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We investigate the relationship between the linear surface wave instabilities of a shallow viscous fluid layer
and the shape of the periodic, parametric-forcing function �describing the vertical acceleration of the fluid
container� that excites them. We find numerically that the envelope of the resonance tongues can only develop
multiple minima when the forcing function has more than two local extrema per cycle. With this insight, we
construct a multi-frequency forcing function that generates at onset a nontrivial harmonic instability which is
distinct from a subharmonic response to any of its frequency components. We measure the corresponding
surface patterns experimentally and verify that small changes in the forcing waveform cause a transition,
through a bicritical point, from the predicted harmonic short-wavelength pattern to a much larger standard
subharmonic pattern. Using a formulation valid in the lubrication regime �thin viscous fluid layer� and a
Wentzel-Kramers-Brillouin �WKB� method to find its analytic solutions, we explore the origin of the observed
relation between the forcing function shape and the resonance tongue structure. In particular, we show that for
square and triangular forcing functions the envelope of these tongues has only one minimum, as in the usual
sinusoidal case.
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I. INTRODUCTION

In the Faraday system, an incompressible fluid is oscil-
lated vertically in a container with a free upper surface, gen-
erating standing surface waves which provide an excellent
system for the study of pattern formation �1,2�. Through an
appropriate choice of experimental parameters, many of the
regular patterns that are possible in two dimensions, such as
stripes, squares, and hexagons, can be obtained. In addition,
targets, spirals, superlattices, and quasipatterns lacking strict
translational periodicity have also been observed �3–7�.

One of the advantages of the Faraday experiment, when
compared to other pattern-forming systems such as convec-
tion or chemical reactions, is the great amount of control
over the energy feeding mechanism that can be achieved by
changing the periodic vertical acceleration of the fluid con-
tainer. Even by forcing the system with different combina-
tions of only two frequencies, several distinct patterns can be
achieved. Hexagonal and rhomboid patterns, together with
various quasipatterns have been obtained experimentally in
�8–10� by varying the amplitudes and the phase difference
between both components. Superlattice patterns �11,12�, tri-
angular patterns �13�, and localized structures �14� have also
been observed using two-frequency forcings �15�.

From a theoretical perspective, a combination of tools
must be used to understand and predict the pattern selection.
While its characteristic wavelength can be obtained through
a linear instability calculation, the two-dimensional structure
is determined by the nonlinear interaction between modes
�16–24�. At the linear level, the simplest cases occur when a
deep fluid layer of low viscosity is oscillated with a sinu-
soidal forcing, i.e., proportional to sin��t�. In these situa-
tions, the frequency of the main �largest in amplitude� com-
ponent of the resulting surface wave oscillations will be � /2
�referred to hereafter as the first -or fundamental-

subharmonic response�. In other cases, two mechanisms for
selecting the main frequency responses that are different
from the first subharmonic one have been identified.

The first mechanism occurs when two or more frequency
components are introduced in the forcing. In these cases,
each component will tend to excite its own corresponding
first subharmonic mode. Their relative amplitudes will deter-
mine which of these responses has the lowest global forcing
strength threshold, thus becoming the instability that is ob-
served at onset. The second mechanism can only arise in the
high viscosity regime. If the fluid layer is shallow enough,
even a single component forcing with low enough frequency
can excite an instability different from the first subharmonic
one. As the viscous boundary layer reaches the bottom of the
fluid container, the threshold of the lowest unstable modes
rises, allowing others with higher main frequency compo-
nents �and, therefore, shorter surface wavelengths� to be-
come unstable at onset �25,26�.

In a numerical and experimental study, it was shown in
�27� that a transition between two patterns with different lin-
early unstable wavelengths can be obtained in various fluid
regimes by changing the relative amplitudes of a two-
frequency forcing function. This transition occurs through a
bicritical point, where both modes are simultaneously neu-
trally stable. In spite of these results, only a limited under-
standing of the effects of both a multi-frequency forcing and
a high viscosity regime has been achieved. Furthermore,
little is known about the patterns expected for more compli-
cated forcing functions not described by a few frequency
components. This can be attributed to the essentially infinite
number of degrees of freedom that are needed to parametrize
an arbitrary forcing function, which renders a systematic ex-
ploration of the parameter space impossible.

In this paper, we consider a different approach. Instead of
exploring a large parameter space with various forcing fre-
quency components, we seek to identify which characteris-
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tics of the periodic forcing function affect the surface pat-
terns and how. By performing a numerical linear stability
calculation in various test systems of shallow viscous fluid
layers, we will first identify a simple qualitative relation be-
tween the shape of the forcing function and the resonance
tongue structure �that describes the stability thresholds�. Us-
ing this relation, we will construct a forcing function with a
nontrivial critical instability at onset, having a main fre-
quency component which does not correspond to the funda-
mental subharmonic �or even the fundamental harmonic� re-
sponse to any of its forcing frequencies. We will then present
experimental results showing the surface pattern generated
by this instability. Finally, in the lubrication limit of a thin
viscous fluid layer, we will illustrate analytically the origin
of the observed relation between the forcing function and the
stability thresholds. We will follow the method introduced by
Cerda and Tirapegui �28,29� that derives a Mathieu equation
to describe this regime and uses a WKB approximation
�30,31� to solve it for single frequency forcing. By extending
these calculations to arbitrary forcing functions we will de-
velop an intuitive understanding of the relation between the
shape of the forcing function and the structure of the reso-
nance tongues. In particular, we will show that only forcing
functions with more than two local extrema per cycle are
expected to allow bicritical points involving noncontiguous
tongues.

