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For spatio-temporal chaos observed in numerical simulations of the complex Ginzburg–Landau
equation~CGL! and in experiments on inclined-layer convection~ILC! we report numerical and
experimental data on the statistics of defects and of defect loops. These loops consist of defect
trajectoriesin space–time that are connected to each other through the pairwise annihilation or
creation of the associated defects. While most such loops are small and contain only a few defects,
the loop distribution functions decay only slowly with the quantities associated with the loop size,
consistent with power-law behavior. For the CGL, two of the three power-law exponents are found
to agree, within our computational precision, with those from previous investigations of a simple
lattice model. In certain parameter regimes of the CGL and ILC, our results for the single-defect
statistics show significant deviations from the previously reported findings that the defect dynamics
are consistent with those of random walkers that are created with fixed probability and annihilated
through random collisions. ©2004 American Institute of Physics.@DOI: 10.1063/1.1778495#

Many nonequilibrium pattern-forming systems exhibit
transitions from spatially ordered and temporally regular
patterns to spatio-temporal chaos. Although much
progress has been made, the identification and classifica-
tion of different spatio-temporal chaotic states remains a
challenge. The diagnostics for their spatial disorder and
dynamics include, for example, correlation functions,
power spectra, and attractor dimensions. To further
clarify the nature of a given state of spatio-temporal
chaos it is necessary to identify additional measures that
reflect its specific aspects. In many systems topological
defects appear to play a prominent role in disrupting the
order of the pattern. In fact, it has been recognized that
in certain two-dimensional equilibrium systems the
„Kosterlitz –Thouless… phase transition from an ordered
to a disordered state involves the unbinding of defects. In
a model nonequilibrium system, a somewhat analogous
defect-unbinding transition between an ordered and a
disordered state of spatio-temporal chaos has recently
been described. There, the transition was analyzed in
terms of the statistics of defect trajectories and of loops
that multiple trajectories form in space–time when con-
nected via creation and annihilation events. In this paper
we use this diagnostic tool to gain insight into defect-
chaotic states obtained in simulations of the canonical
complex Ginzburg–Landau equation and in experiments
on inclined-layer convection„ILC ….

I. INTRODUCTION

Various types of spatio-temporal chaos arise in a wide
range of pattern-forming dynamical systems. While these
systems have been investigated extensively in experiments
and computations, a deeper understanding still poses inter-
esting questions.

One of the central challenges concerns the origin of
these states. In some cases the disordered states are not un-
expected because all simple periodic states are linearly un-
stable. This is, for instance, the case in the complex
Ginzburg–Landau equation@CGL, see~1! below# when the
Benjamin–Feir instability1 destabilizes all plane waves via
spatial modulations that compress and expand them, or in
rotating convection when the Ku¨ppers–Lortz instability ren-
ders all steady, spatially periodic roll states unstable to rolls
of a different orientation.2,3 In other situations, spatio-
temporal chaos coexists with stable ordered states and finite-
amplitude perturbations are needed to take the system from
one attractor to the other. A striking example of this situation
is spiral-defect chaos4 in thermal convection in gases, which
occurs despite the fact that straight-roll states are stable for
the same values of the system parameters.5 A similar situa-
tion occurs also in the CGL in certain Benjamin–Feir-stable
regimes.6 Recently, such bistability has also been identified
in hexagonal patterns in the presence of rotation.7,8 In a
Swift–Hohenberg model for hexagonal patterns under the
influence of rotation, penta-hepta defect chaos can be main-
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tained by the ‘‘induced nucleation’’ of defects, in which
penta-hepta defects trigger the nucleation of further defects,
while regular hexagon patterns are actually linearly stable.7

In rotating non-Boussinesq convection, numerical simula-
tions have identified a regime in which a chaotic state is
maintained through the interplay between defects in the
hexagon pattern and whirling activity of the convection
cells.8 Similarly, bistability between undulation chaos and
ordered undulations was found in inclined layer convection.9

Another challenge is to find characterizations of the dis-
ordered states that go beyond a description in terms of cor-
relation functions. One interesting possibility to consider is a
‘‘macroscopic’’ description on large spatial and temporal
scales. This approach has been successful in the case of the
Kuramoto–Sivashinsky equation, which describes long-wave
instabilities in various systems, including flame fronts,10 fall-
ing fluid films.11 This equation provides also the generic de-
scription of long-wave perturbations of spatially periodic
traveling waves.12 It has been shown13–16that on large length
scales the spatio-temporally chaotic state obtained in the
Kuramoto–Sivashinsky equation can be described by the
noisy Burgers equation, which is also called the
KPZ-equation.17 While in the Kuramoto–Sivashinsky equa-
tion the diffusive term is destabilizing, the chaotic activity
effectively renormalizes the diffusion coefficient to become
positive, yielding the KPZ-equation with the noise term re-
placing the chaotic short-wave activity.

