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For spatio-temporal chaos observed in numerical simulations of the complex Ginzburg—Landau
equation(CGL) and in experiments on inclined-layer convectidhC) we report numerical and
experimental data on the statistics of defects and of defect loops. These loops consist of defect
trajectoriesin space-time that are connected to each other through the pairwise annihilation or
creation of the associated defects. While most such loops are small and contain only a few defects,
the loop distribution functions decay only slowly with the quantities associated with the loop size,
consistent with power-law behavior. For the CGL, two of the three power-law exponents are found
to agree, within our computational precision, with those from previous investigations of a simple
lattice model. In certain parameter regimes of the CGL and ILC, our results for the single-defect
statistics show significant deviations from the previously reported findings that the defect dynamics
are consistent with those of random walkers that are created with fixed probability and annihilated
through random collisions. @004 American Institute of Physic§DOI: 10.1063/1.1778495

Many nonequilibrium pattern-forming systems exhibit
transitions from spatially ordered and temporally regular
patterns to spatio-temporal chaos. Although much
progress has been made, the identification and classifica-
tion of different spatio-temporal chaotic states remains a
challenge. The diagnostics for their spatial disorder and
dynamics include, for example, correlation functions,
power spectra, and attractor dimensions. To further
clarify the nature of a given state of spatio-temporal
chaos it is necessary to identify additional measures that
reflect its specific aspects. In many systems topological
defects appear to play a prominent role in disrupting the
order of the pattern. In fact, it has been recognized that
in certain two-dimensional equilibrium systems the
(Kosterlitz—Thoules9 phase transition from an ordered
to a disordered state involves the unbinding of defects. In
a model nonequilibrium system, a somewhat analogous
defect-unbinding transition between an ordered and a
disordered state of spatio-temporal chaos has recently
been described. There, the transition was analyzed in
terms of the statistics of defect trajectories and of loops
that multiple trajectories form in space—time when con-
nected via creation and annihilation events. In this paper
we use this diagnostic tool to gain insight into defect-
chaotic states obtained in simulations of the canonical
complex Ginzburg—Landau equation and in experiments
on inclined-layer convection(ILC).
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I. INTRODUCTION

Various types of spatio-temporal chaos arise in a wide
range of pattern-forming dynamical systems. While these
systems have been investigated extensively in experiments
and computations, a deeper understanding still poses inter-
esting questions.

