ESAM 311-1 Methods in Applied Mathematics

Fall Quarter 2007

Hermann Riecke

Problem Set 1

Due Friday October 12, 2007

- 1. From the lecture notes do 1.11.7
- 2. Nerve cells (neurons) receive input from other neurons and can be excited by that input if it surpasses a certain threshold. The central quantity for the characterization of a neuron is the electrical voltage *V* across the membrane of the neuron. If the neuron is excited, it generates a voltage spike ('action potential') that is transmitted to other neurons, which can then become excited in turn.

In a very simple model ('integrate-and-fire neuron') neurons are described by a first-order equation for the voltage ${\cal V}$

$$\tau \frac{dV}{dt} = -V + I(t),$$

where I(t) represents the input the neuron receives from other neurons. If $V > V_{threshold}$ at any time t_{spike} the model neuron generates an action potential and its voltage is reset to $V(t_{spike}^+) = 0$.

Assume that initially the neuron is at rest, V(t = 0) = 0.

- (a) For $0 \le t \le T$ the neuron receives an input $I(t) = I_0$, which is turned off again at t = T. Calculate V(t) for $0 \le t \le T$ and for $t \ge T$. Is there an input strength I_0 for which the neuron will generate a spike due to that input?
- (b) Somewhat more realistically the input from other neurons is given by

1

$$I(t) = I_0 t e^{-\alpha t}$$
 for $t \ge 0$.

Calculate V(t) for $t \geq 0$.

- 3. From the lecture notes do the following problems: 1.11.11, 1.11.12, 1.11.13.
- 4. Do problems: 1.11.19, 1.11.20, 1.11.22, 1.11.27, 1.11.29.