1. “How fast do dominoes fall?” Consider an initial configuration of dominoes which
are equally spaced in a straight line. Let \(d \) be the domino spacing, \(h \) the domino
height, \(g \) gravity, \(w \) the domino width, \(t \) the domino thickness and \(V \) the speed
of the wave of falling dominoes, see Figure 1.

(a) Determine a similarity rule for \(V \) by assuming that \(w \) and \(t \) have negligible
affect on the domino motion.

(b) If the ratio \(d/h \) is assumed constant, what is the dependence of \(V \) on \(h \)?

(c) Of \(V \) on \(g \)?

(d) Suppose the effect of \(t \) is not negligible, what happens to \(V \) as \(t \) tends to \(d \)?

2. Hamilton’s Principle for conservative systems states that: The motion of the
system from time \(t_1 \) to time \(t_2 \) is such that the integral

\[
I = \int_{t_1}^{t_2} L dt
\]

where \(L = T - V \) (the Lagrangian), is an extremum for the path of motion.
Suppose that it was known experimentally that a particle fell a given distance \(y_0 \)
in a time \(t_0 = (2y_0/g)^{1/2} \), but the time of fall for distances other than \(y_0 \) were not
known. Suppose further that the Lagrangian for the problem is known, but that
instead of solving the equation of motion for \(y \) as a function of \(t \), it is guessed
that the functional form is

\[
y = at + bt^2.
\]

Suppose the real constants \(a \) and \(b \) are adjusted so that the time to fall \(y_0 \) is
correctly given by \(t_0 \). Use Hamilton’s principle directly to determine \(a \) and \(b \), i.e.,
determine for what values of \(a \) and \(b \) the integral in equation (1) is an extremum.

3. A rod of length \(L \) has its lateral surface perfectly insulated and is so thin that
heat flow in the rod can be regarded as one-dimensional. Suppose that the initial
temperature is given by

\[
T(x, 0) = x(L - x),
\]

and assume that the ends of the rod are insulated, i.e., zero heat flux. Determine
the temperature, \(T(x, t) \), in the rod for \(t > 0 \). Assume that the thermal diffusivity
\(\alpha \) is a constant.
Figure 1: Figure for Problem 1. Falling dominoes.
4. Consider the heat diffusion problem ($\rho = 1$)

\[c(T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T) \frac{\partial T}{\partial x} \right]. \]

Assume that the specific heat is of the form $c(T) = c_0 T^r$ and the thermal conductivity is of the form $k(T) = k_0 T^s$.

(a) Show that by setting $U = T^{r+1}$ we can find

\[\frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left[\frac{k_0}{c_0} \frac{U^s}{r+1} \frac{\partial U}{\partial x} \right]. \]

(b) Suppose that $s = 2$ and $r = 2$. Determine the temperature in an infinite rod with the initial condition $T(x, 0) = T_0$ for $x \geq 0$ and $T(x, 0) = 0$, otherwise. Here T_0 is a constant. Hint: Use the Green function approach introduced in class.

(c) Express the answer of part (b) in terms of the error function.

(d) Show that for $t > 0$ and as $x \to \infty$, then $T \to T_0$ for the solution you found in part (b).

(e) Show that for $t > 0$ and as $x \to -\infty$, then $T \to 0$, for the solution you found in part (b).