
Modeling and Computation in Science and Engineering

Hermann Riecke

Engineering Sciences and Applied Mathematics

h-riecke@northwestern.edu

Winter 2013

March 6, 2015

©2007, 2013

1

Contents

1 Introduction 7

1.1 Applications . 7

1.2 Basic Methods . 8

2 One-Step Methods 12

2.1 Taylor-Series Methods . 13

2.2 Quadrature Methods . 14

2.3 Runge-Kutta Methods . 17

3 Self-Organization of Swarms of Self-Propelled Particles (‘Boids’) 21

4 Error Estimate and Time Step Control 24

4.1 Validation of the Code . 24

4.2 Error Estimate and Extrapolation . 27

4.3 Adaptive Time Step . 28

5 Neuronal Action Potentials - Hodgkin-Huxley Model 35

6 Multi-Step Methods 40

6.1 Adams-Bashforth Methods . 40

6.2 Adams-Moulton Methods . 45

6.3 Predictor-Corrector Methods . 46

7 Stability and Convergence 48

7.1 Connection between stability and convergence 56

8 Implementation of Implicit Methods: Newton’s Method 59

8.1 Approximate Newton Iteration . 65

9 Backward-Difference Formulae 67

10 Chemical Oscillations in the Belousov-Zhabotinsky System 71

11 Application to Partial Differential Equations 76

11.1 Unidirectional wave equation . 78

11.2 Diffusion Equation . 82

11.3 Boundary Conditions . 84

2

12 Stochastic Differential Equations 86

12.1 Snippets of Ito Calculus . 89

12.2 Numerical Methods . 94

12.2.1 Strong Approximation . 94

12.2.2 Weak Approximation . 99

12.2.3 Application of Weak Approximation: Feynman-Kac Formula . 101

13 Fluctuations and Tipping Points 104

14 Two-Point Boundary-Value Problems 107

14.1 Shooting Method . 108

14.2 Application: Control of Robot . 110

14.3 Minimization with Constraints: Pontryagin’s Principle 112

14.3.1 Pontryagin’s Principle using Functional Derivatives 118

14.4 Shooting Method for Linear Problems 120

15 Applications 123

15.1 Application 1a: Fluid Flow: Vortex Dynamics 123

15.2 Application 2: Ostwald Ripening and the Decay of Islands on Surfaces 126

References 129

15.3 Adams-Moulton Methods . 130

3

Index

AB1, 46

AB3, 81

accuracy, 33

action potential, 35, 38

activation, 37

adaptive, 129

Adaptive Time Step, 28

adatoms, 126

adsorbed atoms, 126

AM2, 46

Backward Euler, 11, 67, 99

Backward Milstein, 99

BD1, 70

BD2, 70, 81

BD3, 70

BE, 81

bisection, 64

Boid, 21

Boundary Conditions, 84

boundary layer, 50

boundary value problems, 107

Brownian motion, 86, 89

Butcher Array, 17

catastrophically, 48

central difference, 46

Central Limit Theorem, 88

central limit theorem, 102

chain rule, 92

characteristic variable, 85

Chemical reactions, 86

CN, 81

coherent motion, 23

Consistency, 58

consistent, 56

constraint, 112

converges, 56

cost function, 112

Coupled system, 79

Crank-Nicholson, 46, 54, 59, 67, 84, 131

current, 36

Diffusion, 126

Diffusion Equation, 82

Diffusion equation, 84

diffusion equation, 102

Dimensional analysis, 81, 82

Dirichlet boundary condition, 84

disparate time scales, 50

domain of attraction, 66

Domain of Dependence, 81

downhill, 63

eigenvalue problem, 122

Eigenvalue problems, 107

End-point Rule, 14

error, 33

error estimate, 27

Euler-Maruyama Schem, 94

excitable, 35

excitatory, 35

Feynman-Kac Formula, 101

flock, 21

fluctuate, 87

fluctuations, 87

flux, 76

Forward Euler, 10, 52, 83, 99

forward Euler, 80, 82, 84, 115

Fourier ansatz, 82

Fourier’s Law, 76

functional, 118

functional derivative, 119

fundamental solution, 121

Gaussian, 87

Gaussian process, 88

global error, 10

Green’s function, 101

Heat Diffusion, 76

Heun, 15

Hodgkin-Huxley Model, 35

Implicit, 45, 130

implicit, 14, 50

4

Implicit Schemes, 99

improved Euler, 15

inactivation, 37

incoming, 85

independent random variables, 89

infectious diseases, 87

inhibitory, 35

integral equation, 14

interpolate, 68

interpolation, 45, 130

Ion channels, 86

ion channels, 36

ionic current, 36

islands, 126

Ito, 91

Ito’s formula, 92

Jacobian, 62, 65, 117

Lagrange multiplier, 114

Lagrange polynomials, 42, 44, 45, 68, 130

Lipschitz continuous, 8

local error, 29, 31

local truncation error, 9

magnetization, 24

Markov Process, 88

mean-square limit, 90

Mermin-Wagner theorem, 24

Milstein Scheme, 96

Multi-step schemes, 70

Neumann boundary condition, 84

Neumann stability analysis, 83

Newton, 65, 84

Newton iteration, 109

Newton’s Method, 59

no-flux, 84

noise, 87

nonlinear equation, 59

normal, 88

one-sided, 85

optimal time step, 29

order parameter, 23

Order-2 Weak Taylor Scheme, 100

orientational order, 23

Ostwald Ripening, 126

outgoing, 85

plot, 26

Poisson equation, 108

polynomial, 40

Pontryagin’s Principle, 112

potassium current, 36

Predictor-Corrector, 46

principal error function, 30

pump, 36

Quadrature, 40

Random Variable, 87

random walker, 102

realization, 95

resolve, 50

Richardson Extrapolation, 27

Riemann-Stieltjes integral, 90

RK4, 81

Robin boundary condition, 84

Runge-Kutta, 15, 54

scalar equation, 51

scaling, 82

Schrödinger equation, 103

Self-Propelled, 21

