, t)rd−1 dr. (2)

Expressing (1) in terms of h(r, t) we obtain

∂th = ∂2
r h +

(
d − 3 + 2h

r

)
∂rh +

2(d − 2)h

r2
(h − 1). (3)

When blowup occurs, ρ diverges at the origin as t approaches Tc while the width of the blowup
region shrinks to zero (see figure 1). In the h(r, t) representation, this appears as the collapse
towards the origin of a self-similar (scale-invariant) profile (see figure 4).

2 The solutions of (1) may follow various dynamical behaviours which are thoroughly studied in [13].
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Figure 1. Density ρ versus radius r for various values of time t , with d = 3. The profiles
correspond to a numerical integration of (1) that will blow up at t = Tc. As t approaches Tc, ρ(r)

tends to a self-similar profile that will diverge at the origin.

Equation (3) is invariant with respect to the transformation r ′ = r/L and t ′ = t/L2.
Motivated by this scale invariance, we define the similarity variables

η = r√
Tc − t

, (4)

τ = − log(Tc − t). (5)

Writing H(η, τ) = h(r, t) in terms of the new variables, equation (3) becomes

∂τH = ∂2
ηH +

(
d − 3 + 2H

η

)
∂ηH +

2(d − 2)H

η2
(H − 1) − η

2
∂ηH. (6)

In this formulation, self-similar blowup profiles satisfy ∂τH(η, τ ) = 0. They can therefore be
found as the τ -independent solutions of (6).

3. Self-similar blowup solutions

In this section, we study the self-similar blowup profiles for both bounded and unbounded
domains of η. While only the latter have known analytical expressions [13], we will show that
by perturbing them we can match most boundary conditions in the bounded domain case. The
linear analysis around the analytical solutions (presented in section 5) is therefore relevant for
both cases.

As shown in the previous section, a self-similar blowup profile Hs(η) satisfies

∂2
ηHs +

(
d − 3 + 2Hs

η

)
∂ηHs +

2(d − 2)Hs

η2
(Hs − 1) − η

2
∂ηHs = 0. (7)

The boundary condition for Hs at η = 0 is obtained by imposing the condition that ρ(r, t)

does not diverge for r → 0. Indeed, using the definition of h(r, t) (2), we have that

ρ(r, t) = 2(d − 2)h(r, t)

r2
+

2∂rh(r, t)

r
. (8)

Therefore, to obtain a non-diverging density ρ at all times, h(r, t) must vanish at least as r2

for r → 0 or, equivalently, Hs/η
2 must remain bounded as η → 0. In order to have ρ(η) � 0,

we must also satisfy Hs � 0 and ∂η(η
d−2Hs) � 0 for all η in the domain of the problem.
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One more boundary condition is needed to specify completely a solution for Hs. The possible
resulting scenarios are studied in the following paragraphs.

3.1. Unbounded domain analytic solutions

Let us first consider the case of an unbounded domain in η where the supplementary boundary
condition is imposed through the asymptotic behaviour η∂ηHs(η) → 0 for η → ∞. For
this case, it has been rigorously proven in [13] that there is a countable number of solutions
to equation (7). Each solution can be labelled by a non-negative integer N , where HN(η)

intersects the line H = 1 precisely N + 1 times. One of the main properties of this system is
that H0 has an analytic expression [13],

H0(η) = 2η2

2(d − 2) + η2
. (9)

It was shown in [13] that H0(η) is the most stable of the HN(η), with only one unstable
mode which amounts to changes in Tc. In spite of the presence of this mode, the dynamics of
h(r, t) will make H(η, τ) converge to H0(η), as opposed to what would happen in a standard
convergence to a stationary solution. This is a generic behaviour in finite-time blowup systems.
It will be discussed in more detail in section 5.

3.2. Bounded domain solutions

Consider the blowup dynamics of h(r, t) with a given boundary condition at a fixed r = r∗.
In similarity variables, this corresponds to fixing H = H ∗ at a moving η∗(t) = r∗/

√
Tc − t .

For t → Tc, the position η∗ of this boundary condition will be displaced towards infinity.
For realistic boundary conditions imposed at a finite value of r = r∗, we are therefore also
interested in solutions which are stationary in similarity variables and which will not diverge
for η → ∞. This analysis provides a selection criterion that guarantees that the stable profile
H0 on an unbounded domain (the only one studied throughout the rest of the paper) is also
relevant for the analysis of the more physical case with a boundary condition at a fixed r = r∗.