The paper is organized as follows. In Sec. II we review
the standard formulation of the Faraday wave linear stability
analysis. We introduce in Sec. III a one-parameter family of
forcing functions to illustrate numerically the relation be-
tween the shape of each member of the family and the struc-
ture of its corresponding neutral stability diagram. Section
IV presents an experimental study that uses these forcing
functions, displaying a previously unobserved transition be-
tween two surface patterns with very different characteristic
wavelengths. In Sec. V we show an approximate analytical
relation between the forcing and the instability response that
illuminates our approach. Finally, Sec. VI briefly discusses
our results and presents our conclusions.

II. BACKGROUND

We study the linear stability of the free surface of an
incompressible Newtonian fluid layer of depth h, density �,
kinematic viscosity �, and surface tension �. The fluid is
oscillated vertically with acceleration f��t�, where � is the
fundamental frequency of oscillation and t is the time. We
will summarize here the derivation of the equations describ-
ing this system by following the presentation in �32�.

Using the incompressibility condition to eliminate the
pressure in the linearized Navier-Stokes equation we obtain

��t − ��2��2uz = 0, �1�

where uz�x ,y ,z , t� is the vertical component of the fluid ve-
locity. In an idealized laterally infinite container, the horizon-
tal eigenfunctions are given by e±ik·r, with r= �x ,y� and k
= �kx ,ky�. For each surface wavenumber k= �k�, Eq. �1� thus
becomes

��t − ���zz − k2����zz − k2�vk = 0, �2�

where vk�z , t� describes the z-dependence of uz associated
with the mode k. In the oscillating reference frame with z
=0 at the flat fluid surface, the boundary conditions on the
bottom of the container are given by

vk = 0 and �zvk = 0, at z = − h . �3�

At the fluid surface, the vertical position of the free boundary
z=�k�t�eik·r associated to every mode k is advected by the
fluid motion. To linear order in the surface deformation this
kinematic boundary condition is

d�k

dt
= vk at z = 0. �4�

Additional boundary conditions are imposed at the surface
by finding the total balance of forces tangential and normal
to the interface. From this we obtain

��zz + k2�vk = 0, �5�

��t − ���zz − k2� + 2�k2��zvk

= �g�1 + �f��t�� +
�

�
k2�k2�k, at z = 0, �6�

where g is the gravitational acceleration and f is a nondimen-
sional function defined to have max��f��t���=1. Therefore, �
corresponds to the maximum acceleration of the forcing
function, expressed in units of g.

Equation �2� and boundary conditions �3�–�6� fully de-
scribe the dynamics of the system. Instead of integrating
them directly, our numerical analysis will focus on finding
the stability threshold �c�k� given by the critical value of �
at which the wavenumber k becomes unstable.

III. NUMERICAL STUDY

A. Method

We are interested in finding numerically the neutral sta-
bility curve �c�k� for various forcing functions. With this
objective, we have extended the stability analysis method of
Kumar and Tuckerman �27,32� to forcing functions with an
arbitrary number of frequency components. In broad terms,
this method consists first in expanding vk and �k in a Floquet
form

vk = e��+i	�t�
j

wj�z�eij�t + c.c. �7�

�k = e��+i	�t�
j


 je
ij�t + c.c. . �8�

Here, �+ i	 is the Floquet exponent, where we can set the
growth rate � to 0 to obtain marginal stability curves with
harmonic �	=0� and subharmonic �	=� /2� temporal re-
sponses. Equations �2�–�5� are then used to rewrite �6� in the
form
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An
n = ��f
�n, �9�

where An is an algebraic function of the system parameters,
which does not depend on f��t�, and �f
�n is the nth Fourier
component of

f��t��
j


 je
ij�t. �10�

By introducing the explicit form of f��t�, Eq. �9� can be
expressed as an eigenvalue problem for the forcing ampli-
tude � which can then be solved through standard numerical
techniques. In order to extend the method to cases beyond
the two-frequency forcing computed in �27,32�, we imple-
mented this algorithm in MATHEMATICA �33� and used the
program’s symbolic algebra capabilities to automatically
compute �f
�n for any given f��t�. With this implementation,
which is analogous to that presented in �34�, we are able to
obtain efficiently the neutral stability curves for any desired
forcing function, regardless of its frequency content.

B. Results

We restrict our study to shallow viscous fluid layers.
Since the specific value of the fluid constants within this
regime does not change our qualitative results or analysis,
we will further reduce the size of the parameter space by
considering throughout the paper only one set of fluid con-
stants. These are given by a density �=0.95 g/cm3, a surface
tension �=20 dyn/cm and a viscosity �=46 cS. Addition-

ally, we will use in this section and in Sec. IV a fluid depth
h=0.3 cm and an oscillation frequency �=2��10 Hz�.

By using the numerical techniques described above, we
explored the structure of the marginal stability curves �c�k�
for many different f��t� including various piecewise con-
stant, piecewise linear, delta-like and multi-frequency func-
tions. While a precise characterization of how the features of
f��t� correlate to those of �c�k� remains to be achieved, one
of the salient qualitative relations that we observed for all
tested functions is a connection between the extrema of f��t�
and the envelope of �c�k� that will be described below. We
will illustrate it here for a specific family of forcing func-
tions, which is the same as that in the experiments of Sec. IV.

Consider the following set of forcing functions param-
etrized by p

fp��t� = N�2.5 cos��t� + 3p cos�3�t� − 5p cos�5�t�� ,

�11�

where � is the fundamental frequency of oscillation and N is
a normalization constant which is defined so that
max��fp��t���=1. The specific form of �11� is an arbitrary
choice which is not important for the qualitative behavior
that we will focus on here. It was obtained by searching for
a one-parameter family of forcing functions that simulta-
neously includes members with a simple triangular-like form
�p	−2� and others that can produce nontrivial surface-wave
instabilities in an experimentally accessible regime �p	1�.