One of the central challenges concerns the origin of
these states. In some cases the disordered states are not un-
expected because all simple periodic states are linearly un-
stable. This is, for instance, the case in the complex
Ginzburg—Landau equatidiCGL, see(1) below] when the
Benjamin—Feir instability destabilizes all plane waves via
spatial modulations that compress and expand them, or in
rotating convection when the ‘lopers—Lortz instability ren-
ders all steady, spatially periodic roll states unstable to rolls
of a different orientatiod:® In other situations, spatio-
temporal chaos coexists with stable ordered states and finite-
amplitude perturbations are needed to take the system from
one attractor to the other. A striking example of this situation
is spiral-defect chadsn thermal convection in gases, which
occurs despite the fact that straight-roll states are stable for
the same values of the system parametekssimilar situa-
tion occurs also in the CGL in certain Benjamin—Feir-stable
regimes> Recently, such bistability has also been identified
in hexagonal patterns in the presence of rotafibrin a
Swift-Hohenberg model for hexagonal patterns under the
influence of rotation, penta-hepta defect chaos can be main-
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tained by the “induced nucleation” of defects, in which (PDF for the number of defects present at any given time
penta-hepta defects trigger the nucleation of further defectsyas investigated in Ref. 23. For numerical simulations of the
while regular hexagon patterns are actually linearly stible.defect chaos in the CGL with periodic boundary conditions it
In rotating non-Boussinesq convection, numerical simulawas found that the PDF is well approximated by a squared
tions have identified a regime in which a chaotic state isPoisson distribution, which suggests a very simple picture
maintained through the interplay between defects in thdor the dynamics of the defects. For a domain with periodic
hexagon pattern and whirling activity of the convectionboundary conditions, a squared Poisson distribution is ob-
cells® Similarly, bistability between undulation chaos and tained if the defects behave as random walkers, created in
ordered undulations was found in inclined layer convection. pairs with a fixed probability and annihilated in random col-
Another challenge is to find characterizations of the disdisions with a defect of opposite charge. Distributions con-
ordered states that go beyond a description in terms of cosistent with the squared Poisson distribution were subse-
relation functions. One interesting possibility to consider is aguently also found in experiments on electroconvection in
“macroscopic” description on large spatial and temporalnematic liquid crystafé and in a reaction-diffusion modél
scales. This approach has been successful in the case of thiemulated in a periodic domain.
Kuramoto—Sivashinsky equation, which describes long-wave In experiments on the anisotropic, defect-turbulent state
instabilities in various systems, including flame frott€all-  of undulation chaos in ILGsee Fig. 9 below® not only the
ing fluid films ! This equation provides also the generic de-distributions but also the defect nucleation and annihilation
scription of long-wave perturbations of spatially periodic rates and, as necessary in any experimental system with a
traveling waves? It has been showi®that on large length finite investigated area, the entering and leaving rates were
scales the spatio-temporally chaotic state obtained in themeasured. It was shown that the theoretical assumptions for
Kuramoto—Sivashinsky equation can be described by théhe creation and annihilation ratésre justified for undula-
noisy Burgers equation, which is also called thetion chaos in a certain parameter regime and thadified
KPZ-equation:” While in the Kuramoto—Sivashinsky equa- squared Poisson distribution function is found if entering and
tion the diffusive term is destabilizing, the chaotic activity leaving rates are also considered. The fact that the nonperi-
effectively renormalizes the diffusion coefficient to becomeodic boundary conditions lead to a modification of the dis-
positive, yielding the KPZ-equation with the noise term re-tribution function indicates that the apparent agreement with
placing the chaotic short-wave activity. the squared Poisson distribution found in the experiment on
A large-scale description has also been obtained in @lectroconvection in nematic liquid cryst#lsvas fortuitous.
Ginzburg—Landau model for parametrically excited In addition to measuring the rates, it was shdwimat the
wavest®~2%As is the case in many other systems, its steadylependence of the variance of the distribution on the mean
periodic state can become unstable to spatial modulations @fumber of defects was a better measure to distinguish the
the pattern. In the limit of large wavelengths these perturbadifferent PDFs. It was found that the modified Poisson dis-
tions can be described by a phase equation with negativigibution described this dependence well, while the squared
diffusion coefficient! Usually, the modulational instability Poisson distribution did not.
leads to a change in the mean wave number of the system via Defect statistics have also been investigated in recent
phase slips. In this system, however, a regime has been idesimulations of the Willamowski—Rssler reaction-diffusion
tified in which the phase slips always occur in pairs. Onsystem with periodic boundary conditioffsIn contrast to
larger time scales the wave number is therefore not changethe situation in the complex Ginzburg—Landau equation,
resulting in a chaotic state that has a well-defined wave nunthere the local dynamics are not periodic but chaBtidev-
ber and in which the phase is conserved. As a result, in thertheless, due to the structure of the chaotic attractor of the
long-wavelength limit perturbations of the chaotic state carlocal dynamics, phase defects are well-defined and a squared
be described by a new phase equation. Compared to thHeoisson distribution has been fouffd.
phase equation for the steady periodic state, its phase diffu- Strong deviations from the squared Poisson distribution
sion coefficient is renormalized by the chaotic activity. How-were found in simulations with periodic boundary conditions
ever, in contrast to the case of the Kuramoto—Sivashinskpf the spatio-temporal chaos in hexagons with rotation dis-
equation discussed above the renormalized diffusion coeffieussed abové.These deviations are due to the induced
cient can itself change sign as a function of the mean wavaucleation of dislocations by penta-hepta defects.
number. This results in a chaotic state that is unstable with The dynamical relevance of defects has been addressed
respect to long-wave modulations in its wave number and itin three approaches. In simulations of the CRef. 29 it
chaotic activity. As a consequence, the system decomposéss been shown that the contribution of the defects to the
into domains in which double phase slips occur chaoticallyLyapunov dimension of the chaotic attractor can be extracted
and domains with no phase slips in a process quite similar tmeaningfully, suggesting that each defect on average “car-
phase separation in spinodal decomposition. ries” a certain amount of the Lyapunov dimension. It should
However, only very few states of spatio-temporal chaoshe noted, however, that the background field behaves chaoti-
allow a long-wave description. Since defects represent a corcally as well and therefore it contributes to the Lyapunov
spicuous feature of many spatio-temporally chaotic states, dimension even in the absence of defects. A related analysis
is tempting to use them to characterize the chaotic state anslas also performed in a reaction-diffusion motfeln an-
to obtain additional insight into its dynamié&In one of the  other numerical experiment, based on spiral-defect chaos in
first attempts to do this, the probability distribution function Rayleigh—B@ard convection, it was shown that the system
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is most sensitive to perturbations during the formation of
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vortex regime of the CGL has been captured quite well with 1
simulations of point defects using their previously estab-
lished interaction laws.