To explore the boundary conditions for η → ∞, let us first study the solutions of (7) by
imposing initial conditions at η = 0, rather than the original boundary conditions at η = 0
and η = η∗. An analogy can then be drawn between equation (7) and a dynamical initial
value problem in which η would correspond to the time variable. In this context, we will
refer to ‘perturbations’ and ‘divergent solutions’ with respect to variations in η. It must be
stressed, however, that we are studying the stationary solutions Hs of (7), and not considering
the dynamics in time of the system.

Figure 2 shows several numerical solutions of equation (7) for d = 3. The boundary
conditions were fixed only at η = 0. As explained above, in the analytic problem this boundary
condition is that ρ(r, t) does not diverge for r → 0. This fixes Hs(0) = ∂ηHs(0) = 0 for all the
shooting solutions. The numerical shooting problem must therefore be integrated by imposing
the value of the second derivative ∂2

ηHs(0) = 2 + �. The different solutions are then scanned
by changing the value of �. Note that for � = 0 we have Hs = H0 and that for � = 560, Hs

is close to H1. The data in figure 2 suggest that, for a large enough η, any perturbation over a
HN solution diverges exponentially in η.

In order to explore this idea, we study how the distance between two nearby solutions
changes as η grows. Let us define

�Q = (Hs, ∂ηHs), (10)

�P = ∂η
�Q. (11)
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Figure 2. Numerical shooting solutions Hs(η) of equation (7) with d = 3 and the boundary
conditions Hs(0) = 0 and ∂2

ηHs(0) = 2 + �. Solid lines indicate segments with Re(λ+) < 0, in
which nearby solutions will remain close as η grows. Broken lines are segments with Re(λ+) > 0,
where nearby solutions will diverge from each other as η grows (see text). The line in bold is the
analytical solution H0, for which � = 0.

Any self-similar blowup profile Hs(η) can be viewed as a ‘trajectory’ (parametrized by η) in
the ‘phase plane’ defined by �Q. The distance �q between two nearby trajectories in this space
follows the equation

∂ηqi = ∂Pi

∂Qj

qj , (12)

where Pi , Qj and qi indicate the components of �P , �Q and �q, respectively. This means that the
eigenvalues λi of the Jacobian matrix of the phase plane representation of (7) Mij ≡ ∂Pi/∂Qj

will determine the behaviour of the distance between two nearby Hs solutions as η grows. If
the real parts of all the λi are negative, the qi decrease and nearby solutions of (7) will converge
as η grows. In contrast, if there is a positive Re(λi), the qi increase and solutions will diverge
as η grows. Using (7), the two eigenvalues (λ+ and λ−) of Mij are found to be

λ± = A ±
√

B, (13)

where

A = η

4
− d − 3 + 2Hs

2η

B = (d − 2)(2 − 4Hs) − 2η∂ηHs

η2
+

[
η2 − 2(d − 3) − 4Hs

4η

]2

.

(14)

We have computed λ+ and λ− for the Hs solutions in figure 2. The segments with
Re(λ+) < 0 are traced with a continuous line while the ones with Re(λ+) > 0, with a
discontinuous line. It is apparent that only small segments of the curves have Re(λ+) < 0.
Indeed, since Re(λ+) can only be negative for A < 0, for a large enough η and an order one
Hs, we must have Re(λ+) > 0. In particular, considering only HN solutions (which converge
to a constant as η → ∞), for large η we have Re(λ+) > 0 with λ+ ∼ η/2, which implies
that close-by trajectories will diverge as ∼ exp(η2/4). Although this argument is only local
(i.e. for solutions close to HN ), numerical evidence and the fact that Re(λ+) is positive for
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Figure 3. Plot indicating in grey the regions with λ+ < 0. The arrows show the zones that satisfy
the conditions over A and B for which λ+ < 0—see equation (14). Frontier lines are given by
A = 0 (——), B = 0 (- - - -) and A = √−B (— · —).

η2 > 4Hs + 2d − 6, suggests that any perturbation over a HN solution diverges exponentially
for η large enough.

Finally, figure 3 shows how λ+ depends on d for perturbations around the H0 solution.
In the filled region we have Re(λ+) < 0, which corresponds to the union of the zones where
either A < 0 and B < 0, or A < −√

B and B > 0. The plot is made by using (9) and (14)
to find A and B as functions of d and η, and then tracing the frontier curves: A = 0 (solid
line), B = 0 (dashed line) and A < −√

B (dot-dashed line). We observe that for all d there is
a small range in η for which Re(λ+) < 0. Inside this zone, nearby stationary profiles remain
close to each other as we vary η.