Figure 1 displays in the left column fp��t� for p=−2, p

FIG. 1. �Color online� Shape of the forcing
functions �left� defined in �11� and their corre-
sponding neutral stability curves �right� for �a�
p=−2, �b� p=−0.3, �c� p=0.5, �d� p=1, and pa-
rameters �=0.95 g/cm3, �=20 dyn/cm, �
=46 cS, �=2��10 Hz�, and h=0.3 cm. � is in
units of g and k in cm−1. The resonance tongues
labeled H and SH show regions with harmonic or
subharmonic linear instabilities, respectively.
Note how their envelopes �dashed lines� change
with p.
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=−0.3, p=0.5, and p=1. The right column shows the corre-
sponding neutral stability curves �c�k� which present the
usual resonance tongue structure. The harmonic and subhar-
monic tongues indicate regions where surface waves become
unstable, oscillating with a main frequency component that is
an integral multiple �� ,2� ,3� , . . . � or an odd half-multiple
�� /2 ,3� /2 ,5� /2 , . . . � of the fundamental forcing fre-
quency, respectively. The tongues at higher k-values corre-
spond to instabilities with shorter surface wavelengths and
higher oscillation frequencies. As p is increased, the forcing
function changes from a simple rounded triangular shape
with only two extrema per cycle to shapes with richer struc-
ture. Correspondingly, the envelope defined by the tongue
minima �sketched as a dashed line on the figure� changes
from a simple convex function with a single minimum to a
set of convex segments, each with its own minimum.

We have observed a similar relation between the structure
of the extrema of f��t� and the concavity of the resonance
tongue’s envelope for all forcing functions tested �triangular,
square, multi-frequency, etc.� In particular, every f��t� with
only two extrema per cycle resulted in an envelope with
positive concavity for all k. This relation will be one of our
main focuses in the remainder of this paper.

It is important to point out that the changes in the critical
instabilities illustrated in Fig. 1 cannot be explained by a
simple switch to a different dominant forcing frequency in
fp��t� combined with the first mechanism described in the
Introduction. Indeed, as p is increased to 1 the lowest un-
stable region becomes the second harmonic tongue �with
main frequency component equal to 2�� which does not cor-
respond to the fundamental harmonic or subharmonic re-
sponses �with equal or half the frequency, respectively� to
any of the three frequency components of fp��t�: �, 3�, and
5�. Furthermore, it is apparent that the change in p cannot be
characterized as mainly reducing the stability threshold of a
specific tongue, but that it rather affects the aforementioned
envelope over the entire range of k studied.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results showing
that the appearance of multiple minima in the envelope of
the resonance tongues can generate interesting measurable
effects. By carefully choosing the form of the forcing func-
tion, we find a previously unobserved bicritical point be-
tween two surface patterns with very different characteristic
wavelengths.

In our experiments, we use silicone oil with �
=0.95 g/cm3, �=20 dyn/cm, and �=46 cS �Fluka Silicone
Oil AR 20�, which are the same fluid parameters as in Sec.
III. A 0.3 cm deep layer of this silicone oil is contained in a
cylindrical cell with a radius of 7.0 cm and height of 4.0 cm.
The cell has a PVC sidewall, a 0.8 cm thick glass bottom,
and a 0.8 cm thick plexiglass top covered with a light dif-
fuser. It is mounted on the ram of a 10�10 cm2 linear air
bearing, which is attached to a 180 kg triangular granite slab
that floats on an air table to minimize horizontal oscillations.
A shaker �VTS VG100� is suspended by springs from the air
table supports. Two 50 cm long cylindrical aluminum tubes,

each with an inner and outer diameter of 0.48 and 0.95 cm,
respectively, connect the shaker to the ram. An amplifier
�Crown CE2000� drives the shaker with a computer-
generated forcing function. The amplitudes and phases of the
desired Fourier components of the acceleration signal are
measured by an accelerometer �PCB Model 353B68� and
used as feedback to control the driving. The root-mean-
square difference between the measured and target forcing
functions is less than 1% while the variation in the ampli-
tudes of the driven components is less than 0.01%. Since
viscosity and surface tension are both sensitive to tempera-
ture changes, the experiments are conducted in a closed
transparent box maintained at a constant temperature
�±0.005 °C�. To visualize the waves, parallel light is pro-
jected through the cell bottom. The curved fluid surface re-
fracts the light, which then falls on the diffuser producing a
representation of the pattern. A CCD camera synchronized
with the forcing function acquires the images.

Our specific choice of forcing function was determined by
searching for an experimentally achievable set of parameters
having a linear instability at onset with a response far from
the usual subharmonic one. This objective is not easily
achieved despite the fact that our numerical exploration es-
tablished that many forcing functions generate resonance
tongues with a multiple minima envelope. Indeed, for the
fluid parameters used in our experiments, we found numeri-
cally that a tongue belonging to the second or higher �in
order of increasing k� envelope minimum can be excited at
onset only for very low values of h or �. However, the range
of these two quantities is limited by our experimental appa-
ratus. For very shallow fluid layers �h
0.1 cm�, spurious
effects can affect the patterns: Surface waves may contact the
bottom of the container and a small tilt, variation in the bot-
tom profile, or wetting at the wall can lead to large changes
in the relative fluid depth �h /h. Additionally, as h and � are
reduced, the critical acceleration �c increases. Because the
maximum acceleration and amplitude ���−2� of the appara-
tus are limited, much of this low �/large � regime is inac-
cessible. By testing numerically various forcing functions,
we were able to construct fp��t� with p	1, as defined in
�11�, which has a global minimum in the part of the envelope
that does not contain the first subharmonic tongue �see Fig.
1�d��, and which is experimentally accessible.

