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An important characteristic of flocks of birds, schools of fish, and many similar assemblies of self-
propelled particles is the emergence of states of collective order in which the particles move in the same
direction. When noise is added into the system, the onset of such collective order occurs through a
dynamical phase transition controlled by the noise intensity. While originally thought to be continuous,
the phase transition has been claimed to be discontinuous on the basis of recently reported numerical
evidence. We address this issue by analyzing two representative network models closely related to systems
of self-propelled particles. We present analytical as well as numerical results showing that the nature of
the phase transition depends crucially on the way in which noise is introduced into the system.
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The collective motion of a group of autonomous parti-
cles is a subject of intense research that has potential
applications in biology, physics, and engineering [1–3].
One of the most remarkable characteristics of systems such
as a flock of birds, a school of fish, or a swarm of locusts is
the emergence of ordered states in which the particles
move in the same direction, in spite of the fact that the
interactions between the particles are (presumably) of short
range. Given that these systems are generally out of equi-
librium, the emergence of ordered states cannot be ac-
counted for by the standard theorems in statistical
mechanics that explain the existence of ordered states in
equilibrium systems typified by ferromagnets.

A particularly simple model to describe the collective
motion of a group of self-propelled particles was proposed
by Vicsek et al. [4]. In this model each particle tends to
move in the average direction of motion of its neighbors
while being simultaneously subjected to noise. As the
amplitude of the noise increases the system undergoes a
phase transition from an ordered state in which the parti-
cles move collectively in the same direction, to a disor-
dered state in which the particles move independently in
random directions. This phase transition was originally
thought to be of second order. However, due to a lack of
a general formalism to analyze the collective dynamics of
the Vicsek model, the nature of the phase transition (i.e.,
whether it is second or first order) has been brought into
question [5].

In this Letter we show that the nature of the phase
transition can depend strongly on the way in which the
noise is introduced into these systems. We illustrate this by
presenting analytical results on two different network sys-
tems that are closely related to the self-propelled particle
models. We show that in these two network models the
phase transition switches from second to first order when

the way in which the noise is introduced changes from the
one presented in [4] to the one described in [5].

The first network model, which we will refer to as the
vectorial network model, consists of a network of N 2D
vectors (represented as complex numbers), f�1 �
ei�1 ; �2 � ei�2 ; . . . ; �N � ei�N g, all of the same length
j�nj � v and whose angles f�1�t�; �2�t�; . . . ; �N�t�g can
change in time. Each vector �n interacts with a fixed set
of K other vectors, f�n1

; . . . ; �nK g, randomly chosen from
anywhere in the system. We will call this set of K vectors
the inputs of �n. Once each vector �n has been provided
with a fixed set ofK input connections, the dynamics of the
network are then given by one of the two following inter-
action rules:

 �n�t� 1� � angle
�
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where for any vector ~v � jvjei� we define the function
angle� ~v� � �, and ��t� is a random variable uniformly
distributed in the interval ���;��. The dynamics of the
network is fully deterministic for� � 0 and becomes more
random as the parameter � increases. In what follows, we
will refer to the quantity �1=vK�

PK
j�1 �nj as the average

contribution of the inputs of �n.
To quantify the amount of order in the system we define

the instantaneous order parameter  �t� as

  �t� � lim
N!1

1

vN

��������
XN
n�1

�n�t�
��������: (3)

In the limit t! 1, the instantaneous order parameter  �t�
reaches a stationary value  [4–7]. Thus, in the stationary
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state all the vectors are aligned if  � 1, whereas if  � 0
the vectors point in random directions.

The interaction rules given in Eqs. (1) and (2) were
proposed by Vicsek et al. in Ref. [4], and by Grégoire
and Chaté in Ref. [5], respectively. The difference between
these two interaction rules consists in the way in which the
noise is introduced: In Eq. (1) the noise is added outside the
angle function; i.e., after the angle function has been
applied to the average contribution of the inputs. On the
other hand, in Eq. (2) the noise is added inside the angle
function; i.e., it is added directly to the average contribu-
tion of the inputs. In Ref. [5], Grégoire and Chaté posed the
question as to whether these two rules lead to the same type
of phase transition.

In this Letter we show that the interaction rules in
Eqs. (1) and (2) produce different types of phase transitions
in the network systems under consideration, which sug-
gests that a similar effect is being observed in [5] for the
self-propelled systems.

Obviously, in the self-propelled particle models the
elements do not interact through a network. Instead, they
move in a 2D space, each particle interacting locally with
the particles that fall within a certain radius. This motion
allows particles that are initially far apart to meet, interact,
and separate again, giving rise to effective long-range
interactions. On the other hand, in our vectorial network
model the particles are fixed to the nodes of a network. The
long-range correlations produced by the motion of the
particles in the self-propelled models are proxied in our
network model through randomly choosing the inputs of
each element from anywhere in the network. An under-
lying assumption of our work is that the existence and
nature of the phase transition depends mostly on the oc-
currence of such long-range interactions, and less crucially
on whether they are produced by the motion of the particles
or by the network topology [6,7]. While the exact relation
between these two ways of establishing long-range inter-
actions is not yet known, it has been shown that a strong
parallel can be established between them [7,8]. Further,
below we show that there are at least two limits in which
they are fully equivalent: for large particle speeds and for
high densities (see Figs. 1 and 2).