4. Blowup dynamics

In this section we present the results obtained by integrating directly equation (3), using the
numerical techniques described in the appendix. The goal is to study how the h(r, t) profiles
converge to a self-similar solution, while following blowup dynamics as t → Tc.

The graph at the top in figure 4 shows the evolution in time of two different initial conditions
for d = 3. These are chosen as arbitrary functions that will blow up at a finite time Tc. The
boundary condition at the origin (imposing a non-diverging ρ(r, t) as r → 0) corresponds to
having h(0) = 0 and ∂rh(0) = 0. In practice, we only need to impose h(0) = 0 at all times
since the numerical integration of (3) guarantees that ∂rh(0) = 0 will be satisfied. At the other
extreme of the domain, for a given value of r , a no-flux boundary condition ∂rρ = 0 would
imply

−4(d − 2)
h

r3
+ 2(d − 3)

hr

r2
+ 2

hrr

r
= 0. (15)

However, implementing this involved boundary condition is unnecessary since the evolution
towards the singularity is mostly independent of the conditions imposed at large r . Instead, we
imposed for convenience that ∂rh(104) = 0 at all times. On their way to blowup, the h(r, t)

profiles will approach h0(r, t) given by

h0(r, t) = 2r2

r2 + 2(d − 2)(Tc − t)
. (16)

This function is equivalent to the H0(η, τ ) function introduced in section 3, but expressed in
terms of r and t . In the region 10−1 � r � 100, the graph at the top shows a zone with
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Figure 4. Evolution in time of equation (3) for d = 3. Curves are traced at approximately constant
slow time intervals �τ ≈ 3.5. The graph at the top shows h(r, t) profiles converging to a self-
similar blowup solution as they collapse to r = 0. For larger values of r , the dynamics evolves too
slowly to be seen in the logarithmic timescale τ , and the difference with respect to a self-similar
profile h0 (with limit value for r → ∞ indicated by the line at h = 2) appears to be frozen. The
graph at the bottom shows the same data in similarity variables H(η, τ) as they evolve to H0(η).
The convergence is fast for η small. For η large, the deviations of H(η, τ) with respect to H0(η, τ )

appear to be moving towards larger values of η at an exponential rate in τ .

h(r, t) < h0(r, t) while the graph at the bottom presents h(r, t) > h0(r, t). Although they
continue to evolve in time, these differences between h and h0 appear as nearly stationary in
the logarithmic (slow) timescale τ of the figures.

We observe in these log–linear graphs that the similarity profile seems to collapse to r = 0
at a constant rate in τ . This can be easily understood by solving (16) for the position r(t) of a
given point with h0 = h∗

0 fixed. We obtain

r2(t) = 2 h∗
0(d − 2)(Tc − t)

2 − h∗
0

. (17)



1706 C Huepe

Therefore, the collapse rate in logarithmic coordinates is

∂t log[r(t)] = −1

2(Tc − t)
. (18)

In terms of τ , this gives ∂τ log[r(τ )] = − 1
2 , which explains this approximately constant

collapse rate. Note that this result does not depend on the dimension d. Indeed, we have
confirmed that equivalent graphs for runs with other values of d show a different similarity
profile, but an equivalent collapse rate of the profile towards r = 0 (data not shown). This
is, however, only an artefact of the logarithmic representation, and simply indicates that the
dimension appears within a multiplicative function in the r(t) dynamics. From equation (17)
we can verify that the collapse is in fact faster for higher dimensions.

The bottom graph on figure 4, displays the same data as the top one, but now in similarity
coordinates. The profile near η = 0 converges towards the similarity solution which here
appears as the stationary curve H0(η). This convergence is non-uniform: small differences
|H(η, τ) − H0(η)| are damped faster near η = 0. Note that for large values of η, these
differences do not appear to change in form, but only seem to be displaced to larger values of
η at a constant rate in this log–linear representation. The explanation for these observations is
given in section 5.

5. Convergence properties of the blowup profile

The blowup solutions converge to a self-similar profile which can be found, in similarity
variables, as the τ -independent solutions Hs to equation (6). In this section, we examine the
convergence dynamics by solving the eigensystem associated to the time-evolution operator
in this equation, linearized around Hs.