Shooting Method, 108

Shooting method, 117

Simpson’s Rule, 16

Simpson’s rule, 20

sodium, 37

speed, 81

Stability, 69, 83

stability, 46

Stability Analysis, 52

Stability limit, 52

Stability limits, 81

stages, 17

standard deviation, 88

stiff, 50, 82

stochastic process, 88

Stratonovich, 91

strong approximation, 94

superposition, 120

5

swarming, 23

swarms, 21

Taylor expansion, 78

terraces, 126

threshold, 35

time-varying coefficients, 50

tolerance, 30

Trapezoidal Rule, 15

tri-diagonal, 84

Truncation Error, 13

Truncation error, 15, 44

unbounded, 88

unconditionally stable, 54

unstable, 85

Validation, 24

Vicsek, 24

Vortex, 123

Wave Equation, 77, 85

Weak Approximation, 99

weak approximation, 94

well-posed, 85

Wiener process, 89

6

1 Introduction

In this class we discuss in depth numerical methods to solve ordinary differential

equations and we will implement the methods in applications drawn from various

disciplines. We will deal mostly with evolution equations, i.e. initial-value prob-

lems.

The main topics will be:

• Basic approximation methods

– accuracy & error estimation, order of method

– stability: avoid catastrophic accumulation of error

– convergence to the correct solution

• Problems with multiple time scales: stiff equations

• PDEs as coupled sets of ODEs for each point in space

• Stochastic differential equations: noise

Brownian motion: particle bombarded by water molecules

• Two-point boundary-value problems:

beam on end supports

Books that may be of use1

• Computational Methods in Ordinary Differential Equations by J. D. Lambert,

Wiley, 1973.

• Numerical Methods for Initial Value Problems in Ordinary Differential Equa-

tions by S. Ola Fatunla, Academic Press, 1988

1.1 Applications

The applications we will encounter in the homework deal with

• Self-organization of complex systems: particle motion as a model for flocking

and swarming of animals

• Neuroscience: model for ion currents that generate action potential of nerve

cells

• Chemical reactions: oscillations far from thermodynamic equilibrium

• Stochastic differential equations

• Optimal control: controling a robot arm

1These books are not required. The lecture notes should be sufficient. need also Matlab refer-

ence. look at file literature in 346 main directory

7

1.2 Basic Methods

Consider differential equations of the type

dy

dt
= F(t,y) y(t = 0) = y0

In general y and F can be vectors of size n; then one has a system of n coupled

equations.

Note:

• All higher-order equations can be written as systems

• For simplicity we consider for now scalar equations

We will focus only on sufficiently smooth functions F(t,y), i.e. functions that are

Lipschitz continuous. Thus, we require that for any y1 and y2 the function F(t,y)
satisfy

‖F (t,y1)− F (t,y2)‖ ≤ L ‖y1 − y2‖ ,
where L is some constant that does not depend on y1,2.

Example 1: Any differentiable function is Lipschitz continuous.

Consider a scalar differentiable function F (y) with

L = max
y

∣
∣
∣
∣

∂F (t, y)

∂y

∣
∣
∣
∣

Then we know from the the mean-value theorem

|F (t, y1)− F (t, y2)|
|y1 − y2|

=

∣
∣
∣
∣

∂F (t, ŷ)

∂y

∣
∣
∣
∣

for some ŷ between y1and y2

≤ L.

Example 2: A Lipschitz continuous function need not be differentiable.

Consider F (t, y) = |y|. Then

|F (t, y1)− F (t, y2)| = ||y1| − |y2|| =
{
|y1 − y2| for y1y2 ≥ 0
|y1 + y2| for y1y2 < 0

For y1y2 < 0 we have |y1 + y2| ≤ |y1 − y2| and therefore in both cases L = 1 serves as

a Lipschitz constant.

Theorem: Uniqueness of the Solution

The differential equation

dy

dt
= F (t, y), y(t0) = y0

8

has a unique solution in any domain in which F is Lipschitz continuous in t and y.

Numerical approximations:

To solve the differential equation

dy

dt
= F (t, y)

numerically we discretize the time⇒ for yn ≡ y(tn) we need an algorithm

yn+1 = f(t1, ..., tn, y1, ..., yn)

For small time steps ∆t we can use a Taylor expansion

yn+1 = y(tn +∆t) =

= y(tn) + ∆t
dy

dt

∣
∣
∣
∣
tn

+
1

2
∆t2

d2y

dt2

∣
∣
∣
∣
tn

+ ...

Of course, we cannot keep all terms in the expansion. As a first approach we

truncate after the expansion as

yn+1 = yn +∆t F (tn, yn)

This is the forward Euler2 scheme.

The truncation introduces an error, the local truncation error τl. To obtain an esti-

mate for this error we compare the approximation with the exact solution ỹ

τl = ỹ(tn+1)− yn+1 = ỹn +∆t
dỹ

dt

∣
∣
∣
∣
tn

+
1

2
∆t2

d2ỹ

dt2

∣
∣
∣
∣
tn

+ ...−

− (yn +∆t F (tn, yn))

Assume that the solution was still exact at tn. Then we can estimate the error

arising in this single time step:

ỹn = yn ⇒ dỹ

dt

∣
∣
∣
∣
tn

= F (tn, ỹn) = F (tn, yn)

τl =
1

2
∆t2

d2ỹ

dt2

∣
∣
∣
∣
tn

+ ... = O(∆t2)

Notes:

• Definition of the order of ∆t2, i.e. O (∆t2) :

τ = O(∆t2) ⇔ τ = a∆t2 + b∆t3 + ...

with a, b, ... some numbers that are independent of ∆t.
Thus, as ∆t→ 0 the local error τl in this time step also goes to zero and it does

so at least as fast as quadratically.