A large-scale description has also been obtained in a
Ginzburg–Landau model for parametrically excited
waves.18–20As is the case in many other systems, its steady
periodic state can become unstable to spatial modulations of
the pattern. In the limit of large wavelengths these perturba-
tions can be described by a phase equation with negative
diffusion coefficient.21 Usually, the modulational instability
leads to a change in the mean wave number of the system via
phase slips. In this system, however, a regime has been iden-
tified in which the phase slips always occur in pairs. On
larger time scales the wave number is therefore not changed,
resulting in a chaotic state that has a well-defined wave num-
ber and in which the phase is conserved. As a result, in the
long-wavelength limit perturbations of the chaotic state can
be described by a new phase equation. Compared to the
phase equation for the steady periodic state, its phase diffu-
sion coefficient is renormalized by the chaotic activity. How-
ever, in contrast to the case of the Kuramoto–Sivashinsky
equation discussed above the renormalized diffusion coeffi-
cient can itself change sign as a function of the mean wave
number. This results in a chaotic state that is unstable with
respect to long-wave modulations in its wave number and its
chaotic activity. As a consequence, the system decomposes
into domains in which double phase slips occur chaotically
and domains with no phase slips in a process quite similar to
phase separation in spinodal decomposition.

However, only very few states of spatio-temporal chaos
allow a long-wave description. Since defects represent a con-
spicuous feature of many spatio-temporally chaotic states, it
is tempting to use them to characterize the chaotic state and
to obtain additional insight into its dynamics.22 In one of the
first attempts to do this, the probability distribution function

~PDF! for the number of defects present at any given time
was investigated in Ref. 23. For numerical simulations of the
defect chaos in the CGL with periodic boundary conditions it
was found that the PDF is well approximated by a squared
Poisson distribution, which suggests a very simple picture
for the dynamics of the defects. For a domain with periodic
boundary conditions, a squared Poisson distribution is ob-
tained if the defects behave as random walkers, created in
pairs with a fixed probability and annihilated in random col-
lisions with a defect of opposite charge. Distributions con-
sistent with the squared Poisson distribution were subse-
quently also found in experiments on electroconvection in
nematic liquid crystals24 and in a reaction-diffusion model25

simulated in a periodic domain.
In experiments on the anisotropic, defect-turbulent state

of undulation chaos in ILC~see Fig. 9 below!,9 not only the
distributions but also the defect nucleation and annihilation
rates and, as necessary in any experimental system with a
finite investigated area, the entering and leaving rates were
measured. It was shown that the theoretical assumptions for
the creation and annihilation rates23 are justified for undula-
tion chaos in a certain parameter regime and that amodified
squared Poisson distribution function is found if entering and
leaving rates are also considered. The fact that the nonperi-
odic boundary conditions lead to a modification of the dis-
tribution function indicates that the apparent agreement with
the squared Poisson distribution found in the experiment on
electroconvection in nematic liquid crystals24 was fortuitous.
In addition to measuring the rates, it was shown9 that the
dependence of the variance of the distribution on the mean
number of defects was a better measure to distinguish the
different PDFs. It was found that the modified Poisson dis-
tribution described this dependence well, while the squared
Poisson distribution did not.

Defect statistics have also been investigated in recent
simulations of the Willamowski–Ro¨ssler reaction-diffusion
system with periodic boundary conditions.26 In contrast to
the situation in the complex Ginzburg–Landau equation,
there the local dynamics are not periodic but chaotic.27 Nev-
ertheless, due to the structure of the chaotic attractor of the
local dynamics, phase defects are well-defined and a squared
Poisson distribution has been found.26

Strong deviations from the squared Poisson distribution
were found in simulations with periodic boundary conditions
of the spatio-temporal chaos in hexagons with rotation dis-
cussed above.7 These deviations are due to the induced
nucleation of dislocations by penta-hepta defects.

The dynamical relevance of defects has been addressed
in three approaches. In simulations of the CGL~Ref. 28! it
has been shown that the contribution of the defects to the
Lyapunov dimension of the chaotic attractor can be extracted
meaningfully, suggesting that each defect on average ‘‘car-
ries’’ a certain amount of the Lyapunov dimension. It should
be noted, however, that the background field behaves chaoti-
cally as well and therefore it contributes to the Lyapunov
dimension even in the absence of defects. A related analysis
was also performed in a reaction-diffusion model.29 In an-
other numerical experiment, based on spiral-defect chaos in
Rayleigh–Be´nard convection, it was shown that the system
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is most sensitive to perturbations during the formation of
dislocation pairs.30 This suggests that defects may provide
the origin of the chaotic dynamics. A third successful ap-
proach to describe a spatio-temporally chaotic state in terms
of its defects has been presented recently.31 There the veloc-
ity distribution function for the defect motion in the frozen
vortex regime of the CGL has been captured quite well with
simulations of point defects using their previously estab-
lished interaction laws.