Linearizing (6) about a stationary solution Hs we obtain

∂τ�(η, τ ) = �̂[Hs]�(η, τ), (19)

where the linear operator �̂ is defined as

�̂[Hs] = ∂2

∂η2
+

[
d − 3 + 2Hs

η
− η

2

]
∂

∂η
+

2η∂ηHs + 2(d − 2)(2Hs − 1)

η2
. (20)

Consider the associated eigenvalue problem �̂φ(η) = λφ(η), with the following boundary
conditions: φi(η) → η2 as η → 0 and φi(η)e−η → 0 for η → ∞ [13]. Each eigenfunction
φi (related to the eigenvalue λi) corresponds to a small perturbation mode with an amplitude
that evolves as eλiτ = (Tc − t)−λi .

It has been rigorously proven in [13] that the eigenvalue problem associated to �̂[HN ]
(where HN is any of the countable stationary solutions of (7) described in section 3.1) has N +1
unstable modes, one of which corresponds to changing the blowup time Tc. The appearance
of anomalous positive eigenvalues, such as this one associated with the arbitrariness in Tc, has
been studied quite generally in [2]. It is due to the way that symmetries in the original PDE (3)
transform to similarity variables. We can, therefore, focus on perturbations over the stationary
solution H0 defined in (9) which, in spite of this spurious unstable mode, corresponds to the
most stable HN profile and is thus the only one relevant for the dynamics. The following
analytical expression for the �̂[H0] operator is obtained:

�̂[H0] = ∂2

∂η2
+

[
4η

2ε + η2
− η

2
+

ε − 1

η

]
∂

∂η
+

2ε(3η4 + 4(2 + ε)η2 − 4ε2)

(2εη + η3)
2 , (21)

where ε = d − 2. We will study the eigenvalue problem,

�̂[H0]φ(η) = λφ(η). (22)
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The asymptotic behaviour for η → ∞ of the eigenfunctions is known to be φi(η) ∼ η−2λi [13].
In order to perform a numerical study, we rewrote (22) in terms of the bounded variables
�(η) = φ(η)e−η and ξ = η/(1 + η). There is a numerical advantage in making one additional
change of variables when studying the solutions for large ε. In that case, all the leading
order balancing terms are proportional to ε/η2, so the problem becomes smoother by changing
variables through η → √

εη. The results of the analytical and numerical analysis of this
eigenvalue problem are given in the following paragraphs.

5.1. Eigenfunctions

The eigenfunctions of (22) are computed by expressing �̂[H0] in terms of �(ξ), discretizing
the corresponding operator and diagonalizing the resulting matrix [17]. Figure 5 shows the first
four eigenfunctions for d = 2.2, 3 and 9. The first eigenmode φ0 corresponds to the unstable
eigenvalue λ0 = 1 reported in [13]. This is the only eigenfunction that has a known analytical
expression given by F 0

S (η) = η∂ηH0(η). The numerical curve φ0(η) on figure 5 is in excellent
agreement with F 0

S (η). Indeed, in the interval shown, the L1 norm of the relative error is
smaller than 2 × 10−4. Here, ηi is the ith discretization point δηi = ηi − ηi−1, �ηi = ηN − η0

and the sum is over the N = 623 points appearing in figure 5.
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η)

φ i(
η)
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η)
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Figure 5. Eigenfunctions (in similarity variables) of the linearized time-evolution operator �̂[H0]
given in (22), for three different values of the dimension parameter d. The eigenfunctions presented
correspond to the four largest eigenvalues as indicated. Outside of the displayed region, the
asymptotic behaviour for large η is φλ(η) ∼ η−2λ. The crosses show the difference between
H0(η) and a numerical solution of (3) for t close to Tc (for d = 2.2, Tc − t = 1.2 × 10−4; for
d = 3, Tc − t = 1.0 × 10−5 and for d = 9, Tc − t = 1.9 × 10−6). The agreement with φ1 shows
that the linear stability analysis provides an excellent description of the dynamics of the system
near the self-similar solution H0.
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The other three eigenfunctions shown in figure 5 are φ1, φ2 and φ3. They correspond
to the largest (negative) eigenvalues which have the longest relaxation time and thus govern
the dynamics of a perturbation. Beyond the region plotted in figure 5, our numerical results
reproduce the analytic asymptotic behaviour φn(η) ∼ η−2λn (data not shown) [13]. This
polynomial divergence in η is a consequence of the change to similarity coordinates. It reflects
the fact (pointed out in section 4) that the differences with respect to H0(η) are displaced to
larger values of η at an exponential rate in τ . This can be shown as follows. Consider the
perturbation �H(η, τ) = H(η, τ) − H0(η), which we decompose into its different modes
�Hn such that �Hn(η, τ ) = eλnτ φn(η) ∼ eλnτ η−2λn (for large values of η). The evolution
in time of any �Hn mode can be viewed as a displacement on the η-axis of each point
�H ∗

n ≡ �Hn(η
∗, τ ). The position η∗ of �H ∗

n will be

η∗ = (�H ∗
n )−1/(2λn)eτ/2, (23)

which explains the exponential rate in τ at which perturbations are displaced for large values
of η. Note that ∂τ log[η∗(τ )] = 1