2Leonhard Euler (1707-1783)

9

• Thus, the local error of the forward Euler scheme O(∆t2).

Local vs Global Error:

In each time step a local errorO(∆t2) is incurred⇒ for a fixed time interval [0, T] =
[0, N∆t] the algorithm takes N steps, during each of which a local error is incurred.

The error for the whole run is called the global error

τg =
N∑

n=1

τl,n =
N∑

n=1

O(∆t2) = O(N∆t2) = O(∆t)

Note:

• The global error τg is expected to be one order lower than the local error τl.

• The forward Euler scheme is a 1st-order method.

Expect:

• For small ∆t the error is smaller for schemes with higher order

• The computational effort is larger for higher-order method

• Depending on the problem and the accuracy desired simple or more elaborate

schemes are more efficient.

Simple Example:

dy

dt
= −y ⇒ y(t) = y0e

−t

Forward Euler

yn+1 = yn −∆t yn = (1−∆t) yn

Graphically, the forward Euler scheme corresponds to extrapolating along the tan-

gent of the solution (Fig.1).

Notes:

• For small ∆t numerical solution decays as it should and is close to the exact

solution

• For large ∆t numerical solution can oscillate and grow although the exact

solution decays monotonically: the method is unstable.

10

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 2 4 6
−0.5

0

0.5

1

0 5 10
−2

−1

0

1

2

3

Figure 1: Sketch of forward Euler algorithm for ẏ = −y. For small time step (∆t =
0.4) one obtains a good approximation. For larger time steps the solution exhibits

erroneous oscillations (∆ = 1.2), which can grow and lead to blow-up (∆t = 2.2).

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 5 10
0

0.2

0.4

0.6

0.8

1

Figure 2: Sketch of backward Euler algorithm for ẏ = −y. For small time step (∆t =
0.4) one obtains a good approximation. For larger time steps the approximation

becomes worse, but no oscillations and no blow-up arise, even for arbitrarily large

time steps.

Backward Euler:

Now expand the solution about tn+1 and yn+1

yn = y(tn+1 −∆t) = yn+1 −∆t
dy

dt

∣
∣
∣
∣
tn+1

+O(∆t2)

This yields

yn+1 = yn +∆t F (tn+1, yn+1)

Graphically, the new value is obtained via the tangent corresponding to the next

time step. This does not allow any overshoot (Fig.2).

Notes:

• The backward Euler scheme gives an implicit equation for yn+1

• For linear differential equations can simply solve for yn+1. E.g. F (t, y) = −ay,

yn+1 = yn −∆t ayn+1 ⇒ yn+1 =
1

1 + ∆t a
yn

11

• This scheme does not oscillate or blow-up for arbitrarily large ∆t: it is stable

for any ∆t (Fig.2).

• For nonlinear differential equations the backward Euler scheme results in a

nonlinear equation that has to be solved in each time step.

Examples:

1.
dy

dt
= −y3

yn+1 = yn −∆t y3n+1

This yields cubic equation for yn+1 in each time step, which allows a ana-

lytical solution. But it is somewhat complicated

2.
dy

dt
= sin y

yn+1 = yn +∆t sin yn+1

This yields a transcendental equation for yn+1, which has to be solved

numerically in each time step.

Thus:

• Implicit schemes are in general much harder to implement.

• Their advantage is that they tend to have much greater stability.´´

2 One-Step Methods

The two Euler schemes are only first-order accurate. How do we get more accurate

methods?

• One-step methods:

yn+1 = F (yn+1, yn) independent of older values yn−1, yn−2, ...

• Multi-step methods

yn+1 = F (yn+1, yn, yn−1, . . .) involves also older values yn−1, yn−2, ...

12

2.1 Taylor-Series Methods

To establish a connetion between yn+1 and yn we used a Taylor expansion about

• tn and yn : ⇒ explicit method

• tn+1 and yn+1: ⇒ implicit method

1. Forward Euler was obtained by 1st-order Taylor series

yn+1 = yn +∆t F (tn, yn)
︸ ︷︷ ︸

dy
dt |tn

2. Use the 2nd-order Taylor series

yn+1 = yn +∆t
dy

dt

∣
∣
∣
∣
tn

+
1

2
∆t2

d2y

dt2

∣
∣
∣
∣
tn

+O(∆t3)

To make use of this expansion we need

d2y

dt2
=

d

dt

(
dy

dt

)

=
d

dt
(F (t, y))

=
∂F

∂t
+
∂F

∂y

dy

dt
︸︷︷︸

F

Thus, we obtain

yn+1 = yn +∆t F (tn, yn) +
1

2
∆t2

(
∂F (tn, yn)

∂t
+
∂F (tn, yn)

∂y
F (tn, yn)

)

+O(∆t3)

Note:

• One can use this approach to generate also methods of yet higher order.

But the evaluation becomes involved and higher and higher derivatives

of F are needed.