In this paper we employ a novel tool for the partial char-
acterization of a spatio-temporally chaotic state that takes
into account long-range aspects of the defect dynamics by
investigating the statistics of the trajectories of the defects.
To our knowledge, this tool has only been used before on a
pair of coupled Ginzburg–Landau equations that model para-
metrically excited waves.32,33 In a certain parameter regime,
simulations of that system revealed a first-order transition
between two chaotic states, one of which is spatially ordered
and exhibits a spatially periodic correlation function while
the other displays rapidly decaying correlations. The analysis
of this transition was initially motivated by the assumption
that for the spatial order of the state to be destroyed the
defects in a pair would have to unbind, in a manner similar to
the unbinding in the Kosterlitz–Thouless transition of the
xy-model,34 and the defects would thereafter have to sepa-
rate over large distances. Investigation of the defect trajecto-
ries revealed, however, that this is not the case. It turned out
that the entities to be considered are the loops formed in
space–time by the trajectories of two or more defects that are
connected to each other by being either created or annihi-
lated together. In terms of these defect loops, the unbinding
transition could be viewed as a transition from an exponen-
tial decay of the probability distribution function for the loop
sizes to a power-law decay. Within the resolution of our sta-
tistics, the exponents of the power laws were found to agree
with the exponents found in a simple lattice model in which
the defects are replaced by random walkers.33

In the following, we first revisit the classic defect chaos
state of the CGL. We find that for this state the form of the
PDF for the number of defects depends on the parameters of
the system and can deviate significantly from the squared
Poisson distribution obtained previously, pointing to limita-
tions of the mechanism assumed in Refs. 23–25. We then
discuss the statistics of the defect loops, which for all param-
eter values investigated show power-law behavior. While
two of the measured exponents agree well with those ob-
tained in the disordered state of the parametrically excited
waves,33 one of them seems to depend on the parameters of
the system. We then present results for the defect statistics
obtained in experiments on undulation chaos in ILC~Ref. 9!
and interpret them in view of the computational results.

II. DEFECT STATISTICS IN THE COMPLEX
GINZBURG–LANDAU EQUATION

We investigate defect chaos in the two-dimensional com-
plex Ginzburg–Landau equation~CGL!

] tA5~11 ib1!DA1A2~b32 i !uAu2A ~1!

for the amplitudeA of weakly nonlinear oscillations. The
CGL exhibits various types of ordered and disordered states
~for a review see Ref. 1!. States of spatio-temporal chaos
containing many defects, which in this system take on the
form of spiral waves, arise over a wide range of parameters.
Part of the phase diagram for the CGL is shown in Fig. 1.6 In
most of the parameter regime in which defect chaos persists
~above lineT), all spatially periodic plane waves are un-
stable with respect to long-wave modulations~above line BF
denoting the Benjamin–Feir instability!. The defect chaos
also extends into regimes in which plane waves are still lin-
early stable over a range of wave numbers. There, the per-
sistence of the chaotic dynamics is associated with the fact
that the spiral defects emit waves with a wave number that is
in the unstable regime.35 More precisely, above lineS1 these
waves are only convectively unstable, whereas to the left of
S2 they are absolutely unstable. As a result, random initial
conditions lead to persistent defect chaos above and to the
left of line T. In addition to defect chaos and the ordered
plane waves the CGL exhibits a state of frozen defects
~vortices!36 to the right of lineS2 and phase chaos between
the Benjamin–Feir line BF and lineL.

As discussed in the Introduction, prior analysis of the
defect-chaotic state investigated the probability distribution
for the number of defect pairs in a periodic domain that are
present in the system.23 Within the accuracy of those simu-
lations, the PDF was found to be consistent with a squared
Poisson distribution over a range of parameters (1.48<b3

<1.11 forb150.5). This distribution arises if the defects are
created with a fixed probability that is independent of their
density, while they are annihilated according to a mass-
action law. To test whether this description is valid even as
the absolute stability limit is approached and crossed, we
have measured the PDF in more extensive simulations with
periodic boundary conditions. We use a pseudo-spectral code
with integrating-factor Runge–Kutta time-stepping of fourth
order. In these simulations we usedn5128 modes and a time

FIG. 1. ~Color online! Phase diagram for the CGL following Ref. 6. Line
BF denotes the Benjamin–Feir stability limit. LinesS1 and S2 denote the
convective and absolute stability limit of the far-field of spiral defects, re-
spectively. Defect chaos persists to the left of lineT, while phase chaos
exists betweenL and BF. The symbols denote parameter values for which
defect statistics are presented here.
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step ofdt50.25. Halving the time step in selected simula-
tions had almost no effect on the results while doubling the
number of modes changed the mean number^N& of defect
pairs by about 10% while the ratios2/^N& of the variance to
the mean was essentially unchanged~see below!. The dura-
tion of these runs wastmax5106.