2 does not depend on τ or λn. This is again a consequence
of the logarithmic time derivative (see section 4). It explains why in the log–linear plots in
figure 4 perturbations appear to be moving at a constant rate in τ and without changing their
form (since all modes are shifted at the same rate).

5.2. Eigenvalues

The eigenvalues of (22) were computed as functions of d. The numerical value obtained for
λ0 is in excellent agreement with the corresponding exact analytical result λA

0 = 1 [13]. For
d = 3 we obtained |λ0 − λA

0 | ∼ 2 × 10−5. Figure 6 shows λ1, λ2 and λ3 for 2 < d < 12.
As d decreases, the λn values also decrease until a minimum is reached at λ∗

n = λn(d
∗).
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Figure 6. Largest negative eigenvalues of the operator �̂[H0] defined in (21), as a function of the
dimension parameter d. When d decreases, the values of λ1, λ2 and λ3 decrease until the minimal
values λ∗

n = λ(d∗), reported in table 1, are reached. As d approaches the critical dimension 2, the
eigenvalues increase rapidly to reach an integral value for d → 2.



Convergence towards self-similar blowup solution 1709

This non-trivial behaviour means that for decreasing values of d > d∗, while the blowup
dynamics becomes slower, the system converges to a self-similar profile following a faster
power-law ∼ (Tc − t)−λn . The numerical values obtained for d∗ and λ∗

n are given in table 1.
As d decreases further, for 2 < d < d∗, the eigenvalues rapidly increase to reach a finite
asymptotic value for d → 2.

Let us now study the asymptotic behaviour of the eigenvalues for large d and for d → 2.
These limits correspond to the upper and lower bounds within which the self-similar blowup
solutions exist, which suggests that they may be treated analytically. Indeed, the similarity
solution H0 can be viewed as being made of an inner region (small η) where ∂ηH0(η) becomes
large and the density ρ grows steeply, and an outer region (large η) where ∂ηH0(η) is typically
small and ρ preserves a smooth curvature. Both regions coincide with the ones appearing in
figure 5 for φλ(η), the inner presenting an oscillatory behaviour and the outer, a power-law
behaviour. For d → ∞, the inner region follows H0(η) ∼ η2 and covers all the values of η

up to infinity, allowing an analytic solution which can be used to study this asymptotic limit.
For d → 2, the inner region collapses to η = 0 while the outer H0 converges to the constant
profile H0(η) = 2. The asymptotic behaviour appears when considering the inner region as a
thin boundary layer. In figure 7 we have plotted in a log–log graph |λ1|, |λ2| − 1 and |λ3| − 2
as functions of ε = d − 2. It is apparent that in both limits ε → 0 and ε → ∞, all curves
appear to follow an asymptotic law with each λn reaching the value λn = −n + 1.

Table 1. Minimal value λ∗
n and corresponding dimension d∗ of the three eigenvalues shown in

figure 6.

λ1 λ2 λ3

d∗ 2.267 2.397 2.484
λ∗

n −0.315 −1.401 −2.456

10
–3

10
–2

10–1 100 101 102 103

ε

0.1

0.2

0.3
0.4
0.5

0.01

0.05
λ

|λ1|
|λ2|–1
|λ3|–2

λ(ε)~ε1/6

λ(ε)~ε1

Figure 7. Largest negative eigenvalues of the operator �̂[H0] defined in (21), as a function of the
dimension. The data is the same as in figure 6, but here the eigenvalues λn are shifted. We plot
|λn| − (n − 1) as a function of ε = d − 2 so that the asymptotic values of each curve for ε → 0
and for ε → ∞ are equal to 0. In this log–log representation, the asymptotic scaling laws appear
clearly and are properly fitted by the slopes of the dashed lines.
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The asymptotic behaviour for large d can be found analytically through a perturbation
analysis of the eigenvalue problem (22). In order to obtain an eigenvalue system at order 0 for
δ ≡ 1/ε → 0, we write (22) in terms of ξ = η/