Truncation Error:

τ = ỹ(tn+1)− yn+1 = ỹ(tn) + ∆t
dỹ

dt
+

1

2
∆t2

d2ỹ

dt2
+

1

6
∆t3

d3ỹ

dt3
−

yn
︸︷︷︸

ỹn

+∆t F
︸︷︷︸

dy
dt

+
1

2
∆t2

(
∂F

∂t
+
∂F

∂y
F

)

︸ ︷︷ ︸

d2y

dt2

τ =
1

6
∆t3

d3ỹ

dt3
+ h.o.t. = O(∆t3)

13

3. Expand about the new time step: implicit

y(tn) = y(tn+1 −∆t) =

= yn+1 −∆t
dy

dt

∣
∣
∣
∣
tn+1

− 1

2
∆t2

d2y

dt2

∣
∣
∣
∣
tn+1

+O(∆t3)

thus

yn+1 = yn +∆tF (tn+1, yn+1) +
1

2
∆t2

[
∂F

∂t
+
∂F

∂y
F

]∣
∣
∣
∣
tn+1

+O(∆t3)

Note:

• If we keep only the first non-trivial term ∆t F we obtain the backward

Euler scheme.

• As for the backward Euler method, the implicit equation becomes in gen-

eral nonlinear.

• The Taylor series methods can only be used if the corresponding deriva-

tives of F exist. For equations like

dy

dt
= (t− t0)1/2y y(t0) = 1

one cannot generate the 2nd-order Taylor series since ∂F
dt

does not exist at

t = t0.

2.2 Quadrature Methods

Since the direct Taylor-series method does not yield efficient practicable high-order

schemes we rewrite the ODE as an integral equation to get new ideas for the ap-

proximation of the ODE.

Thus
dy

dt
= F (t, y)

leads to

y(tn+1) = y(tn) +

∫ tn+1

tn

F (t′, y(t′)) dt′

Now: use approximation methods for integrals

1. End-point Rules
∫ tn+1

tn

F (t′, y(t′)) dt′ = ∆t F (tn, y(tn)) +O(∆t2)

The left-end-point rule yields the forward Euler method

yn+1 = yn +∆t F (tn, yn) +O(∆t2)
Correspondingly, the right-end-point rule generates the backward Euler method.

14

2. Trapezoidal Rule
∫ tn+1

tn

F (t′, y(t′)) dt′ =
1

2
∆ (F (tn, y(tn)) + F (tn+1, y(tn+1))) +O(∆t3)

yn+1 = yn +
1

2
∆t

F (tn, yn) + F (tn+1, yn+1)

︸ ︷︷ ︸

implicit term

+O(∆t3)

Can we avoid the implicitness?

Approximate yn+1 on r.h.s.: since the implicit term is already multiplied by

a factor of ∆t, the forward Euler approximation is sufficient to approximate

yn+1 : the replacement

yn+1 → y∗n+1 = yn +∆tF (tn, yn) +O(∆t2)
introduces an error that contributes only to the already omitted term O(∆t3)

yn+1 = yn +
1

2
(F (tn, yn) + F (tn+1, yn +∆t F (tn, yn))

This can be written more streamlined as

k1 = F (tn, yn)

k2 = F (tn +∆t, yn +∆t k1)

yn+1 = yn +
1

2
∆t (k1 + k2) (1)

Note:

• This is method is called the improved Euler method, Heun’s method, or

Runge-Kutta method of 2nd-order

Truncation error:

A simpler method to estimate the order of a scheme is to consider the specific

simple ODE
dy

dt
= λy

which has the exact solution

y(tn+1) = y(tn) e
λ∆t

The improved Euler method yields for this equation

yn+1 = yn +
1

2
∆t [λyn + λ (yn +∆tλyn)] =

= yn +∆tλyn +
1

2
∆t2λ2yn =

=

(

1 + ∆tλ+
1

2
∆t2λ2

)

yn = e∆tλyn
︸ ︷︷ ︸

exact solution

+O(∆t3)

15

Thus, as expected, the scheme is 2nd-order accurate.
Note:

• This method to determine the order gives only an upper limit for the

order of the scheme. In principle, for this specifici simple differential

equation error cancellations could occur that do not occur in general. If

that is the case the method would be of lower order for a general ODE.

• This method does not probe the implementation of any explicit time-

dependence of F .

3. Simpson’s Rule

∫ tn+1

tn

F (t′, y(t′)) dt′ =
1

6
∆t
[

F (tn, yn) + 4F (tn+ 1
2
, y(tn+ 1

2
)) + F (tn+1, yn+1)

]

+O(∆t5)

How to obtain now y(tn+ 1
2
) and y(tn+1)?

Analogously, to the treatment of the improved Euler method we can try

y∗
n+ 1

2
= yn +

1

2
∆t F (tn, yn)

y∗n+1 = yn +∆t F (tn+ 1
2
, y∗

n+ 1
2
)

yn+1 = yn +
1

6
∆t
[

F (tn, yn) + 4F (tn+ 1
2
, y∗

n+ 1
2
) + F (tn+1, y

∗
n+1)

]

Estimate the error of this scheme

yn+1 = yn +
1

6
∆t
[

λyn + 4λy∗
n+ 1

2
+ λy∗n+1

]

= yn +
1

6
∆t

[

λyn + 4λ(yn +
1

2
∆tλyn) + λ

(

yn +∆tλ(yn +
1

2
∆tλyn

)]

= yn

[

1 +
1

6
∆t

(

λ+ 4λ+ 2∆tλ2 + λ+∆tλ2 +
1

2
∆t2λ3

)]

= yn

[

1 + ∆tλ +
1

2
∆t2λ2 +

1

12
∆t3λ3

]

= yn

[

e∆tλ +∆t3λ3
(

1

12
− 1

6

)]

Thus, although Simpson’s rule has an error of O(∆t5) this treatment gives a

much bigger truncation error

τ = O(∆t3)

We need to get better approximations for yn+ 1
2
and yn+1. We will obtain these

in a different way.