Figure 2 gives the PDF for the number of defect pairs
shifted by their mean in a system of sizeL5308. The pa-
rameters areb153 with b350.5 or b351.3. For b350.5,
the PDF is well approximated by the squared Poisson distri-
bution,

P~N!5
1

I 0~2A^N2&!

^N2&N

~N! !2 , ~2!

whereI 0 is the modified Bessel function. Asb3 is increased
above 0.8 the distribution becomes significantly wider. A
quantitative measure of this change is the ratio 2s2/^N& of
the variance to the mean of the number of defect pairs, which
satisfies 2s2/^N&51 in the case of a squared Poisson distri-
bution. The dependence of 2s2/^N& on b3 is shown in Fig.
3. The increased width of the PDF shows that the simple
picture of random walkers with a fixed creation rate and pair
annihilations in collisions is insufficient. We have not mea-
sured the creation and annihilation rates directly. At this
point it is therefore not clear whether the deviations are
mainly due to an increase of the creation rate with the defect
density, as it has been found in the case of induced
nucleation.7 Alternatively, the increase of the annihilation
rate could be slower than quadratic.

Our main objective is to investigate the defect trajecto-
ries and their statistics in the disordered regime. This is mo-
tivated by the fact that the equilibriumxy-model, which like
the CGL is characterized by a single complex order param-
eter, undergoes a phase transition~Kosterlitz–Thouless! in
which the system becomes disordered due to the unbinding
of defect pairs.34 To our knowledge, the dynamics of defects
in the xy-model have not yet been studied in any detail.
However, a first-order defect-unbinding transition has been
found in a dynamical system modeling parametrically ex-

cited waves. There, the investigations of the defect dynamics
showed that in the bound-defect regime the overwhelming
majority of defect pairs appear only for brief periods of
time.32,33 Since the defects are annihilated by the same de-
fects with which they were created, after the annihilation the
pattern returns to essentially the same state as before the
creation event and essentially no disorder is introduced. In
contrast, jointly created defects that separate from each other
modify the pattern in the domain between them: climbing
defects change the wavelength of the pattern, while gliding
defects induce a rotation of the pattern. Therefore, a seem-
ingly natural and quite general expectation is that in order for
defects to destroy the overall order of the pattern the defects
in a pair have to move far from each other. For the specific
system investigated in Ref. 32 it was shown, however, that
even in the disordered regime this is not the case. Most de-
fects are annihilated after a relatively short time and corre-
spondingly travel only relatively small distances.

In Fig. 4~a! we present the cumulative probability distri-
bution function~CPDF! for the average lifetime of individual
defects in the CGL~1! over a range of parameters. Figure
4~b! gives the CPDF for the distance between the locations
where a given defect was created and annihilated, respec-
tively. Both quantities decay exponentially over the whole
range of parameters investigated with a mean that is much
smaller than the system size and than the duration of the
simulation, respectively. Thus, the simple picture of defects
separating far from each other does not apply to these disor-
dered states.

The fact that the dynamics of individual defects only
spans small spatial and temporal scales suggests that the rel-
evant quantities for the destruction of order are not the
single-defect statistics, but rather the statistical properties of
the loops that are formed by the trajectories of many defects
in space–time, connected through the annihilation and cre-
ation of defect pairs. An example of such a loop is sketched
in Fig. 5, ignoring one space dimension~see also Fig. 13
below!. To obtain the statistics of the defect loops we per-

FIG. 2. ~Color online! Probability distribution function for the number of
defect pairs in the system. The analytic curves represent squared Poisson
distributions for the values of̂N& ands2 obtained from the corresponding
numerical data.

FIG. 3. ~Color online! Dependence of the rescaled variance of the number
of defect pairs, 2s2/^N&, on b3 for various values ofb1 . The absolute
stability limit S2 for b153 is indicated by a dotted line. The dashed line
corresponds to the squared Poisson distribution. The error in 2s2/^N& is
smaller than the symbol size.
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formed simulations withL51232, n5512, anddt50.25
and tracked the defects as described previously.33 The dura-
tion of the runs was eithertmax52500 ortmax55000.