In this paper we employ a novel tool for the partial char-
acterization of a spatio-temporally chaotic state that takes S
into account long-range aspects of the defect dynamics by ' T S TN T T
investigating the statistics of the trajectories of the defects. 0.5 1 1.5
To our knowledge, this tool has only been used before on ¢ b3
pair of coupled Ginzburg—Landau equations that model para-
metrically excited Wa1ve§2_'33 In a certain parameter regime, FIG. 1. (Color online Phase diagram for the CGL following Ref. 6. Line
simulations of that system revealed a first-order transitiorPF denotes the Benjamin—Feir stability limit. Lin& and S, denote the

between two chaotic states. one of which i tiall Ordere@onvective and absolute stability limit of the far-field of spiral defects, re-
W w IC S S, which Is spatially pectively. Defect chaos persists to the left of lihg while phase chaos

and exhibits a spatially periodic correlation function while exists betweert. and BF. The symbols denote parameter values for which
the other displays rapidly decaying correlations. The analysigefect statistics are presented here.

of this transition was initially motivated by the assumption

that for the spatial order of the state to be destroyed the

defects in a pair would have to unbind, in a manner similar (o, the amplitudeA of weakly nonlinear oscillations. The
the “”b'”sci'”g in the Kosterlitz—Thouless transition of the | exhibits various types of ordered and disordered states
xy-model,” and the defects would thereafter have o sepagso 4 review see Ref. )1 States of spatio-temporal chaos
rate over large distances. Investigation of the defect traje‘:toéontaining many defects, which in this system take on the
ries revealed, however, that this is not the case. It turned oyf ., of spiral waves, arise over a wide range of parameters.
that the entities to be considered are the loops formed it of the phase diagram for the CGL is shown in Fifir.

space—time by the trajectories of two or more defects that arg,os; of the parameter regime in which defect chaos persists
connected to each other by being either created or a””'htabove lineT), all spatially periodic plane waves are un-

lated together. In terms of these defect loops, the unbinding;, e with respect to long-wave modulatigabove line BF
transition could be viewed as a transition from an eXPONeNgenoting the Benjamin—Feir instabilityThe defect chaos
tial decay of the probability distribution function for the 100p 554 extends into regimes in which plane waves are still lin-
sizes to a power-law decay. Within the resolution of our Sta'early stable over a range of wave numbers. There, the per-

tistics, the exponents of the power laws were found 10 agregjsience of the chaotic dynamics is associated with the fact
with the exponents found in a simple Iatti'g%e model in whichya1 the spiral defects emit waves with a wave number that is
the defects are replaced by random walkers. in the unstable regim®. More precisely, above ling,; these

In the following, we first revisit the classic defect chaos4es are only convectively unstable, whereas to the left of
state of the CGL. We find that for this state the form of the they are absolutely unstable. As a result, random initial

PDF for the number of defects depends on the parameters gfgitions lead to persistent defect chaos above and to the
the system and can deviate significantly from the squareghs of jine T. In addition to defect chaos and the ordered
Poisson distribution obtained previously, pointing to limita- plane waves the CGL exhibits a state of frozen defects

ti(_)ns of the me_ch_anism assumed in Refs. _23—25. We theﬁlortices)?’e’ to the right of lineS, and phase chaos between
discuss the statistics of the defect loops, which for all paramg, o Benjamin—Feir line BF and line.

eter values investigated show power-law beh_avior. While  ag discussed in the Introduction, prior analysis of the
two of the measured exponents agree well with those Obgefect-chaotic state investigated the probability distribution
tamed3|3n the disordered state of the parametrically excitegy, the number of defect pairs in a periodic domain that are
waves,” one of them seems to depend on the parameters Qfresent in the systedi.Within the accuracy of those simu-
the system. We then present results for the defect statistiGgtions, the PDF was found to be consistent with a squared
obtained in experiments on undulation chaos in (E&f. 9 pisson distribution over a range of parameters (48
and interpret them in view of the computational results. <1 11 forh,=0.5). This distribution arises if the defects are

created with a fixed probability that is independent of their

density, while they are annihilated according to a mass-

Il. DEFECT STATISTICS IN THE COMPLEX action law. To test whether this description is valid even as

GINZBURG-LANDAU EQUATION the absolute stability limit is approached and crossed, we

. . . . . have measured the PDF in more extensive simulations with

We investigate defect chaos in the two-dimensional com-__ . dic bound it Wi d | cod

lex Ginzburg—Landau equatid@GL) periodic boundary conditions. We use a pseudo-spectral code
P with integrating-factor Runge—Kutta time-stepping of fourth

A= (1+ib)AA+A—(bz—i)|A|A (1)  order. In these simulations we used 128 modes and a time

BF

dislocation pairs® This suggests that defects may provide T .
the origin of the chaotic dynamics. A third successful ap- 4 S L_:
proach to describe a spatio-temporally chaotic state in term: b 3
of its defects has been presented recefithere the veloc- 3 u u L =
ity distribution function for the defect motion in the frozen 2 . .