√
δ [18]. Setting �(ξ) = φ(η) in the new

variables, we have

(A + δ · B)�(ξ) = λ�(ξ), (24)

with

A = (2 − ξ 2)

2ξ

∂

∂ξ
− 2(2 − 3ξ 2)

ξ 2(2 + ξ 2)
, (25)

B = ∂2

∂ξ 2
− 2 − 3ξ 2

ξ(2 + ξ 2)

∂

∂ξ
+

16

(2 + ξ 2)2
. (26)

Then, expanding �n(ξ) and λn in powers of δ,

�n(ξ) = �(0)
n (ξ) + δ · �(1)

n (ξ) + · · · , (27)

λn = λ(0)
n + δ · λ(1)

n + · · · , (28)

we obtain the zeroth-order problem A�(0)
n (ξ) = λ(0)

n �(0)
n (ξ). The solutions for �(0)

n (ξ),
satisfying the asymptotic boundary conditions �(0)

n (η) → η2 as η → 0 and �(0)
n (η)e−η → 0

as η → ∞ are given by

�(0)
n (ξ) = C0ξ

2(2 − ξ 2)1−λ
(0)
n

(2 + ξ 2)2
, (29)

where C0 is an integration constant. The associated eigenvalues are obtained by imposing that
the �(0)

n (ξ) are real functions with no singularities. This implies that λ(0)
n = −n + 1, where n

takes the values n = 0, 1, 2, . . ..
The first-order terms in equation (24) produce the relation

(A − λ(0)
n )�(1)

n (ξ) = (λ(1)
n − B)�(0)

n (ξ). (30)

In order to solve this differential equation, we first find the solution �H
n (ξ) to the homogeneous

equation (A − λ(0)
n )�H

n (ξ) = 0, which is equivalent to the zeroth-order problem. This gives

�H
n (ξ) = C1ξ

2(2 − ξ 2)1−λ(0)

(2 + ξ 2)2
, (31)

with C1 the new integration constant. Then, we find a particular solution �P
n(ξ) of (30):

�P
n(ξ) = −C0e−1ξ 2(2 − ξ 2)1−λ

(0)
n

(2 + ξ 2)2
(K + L) (32)

with

K = (
1 − λ(0)

n + λ(1)
n

)
log(2 − ξ 2), (33)

L = (
1 − λ(0)

n

) [
4(λ(0)

n + 2 − ξ 2)(1 − ξ 2)

(2 − ξ 2)2
− log(2 + ξ 2)

]
. (34)

The solutions of (30) are thus given by �(1)
n (ξ) = �H

n (ξ) + �P
n(ξ). To impose again that the

eigenfunctions are nonsingular, the K term must vanish. The corrections to the eigenvalues
therefore satisfy (1 − λ(0)

n + λ(1)
n ) = 0. This implies that, to first order in δ = ε−1, we have

λn(δ) = λ(0)
n + δ · (λ(0)

n − 1) + O(δ2), (35)
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Table 2. Amplitudes Kn and exponents p of the asymptotic behaviour for ε → 0 of the eigenvalues
λn, as obtained from the data in figures 6 and 7.

λ1 λ2 λ3

Kn 0.449 0.559 0.627
p 0.158 0.169 0.176

with λ(0)
n = −n + 1, and n spanning all non-negative integer values. This result agrees with

the fits to the numerical data in figure 7. Indeed, assuming an arbitrary expansion of the form
λ(0)

n + δ̃ · λ̃(1)
n , we obtained the following values for δ̃ and λ̃(1)

n . For n = 1, λ̃
(1)
1 = −0.958

and δ̃ = ε−0.9997; for n = 2, λ̃(1)
2 = −1.972 and δ̃ = ε−1.007; and for n = 3, λ̃(1)

3 = −2.957 and
δ̃ = ε−1.002.

As we can observe in figure 7, the asymptotic behaviour for ε → 0 appears to be given
by λn = (−n + 1) + Knε

p. Table 2 presents the numerical values obtained for Kn and p

by fitting the small ε region of the λ(ε) curves in figure 7. In spite of the loss of precision
that occurs when evaluating the eigenvalues near ε = 0, these results suggest an asymptotic
power-law compatible with p = 1

6 (see figure 7). However, the problem of finding an analytic
series in ε that describes the behaviour of λn in this limit turns out to be non-trivial. Indeed,
as ε → 0, the eigenfunctions φn(η) develop a boundary layer around η = 0. We must,
therefore, perform a matched asymptotic expansion together with the eigensystem perturbation
series. A preliminary analysis indicates that a polynomial stretching of the boundary layer
and a polynomial perturbation series do not allow a smooth match between the inner and
the outer solutions [18]. This suggests that more involved techniques need to be considered
such as multiple boundary layers or an expansion with logarithmic coefficients in ε. The
complete solution to this problem goes beyond the scope of this paper and will be left for
future work.