To obtain the defect trajectories we recursively check the
distances between all defectsDi(t) at timet from all defects
Di(t1Dt) at time t1Dt. If for two defects of equal charge

this distance is smaller than some threshold valued1
(n)

5n•d1 they qualify as a single ‘‘continuing defect’’ that has
moved from one position to the other. It can happen that with
this criterion a given defectDk(t) has more than one possible
continuation defectDj (t1Dt). Then among the possible
continuation defects the one closest toDk(t) is assigned to
be its continuation. Defects that are not ‘‘continuing defects’’
are candidates for annihilation and creation events. Among
those, two defects of opposite charge and closer than a sec-
ond thresholdd2

(n)5n•d2 are identified as a pair that was
annihilated~or created! in this time step. This analysis is then
repeated with increased values for the thresholds,d i

(n11)

5(n11)•d i , until all defects have been assigned.
Figure 6 shows the CPDFs for the number of defect pairs

in a loop for the values ofb1 andb3 marked by squares and
by a circle in Figs. 1 and 3. Each point on these functions
thus gives the probability of finding loops that contain at
least the indicated number of defect pairs. The corresponding
cumulative distribution function for the spatial extent of the
loops is given in Fig. 7. Here the spatial extent is defined as
the difference between the largest and the smallestx- ~or y-!
coordinate occurring in the loop~cf. Fig. 5!. The cumulative
distribution function for the similarly defined duration of the
loops is given in Fig. 8. Note that even in this regime, in
which the pattern is strongly disordered, most loops contain
only a single defect pair, as shown in the inset of Fig. 6,
which gives the noncumulative distribution function forb1

53 andb350.5. Thus, most defects are annihilated shortly
after their creation by the same defect with which they were
created. These events are unlikely to be responsible for the
disorder in the pattern. All three distribution functions decay,
however, with a power law,

C~n!}n2a, C~Dy!}Dy2b, C~Dt !}Dt2g. ~3!

FIG. 4. ~Color online! Cumulative probability distribution function for the
defect lifetime~a! and for the distance between its creation and annihilation
points ~b!.

FIG. 5. ~Color online! Sketch of a loop in space–time formed by the tra-
jectories of six defects. Solid~dashed! lines indicate defects with positive
~negative! topological charge.

FIG. 6. ~Color online! Cumulative probability distribution function for the
number of defect pairs in a defect loop. System sizeL51232 and duration
of the simulationstmax52500 ~except forb351.2, for which tmax55000).
Inset: Noncumulative distribution function forb153 andb350.5.
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Thus, there is a non-negligible fraction of very large loops
containing 1000 defects or more, extending over large parts
of the system and persisting over substantial portions of the
duration of the simulations. The power-law behavior is to be
contrasted with the exponentially decaying distribution func-
tions that were obtained previously for a spatially ordered,
chaotic state.33

The exponents of the distribution functions for the num-
ber of defects and the spatial extent do not show a significant
dependence on the parameters within the accuracy of our
data and are given bya51.6 and b53.0, respectively.
Moreover, within the accuracy of the computations these ex-
ponents agree with the exponents found previously for a dis-
ordered state obtained in a model for parametrically excited
waves33 (a51.5, b53.0) and a lattice model of random
walkers that implements the assumptions underlying the

squared Poisson distribution for the single-defect statistics33

(a51.6, b52.9). In Table I~see Sec. IV! these exponents
are summarized, along with those obtained in the experi-
ments discussed below.

By contrast, the exponentg for the loop-duration CPDF
may depend on the parameters. While far away from the
absolute stability limit~line S2) we obtaing'3, it appears
that g decreases tog'2.5 asS2 is approached and crossed.
At the present there is no theory that explains the existence
of the power laws or gives values for their exponents and we
can only speculate that the change in the exponent as lineS2

is approached may be related to our finding that in this re-
gime the single-defect statistics deviate noticeably from the
squared Poisson statistics. The quality of our data does, how-
ever, not rule out that the exponentg is, in fact, independent
of the parameters. In the previous analyses it was also found
that the results for the loop-duration distribution function
were less reliable than the others (g52.7 for the parametri-
cally excited waves andg'2.4 for the lattice model!.33

It should be noted that obtaining good statistics requires
substantial amounts of data since the most relevant informa-
tion is contained in the large loops. In a finite system with
periodic boundary conditions the largest loops wrap around
the whole system, which turns out to contribute to a slower
decay of the distribution function for very large loops~cf.
distribution function forb351.2 in Fig. 8!. Similarly, some
loops persist for essentially the whole duration of the simu-
lation. The cut-off by the finite duration of the simulations
contributes, therefore, to a more rapid decay of the distribu-
tion functions for large loops~cf. distribution function for
b350.8 in Fig. 8!. The statistics shown in Figs. 6, 7, and 8
are based on runs in which the mean number of defects at
any given time is between 5000 and 15000 and in which of
the order of 10000 snapshots are processed. Since our defect
tracking scheme scales like the square of the number of de-
fects in the system, a substantial increase in the system size
investigated would require parallelizing the tracking scheme,
which should be possible but would be a nontrivial task.

The power laws in the loop statistics reflect the sequen-
tial interaction of many defects and should therefore only be
expected on scales that are larger than those associated with
the individual defects. Indeed, the scales above which the
distribution functions exhibit power-law behavior on Figs. 7
and 8 agree reasonably well with the mean distance traversed
by the defects and their mean lifetime@cf. Figs. 4~a! and
4~b!#.