In Ref. [7] it was proven that, as the noise amplitude �
increases, the vectorial network model with the interaction
rule given as in Eq. (1) undergoes a continuous phase
transition from ordered states where  > 0, to disordered
states where  � 0. Figure 1 shows this phase transition
obtained numerically for N � 20 000 and K � 5. It also
displays the phase transition in the Vicsek model for a
system with the same N, a density such that the average
number of interactions per particle is also K � 5, and
increasing particle speeds. As can be seen from Fig. 1,
the Vicsek model curves approach continuously the net-
work model curve as v! 1. This supports the idea that in
both cases a second order phase transition is observed
when the noise is introduced as in Eq. (1), albeit the finite
size effects observed near the critical point.

The probability distribution function (PDF) of the sum
1
vK

PK
j�1 �nj�t� � �e

i��t� that appears in Eq. (2) is com-
puted as for a random walk assuming that all the terms are
statistically independent. By projecting this PDF onto the
unit circle we can establish a recursion relation for the
order parameter, which for K	 1 becomes  �t� 1� �
M�� �t��, where

 M �� �t�� 
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FIG. 1 (color online). Phase diagram of the Vicsek model and
the vectorial network model for the case in which the noise is
added as in Eq. (1). When the speed v of the particles in the
Vicsek model increases, the phase transition converges to that of
the vectorial network model. The numerical simulations were
carried out for systems with N � 20 000 particles and an average
number of interactions per particle K � 5.
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FIG. 2 (color online). Graph of the dynamical mapping
M�� �. (a) The interaction rule is as in Eq. (2). The solid
curves correspond to the analytical solution given in Eq. (4),
and the symbols to the numerical simulation carried out for a
system with N � 20 000 and an average number of interactions
per particle K � 100. (b) The interaction rule is as in Eq. (1).
The curves were computed numerically for a system with N �
20 000 particles and K � 5. In (a) the nonzero stable fixed point
appears discontinuously as � decreases, whereas in (b) it
appears continuously.
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and 2F1�a; b; c; x� is the Gauss hypergeometric function.
The function M�� � is shown in Fig. 2(a) for different
values of � (solid curves). This figure also displays with
symbols the numerical dynamical mapping computed for
the self-propelled model with the interaction rule given in
Eq. (2), N � 20 000 particles, and an average number of
interactions per particle K � 100. Clearly, the numerical
mapping coincides with the theoretical result for M�� �,
showing that the network and self-propelled systems are
also equivalent in the high density limit case considered
here. The numerical mappings for the self-propelled sys-
tem were obtained by placing the particles in various
random initial conditions constrained to produce every
order parameter value  �t� in the x axis, and then comput-
ing one time step using Eq. (2) to obtain the corresponding
value  �t� 1� in the y axis.

The fixed points of the dynamical mapping  �t� 1� �
M�� �t�� give the stationary values of the order parame-
ter. From Eq. (4) it is clear that  � 0 is always a fixed
point. However, the stability of this fixed point changes
depending upon the value of �. By numerically solving
Eq. (4) to obtain the fixed point, we find that for 0:672<�
the only stable fixed point is  � 0. As �! 0:672 from
above, the graph of M�� � moves closer to the identity
and eventually another nonzero stable fixed point  0 ap-
pears discontinuously when � � 0:672 (see the point in-
dicated with an arrow in Fig. 2(a)]. For 1=2<� � 0:672
there are actually two stable fixed points. In this region of
bistability the system shows hysteresis. Finally, when �<
1=2 the fixed point  � 0 becomes unstable and only the
nonzero fixed point  0 remains stable. Contrary to this,
when the noise is introduced as in Eq. (1) the nonzero
stable fixed point appears continuously, as can be seen
from Fig. 2(b).

The validity of these results is corroborated by numeri-
cal simulations carried out for networks with N � 105 and
K � 20. Figure 3 shows the fixed point  of Eq. (4) as a
function of the noise intensity � (solid line). The disconti-
nuity of the order parameter  at � � 0:672 and � � 1=2
is apparent. The dashed and dotted-dashed curves are the
plots of the results from the numerical simulation for the
cases in which all the vectors were initially aligned in the
same direction ( �0� � 1), and when the vectors were
initially oriented in random directions ( �0� ’ 0), respec-
tively. In the region of bistability 1=2<�< 0:672, the
system reaches one or the other of the two stable fixed
points depending upon the initial condition.

The theoretical curves presented in Fig. 3 show the
‘‘limits of metastability’’ for the system, i.e., the maximal
and minimal values of � for which the system has bistable
behavior (hysteresis). Clearly, specific realizations of the
system cannot be driven all the way to the limits of meta-
stability and decay at values of � slightly above 1=2 and
below 0.672, as observed in the graph. Additionally, Eq. (4)
was obtained in the limit of large K; however, already for
K � 20 the agreement is good.