16

2.3 Runge-Kutta3 Methods

As in the quadrature approach we evaluate F at intermediate points between tn
and tn+1 and between yn and yn+1. The question is which intermediate points will

yield optimal accuracy.

We consider the general class of methods that can be formulated as

yn+1 = yn +∆t

s∑

k=0

γkFk

with

F0 = F (tn, yn)

Fk = F

(

tn + αk∆t, yn +∆t
k∑

m=0

βkmFm

)

k = 1, ..., s

Notes:

• These Runge-Kutta methods have s+ 1 stages

• The coefficients αk, βkm, and γk need to be chosen to minimize the error, i.e. to

obtain the highest order of method

Which coefficients are required in each stage can be summarized in the Butcher

Array (1963):

α0 = 0 β00 = 0
α1 β10 β11
α2 β20 β21 β22
...

αs βs0 βs,s−1 βs,s
γ0 γ1 ... γs−1 γs

Notes:

• If the diagonal elements are non-zero, βii 6= 0, the method is implicit, other-

wise it is explicit.

Examples:

1. s = 0
we need to choose γ0

yn+1 = yn +∆t · γ0 · F0

this will generate the forward Euler method: we need to choose γ0 = 1.

3Runge (1895) and Kutta (1901)

17

2. s = 1, explicit
now we need α1, β10, γ0, γ1

F1 = F (tn + α1∆t, yn +∆tβ10F0)

yn+1 = yn +∆t [γ0F0 + γ1F1]

Choose the coefficients to minimize the truncation error:

ỹ(tn+1)− yn+1 = ỹ(tn) + ∆t
dỹ

dt
+

1

2
∆t2

d2ỹ

dt2
+

1

6
∆t3

d3ỹ

dt3
+O(∆t4)−

−yn −∆t {γ0F (tn, yn) + γ1F (tn + α1∆t, yn +∆tβ10F (tn, yn))} =

= ∆t F +
1

2
∆t2

(
∂F

∂t
+
∂F

∂y
F

)

+

+
1

6
∆t3

[
∂2F

∂t2
+
∂2F

∂t∂y
F +

∂2F

∂t∂y
F +

∂2F

∂y2
F 2 +

∂F

∂y

(
∂F

∂t
+
∂F

∂y
F

)]

−

−∆t
(

γ0F + γ1

{

F + α1∆t
∂F

∂t
+∆tβ10F

∂F

∂y
+

1

2
α2
1∆t

2∂
2F

∂t2
+

+α1∆t
2β10F

∂2F

∂t∂y
+

1

2
∆t2β2

10F
2∂

2F

∂y2
+O(∆t3)

})

Compare the coefficients at each order in ∆t:

• ∆t :
F − γ0F − γ1F = 0 ⇒ γ0 + γ1 = 1

• ∆t2 :
1

2

(
∂F

∂t
+
∂F

∂y
F

)

− γ1α1
∂F

∂t
− γ1β10F

∂F

∂y
= 0

→ 1

2
− γ1α1 = 0

1

2
− γ1β10 = 0

• ∆t3 : the term∂F
∂y

(
∂F
∂t

+ ∂F
∂y
F
)

cannot be absorbed by any choice of coeffi-

cient

There are 3 other different terms to be balanced.

3 equations for 4 coefficients→ 1 coefficient free:

γ1 = θ, γ0 = 1− θ, α1 ==
1

2γ1
=

1

2θ
, β10 =

1

2θ

This yields the Butcher array:
0 0
1
2θ

1
2θ

0

1− θ θ

Notes:

18

• For all θ the error is O(∆t3): 2nd-order accurate
• We could try to choose θ to minimize the prefactor of the truncation error.

But the error depends on the function F : there is no choice of θ that would

minimize the error in general.

• For θ = 1
2
one gets the second-order Runge-Kutta method from above.

General properties of the coefficients:

(a)
s∑

k=0

γk = 1

We have

yn+1 = yn +∆t
s∑

k=0

γkFk

︸ ︷︷ ︸

weighted ‘slope’ dy
dt

(2)

Since the weights cannot depend on F consider the special case F = F0 =
const.

dy

dt
= F0 ⇒ y = y0 + F0t

and the exact discrete solution is

yn+1 = yn + F0∆t.

Therefore the weights γk need to add up to 1 in order to give 1 full time

step ∆t.

(b)

αk =

k∑

m=0

βkm

Again, for F = F0 the exact discrete solution at the intermediate time

tn + αk∆t should be reproduced by the scheme,

yn + αk∆t F0

!
︷︸︸︷
= yn +∆t

∑

m

βkm F0 (3)

Thus, the βkm have to add up to αk.

In other words: the coefficients γk and βkm generate an effective slope and

with it an effective ‘rise’. This rise needs to match the effective ‘run’, which is

∆t in (2) and αk∆t in (3).

19

3. 4th-order Runge-Kutta Method

As for the 2nd-order RK there are many possible RK4 with the same order of

accuracy but different prefactors of the truncation error. The most commonly

used, ‘classical’ method has the Butcher array
0 0
1
2

1
2

0
1
2

0 1
2

0

1 0 0 1 0
1
6

1
3

1
3

1
6

As expected, it satisfies the rules discussed for RK2:

∑

k

γk = 1

k;
∑

m=0

βkm =

1
2

for k = 1
1
2

for k = 2
1 for k = 3

The method is typically written as

k1 = F (tn, yn)

k2 = F (tn +
1

2
∆t, yn +

1

2
∆t k1)

k3 = F (tn +
1

2
∆t, yn +

1

2
∆t k2)

k4 = F (tn +∆t, yn +∆t k3)

yn+1 = yn +
1

6
∆t (k1 + 2k2 + 2k3 + k4) +O(∆t5)

Notes:

• RK4 requires 4 evaluations of the r.h.s. F (y, t,) compared to a single

evaluation in the forward Euler scheme. Therefore, to be more efficient

than the forward Euler scheme the higher-order accuracy of RK4 has

to be significant. This will be the case if the time steps are sufficiently

small. Thus, for large time steps the forward Euler scheme may be more

efficient, whereas for small time steps RK4 will be more efficient.