III. UNDULATION CHAOS IN INCLINED-LAYER
CONVECTION

In the following we present experimental results from
undulation chaos~UC! in inclined layer convection~ILC!
and compare them with the numerical results presented
above. In ILC a thin fluid layer is heated from one side and
cooled from the other. We define the angle of inclinationQ
such that Q50° corresponds to the case of Rayleigh–
Bénard convection,37 where a horizontal fluid layer is heated
from below and cooled from above. For any finite inclination
angle, the component of gravity parallel to the fluid layer
leads to a shear-flow with a cubic velocity profile, i.e., the

FIG. 7. ~Color online! Cumulative probability distribution function for the
maximal spatial extentDx of a defect loop.

FIG. 8. ~Color online! Cumulative probability distribution function for the
maximal durationDt of a defect loop.
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fluid is rising along the warm side and falling along the cold
side. Depending on the fluid parameters and for sufficiently
small Q, the primary instability above a critical temperature
differenceDTc is to convection rolls whose axis is aligned
with the shear-flow direction. These rolls have been termed
longitudinal rolls in Ref. 38. In the case of compressed gases,
where the thermal and viscous relaxation times are approxi-
mately the same, it has been shown that for intermediate
angles longitudinal rolls are unstable to undulation chaos
when the temperature is increased only slightly above
critical.9,39 A typical experimental picture of undulation
chaos~UC! is shown in Fig. 9. The locations at which con-
vection roll-pairs end or begin define topological defects.
These defects are persistently created and annihilated, and
move within the pattern. Here, we use the same experimental
conditions as in Refs. 9, 40, 41 withQ530°, the cell height
d5(38862) mm and the viscous relaxation timetv
5(1.53260.015) s. As in the earlier work, we limit the in-
vestigation to a subregion of the convection cell where the
behavior was found to be independent of the boundary
conditions.42 This subregion is marked by the white rectangle
in Fig. 9. In addition, it needs to be noted that the whole
convection pattern drifts slowly in the downslope direction
~positive x̂-direction!, possibly due to non-Boussinesq ef-
fects. This can be observed in the movies that accompany the
paper by Daniels and Bodenschatz.9

As reported earlier,9 for intermediate angles two states of
undulations were observed. For 0.01,e,0.1 a defect-
turbulent state of UC was found, characterized by the per-
petual creation, annihilation, and motion of defects. Above
e50.1, this state was found to compete with regions of or-
dered undulations without any defects, leading to intermit-
tent dynamics.9,42 It was observed that the mean number of
defects increased to a peak neare50.1 and then weakly
declined, with increased fluctuations above the transition to
intermittency.9

In the region of pure UC (0.01,e,0.1), the creation
and annihilation rates were measured as a function of defect
density. The creation rates were found to be independent of
defect density and the annihilation rates were found to be
quadratic in the defect density~as shown in Fig. 10!. As

discussed before, these rates are consistent with the defects
behaving like independent random walkers, leading to a
squared Poisson distribution for the number of defects in a
system with periodic boundary conditions. For any system
with nonperiodic boundary conditions, however, which is
typical for experimental systems, the fact that defects can
enter and leave the observation window needs to be consid-
ered. The experimentally measured data for the entering and
leaving rates as well as the creation and annihilation rates are
shown in Fig. 10. As can be seen exemplarily fore50.08 the
observed creation rateC(N1) was constant, the annihilation
rateA(N1) was quadratic in the number of positive defects,
the entering rateE(N1) was constant, and the leaving rate
L(N1) increased linearly inN1 . With these rate relations, a
modified squared Poisson distribution was derived.9 A com-
parison of the different distributions is shown in Fig. 11~a!,
where the modified squared Poisson distribution fits the data
for e50.08 best.

Above e50.1, this simple model breaks down, and, as
can be seen exemplarily in Fig. 10 fore50.17, the observed
creation rate increases with the number of defects and the
annihilation rate does not follow a parabola. In other words,
the defects interact strongly and the assumption of a short
range interaction is no longer valid. Consequently, the modi-
fied Poisson distribution does not describe the PDF as shown
in Fig. 11~b!. Although this behavior is reminiscent of that
found theoretically in penta-hepta defect chaos,7 the under-
lying mechanism is not clear in the present case. Possibly, a
coupling between the undulation and the roll pattern leads to
the observed behavior.

As in the simulations, we tabulate single-defect statistics
on the lifetime and displacement and find exponential distri-
butions, as shown in Fig. 12. Ate50.17 defects are observed
to have shorter lifetimes and travel smaller distances than for

FIG. 9. Undulation chaos fore5DT/DTc2150.08 and inclination angle
Q530° as visualized with the shadowgraph technique. The whole convec-
tion cell is shown. In the subregion marked by a white box (51d363d,
whered is the height of the fluid layer! the spatio-temporally chaotic state
was found to be homogeneous. All analyses shown in this paper were con-
ducted for this subregion. Uphill is at the left side and the shearflow is along
the x̂-direction.