The second model that we consider is a majority voter
model in which the network elements �n can acquire only
two values, �1 or �1. We can think of this system as a
society in which every individual �n has to make a deci-
sion about an issue with two possible alternatives, either
�1 or �1. Again, each element �n receives inputs from a
set ofK other elements randomly chosen from anywhere in
the system. Let us first consider the case in which the
interaction between �n and its K inputs,
f�n1

; �n2
; . . . ; �nK g, is given by

 �n�t� 1� � sgn
�

sgn
�

1

K

XK
j�1

�nj�t�
�
�

��t�
1� �

�
; (5)

where sgn�x� � 1 if x > 0, sgn�x� � �1 if x < 0, � is a
parameter that takes a constant value in the interval �0; 1�,
and ��t� is a random variable uniformly distributed be-
tween ��1; 1�. For the sgn function to be well defined we
choose K as an odd integer. Equation (5) is similar to
Eq. (1) in that the noise is added to the sign of the average
contribution of the inputs. Since in this case�n is a discrete
variable that takes only the two values �1 or �1, the sgn
function has to be applied again. This interaction rule
reflects the fact that an individual in a society usually tends
to be of the same opinion as the majority of his ‘‘friends’’
(inputs), though, with probability �=2 he can have the
opposite opinion.

The instantaneous order parameter  �t� is defined as in
Eq. (3), but now the vertical bars represent the absolute
value instead of the norm of a vector.

In Ref. [9] it has been shown that the majority voter
model with the interaction rule given by Eq. (5) undergoes
a continuous phase transition as the value of � is varied. In
Fig. 4 we reproduce this phase transition for networks with
N � 105 and K � 3 (solid curve with circles). It is clear
from this figure that, when the noise is added as in Eq. (5),
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FIG. 3 (color online). Phase diagram of the vectorial network
model for the case in which the noise is added as in Eq. (2). The
solid line corresponds to the prediction obtained from Eq. (4).
The dashed and dotted-dashed curves are the results of the
numerical simulation starting out the dynamics from initial
conditions for which  �0� � 1 and  �0� � 0, respectively. The
phase transition in this case is clearly discontinuous.
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the phase transition in the majority voter model is indeed
continuous.

Let us now consider the case in which the interaction
rule between �n and its inputs is given by

 �n�t� 1� � sgn
�

1

K

XK
j�1

�nj�t� � 2���t�
�
; (6)

where ��t� is a random variable uniformly distributed in
the interval ��1; 1� and � 2 �0; 1�. This rule is similar to
that given in Eq. (2) in that the noise is added to the average
contribution of the inputs and then the sgn function is
evaluated. Again, the PDF of the sum appearing in
Eq. (6) can be computed as for a random walk assuming
that all the terms are statistically independent. Integrating
the PDF over all positive values of the sum we obtain a
recursion relation for the order parameter (see [9]), which
for K � 3 becomes

  �t� 1� �

8>>><
>>>:

3
2 �t� �

1
2 � �t��

3; for 0<�< 1
6

1�6�
8�  �t� � 1�2�

8� � �t��
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6 <�< 1
2

1
2� �t�; for 1

2 <�

Although  � 0 is always a fixed point of the previous
equation, a stability analysis reveals that for 0<�< 1=2
the solution  � 0 is unstable and the only stable fixed
point is � 1. In the region 1=2<� the fixed point  � 1
disappears altogether and the only fixed point that remains
is  � 0, and it is stable. Therefore, at the critical value
� � 1=2 the system undergoes a discontinuous phase tran-
sition from a totally ordered state ( � 1) to a fully ran-
dom state ( � 0). Figure 4 shows the results of the
numerical simulation for a system with N � 105 and K �
3 (dashed curve with diamonds).

In summary, we have analyzed numerically and analyti-
cally the phase transition from ordered to disordered states
in two network models that capture some of the main

aspects of the interactions in systems of self-propelled
particles. In particular, the self-propelled model becomes
equivalent to the vectorial network model in the limit of
large speeds or high densities. We have shown that for the
two network models, the phase transition changes from
second order to first order depending on the way in which
the noise is introduced into the system. This change is
consistent with the results reported by Vicsek et al. in
[4], and by Grégoire and Chaté in [5]. This consistency
suggests that a similar effect is being observed in the self-
propelled model and motivates a deeper analysis in order to
determine the nature of its phase transition. Clearly, the
two ways of introducing noise correspond to different
physical situations. On the one hand, with the Vicsek
type of noise the uncertainty falls on the decision mecha-
nism. On the other, introducing the noise à la Grégoire-
Chaté, the decision function is perfectly determined and
the uncertainty falls on the arguments of this function.
There is no reason to expect, a priori, similar behaviors
under these two different physical situations.
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Note added.—While this manuscript was being re-
viewed, Ref. [10] appeared, in which it is shown that the
first-order phase transition found in Ref. [5] by means of
the Binder cumulant is a numerical artifact.
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FIG. 4 (color online). Phase transitions in the majority voter
model when the noise is added as in Eq. (5) (solid line with
circles), and as in Eq. (6) (dashed line with diamonds). The
numerical simulations were carried out for systems with N �
105 and K � 3.
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