1
[y
[\
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FIG. 2. (Color online Probability distribution function for the number of ) )
defect pairs in the system. The analytic curves represent squared Poissb#C: 3 (Color onling Dependence of the rescaled variance of the number

distributions for the values ofN) ando? obtained from the corresponding ©f defect pairs, 2%/(N), on b, for various values ob,. The absolute
numerical data. stability limit S, for b;=3 is indicated by a dotted line. The dashed line

corresponds to the squared Poisson distribution. The errorfi(Rl) is
smaller than the symbol size.
step ofdt=0.25. Halving the time step in selected simula-

tions had almost no effect on the resuits while doubling thecited waves. There, the investigations of the defect dynamics
number of modes changed the mean numdér of defect ) ' 9 Y

pairs by about 10% while the ratie?/(N) of the variance to showed that in the bound-defect regime the overwhelming

. ~ majority of defect pairs appear only for brief periods of
the mean was essenUaIIy_unchang{eeIe below. The dura- ;103233 gjnce the defects are annihilated by the same de-
tion of these runs waka,=10°.

: . . _fects with which they were created, after the annihilation the
Figure 2 gives the PDF for the number of defect pairs :
. 4 . : pattern returns to essentially the same state as before the
shifted by their mean in a system of sikze=308. The pa- . : ; .
rameters ard. =3 with ba=05 or baz=1.3. Forba=0.5 creation event and essentially no disorder is introduced. In
L S s 8™ contrast, jointly created defects that separate from each other

the PDF is well approximated by the squared Poisson dlsmfnodify the pattern in the domain between them: climbing

bution, defects change the wavelength of the pattern, while gliding

(NN defects induce a rotation of the pattern. Therefore, a seem-

P(N)= 7 (2)  ingly natural and quite general expectation is that in order for
lo(2V(NZ)) (N!) 9y aiied P

defects to destroy the overall order of the pattern the defects
wherel is the modified Bessel function. As; is increased in a pair have to move far from each other. For the specific
above 0.8 the distribution becomes significantly wider. Asystem investigated in Ref. 32 it was shown, however, that
quantitative measure of this change is the ratic’/ZN) of  even in the disordered regime this is not the case. Most de-
the variance to the mean of the number of defect pairs, whicfects are annihilated after a relatively short time and corre-
satisfies 2-2/(N)=1 in the case of a squared Poisson distri-spondingly travel only relatively small distances.
bution. The dependence o&2/(N) on b; is shown in Fig. In Fig. 4(a) we present the cumulative probability distri-
3. The increased width of the PDF shows that the simpléution function(CPDB for the average lifetime of individual
picture of random walkers with a fixed creation rate and paidefects in the CGL(1) over a range of parameters. Figure
annihilations in collisions is insufficient. We have not mea-4(b) gives the CPDF for the distance between the locations
sured the creation and annihilation rates directly. At thiswhere a given defect was created and annihilated, respec-
point it is therefore not clear whether the deviations aretively. Both quantities decay exponentially over the whole
mainly due to an increase of the creation rate with the defeatange of parameters investigated with a mean that is much
density, as it has been found in the case of inducedmaller than the system size and than the duration of the
nucleation” Alternatively, the increase of the annihilation simulation, respectively. Thus, the simple picture of defects
rate could be slower than quadratic. separating far from each other does not apply to these disor-

Our main objective is to investigate the defect trajecto-dered states.

ries and their statistics in the disordered regime. This is mo- The fact that the dynamics of individual defects only
tivated by the fact that the equilibriusy-model, which like  spans small spatial and temporal scales suggests that the rel-
the CGL is characterized by a single complex order paramevant quantities for the destruction of order are not the
eter, undergoes a phase transitigtosterlitz—Thoulessin single-defect statistics, but rather the statistical properties of
which the system becomes disordered due to the unbindintipe loops that are formed by the trajectories of many defects
of defect pairs”* To our knowledge, the dynamics of defects in space—time, connected through the annihilation and cre-
in the xy-model have not yet been studied in any detail.ation of defect pairs. An example of such a loop is sketched
However, a first-order defect-unbinding transition has beern Fig. 5, ignoring one space dimensigsee also Fig. 13
found in a dynamical system modeling parametrically ex-below). To obtain the statistics of the defect loops we per-
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g F .'..n"ﬂn;;é?f% ) - e,l(p(_gxs/&g) ] FIG. 6. (Color onling Cumulative probability distribution function for the
£ 10 3 S b,=3,b,=1.0|3 number of defect pairs in a defect loop. System 4$ize1232 and duration
QZ) F - exp(-8x/4.4) | 7 of the simulationg,,,=2500 (except forb;=1.2, for whicht,,,,=5000).
= 10°E a b=3,b=12] Inset: Noncumulative distribution function fdr; =3 andb;=0.5.
g F - exp(-6x/5.0) | 3
o
£10°F : E
- E Ay o . . .
g f . AAA;;A;._. ] this distance is smaller than some threshold vahj®
S 10°F A =n- §; they qualify as a single “continuing defect” that has
F % A 4 . .
6 . ‘ . oo e A ] moved from one position to the other. It can happen that with
10" 10 20 30 40 50 60 70 this criterion a given defed,(t) has more than one possible
(b) Single defect displacement 6x continuation defectD;(t+At). Then among the possible