• For F = F (t) one recovers Simpson’s rule: k2 = k3 yielding the typical

factor of 4 of the Simpson rule for the contribution at tn +∆t/2.

• Important: for systems dy
dt

= F(y) one needs to calculate first all compo-

nents of ki before one calculates ki+1.

Notes:

• It is possible to determine the maximal order that can be achieved for a

given number of stages
of stages 1 2 3 4 5 6

maximal order 1 2 3 4 4 5

Since the order does not increase when increasing the number of stages

from 4 to 5, using 5 or 6 stages is less efficient than RK4.

20

3 Self-Organization of Swarms of Self-Propelled Par-

ticles (‘Boids’)

Consider a flock of birds, a school of fish, or a herd of wildebeest4. How does such

a group of 100 to 10,000 animals stay together and fly/swim in a more or less co-

herent formation? Is there a leader or how do the animals know in which direction

they should fly? Do they require very refined feed-back control to form coherent for-

mations? In many cases there is no leader and the coherent motion is an emergent

property of the swarm that arises merely from the interaction between the ani-

mals. Such motion is also of interest to control swarms of robotic vehicles without

a central control computer 5.

Let us consider a very simple model for point objects that are moving with es-

sentially fixed speed in two dimensions and whose direction of motion is deter-

mined by the motion of the objects in their vicinity. Such computer models for

swarms of objects were first developed by Craig Reynolds (1986, cf his web site

HTTP://WWW.RED3D.COM/CWR/BOIDS/) in the context of computer animations (e.g.

in Batman Returns or The Lion King). They called these animals ‘boids’.

Newton’s law of motion

m
d2r

dt2
= F.

It is in general convenient to rewrite higher-order equations of motion in terms of

1st-order differential equations

dr

dt
= v (4)

dv

dt
= f(r), (5)

where we assume all quantities have been made dimensionless in a suitable fash-

ion. The boids are watching their neighbors for clues in which direction to fly. This

results in an interaction between the boids that mostly changes the direction but

not so much the speed of their motion. We can model this by a force fi acting on

boid i
1

m
Fi =

v̄i

|v̄i|
− vi (6)

where v̄i is the mean velocity observed by boid i. For fixed v̄i (5) can be solved

exactly. Consider the x-component of velocity

dvxi
dt

= v̄xin − vxi.

4There are a number of movies showing huge flocks, e.g.

http://www.youtube.com/watch?v=XH-groCeKbE http://www.youtube.com/watch?v=8vhE8ScWe7w

http://www.youtube.com/watch?v=Sk_Blp6w528.
5See e.g. http://phys.org/news/2012-02-airborne-robot-swarms-complex-video.html

21

Inhomogeneous, linear differential equation of first order. First find solution to

homogeneous equation
dvxi
dt

= −vxi vxi = Ae−t.

Need still a particular solution of the inhomogeneous equation. Here that is easy:

vhxi = v̄xin.

The general solution is therefore

vxi(t) = Ae−t + v̄xin.

The coefficient A is determined by initial conditions, e.g. for vxi(t = 0) = 0 we get

0 = A+ v̄xin A = −v̄xin

with

vxi(t) = v̄xin
(
1− e−t

)
.

Similarly for vyi(t),which results in

vi(t) =
v̄i

|v̄i|
(
1− e−t

)
.

Thus, for fixed v̄i

|v̄i|
the boid eventually will fly in the direction of the average di-

rection given by all the other boids. The speed (magnitude of the velocity) is then

fixed, |vi| = 1.

We still need to specify: ‘boids watch their neighbors’. Let us assume that close-

by neighbors can be observed more precisely and boid i will pay more attention

to them than to neighbors far away: for the average flight direction we therefore

weigh close-by neighbors more,

v̄i =
1

N
N∑

j=1

e−∆r2ij/∆r2avevj with N =

N∑

j=1

e−∆r2ij/∆r2ave (7)

Here ∆rij is the distance between boids i and j and∆rave characterizes the distance

beyond which a boid does not pay much attention to the other boids any more.

Because of this weighting the mean velocity v̄i is the mean velocity of the flock as

observed by boid i and differs from boid to boid.

Even with this interaction between boids it is easy to see that a swarm with all

boids flying in the same direction is a solution to the equations, because then v̄i

|v̄i|
is

again constant and independent of i.

But: in general the boids move in different directions and v̄i

|v̄i|
depends on i and

through changes in the distances between boids and through changes in their flight

direction v̄i

|v̄i|
is not constant in time. Then the equations cannot be solved exactly

any more and we need an approximate, numerical method.

22

To assess whether the model boids start flying coherently as a flock we need a

quantitative measure, an order parameter, for their orientational order. Let us

consider the global mean velocity V,

V(t) =
1

N

N∑

i=1

vi(t).

If the boids fly in randomly distributed directions the various vi will cancel each

other and the magnitude of V will be small, whereas for perfectly coherent motion

|V| = 1. Therefore |V(t)| is a useful order parameter.