Figure 2 displays the neutral stability curves computed
numerically for the experimental parameters specified above,
using �=2� �10 Hz� and a forcing fp��t� with p=0.9, p
=1.0, and p=1.1. The figure shows a very small change in
the forcing function �see left panels� producing a large jump
in the critical wavenumber. For p=0.9 �top�, the first subhar-
monic tongue �with main frequency component at � /2� will
be excited at onset. Numerically, we compute a critical forc-
ing �c

SH=3.35 and a critical wavenumber kc
SH=2.07. At p

=1.0 �center�, the system is close to a bicritical point, where
the first subharmonic and second harmonic tongues become
simultaneously unstable at onset. The corresponding critical
values are �c

SH=3.86, kc
SH=2.05, and �c

H=3.87, kc
H=7.64, re-

spectively. Finally, for p=1.1 �bottom� the second harmonic
tongue becomes the instability at onset, with �c

H=4.10 and
kc

H=7.59. We refer to it as the second harmonic one since it
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oscillates with a main frequency component at 2�, and is
therefore the second harmonic tongue in order of growing k
�the first being above the plotted �-range, between the two
subharmonic tongues displayed�. It is a nontrivial critical in-
stability, which cannot be easily explained by the mecha-
nisms described in the Introduction, because it does not cor-
respond to the first harmonic or subharmonic responses to
any of the forcing frequency components ��, 3�, and 5��.
Instead, it is related to the second local minimum of the
envelope of the resonance tongues �see Fig. 1�d��.

Experimentally, we observe the transition between these
two linearly unstable regimes by using the same fp��t� forc-
ing function. Figure 3 shows images of the surface patterns
for p=0.9 �left� and p=1.1 �right�. As predicted by our nu-
merical calculations, their characteristic length scale changes
dramatically, in spite of the small variation in fp��t�. For p
=0.9, we obtain a pattern of large hexagons at a critical forc-
ing �c=3.72g, with a characteristic size of 3.5 cm which
corresponds to the critical wavenumber kc=1.77. When com-
pared to the numerical results, �c is within 10% and kc

within 15% of the predicted values. Given the pattern defor-
mation that is observed towards the image borders due to the
small aspect ratio �the size of the container is only about
twice the surface wavelength�, these discrepancies are not
significant. For p=1.1, a pattern of small hexagons appears
at �c=4.27, with a characteristic size of 0.9 cm, which im-
plies kc=6.96. These measurements are within 4% �for �c�
and 9% �for kc� of the numerical predictions. We have also
verified in our experiments that, with respect to the funda-
mental forcing frequency, the oscillations of the large pattern
are subharmonic and those of the small one are harmonic.
Finally, at p=1.0 �image not shown�, we observe that the
system generates small hexagons which are practically indis-
tinguishable from those at p=1.1, with �c=4.0 and kc
=6.98.

For 0.92� p�0.95, we find in our experiments a bicriti-
cal region where a complicated mixed mode surface pattern
appears. These kind of patterns can arise from the nonlinear
interactions of two or more linear instabilities �20–24�. They
are often obtained by introducing frequency components in
the forcing function with simple linear responses that interact
in the horizontal plane to produce new structures. In contrast,
in the current situation the changes in the tongue envelope
selects linear instabilities that are not directly connected to
the forcing components and, therefore, the patterns generated
through this mechanism could potentially be different. Un-
fortunately, in our current experiment the mixed surface pat-
terns include complicated interactions with the side walls
due to the small size of the container. Their proper analysis
will, therefore, require a much larger aspect ratio and is left
for future work.

V. ANALYTICAL CALCULATIONS

A. The lubrication approximation

We are interested in exploring analytically the origin of
the relation observed in Sec. III between f��t� and the enve-

FIG. 2. �Color online� Shape of the forcing
functions �left� and their corresponding neutral
stability curves �right� for p=0.9 �top�, p=1.0
�center�, p=1.1 �bottom�, and the same param-
eters and units as in Fig. 1. For small changes in
f��t�, the instability at onset �occurring at critical
forcings indicated by the dashed lines� switches
from the first subharmonic �SH� resonance
tongue to the second harmonic �H� one. Each as-
terisk indicates the critical forcing �c and wave-
number kc measured experimentally.

FIG. 3. Experimental pictures �negative-images� of the surface
patterns appearing at onset for p=0.9 �left� and p=1.1 �right�, cor-
responding to the top and bottom forcing functions in Fig. 2. Note
that, for this small variation in the forcing, a dramatic change in the
pattern is observed. The size of each image is 8.22 cm�8.22 cm,
which captures the central region of the container.
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lope of �c�k�. To proceed, we will focus on systems in the
lubrication regime, where the ratio between the �tv and the
�2v term of the Navier-Stokes equation is small. This ratio is
of order �l /��2, where l is the distance that the fluid motion
penetrates the surface and � is the characteristic size of the
boundary layer �28,29,35�. Since l can be estimated by either
1 /k �if kh�1� or h �if kh�1�, and � is proportional to 
� /�,
it follows that a system is in the lubrication regime if it
consists of a shallow enough fluid layer with high enough
viscosity and a low enough oscillation frequency.