continuation defects the one closestT¥y(t) is assigned to
FIG. 4. (Color onling Cumulative probability distribution function for the  be its continuation. Defects that are not “continuing defects”
defect lifetime(a) and for the distance between its creation and annihilationau,e candidates for annihilation and creation events. Among
points b). those, two defects of opposite charge and closer than a sec-
ond threshold5(2”)=n~ &, are identified as a pair that was
formed simulations withL =1232, n=512, anddt=0.25 annihilated(or createdin this time step. This analysis is then
and tracked the defects as described previolisThe dura- repeated with increased values for the thresholf8; ")
tion of the runs was eithdr,,,=2500 ort,,,=5000. =(n+1)-4;, until all defects have been assigned.

To obtain the defect trajectories we recursively check the  Figure 6 shows the CPDFs for the number of defect pairs
distances between all defed®(t) at timet from all defects  in a loop for the values df; andbz marked by squares and
D;(t+ At) at timet+ At. If for two defects of equal charge by a circle in Figs. 1 and 3. Each point on these functions

thus gives the probability of finding loops that contain at
- least the indicated number of defect pairs. The corresponding
A n_6 ,’ cumulative distribution function for the spatial extent of the
- P loops is given in Fig. 7. Here the spatial extent is defined as
PR —-\ , the difference between the largest and the smale&br y-)
¢ - coordinate occurring in the loof. Fig. 5. The cumulative
At ! distribution function for the similarly defined duration of the
1 ~ loops is given in Fig. 8. Note that even in this regime, in
1 ~ which the pattern is strongly disordered, most loops contain
\ only a single defect pair, as shown in the inset of Fig. 6,
V \ which gives the noncumulative distribution function foy
~ =3 andb3;=0.5. Thus, most defects are annihilated shortly
after their creation by the same defect with which they were
created. These events are unlikely to be responsible for the
AX disorder in the pattern. All three distribution functions decay,

however, with a power law,
FIG. 5. (Color online Sketch of a loop in space—time formed by the tra-
jectories of six defects. Soli(dashed lines indicate defects with positive

(negative topological charge. C(n)xn~ % C(Ay)xAy A C(At)xAt™ 7. 3
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100i ———rrrrry — — squared Poisson distribution for the single-defect statiStics
- 8 8 84, (a=1.6, B=2.9). In Table I(see Sec. IYthese exponents
L o Q . . . . .
> al %0, ] are summarized, along with those obtained in the experi-
8 10 : ments discussed below.
% _23 By contrast, the exponentfor the loop-duration CPDF
& 10°F E may depend on the parameters. While far away from the
2 i ] absolute stability limit(line S,) we obtainy~3, it appears
§ 10‘3;— = that y decreases tgy~2.5 asS, is approached and crossed.
L o b=30,b-05 At the present there is no theory that explains the existence
"’g 10-4 - a b,=3.0,b=038 - of the power laws or gives values for their exponents and we
= - o b=3.0,b,=1.0 3 can only speculate that the change in the exponent as}ine
g 10-5;_ a b=3.0,b=12 i is approached may be related to our finding that in this re-
5 b,=0.3, b,=0.5 ' gime the single-defect statistics deviate noticeably from the
sl — A , 1 squared Poisson statistics. The quality of our data does, how-
W0E oy - ever, not rule out that the exponepts, in fact, independent
10° 10" 10° 10° of the parameters. In the previous analyses it was also found
Loop x-span (A x) that the results for the loop-duration distribution function

were less reliable than the otherg= 2.7 for the parametri-
FIG. 7. (Color onling Cumulative probability distribution function for the  cally excited waves angi~ 2.4 for the lattice modef3
maximal spatial extendx of a defect loop. It should be noted that obtaining good statistics requires
substantial amounts of data since the most relevant informa-
. . ) tion is contained in the large loops. In a finite system with
Thus,. there is a non-negligible fraction qf very large IOOpSperiodiC boundary conditions the largest loops wrap around
containing 1000 defects or more, extending over large partg,e \yhole system, which turns out to contribute to a slower
of the system and persisting over substantial portions of thaecay of the distribution function for very large loofs.
duration of the simulations. The power-law behavior is to beyistribution function forbs=1.2 in Fig. 9. Similarly, some
contrasted with the exponentially decaying distribution func-jo,nq persist for essentially the whole duration of the simu-
tions that were obtained previously for a spatially orderedyaion The cut-off by the finite duration of the simulations
chaotic staté" o _ contributes, therefore, to a more rapid decay of the distribu-
The exponents of the distribution functions for the nuUM-yi,, fnctions for large loopscf. distribution function for
ber of defects and the spatial extent do not show a&gmﬂcargszo 8 in Fig. 9. The statistics shown in Figs. 6, 7, and 8
dependence on the parameters within the accuracy of OWe pased on runs in which the mean number of defects at
data and are given byr=1.6 and 5=3.0, respectively. o given time is between 5000 and 15000 and in which of
Moreover, within the accuracy of the computations these eXg,q order of 10000 snapshots are processed. Since our defect
ponents agree with the exponents found previously for a _d'st'racking scheme scales like the square of the number of de-
ordereg state obtained in a model fqr parametrically exciteqg s i the system, a substantial increase in the system size
waves® (¢=15, =3.0) and a lattice model of random investigated would require parallelizing the tracking scheme,
walkers that implements the assumptions underlying thg hich should be possible but would be a nontrivial task.
The power laws in the loop statistics reflect the sequen-
tial interaction of many defects and should therefore only be

