Multivariable Calculus Math 215
Spring 2003
Hermann Riecke

Midterm 2003, May 7

NAME:
Problem | Points | Max
1 10
2 20
3 20
‘ l }:)' 4 25
5 25
total 100

Show all your work. For full credit it is not sufficient to give the correct answer; the
write-up needs to show how the answer is obtained.
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1. (10pts.) Evaluate
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2. (20 pts.) Consider the integral

L (y
/0 jya sin (u\/—z) dx dy.

a) Sketch its domain of integration.
b) Evaluate the integral.




3. (20 pts.) A domain is bounded by the curves

y=x, y=2a  y=aza 2

y = 3x°.
Use a coordinate transformation v = u(z,y), v = v(z,y) to transform the domain

to a rectangle in the (u, v)-plane and write down an integral in u and v for the area
of the domain. (Do not evaluate the integral).
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4.

(25 pts.) Calculate the mass of a solid body that is bounded above by a sphere with
radius a and center at the origin ((z,y,z) = 0) and below by a cone with opening
angle 2¢q, as sketched below. The density p of the body is given by

1

Do not use cartesian coordinates for the integration.
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5. (25 pts.) The paraboloid z = (2% + y?)/2 is intersected by a cylinder 2% 4+ y* = 1
and a plane z = 2. Calculate the surface area of the part of the paraboloid outside
the cylinder and below the plane.

Do not use cartesian coordinatesifor the integration.
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