In the simulations you will find that with this simple interaction the boids will not

only eventually fly all in the same direction but will also form clusters, more con-

densed flocks. To avoid that they are hitting each other it is sometimes useful to

introduce an additional repulsive short-range interaction between them. In addi-

tion, over larger distances the animals may also have the tendency to fly towards

each other independent of their relative flight direction. This can be modeled by an

attractive interaction. All interactions combined we then obtain [1]

f i =
v̄i

|v̄i|
− vi −

N∑

j=1

(ri − rj)

(

αe−∆r2
ij
/∆2

att − β e
−∆r2

ij
/∆2

rep

∆r2ij + δ2rep

)

.

Here ∆rij is the shortest distance between boid i and boid j for periodic boundary

conditions. Similarly (ri − rj) is the vector corresponding to the shortest distance

for periodic boundary conditions. The term δ2rep provides a regularization for the

singularity of the repulsive term at ∆rij = 0.

It turns out that with this extension swarms can also form well-organized rotating

vortices.

In reality, the boids are exposed to a fluctuating environment and also cannot mea-

sure the flight direction of their neighbors perfectly. It is therefore important to

consider the effect of small random perturbations on such swarming models. Par-

ticularly relevant are perturbations of the direction of flight of each boid. In princi-

ple, this leads to stochastic differential equations, which we will treat much later.

But to get an idea of the influence of noise on the swarm we can add after each

time step a small random perturbation to the velocities and then normalize the

velocities again to |vi| = 1,

vi → vi + η (ζxi, ζyi)→
vi

|vi|
(8)

with ζxi and ζyi being independent random variables that are uniformly distributed

in [−0.5, 0.5]. The noise strength is given by η. One finds that for small noise levels

the coherence of the swarms persist, with somewhat reduced order parameter |V|.
At a finite noise level ηc the order parameter goes to 0 and for η > ηc swarms are

not coherent any more (Vicsek et al., 1995, paper available on class web site).

23

Worth noting: in equlibrium statistical physics there is a well-studied class of

models for ferromagnets in which the microscopic magnetic elements (‘spins’) that

make up the macroscopic magnet are free to rotate in a plane (xy-model), similar

to the flight direction of the boids. These spins have the tendency to lign up in

parallel. However, thermal motion of the atoms constantly perturb such a regular

arrangement in a random way somewhat similar to (8). In three-dimensional ar-

rays such spins still lign up predominantly to generate some non-zero macroscopic

magnetization as long as the noise (the temperature) is not too large (η < ηc). Above
the critical temperature ηc the macroscopic magnetization vanishes. In two dimen-

sions, however, any infinitesimally small amount of noise destroys the macroscopic

‘order’ (magnetization), i.e. ηc = 0 (Mermin-Wagner theorem). The reason for this

sensitivity is that the spins only interact with their immediate neighbors and in

two dimensions the number of such neighbors is too small.

In Vicsek’s model for boids, however, one gets order even in two dimensions. Why?

Due to the persistent motion of the boids they interact over time with many more

other boids, even with boids that at some point in time are quite far away. The

interaction therefore attains effectively a much larger range, allowing ηc > 0.

In robotic applications it is also of interest to understand what happens when indi-

vidual robots fail, i.e. persistently moves in a different direction than the swarm.

Does the whole swarm get disturbed? Can it even break up with some other robots

following the failing one?

4 Error Estimate and Time Step Control

Quality of code:

• validate the code

• assess error: does the code exhibit correct order of convergence?

No analytical solution: how do we estimate the accuracy of the numerical solution?

Make use of error assessment:

• for efficiency use estimate to adjust time step

• use estimate to improve solution

4.1 Validation of the Code

No code should be used without validation!

24

No exact solution:

For most problem that we address numerically we do not have an exact solution to

compare to. How can we validate that we coded the problem correctly? In many

problems one can consider special cases for which analytical solutions are avail-

able. Compare the code in those cases.

Example:

In the flocking homework problem one can test each of the three force terms indi-

vidually

f i =
v̄i

|v̄i|
︸︷︷︸

F1

−vi
︸︷︷︸

F2

−
N∑

j=1

(ri − rj)

(

αe−∆2
ij/∆

2
att − β e

−∆2
ij/∆

2
rep

∆2
ij + δ2rep

)

︸ ︷︷ ︸

F3

.

Setting all terms except for one of them to 0 one should observe

• F2: all velocities should decay exponentially with a decay rate of 1

• F1& F2: the velocity of all particles should have magnitude 1

• F3: with only F3 present the equations become Newton’s equation of motion

with a central force between pairs of particles i and j

F3(ri, rj) = − (ri − rj) f (|ri − rj|)

If, for simplicity, only two particles are considered and one particle is kept

fixed by setting f1 = 0, then for suitable initial conditions the second particle

will follow a circular trajectory around the first particle in which the centrifu-

gal force is balanced by the attractive force.

Notes:

• If each term in the model has been tested successfully, one gains confidence

that one has implemented the model correctly in the code.

• Of course, there could be situations in which the combination of terms can

lead to new situations, which have not been tested. Therefore one always has

to keep in mind that the code could still have bugs in it:

– all results should be viewed with suspicion

– one always needs to consider whether the results make sense.

Convergence:

Even if the code appears to generate a reasonable (‘correct’) solution it is important

to check how accurate it actually is.

25

We have for the local truncation error

τl = O(∆tp)

Note: remember the global error τg is expected to be O(∆tp−1).

1. Measure the error as a function of ∆t for a fixed time interal T

τg(∆t) = a∆tp−1

Note: decrease ∆t always by at least a factor of 2!