100; ~ 5305051 expected on scales that are larger than those associated with
B SR N . be30 be=0sH the individual defects. Indeed, the scales above which the
2 10'1 = 4 SN = b[:S.O’ b3:1_0@ distribution functions exhibit power-law behavior on Figs. 7
8 E = B \\\ R b‘=3.0: btof and 8 agree reasonably well with the mean distance traversed
g 10-2;_ o 8 o A‘A\\ bi:().3’ bzzo_5; by the defects and their mean lifetinjef. Figs. 4a) and
= o ¢ R AA\\\ .3 E 4(b)].
g 2 i ° " o Q<>AAA;\\ it-z.s 1
- e o ¢ ~ |7 4
S 10§ ° L, g~ t IIl. UNDULATION CHAOS IN INCLINED-LAYER
= C ] CONVECTION
g 10_4 3 E . .
= : ] In the following we present experimental results from
2 st : undulation chaogUC) in inclined layer convectiorILC)
g 10°F = and compare them with the numerical results presented
@) i above. In ILC a thin fluid layer is heated from one side and

10°F o R cooled from the other. We define the angle of inclinatéon

101 102 103 such that®=0° corresponds to the case of Rayleigh—

Benard convectiori’ where a horizontal fluid layer is heated
from below and cooled from above. For any finite inclination

FIG. 8. (Color onling Cumulative probability distribution function for the @ngle, the component qf graVitY_ parallel_ to the_ ﬂUi_d layer
maximal durationAt of a defect loop. leads to a shear-flow with a cubic velocity profile, i.e., the

Loop time-span (A t)
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FIG. 9. Undulation chaos foe=AT/AT.—1=0.08 and inclination angle
®=30° as visualized with the shadowgraph technique. The whole convec-G 20¢
tion cell is shown. In the subregion marked by a white boxd883d, \y 15} 1
whered is the height of the fluid layerthe spatio-temporally chaotic state =
was found to be homogeneous. All analyses shown in this paper were conz" 10}

I ]
ducted for this subregion. Uphill is at the left side and the shearflow is along 5’ 5t a ] I /
the X-direction. e oy fﬁ :
OL 2 L]
0 2 46 810 0 2 4 6 8 10
fluid is rising along the warm side and falling along the cold N, N
side. Depending on the fluid parameters and for sufficiently
small ®, the primary instability above a critical temperature FIG- 10. Entering rat&(N. ), leaving ratel(N.), creation rateC(N.),
diﬁerenceATc is to convection rolls whose axis is aligned gnd annlhllatlon_raté\(NT) as afunctlo_n of the number of'po'smve defects
. . : in the cell for e=0.08 (triangles and e=0.17 (squares A similar depen-
with the shear-flow direction. These rolls have been termeg@ence is found for negative defects.
longitudinal rolls in Ref. 38. In the case of compressed gases,
where the thermal and viscous relaxation times are approxi-
mately the same, it has been shown that for intermediatdiscussed before, these rates are consistent with the defects
angles longitudinal rolls are unstable to undulation chao$ehaving like independent random walkers, leading to a
when the temperature is increased only slightly abovesquared Poisson distribution for the number of defects in a
critical >3° A typical experimental picture of undulation system with periodic boundary conditions. For any system
chaos(UC) is shown in Fig. 9. The locations at which con- with nonperiodic boundary conditions, however, which is
vection roll-pairs end or begin define topological defects.typical for experimental systems, the fact that defects can
These defects are persistently created and annihilated, arediter and leave the observation window needs to be consid-
move within the pattern. Here, we use the same experimentared. The experimentally measured data for the entering and
conditions as in Refs. 9, 40, 41 with=30°, the cell height leaving rates as well as the creation and annihilation rates are
d=(388t2) um and the viscous relaxation time, shown in Fig. 10. As can be seen exemplarily ésr0.08 the
=(1.532+0.015) s. As in the earlier work, we limit the in- observed creation rateé(N,) was constant, the annihilation
vestigation to a subregion of the convection cell where theate A(N_) was quadratic in the number of positive defects,
behavior was found to be independent of the boundaryhe entering rat&(N,) was constant, and the leaving rate
conditions? This subregion is marked by the white rectangleL (N, ) increased linearly i?N_. . With these rate relations, a
in Fig. 9. In addition, it needs to be noted that the wholemodified squared Poisson distribution was deri¥édcom-
convection pattern drifts slowly in the downslope directionparison of the different distributions is shown in Fig.(d1
(positive X-direction), possibly due to non-Boussinesq ef- where the modified squared Poisson distribution fits the data
fects. This can be observed in the movies that accompany tHer e=0.08 best.
paper by Daniels and Bodenschatz. Above e=0.1, this simple model breaks down, and, as
As reported earliet for intermediate angles two states of can be seen exemplarily in Fig. 10 fer0.17, the observed
undulations were observed. For 0s0é<0.1 a defect- creation rate increases with the number of defects and the
turbulent state of UC was found, characterized by the perannihilation rate does not follow a parabola. In other words,
petual creation, annihilation, and motion of defects. Abovethe defects interact strongly and the assumption of a short
e=0.1, this state was found to compete with regions of or+ange interaction is no longer valid. Consequently, the modi-
dered undulations without any defects, leading to intermitfied Poisson distribution does not describe the PDF as shown
tent dynamics:*? It was observed that the mean number ofin Fig. 11(b). Although this behavior is reminiscent of that
defects increased to a peak near0.1 and then weakly found theoretically in penta-hepta defect chadlse under-
declined, with increased fluctuations above the transition tdying mechanism is not clear in the present case. Possibly, a
intermittency’ coupling between the undulation and the roll pattern leads to
In the region of pure UC (0.04¢<0.1), the creation the observed behavior.
and annihilation rates were measured as a function of defect As in the simulations, we tabulate single-defect statistics
density. The creation rates were found to be independent ain the lifetime and displacement and find exponential distri-
defect density and the annihilation rates were found to bdutions, as shown in Fig. 12. At=0.17 defects are observed
quadratic in the defect densityas shown in Fig. 10 As  to have shorter lifetimes and travel smaller distances than for