FIG. 10. Entering rateE(N1), leaving rateL(N1), creation rateC(N1),
and annihilation rateA(N1) as a function of the number of positive defects
in the cell for e50.08 ~triangles! and e50.17 ~squares!. A similar depen-
dence is found for negative defects.
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e50.08. In addition, there are differences between the
x̂-displacement for defects with positive and negative topo-
logical charge especially fore50.08. As described in Ref.
40, the velocity distributions of the defects are asymmetric
with respect to thex̂-direction. Positive defects move faster
and more frequently in the upslope direction, while negative
defects and the undulations do the opposite. As a result, there
is a net drift of positive defects with respect to negative ones.
Although we have no first-principle understanding of this
behavior we attribute it to the non-Boussinesq effects that
break the up–down symmetry.

Defect loop statistics in undulation chaos: In the study
of loop statistics, we restrict our investigations to two experi-
mental runs ate typical for the two different regions. Fore
50.08 (e50.17) we tracked 5000~15000! positive and
negative defects for which both the creation and annihilation

were observed. The data were taken over a time intervals of
1.73104tv (1.53104tv) with four ~two! such runs ate
50.08 ~0.17!. We used previously developed techniques for
defect tracking,9 similar to those described above, to inves-
tigate the loop statistics analogous to the ones KD described
in the theoretical investigations. Due to the finite observation
area defects are gained and lost through the edges and not all
observed defects participate in closed loops. The loss and
gain of defects particularly affects the statistics of the large
loops, since the statistics presented here use only those tra-
jectories for which complete loops were available. Fore
50.08 we analyzed 636 loops while fore50.17 there were
3838 loops. An example of the measured loops is shown in
Fig. 13. For clarity, this particular realization was chosen
from an interval during which the defect density was low.

Figure 14 shows the cumulative distribution functions

FIG. 14. ~Color online! Cumulative loop distributions for undulation chaos
at two values ofe. Fits to power law behavior done over range shown. The
power exponents have an error of60.4. Inset in graph forDt shows non-
cumulative relative frequency. Black circles are fore50.08 and red dia-
monds fore50.17.

FIG. 11. Probability distribution functions for the number of positive defects
in undulation chaos. The dotted line is the Poisson distribution, the dashed
line the squared Poisson distribution, and the solid line the modified squared
Poisson distribution. Fore50.08, ^N1&54.6 and fore50.17, ^N1&55.5.
A similar dependence is found for negative defects.

FIG. 12. ~Color online! Cumulative single defect distributions for undula-
tion chaos fore50.08 ande50.17. Fits to exponentials done over range
shown.

FIG. 13. ~Color online! Space–time plot of defect loops in undulation chaos
at e50.17. Positive defects shown with solid lines, negative with dotted. A
loop with n54 pairs is shown in the upper left.
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corresponding to Figs. 6–8. As in the simulations, in spite of
the fact that the state is disordered, we find that most loops
consist of a single defect pair composed of two defects that
mutually create and annihilate each other. While the system
size and the amount of available data impose constraints on
the results, we observe a sizable number of quite large loops
and obtain cumulative distribution functions consistent with
power laws forn, Dx ~along the rolls! andDt, particularly at
e50.17. The onset of the power-law behavior inDt occurs
at about the lifetime of individual defects (dt'30tv anddt
'10tv for e50.08 ande50.17, respectively!. However, the
onset of power laws forDx occurs at larger distances than
the single-defect behavior would predict. The exponents of
the power laws are found to differ in the two regimes of UC,
and the values ofa andg differ from those obtained in the
numerical results presented above. A comparison of the val-
ues can be seen in Table I.

The experimental data show an additional feature not
found in the simulations. As visible in the inset to Fig. 14,
the noncumulative distributions forDt, Dx, andDy show a
peak which is obscured in the cumulative plots. Such a fea-
ture indicates a characteristic size for the loops correspond-
ing to 8tv , 10d ( ŷ) and 2.5d ( x̂) at e50.17 and about twice
these values ate50.08. The peak values are roughly in
agreement with the decay constants associated with single-
defect distributions~see Fig. 12!.