We use a simplified analytic description, introduced by
Cerda and Tirapegui in �28,29� for fluids under the lubrica-
tion approximation, in which a damped Mathieu equation
involving only the motion of the free fluid surface is ob-
tained. This equation is found by first deriving an exact non-
local �in time� relation for the linear evolution of the surface,
which is a formulation analogous to that developed in �36�.
By imposing a short-memory to the system due to its fast
dissipation rate, the nonlocal dependence is then neglected.
The resulting Mathieu equation reads

�̈k + 2�̄k�̇ + �̄k
2�1 + �kf��t���k = 0, �12�

where the dots represent derivatives with respect to time and

�̄k = �k2B1�kh�B2�kh� �13�

�̄k
2 = k�g + �k2/��B2�kh� �14�

�k =
�g

g + �k2/�
. �15�

Here, B1�kh� and B2�kh� are explicit nondimensional func-
tions given by

B1�y� =
cosh�2y� + 2y2 + 1

sinh�2y� − 2y
�16�

B2�y�

=
3 cosh2�y��sinh�2y� − 2y − 4y3/3� + y2�sinh�2y� − 2y�

�sinh�2y� − 2y�2 .

�17�

Figure 4 shows that B1�y� and B2�y� have a simple structure
despite their complicated algebraic expressions. As y ap-
proaches 0, both functions diverge with B1�y��y−3 and
B2�y��y−1. For large values of y, B1�y�, and B2�y� quickly
converge to their asymptotic limits of 1 and 3/2, respec-
tively.

The critical forcing strength �c can be found for every k
by considering solutions of �12� that follow the Floquet form

�k�t + 2�/�� = e2���+i	�/��k�t� , �18�

and demanding that the growth rate after every period satis-
fies �=0.

B. The WKB approximation

We will follow here the approach in �28,29�, which uses
the well-known �in the context of quantum mechanics�

Wentzel-Kramers-Brillouin �WKB� approximation �30,31� to
solve the Mathieu equation. We first cast �12� into the form
of a Schrödinger equation by defining

x = �t �19�

��x� = �k�x/��e�̄kx/� �20�

and

E = �̄k
2 − �̄k

2 �21�

V�x� = − �k�̄k
2f�x� , �22�

to obtain

���x� +
1

�2 �E − V�x����x� = 0, �23�

where the double prime represents the second derivative with
respect to x. The problem of finding the solutions of �12� that
follow the Floquet form �18� then becomes equivalent to
finding the eigenfunctions of �23� that satisfy

��x + 2�� = e2���+i	+�̄k�/� ��x� , �24�

where the neutral stability curves are obtained for �=0.
In regions where �2 / �E−V�x� � �1, the WKB approxima-

tion provides explicit solutions for �23� which are divided
into two different families. For E
V�x� �as in the
�aj ,bj�-intervals of Fig. 5� they are given in their most gen-
eral form by

FIG. 4. �Color online� Plot of functions B1 �solid line� and B2

�dashed line�, as defined by Eqs. �16� and �17�. Both functions
diverge for y→0 with B1�y��y−3 and B2�y��y−1. For y→� they
approach their corresponding asymptotic limits B1�y�→1 and
B2�y�→3/2.

FIG. 5. Illustration of the intervals of V�x� in which the integrals
� j and � j are computed using expressions �31� and �32�. In the
WKB approach described �see text�, a matrix Mj is defined through
expression �30� for each �� j ,� j+1�-interval.
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��x� =
1


�P�x�
� �A exp��

x0

x

P�x̃�dx̃�
+ B exp�− �

x0

x

P�x̃�dx̃�
 �25�

and for E�V�x� �intervals �bj ,aj+1� in Fig. 5�, by

��x� =
1


�P�x��C sin��
x0

x

P�x̃�dx̃�
+ D cos��

x0

x

P�x̃�dx̃�
 . �26�

Here, P�x�=
�E−V�x�� /� and the complex constants A, B,
C, and D are obtained by imposing the boundary conditions
in each segment. The solution for a given V�x� over the full
x domain is found by matching adjacent segments of ��x� at
the points x0 where V�x0�=E. For x	x0, however, expres-
sions �25� and �26� are not valid and, following the WKB
method, one must perform a matched asymptotic expansion
around x0 to find the correct matching formulas �31�. At the
points �bj� j=1. . .N shown on Fig. 5, these are given by

C =
2A − B


2
and D =

2A + B

2

, �27�

and at the points �aj� j=1. . .N, by

A =
C + D

2

and B =
D − C

2
2
. �28�

We will now extend the neutral stability calculations car-
ried out in �28,29� for V�x��cos�x� to arbitrary forcing func-
tions. Imagine a periodic function V�x� with 2N matching
points per period as in Fig. 5. Using �27� and �28� we can
relate the coefficients Aj+1 and Bj+1 of solution �25� in an
interval �aj+1 ,bj+1� to the coefficients Aj and Bj in the previ-
ous interval �aj ,bj� �see Fig. 5�. We find

�Aj+1

Bj+1
� = Mj�Aj

Bj
� , �29�

where the matrix Mj is defined by

Mj = �2e�j cos�� j� − e−�j sin�� j�
e�j sin�� j�

1
2e−�j cos�� j�

� , �30�

with

� j = �
aj

bj

P�x̃�dx̃ �31�

� j = �
bj

aj+1

P�x̃�dx̃ . �32�

The change in the amplitude of the wave function ��x� after
a full period is, therefore, given by the product M
=MNMN−1 . . .M1. Hence, for solutions with the Floquet form,
Eq. �24� implies the neutral stability condition

max���+�, ��−�� = e2��̄k/�, �33�

where �+ and �− are the two eigenvalues of M. An equivalent
condition can be found by using the fact that the trace Tr�M�
is real and that the determinant Det�M� is equal to 1, together
with the standard relations Tr�M�=�++�− and Det�M�
=�+�−. The resulting expression is

Tr�M� = ± 2 cosh�2�

�
�̄k� , �34�

where the plus or minus signs provide the neutral stability
boundaries for harmonic or subharmonic resonances, respec-
tively.