(48]
(=]

+

A(N ) x 10?
= N
o o

o
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FIG. 11. Probability distribution functions for the number of positive defects
in undulation chaos. The dotted line is the Poisson distribution, the dashe:
line the squared Poisson distribution, and the solid line the modified square
Poisson distribution. Foe=0.08, (N, )=4.6 and fore=0.17,(N,)=5.5.

A similar dependence is found for negative defects.

EIG. 13. (Color online Space—time plot of defect loops in undulation chaos
at e€=0.17. Positive defects shown with solid lines, negative with dotted. A
loop with n=4 pairs is shown in the upper left.

were observed. The data were taken over a time intervals of

1.7x10%r, (1.5X10%r,) with four (two) such runs ate
€=0.08. In addition, there are differences between the-q g (0.17. We used previously developed techniques for
X-displacement for defects with positive and negative topogefect tracking), similar to those described above, to inves-
logical charge especially fog=0.08. As described in Ref. (igate the loop statistics analogous to the ones KD described
40, the velocity distributions of the defects are asymmetrigy the theoretical investigations. Due to the finite observation
with respect to the&-direction. Positive defects move faster grea defects are gained and lost through the edges and not all
and more frequently in the upslope direction, while negativeypserved defects participate in closed loops. The loss and
defects and the undulations do the opposite. As a result, theggin of defects particularly affects the statistics of the large
is a net drift of positive defects with respect to negative onesioops, since the statistics presented here use only those tra-
Although we have no first-principle understanding of thisjectories for which complete loops were available. For
behavior we attribute it to the non-Boussinesq effects that g og we analyzed 636 loops while fer=0.17 there were
break the up—down symmetry. 3838 loops. An example of the measured loops is shown in

Defect loop statistics in undulation chads the study Fig. 13. For clarity, this particular realization was chosen

of loop statistics, we restrict our investigations to two experi-from an interval during which the defect density was low.

mental runs ak typical for the two different regions. Far Figure 14 shows the cumulative distribution functions
=0.08 (¢=0.17) we tracked 500Qq1500Q positive and

negative defects for which both the creation and annihilation

>
2
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Single defect x-displacement 8x (d) Single defect y—displacement dy (d) FIG. 14. (Color onling Cumulative loop distributions for undulation chaos

at two values ofe. Fits to power law behavior done over range shown. The
FIG. 12. (Color onling Cumulative single defect distributions for undula- power exponents have an error ©0.4. Inset in graph foAt shows non-
tion chaos fore=0.08 ande=0.17. Fits to exponentials done over range cumulative relative frequency. Black circles are fo+0.08 and red dia-
shown. monds fore=0.17.
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corresponding to Figs. 6—8. As in the simulations, in spite ofgation is electroconvection of liquid crystals where systems
the fact that the state is disordered, we find that most loopwith large aspect-ratio can be built and spatiotemporal chaos
consist of a single defect pair composed of two defects thagxists close to onséf:*®