5.3. Convergence dynamics towards the blowup solution

We will now verify that the linear analysis presented above adequately describes the nonlinear
dynamics of the solutions h(r, t) to equation (3) when close to blowup. In order to do this,
we first integrate numerically equation (3), expressing the result in similarity variables to
obtain Hrun(η, τ ), and then compute �H(η, τ) = Hrun(η, τ ) − H0(η) for t close to Tc, where
H0(η) is the analytic self-similar solution given in (9). The crosses on figure 5 show the
resulting �H(η, τ) for d = 2.2 (Tc − t = 1.2 × 10−4), d = 3 (Tc − t = 1.0 × 10−5)
and d = 9 (Tc − t = 1.9 × 10−6). After adequate normalization, each �H(η, τ) curve fits
to its corresponding eigenfunction φ1 perfectly. This excellent agreement confirms that the
nonlinear dynamics close to blowup is indeed controlled by the least stable eigenmode φ1. All
other modes have been damped down to zero amplitude faster.

The eigenvalue λ1 associated to φ1 governs the evolution of the amplitude of �H(η, τ),
which must decay as (Tc−t)−λ1 . Table 3 compares the value of λ1 found from this damping rate
of the amplitude of �H(η, τ) with the one obtained by computing the numerical eigenvalues
of �̂[H0] (as it was done to produce figure 6). Both values show a satisfactory agreement. The
differences can be attributed to the lack of enough numerical precision in integrating h(r, t) in
time as it approaches the singularity, and to the difficulties in computing Tc.

Note that the nonlinear dynamics is not governed by the eigenmode φ0 associated to
the anomalous positive eigenvalue λ0. We, therefore, confirm that this mode appears due to
the way that the symmetries in the original PDE transform to similarity variables, and does
not reflect the existence of an unstable mode in the original dynamics for h(r, t). However,
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Table 3. Comparison between the numerical results for the least stable eigenvalue λ1 obtained
through two different methods for three values of the dimension d. Column λ�

1 is obtained by
diagonalizing �̂[H0] and column λ

damp
1 from the damping rate of the amplitude of �H(η, τ).

d λ�
1 λ

damp
1

2.2 −0.314 −0.302
3 −0.272 −0.269
9 −0.104 −0.105

the φ0 mode will be present in �H(η, τ) if a shift in the blowup time Tc occurs. This fact may
become relevant in the study of the blowup dynamics of experimental systems, where Tc can
be modified by any external perturbation.

6. Conclusions

We have studied in detail the dynamical solutions of the parabolic–elliptic system of
equations (1) that lead to a finite-time singularity. We analysed the self-similar solutions for
bounded and unbounded domains, and showed that all dynamical blowup solutions converge
to the analytical H0(η) profile (9) in a non-uniform way.

The convergence properties were studied by finding the eigenvalues and eigenfunctions
associated to the linearized time evolution equations of the system. It was shown that, when
the system is close enough to the critical time, this eigensystem provides a good description of
the dynamics of the convergence towards the self-similar blowup solution. It is interesting to
note that a numerical eigenvalue analysis equivalent to the one that was carried out in this paper
can be performed in other blowup systems. In cases where the analytical self-similar solution
is unknown, the �̂ operator can still be built by linearizing about a numerical solution which
is stationary in similarity variables. The eigenvalue analysis then provides a stability criterion
showing which solution is selected by the dynamics. The associated eigenfunction helps us
understand how the non-uniform convergence of h(r, t) towards the self-similar profile occurs.

Throughout our analysis, the dimension d was shown to play an important role in the
blowup dynamics, as has been observed in other systems [19]. We have found that, if we
increase the value of d (with d > d∗ for the d∗ given in table 1), the self-similar profile will
approach blowup faster but the convergence to the blowup profile will be slower (since the
most stable eigenvalue will come closer zero). It would be interesting to know if this kind of
behaviour is observed in other blowup systems as a function of the dimension or of any other
tunable parameter. We have also shown that the study of a blowup system can be extended to
values of the dimension parameter in which some analytical progress can be achieved. This
technique may also be of help when applied to more involved systems.