Note that for some values of k and � it is also possible to
have E�V�x� or E
V�x� for all x, and therefore no inter-
sections between V�x� and E. In these situations the matrix
M cannot be computed and our current implementation
breaks down. However, the WKB method is still valid and it
has been shown in �28,29� that these cases never lead to
instabilities. In our computation of the neutral stability
curves we can, therefore, assume that there is at least one �
and one � region per cycle.

C. Validity of the approximation

We will investigate here the validity conditions for the
approximation described above. The WKB method is based
on an expansion in the small quantity �2 / �E−V�x�� which
can be estimated by �28,29�

�2

�E − V�x��
�

�2

�̄k
2 � � l

�
�4

. �35�

This criterion implies that the approximation should be valid
for systems with �l /��4�1, which is a condition that must be
satisfied in the lubrication regime in which we are focusing.
Indeed, the lubrication regime requires �l /��2�1 and, there-
fore, given that �l /��4 will be even smaller, the WKB ap-
proximation must also be valid in this regime. Let us esti-
mate � and l for the fluid parameters used in Secs. III and IV.
For surface waves oscillating at a frequency �k, the charac-
teristic size � of the viscous boundary layer is of order

� /�k �28,29,35�. Since the response frequency of the domi-
nant surface waves is typically of the same order as the forc-
ing frequency, we have that ��
0.46/10	0.2 cm. On the
other hand, the distance l that the motion of the surface pen-
etrates the fluid can be estimated by the smallest value be-
tween h=0.3 cm and 1/k. In the region of k considered �see
Fig. 6�, l is therefore larger than �0.1 cm. Hence, for these
parameters we have that l /� is of order 1, which implies that
the WKB method does not provide a good approximation.

In order to be able to use a WKB analysis in our study, we
will consider in this section a shallower fluid layer with h
=0.1 cm and a lower oscillation frequency of 3.5 Hz, while
keeping all other parameters unchanged. For this case, we
have ��
0.46/3.5	0.4, and l�h=0.1. We thus obtain
�l /��4
10−2, which should imply a good WKB approxima-
tion. However, this criterion alone does not guarantee the
accuracy of the resulting neutral stability curves. Indeed, for
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any forcing function there will be regions of x where
�2 / �E−V�x���1, in which �25� and �26� are not good ap-
proximations. Unfortunately, the effect of these regions over
the full periodic ��x� solution cannot be easily estimated.
This problem becomes even harder if V�x� has a complicated
shape because in such cases no simple approximation can
even provide the number or size of these regions, which
depend on k and �. We will therefore validate our analysis by
directly comparing the WKB results to the numerical solu-
tions of the full Navier-Stokes linear stability problem.

Figure 6 shows the neutral stability curves obtained using
�=2��3.5 Hz�, h=0.1 cm and the forcing function fp��t�
defined in expression �11� with p=−2 and p=1 �labeled here
“a” and “d,” as in Fig. 1�. The top panels show the exact
numerical results computed using the method described in
Sec. III, while the bottom ones present the approximate
WKB solutions. The implementation of the WKB algorithm
consists in finding the values �c�k� for which the trace of M
satisfies �34�, where M is obtained by multiplying the ex-
plicit expressions for Mj given in �30�. By comparing the top
and bottom panels, it is apparent that the WKB curves are
almost indistinguishable from the exact results in the p=−2
case. For p=1, the WKB approximation and the exact solu-
tion present a similar tongue structure but they do not coin-
cide in the exact predicted values for the critical stability
threshold of each tongue. However, the characteristics of
their resonance tongue envelopes are the same. This is the
relevant feature here since it is this envelope structure that
we will study below using the WKB method.

D. Analysis of the envelopes

Using the WKB approximation, we are now in a position
to relate the shape of the forcing function to the resonance
tongue envelope. For any k and �, the stability criterion �34�
can be computed in terms of

Q�k,�� � ±
Tr�M�

2 cosh�2��̄k/��
, �36�

where Q�k ,���1 indicates an instability. If the forcing func-
tion has only two extrema per cycle, there will always be at
most one � and one � integration region, as illustrated on

Fig. 7 �top� for fp��t� with p=−2 �labeled by an “a,” as in
Figs. 1 and 6�. In these cases we have M =M1, and �36�
becomes

Qa�k,�� = ±
cosh��a + log 2�cos��a�

cosh�2��̄k/��
. �37�

If we consider the function Qa�k� at constant �, the cos��a�
factor will be responsible for oscillations that generate an
unstable tongue at every excursion that reaches Qa�1. Fig-
ure 8 plots Qa at a fixed forcing strength �*=18g, indicated
by the dashed horizontal line on Fig. 6. The dotted lines trace
the envelope of Qa, which is readily obtained by discarding
the cos��a� factor from �37�. It exhibits a single maximum
on the figure and for all other values of � tested, implying
that the envelope of the resonance tongues must have a
single minimum.

In contrast, forcing functions with multiple extrema pro-
duce more complicated envelope structures. Figure 9 shows
a plot of Q�k ,�*� for fp��t� with p=1 �labeled here Qd since
it corresponds to case “d” in Figs. 1, 6, and 7�. The oscilla-

FIG. 6. �Color online� Neutral stability curves
for a forcing function fp��t� with �a� p=−2, �d�
p=1 �labeled as in Fig. 1� and parameters �
=0.95 g/cm3, �=20 dyn/cm, �=46 cS, �
=2��3.5 Hz� and h=0.1 cm. � is in units of g
and k in cm−1. The exact numerical computations
�top� are compared to the WKB approximation
�bottom�. The shape of the harmonic �H� and sub-
harmonic �SH� resonance tongues is essentially
identical for p=−2 and has similar characteristics
for p=1. In both cases, the tongues that would
become unstable under a forcing of �*=18
�dashed line� coincide.