mutually create and annihilate each other. While the system

size and the amount of available data impose constraints on

the results, we observe a sizable number of quite large Ioodé’- CONCLUSION

and obtain cumulative distribution functions consistent with | this paper we have applied a novel diagnostic measure

power laws fom, Ax (along the rollsandAt, particularly at  for defect-dominated spatio-temporal chaos, the statistical
€=0.17. The onset of the power-law behaviorit occurs  properties of defect loops in space—time, to a canonical the-
at about the lifetime of individual defect$(~30r, andét  gretical system(the complex Ginzburg—Landau equation
~10r, for €=0.08 ande=0.17, respectively However, the  and to an experimental systefthermal convection in an
onset of power laws foAx occurs at larger distances than jnclined layey. In both cases we find that in the spatio-
the single-defect behavior would predict. The exponents ofemporally chaotic state most loops are made up of only a
the power laws are found to differ in the two regimes of UC, single pair of defects that are created and annihilated to-
and the values of and y differ from those obtained in the gether. Thus, in contrast to what might have been expected in
numerical results presented above. A comparison of the val spatially disordered state, most defects do not separate far
ues can be seen in Table . from each other after their creation. In fact, the probability
The experimental data show an additional feature nogjistribution functions for the lifetime of individual defects
found in the simulations. As visible in the inset to Fig. 14, and for the distance traveled during that time decay exponen-
the noncumulative distributions faxt, Ax, andAy show a tjally and yield mean values that are quite small. Therefore,
peak which is obscured in the cumulative plots. Such a feawe do not associate the origin of the disorder with a property
ture indicates a characteristic size for the loops correspondt the single-defect level, but with the presence of large loops
ing to 87,, 10d (Y) and 2.9 (X) ate=0.17 and about twice in space—time, which are formed by the trajectories of many
these values at=0.08. The peak values are roughly in individual defects connected via creation or annihilation
agreement with the decay constants associated with singlevents.
defect distributiongsee Fig. 12 In both systems investigated, the probability distribution
Summarizing the experimental results, we have demonfunctions for the various quantities characterizing the loop
strated that system-spanning defect loops are also presentdires decay quite slowly, implying a significant number of
an experimental system in spite of the difficulties presentedarge loops. In the simulations of the complex Ginzburg—
by small system size and the flux of defects through the.andau equation, the distribution functions follow power
boundaries. The single-defect statistics were found to be eXaws and loops containing more than 1000 defects and ex-
ponential for the lifetime of the defects and the distance traviending over large portions of the system occur relatively
eled. In agreement with the computational results, the loofrequently. These large loops can be obtained since relatively
statistics exhibit power-law scalin@or n, Ax, andAt). The large system sizes can be investigated. Moreover, due to the
exponents at the twe, however, do not agree well with each periodic boundary conditions used in the simulations, defects
other. For example, for the time-spai in the intermittent  cannot leave the system. In the experiment, however, large
regime of UC €=0.17) the exponent was 2t9.4 and in loops are likely to include defects that are close to a bound-
the UC regime €=0.08) it was 3.8 0.4. These should be ary where the defects may leave the system without closing
compared with the numerical results of 2.5 to 3. While thethe loop. Such open loops have not been included in the
two regimes may indeed be characterized by different expostatistics. Despite these finite-size effects, the experimental
nents it is also possible that the difference in the measurecksults also exhibit power-law behavior in some of the dis-
exponents is due to the pronounced boundary effects and thigbution functions. As in the simulations of the complex
limited data available. In particular, far=0.08 the number Ginzburg—Landau equation, the power-law behavior sets in
of observed loops was quite small and the convergence of that scales larger than those associated with the dynamics of
results may be in question. In addition, inclined layer con-the individual defects.
vection is a highly anisotropic system with defect motion The numerical simulations of the complex Ginzburg—
differing significantly in the two principle directions. In par- Landau equation yield exponents for the power laws that are
ticular, in they-direction the defect motion often undergoes consistent with those found previously for a model of para-
long flights® and the effect of the anisotropy on the loop metrically excited waves and in a simple lattice model of
statistics is unknown at this point. The fact that the loopsrandom walkers? In fact, two of the three exponents agree
have a characteristic size may also be relevant. Finally, theell with those obtained for those systems. A summary of
increased steepness of the power laws with respect to thosiee scaling exponents obtained in the various systems is
found in the simulations may reflect the experimental biasshown in Table I.
against large loops due to the loss of defects through the So far, there exists no theory that would capture the
edges. power laws, let alone predict the values of the exponents.
Further experiments with a larger observation area andhus, it is not known whether the exponents depend on fea-
better statistics will be necessary to measure the exponentsres like the symmetries or the dimension of the system or
accurately enough to identify any system and parameter dehe interaction between the defects. The agreement between
pendence. One prime candidate for an experimental investthe exponents obtained for the three computational systems
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