Multivariable Calculus Math 215

Spring 2003 Hermann Riecke

Midterm 2003, May 7

NAME:

Mean 77

Problem	Points	Max
1		10
2		20
3		20
4		25
5		25
total		100

Show all your work. For full credit it is not sufficient to give the correct answer; the write-up needs to show how the answer is obtained.

Finish to letter from
$$A = 20092$$
 $A = 20092$
 $B + 2 = 80$
 $A - 2 = 70$
 $C + 2 = 57$
 $C - 2 = 59$
 $C - 2 = 90$
 $C - 2 =$

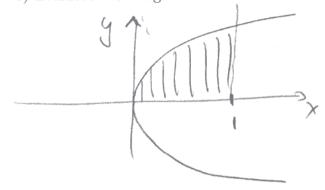
$$\int_0^1 \int_0^x \int_y^x xyz \, dz \, dy \, dx.$$

$$\int = \int dx \int dy \frac{1}{2} \frac{2^{2}}{2} = \int dx \int dy \frac{1}{2} (x^{2}y^{2}) = \frac{1}{2} \int dx \frac{1}{2} \frac{$$

2. (20 pts.) Consider the integral

$$\int_0^1 \int_{y^2}^1 \sin\left(\frac{\pi y}{\sqrt{x}}\right) \, dx \, dy.$$

- a) Sketch its domain of integration.
- b) Evaluate the integral.



$$x = y^2$$

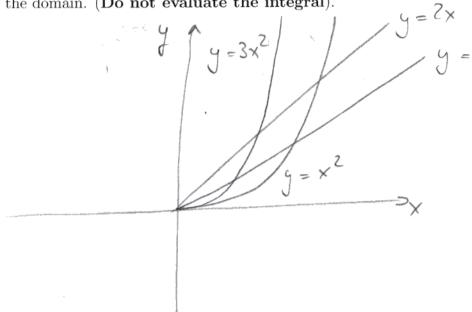
$$y = \pm \sqrt{x}$$

b)
$$\int dy \int dx = \int dx \int dy = \int dx \int dx = \int dx \int dx + \int dx = \int dx + \int dx$$

3. (20 pts.) A domain is bounded by the curves

$$y = x$$
, $y = 2x$, $y = x^2$, $y = 3x^2$.

Use a coordinate transformation u = u(x, y), v = v(x, y) to transform the domain to a rectangle in the (u, v)-plane and write down an integral in u and v for the area of the domain. (**Do not evaluate the integral**).



$$y = ux = vx$$

$$y = x = x$$

$$y = x = x$$

$$y = x = x$$

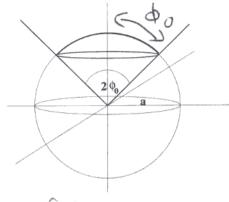
$$\frac{\partial(x_1y_1)}{\partial(u_1y_1)} = -\frac{1}{2}\frac{u^2}{v^2} - \left[-\frac{y_2}{v^2} \cdot \frac{2u}{v}\right] = \frac{u^2}{v^3}$$

$$A = \int du \int dv \frac{u^2}{v^3}.$$

4. (25 pts.) Calculate the mass of a solid body that is bounded above by a sphere with radius a and center at the origin ((x, y, z) = 0) and below by a cone with opening angle $2\phi_0$, as sketched below. The density ρ of the body is given by

$$\rho(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Do not use cartesian coordinates for the integration.



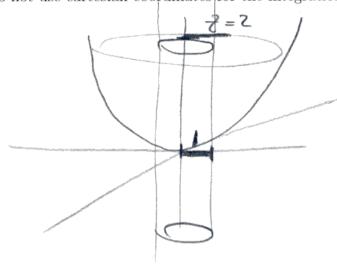
the opherical coordinates:
$$S(\underline{r}) = \frac{1}{R}$$

$$S(\bar{L}) = \frac{K}{L}$$

$$= \pi a^{2} \left[-ca\phi_{0} + 1 \right] = \pi a^{2} \left(1 - ca\phi_{0} \right)$$

5. (25 pts.) The paraboloid $z = (x^2 + y^2)/2$ is intersected by a cylinder $x^2 + y^2 = 1$ and a plane z = 2. Calculate the surface area of the part of the paraboloid outside the cylinder and below the plane.

Do not use cartesian coordinates for the integration.



$$T = (x, y, \varphi(x, y)) =$$

$$= (x, y, \frac{1}{2}(x^{2}, y^{2}))$$

$$= \iiint \sqrt{1 + x^2 + y^2} dx dy =$$

Unver radius given by aghide: 1=1

orter radius given by plane: Z=2 (=> 2= \frac{1}{2}(x^2+y^2)

$$S = \int_{0}^{2\pi} \int_{14r^{2}}^{2\pi} r dr d\theta = 2\pi 2 (1+r^{2})^{\frac{3}{2}} \Big|_{1}^{2} = \frac{2\pi}{2}$$

$$=\frac{2\pi}{3}\left[1+4-1-1\right]=2\pi$$