Summarizing the experimental results, we have demon-
strated that system-spanning defect loops are also present in
an experimental system in spite of the difficulties presented
by small system size and the flux of defects through the
boundaries. The single-defect statistics were found to be ex-
ponential for the lifetime of the defects and the distance trav-
eled. In agreement with the computational results, the loop
statistics exhibit power-law scaling~for n, Dx, andDt). The
exponents at the twoe, however, do not agree well with each
other. For example, for the time-spanDt in the intermittent
regime of UC (e50.17) the exponent was 2.960.4 and in
the UC regime (e50.08) it was 3.860.4. These should be
compared with the numerical results of 2.5 to 3. While the
two regimes may indeed be characterized by different expo-
nents it is also possible that the difference in the measured
exponents is due to the pronounced boundary effects and the
limited data available. In particular, fore50.08 the number
of observed loops was quite small and the convergence of the
results may be in question. In addition, inclined layer con-
vection is a highly anisotropic system with defect motion
differing significantly in the two principle directions. In par-
ticular, in theŷ-direction the defect motion often undergoes
long flights40 and the effect of the anisotropy on the loop
statistics is unknown at this point. The fact that the loops
have a characteristic size may also be relevant. Finally, the
increased steepness of the power laws with respect to those
found in the simulations may reflect the experimental bias
against large loops due to the loss of defects through the
edges.

Further experiments with a larger observation area and
better statistics will be necessary to measure the exponents
accurately enough to identify any system and parameter de-
pendence. One prime candidate for an experimental investi-

gation is electroconvection of liquid crystals where systems
with large aspect-ratio can be built and spatiotemporal chaos
exists close to onset.24,43

IV. CONCLUSION

In this paper we have applied a novel diagnostic measure
for defect-dominated spatio-temporal chaos, the statistical
properties of defect loops in space–time, to a canonical the-
oretical system~the complex Ginzburg–Landau equation!
and to an experimental system~thermal convection in an
inclined layer!. In both cases we find that in the spatio-
temporally chaotic state most loops are made up of only a
single pair of defects that are created and annihilated to-
gether. Thus, in contrast to what might have been expected in
a spatially disordered state, most defects do not separate far
from each other after their creation. In fact, the probability
distribution functions for the lifetime of individual defects
and for the distance traveled during that time decay exponen-
tially and yield mean values that are quite small. Therefore,
we do not associate the origin of the disorder with a property
at the single-defect level, but with the presence of large loops
in space–time, which are formed by the trajectories of many
individual defects connected via creation or annihilation
events.

In both systems investigated, the probability distribution
functions for the various quantities characterizing the loop
sizes decay quite slowly, implying a significant number of
large loops. In the simulations of the complex Ginzburg–
Landau equation, the distribution functions follow power
laws and loops containing more than 1000 defects and ex-
tending over large portions of the system occur relatively
frequently. These large loops can be obtained since relatively
large system sizes can be investigated. Moreover, due to the
periodic boundary conditions used in the simulations, defects
cannot leave the system. In the experiment, however, large
loops are likely to include defects that are close to a bound-
ary where the defects may leave the system without closing
the loop. Such open loops have not been included in the
statistics. Despite these finite-size effects, the experimental
results also exhibit power-law behavior in some of the dis-
tribution functions. As in the simulations of the complex
Ginzburg–Landau equation, the power-law behavior sets in
at scales larger than those associated with the dynamics of
the individual defects.

The numerical simulations of the complex Ginzburg–
Landau equation yield exponents for the power laws that are
consistent with those found previously for a model of para-
metrically excited waves and in a simple lattice model of
random walkers.33 In fact, two of the three exponents agree
well with those obtained for those systems. A summary of
the scaling exponents obtained in the various systems is
shown in Table I.

So far, there exists no theory that would capture the
power laws, let alone predict the values of the exponents.
Thus, it is not known whether the exponents depend on fea-
tures like the symmetries or the dimension of the system or
the interaction between the defects. The agreement between
the exponents obtained for the three computational systems
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is therefore quite remarkable, since these systems differ sub-
stantially from each other. While the complex Ginzburg–
Landau equation describes the weakly nonlinear behavior
near a Hopf bifurcation, the parametrically excited waves
arise effectively in a steady bifurcation, and the lattice model
is a minimal stochastic model for diffusing defects. More-
over, the exponents for these systems agree also with those
found in computations of a strongly anisotropic version of
the complex Ginzburg–Landau equation,44 in which the
waves are Benjamin–Feir unstable only along one
direction.45 The exponents obtained in the experimental sys-
tem differ noticeably from those found in the computations.
At this point it is not clear whether this reflects a significant
difference between the systems or is due to the more severe
finite-size effects of the experiments. Numerical investiga-
tions of the biasing effects of truncated loops should be un-
dertaken, along with further experiments on defect loops in
large systems, as can be obtained in electroconvection of
liquid crystals.

While we have focused here on situations in which the
spatio-temporal chaos is dominated by defects, it should be
noted that there are also spatio-temporally chaotic states
without any defects. This is, for instance, the case in the
phase chaos of the complex Ginzburg–Landau equation
~e.g., Refs. 1, 6!. In these systems the current approach is, of
course, not applicable. Moreover, even in the defect-chaotic
state of the complex Ginzburg–Landau equation the back-
ground phase field contributes to the Lyapunov dimension of
the chaotic attractor on top of the contributions from the
defects.28 It may therefore be expected that in regimes like
this the disorder is not only associated with the defect loops.
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