Finally, we have described in the appendix an intuitive numerical technique that allows the
study of finite-time blowup without the need of implementing an adaptative mesh algorithm.

In conclusion, the numerical and analytical results obtained in this article show that the
detailed analysis of this and other relatively simple blowup systems [8] should help us elucidate
their general properties and develop techniques for treating finite-time singularities.
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Appendix

We describe here the numerical techniques that were used to integrate h(r, t) in time. The
main numerical difficulty when dealing with the blowup solutions is the appearance of smaller
and smaller scales close to r = 0 as t approaches Tc. However, from figure 4 we observe that
this problem occurs mainly due to the diverging slope ∂rh(r, t) as t → Tc, which forces the
use of increasing resolution around r = 0 if a standard integration method is applied. Our
technique is based on the simple remark that the blowup profile can be easily resolved near
r = 0, even for t very close to Tc, only if the h(r, t) curve is parametrized otherwise (e.g. by
using h as a parameter and describing the profile by the r(h, t) function). We will develop
below a numerical algorithm based on this idea.

Let us define the nonlinear operator F [h] as

F [h] = ∂2
r h +

(
d − 3 + 2h

r

)
∂rh +

2(d − 2)h

r2
(h − 1). (A1)

Equation (3) then becomes simply

∂h

∂t
= F [h]. (A2)

Using the implicit function theorem [20], this relation leads us to an equation for the evolution
of r(h, t):

∂r

∂t
= −F [h]

∂rh
. (A3)

After some algebraic manipulations (A3) can be expressed in terms of only operators applied
over r . We obtain

∂r

∂t
= G[r], (A4)

∂h

∂t
= −G[r]

∂hr
, (A5)

with

G[r] = ∂2
hr

(∂hr)2
− d − 3 + 2h

r
+

2(d − 2)h

r2
(h − 1)∂hr. (A6)

Consider now the evolving h(r, t) function as a moving curve on the r–h plane.
Expressions (A3) and (A4) for ∂t r , or (A2) and (A5) for ∂th, will then describe displacements
of the curve points on the r-axis or the h-axis directions, respectively. Further, in general, we
can find the displacement rate of the discretization points in the direction of any angle θ on the
r–h plane.

Let us define the r-axis or h-axis displacements for an infinitesimal time lapse δt as
δr = (∂t r) · δt or δh = (∂th) · δt , respectively (see figure A1). The displacement vector for a
given θ is then

��R = (α · δr, β · δh), (A7)
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S2

S1

δrα

β δh

∆R

θ
A

B

Figure A1. Scheme of the infinitesimal displacement of the discretization point A = (r1, h1) on
curve S1 = h(r, t1) to point B = (r2, h2) on curve S2 = h(r, t2), due to the evolution from t1 to t2
described by equation (3). For a given θ , the distance | ��R| can be found in terms of δr = (∂t r) · δt
and δh = (∂th) · δt (see text).

with α + β = 1 and tan θ = (β · δh)/(α · δr). By considering an arbitrarily small δt , we thus
obtain that the vectorial displacement rate will be ∂t

�R ≡ (∂tRr, ∂tRh), with

∂Rr

∂t
= F [h]

tan θ − ∂rh
= G[r]

1 − (∂hr) tan θ
, (A8)

∂Rh

∂t
= F [h] tan θ

tan θ − ∂rh
= G[r] tan θ

1 − (∂hr) tan θ
. (A9)

For the numerical integrations reported in this paper, we define θ such that tan θ = −1/∂rh.
The direction of ��R is then perpendicular to the curve S1 (see figure A1). For this choice of θ ,
we obtain

∂Rr

∂t
= −F [h]∂rh

1 + (∂rh)2
= G[r]

1 + (∂hr)2
, (A10)

∂Rh

∂t
= F [h]

1 + (∂rh)2
= −G[r]∂hr

1 + (∂hr)2
. (A11)

These relations were used at every time step to compute ∂t
�R. In order not to degrade the

numerical precision, the expressions in terms of F [h] were used in regions with large ∂hr ,
while the ones in terms of G[r] where used where ∂rh was large. The resulting ∂t

�R was then
introduced into a fourth-order Runge–Kutta method to integrate in time the displacements on
the r–h plane of each discretization point [17]. As time evolution progresses, resolution points
must be added in the zones where the local curvature of the profile increases. This was done
through a standard cubic spline interpolation [17].
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