FIG. 7. �Color online� Integration regions for the WKB calcula-

tions pertinent to Figs. 8 and 9. The rescaled Ṽ�x�=V�x� / ��k�̄k
2�

curves correspond to a forcing fp�x� with �a� p=−2 and �d� p=1

�labeled as in Fig. 1�. The values of Ẽk=E / ��k�̄k
2� are displayed for

a forcing strength of �*=18 �see Fig. 6� at k=4, k=6, and k=8.

Note that the integration zone �3
d is not present for Ẽ6 and Ẽ8 in �d�.
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tion amplitude presents two distinct zones of local maxima at
k�4 and k�7, which are responsible for the two minima
that the envelope of the resonance tongues displays in Fig. 6.
In general, it is easy to see that any resonance tongue enve-
lope with multiple minima must be associated with Q�k�
functions �at fixed � values� which have amplitude enve-
lopes with multiple maxima. We will now study how these
complicated amplitude envelopes arise by examining in de-
tail the analytical form of Qd.

The bottom panel of Fig. 7 shows the integration regions
for the p=1 case. Here, M is given by the product of either
three or four matrices, depending on the k-interval consid-

ered, since the �3 region is present for k
 k̃	5.7, but not for

k� k̃. In the k
 k̃ case it is straightforward to compute that

Qd

�k,�*� 	 HC


C1

C2


 + HS

S1


S2

, �38�

with

HC

�k� =

cosh��1
d + 2�2

d + �3
d + log 16�

cosh�2��̄k/��
�39�

HS

�k� =

cosh��1
d + 2�2

d − �3
d + log 4�

cosh�2��̄k/��
, �40�

and

C1

�k� = cos2��1

d� C2

�k� = cos2��2

d

2
� �41�

S1

�k� = − sin2��1

d� S2

�k� = − sin2��2

d

2
� . �42�

In �38�, we have neglected several additional terms of a simi-
lar form, but where the argument of the hyperbolic cosine
contained −�1

d or −�2
d contributions. These terms turn out to

be negligible when compared to HC

�k� and HS


�k� since �1

and �2 are of the same order, and are much larger than �3
�see Fig. 7�d��.

For k� k̃, M is composed of the product of only three
matrices and the expressions become simpler. Using an
equivalent approximation we obtain

Qd
��k,�*� 	 HC

�C1
�C2

�, �43�

with

HC
��k� =

cosh��1
d + 2�2

d + log 8�
cosh�2��̄k/��

�44�

C1
��k� = cos2��1

d� C2
��k� = cos��2

d� . �45�

Figure 10 plots the H, C, and S functions given above.
After close examination, one finds that the structure of the
envelope of Qd�k� is more complicated than that of Qa�k�
mainly because of the interplay between the oscillating C
and S terms. Indeed, the hyperbolic H terms behave similarly
to the Qa�k� case, presenting only one local maximum, and
are therefore not directly related to the appearance of mul-
tiple extrema in the envelope. For example, at k	5 both
HC


�k� and HS

�k� grow with k but the envelope of Qd�k�

decreases, mainly because of the oscillations of the C1

C2




product. Note that the change in the number of integration

regions at k̃ is not essential either for obtaining multiple ex-
trema: The combination of the oscillations of the C and S
functions are able to produce additional extrema even be-
yond their corresponding domains. Furthermore, in various
tested cases with different fluid parameters and forcing func-

FIG. 8. �Color online� Plot of Qa�k ,�*� for a forcing function
fp��t� with p=−2 and a forcing strength �* �see Fig. 6�. The re-
gions with Qa�1 are unstable with harmonic �solid curve� or sub-
harmonic �dashed� responses. The dotted envelope is computed by
discarding the cos��a� factor in Eq. �37�.

FIG. 9. �Color online� Plot of Qd�k ,�*� for a forcing function
fp��t� with p=1 and a forcing strength �* �see Fig. 6�. The regions
with Qd�1 are unstable with harmonic �solid curve� or subhar-

monic �dashed� responses. At k̃ the definition of Qd switches from
Qd


 to Qd
�, given by Eqs. �38� and �43�, respectively, since the

integration region �3
d is not present for k� k̃ �see Fig. 7�d��.

FIG. 10. �Color online� Main sinusoidal �top� and hyperbolic
�bottom� components of the Qd�k ,�*� functions displayed in Fig. 9.

Their combination through Eqs. �38� and �43� �for k
 k̃ and k� k̃,
respectively� determines the amplitude envelope structure observed
in Fig. 9.
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tions we have found no clear correlation between the
changes in the number of integration regions and the shape
of the neutral stability curves.

We now find analytic expressions that describe the enve-
lope of the resonance tongues for any forcing function with
only two extrema per cycle. The neutral stability criterion in
these cases is equivalent to setting Qa�k ,��=1 in expression
�37�. By dropping the oscillatory factor cos��a� in �37� and
using the high dissipation of the lubrication regime to neglect
the log 2 term �when compared to �a which, for the param-
eters used in this section, is evaluated as �a	2��̄k /�
	300�, we find that

�a 	
2��̄k

�
�46�

at the envelope. Using the definitions of �a and �̄k, this con-
dition can be rewritten as

�
V�x��E


�1 − � + �k���f�x��dx = 2�
� , �47�

where the integration is carried out over the V�x��E region
and the algebraic function ��kh� is given by

��y� =
�1y3

1 + �2y2B1
2�y�B2�y� , �48�

with

�1 =
�2

gh3 and �2 =
�

g�h2 . �49�

Equation �47� provides an implicit expression for �k��� at
the envelope. Using this result and the definition in �15�, we
find that the shape of the envelope of the resonance tongues
under the current approximations is described by the func-
tion

�e�kh� = �1 + �2k2h2��k���kh�� . �50�

Unfortunately, there appears to be no simple way to extract
the properties of �e�kh� without further specifying �1, �2,
and f�x�. However, we have observed for all tested cases that
if f�x� has only two extrema per cycle, �e�kh� has only one
minimum. While the validity of this statement for all cases is
a conjecture that would require a proof which is beyond the
scope of this paper, we consider below two simple examples
where analytic progress can be made.

For square forcing �where f��t�=1 during half of the pe-
riod and f��t�=−1 during the other half�, the conjecture can
be proved as follows. First, we find the solution of �47�

�k��� = 3� + 1. �51�

Then, we substitute this result into Eq. �50� to obtain an
explicit expression for the envelope of the resonance tongues

�e
sq�kh� = 3�1k3h3B1

2B2 + �2k2h2 + 1. �52�

While the specific form of �e
sq depends on the parameters �1

and �2, its extrema can be readily computed by using �k�e
sq

=0. We find that they are located at the intersection of the

functions r�y�=−3�y�y3B1
2�y�B2�y�� and s�y�=2�2y /�1.

Given that r�y� does not depend on any parameters, it can be
evaluated numerically without loss of generality. We find that
it decreases monotonically, intersecting the r=0 axis at y*

	1.479. Using this result and the fact that s�y� is a linearly
increasing function, it is easy to see that �e

sq�kh� can have
only one minimum �which must be located at k�y* /h�.

For triangular forcing �where f��t� is a linear function
that increases during half of the period and a decreases dur-
ing the other half�, the analytical calculation becomes much
harder. The solution for �k is given by the real root of the
cubic equation

��k + � − 1�3 = 9�k
2� . �53�

It has a more complicated structure than �51�, which renders
the use of the techniques developed for the square forcing
case impossible. In the current analysis we will, therefore,
content ourselves with scanning the parameter space numeri-
cally to show that, for a wide range of systems with triangu-
lar forcing, the envelope of the resonance tongues has only
one minimum. In order to do this, we first note that the
problem now depends on only two nondimensional param-
eters: �1 and �2. We also note that we can write the analytic
solution of �53� and use �48� and �50� to obtain a �very long�
explicit algebraic expression for the envelope of the reso-
nance tongues, which we label �e

tri�kh� but do not reproduce
here because of its length. By evaluating �k

2�e
tri�kh� at 103

points between k=0 and k-values that reach an asymptotic
regime, using approximately 104 different �logarithmically
spaced� combinations of the parameters �1� �10−6 ,101� and
�2� �10−5 ,103�, we find that �e

tri�kh� is always a smooth
function with positive concavity. This strongly suggests that
�e

tri�kh� has only one minimum and that the conjecture also
holds for triangular forcings.

Finally, for a sinusoidal forcing f��t��cos��t� one can
only express �k��� in terms of an integral equation which
cannot be explicitly solved. The work in �28,29�, however,
shows that �e

sin�kh� again appears to have only one minimum
for any combination of parameters.

The results presented above relate the shape of the forcing
function to that of the envelope of the resonance tongues. In
particular, they support the conjecture that only a forcing
with more than two extrema per cycle can generate a tongue
envelope that has more than one minimum. A full proof of
this conjecture would be of interest not only as a mathemati-
cal result, but also as a guide for engineering surface pat-
terns. It would imply, for example, that only forcing func-
tions that have this characteristic can display bicritical points
involving noncontiguous resonance tongues.

VI. DISCUSSION AND CONCLUSIONS

We have presented a new approach for studying the effect
of the shape of the forcing function on the Faraday linear
surface wave instabilities. Through a numerical, experimen-
tal, and analytic investigation, we have established a relation
between the number of extrema in the forcing function and
the number of minima that can appear in the envelope of the
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resonance tongues. This approach does not rely on a multi-
frequency description of the forcing function. It, therefore,
allows us to consider forcings that cannot be defined by the
superposition of a few sinusoidal terms, but that can excite
surface wave instabilities in new ways that could lead to a
greater control of the surface patterns.

The analysis that we have carried out provides new in-
sights for understanding the effects of the energy feeding
mechanism in pattern forming systems. Indeed, we use the
lubrication approximation to reduce the system to one degree
of freedom and then apply the WKB method, which neglects
the fast oscillations by integrating their net effect over the
different forcing segments. By doing this, we achieve a de-
scription that is somehow similar to the simple mechanical
analogies �with balls, springs, and pendula� that are used in
reduced dimensionality models of parametric resonance. In
this context, it would be interesting to try to relate the sim-
plified dynamics that the WKB calculations furnish for each
wavenumber to the forcing strength required to reach its cor-
responding instability threshold. Furthermore, it may be pos-
sible to follow a similar approach to study the effects of the
forcing mechanism in other fluid regimes or even in a differ-
ent system, such as the granular Faraday experiments where
strongly nonsinusoidal forcings is the norm �37�.

From an analytical perspective, various additional con-
nections between the forcing shape and the resonance

tongues could be obtained by developing the implicit rela-
tions established here. We expect to be able to achieve this
by adequately choosing a reduced set of forcing functions
and using the right approximations. Obtaining these addi-
tional connections could lead to a better understanding of the
inverse problem, in which the forcing function would be tai-
lored to achieve a given instability.

From an experimental perspective, the lubrication regime
in which our analytic results are obtained has not yet been
widely explored. This is not due to any fundamental limita-
tion but rather to technical difficulties, mainly in achieving
high enough accelerations at low frequencies and having a
large enough container for the surface patterns to develop.
However, given that we obtain good analytical approxima-
tions in this regime, we hope that new experiments will ex-
plore this regime. This, together with an extension of our
analysis to consider nonlinear effects, would allow an explo-
ration of the patterns that can be formed by the linear insta-
bilities achieved through the forcing function control.
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