2. Extract p using a log-log-plot

ln τg = (p− 1) ln ∆t + ln a

Notes:

• in a log-log-plot p− 1 is given by the slope of the curve

• to measure slope check by how many decades τg goes down when ∆t is
varied by a decade

For the code to be trustworthy:

1. The error τg has to go to 0 as ∆t goes to 0

2. The slope has to agree with the expected order of the method

Demo Example:

Consider differential equation

dy

dt
= − 1

2y
0 ≤ t ≤ T with y(0) = 1

It has the exact solution

y(t) =
√
1− t.

Notes:

• If the data points do not fall on a convincingly straight line it makes no sense

to fit a straight line through them:

rather, the conclusion is that for the parameters used the global error τg has

not reached the asymptotic regime yet

τg = a∆tp−1 + b∆tp + ...

i.e. for the values of ∆t used the term O(∆tp) is not negligible compared to

a∆tp−1.

• If the slope does not agree with the expected order then there is still an error

in the code.

Usually the slope is too small and as a result the coding effort and the addi-

tional computation time to obtain and run the refined method are wasted.

26

4.2 Error Estimate and Extrapolation

Typically, no analytical result is available for the solution we are interested in: how

do we estimate its global error?

Let us compare approximations for two different values of the time step, ∆t and
∆t/2 (at fixed final time T),

y∆t(T) = ye(T) + a(T)∆tp−1 + ...

y∆t/2(T) = ye(T) + a(T) (
∆t

2
)p−1 + ...

⇒ y∆t(T)− y∆t/2(T) = a(T)∆tp−1

(

1− 1

2p−1

)

+O(∆tp)

From this we can extract an estimate for the global error

y∆t(T)− ye(T) ∼ a(T)∆tp−1 ∼ 1

1− 21−p

(
y∆t(T)− y∆t/2(T)

)
(9)

Notes:

• For validation plot y∆t(T)−y∆t/2(T) double-logarithmically for at least 4 values

of ∆t changing ∆t by factors of 2 and measure the slope

• If the change y∆t(T) − y∆t/2(T) shows the expected power law then the error

is close to the change of the solution when ∆t is changed by a factor of 2:
1

1−21−p < 2 since p ≥ 2.

• This estimate neglects higher-order contributions to the error

Richardson Extrapolation

We can make use of our estimate (9) to obtain a better, higher-order approximation

for ye(T)

ye(T) = y∆t(T)− a(T)∆tp−1 +O(∆tp)
= y∆t(T)−

1

1− 21−p

(
y∆t(T)− y∆t/2(T)

)
+O(∆tp)

=
1

1− 21−p

(
y∆t/2(T)− 21−py∆t(T)

)
+O(∆tp).

Notes:

• For the extrapolated result one does not have an error estimate any more; the

order of accuracy is known but we do not have an estimate for the prefactor

(cf. eq.(9))

• The extrapolation may affect the stability of the algorithm. It can lead to

difficulties in stiff problems.

27

4.3 Adaptive Time Step

Since we have estimates for the error we can use it to adapt the time step ∆tn
depending on the demands of the solution at a given time.

Demo:
dy

dt
= − 1

4y3
0 ≤ t ≤ T with y(0) = 1 (10)

has the exact solution

y = (1− t) 1
4

which becomes singular at t = 1, i.e. the derivative diverges. Near t = 1 very small

time steps are required to resolve the steep gradients. During the initial phase

large time steps would be sufficient and much more efficient. Problems like this

are best solved using adaptive time steps.

To adapt each individual time step we need estimates for the local error τn incurred

at time step n. Analogous to the estimate of the global error (9) we can estimate

that error by comparing the errors when taking time steps of different size

y∆t = ye + a∆tpn +O(∆tp+1
n)

y∆t/2 = ye + 2a (
∆tn
2

)p +O(∆tp+1
n)

where we assume that the errors incurred by taking two time steps of size ∆t
2
each

add up.

We would like to get the global error τg at the final time T below the tolerance ∆tol,

τg =

N∑

n=1

|τn(∆tn)| ≤ ∆tol

A reasonable approach is then to require that the individual time steps are chosen

such that the local errors τn satisfy

|τn(∆tn)| ≤ ∆tol
∆tn
T

.

If the local errors simply added up this would guarantee

τg ≤
∆tol

T

N∑

n=1

∆tn = ∆tol.

Note:

• Since we are looking at the local error the error goes like ∆tp rather than

∆tp−1.

28

Solving for the local error we obtain

τn(∆tn) ≡ a∆tpn =
1

1− 21−p

(
y∆t − y∆t/2

)

We can now compare the estimated local error τn(∆tn)with the tolerance∆tol·∆tn/T
and accept or reject this time step.

Optimally, the time step is chosen such that the error is equal to allowed tolerance.

We pick the optimal time step ∆t∗ that satisfies

|τn(∆t∗)| =
∆tol

T
∆t∗

To solve for ∆t∗ we need to know the dependence of τ on ∆t

τn(∆t) = a∆tp

This gives in general

∆t∗ =

(
∆tol

|a|T

) 1
p−1

We get an approximation for a from the estimated error τn(∆tn)

a =
τn(∆tn)

∆tpn

Inserting this a into the condition for ∆t∗we obtain

∆t∗ =

(
∆

T

) 1
p−1

(
∆tpn

|τn(∆tn)|

) 1
p−1

(11)

Algorithm:

1. compute y(tn +∆t) using ∆t and ∆t/2 as time steps⇒ y∆t and y∆t/2

2. calculate τn based on y∆t and y∆t/2 and determine ∆t∗

• if ∆t∗ > ∆t accept y∆t/2 as y(tn +∆t) and increment tn ⇒ tn +∆t

• if ∆t∗ < ∆t do not accept y∆t/2 as y(t+∆t), do not increment t
instead keep y(t) and continue from there

3. adjust timestep

∆t⇒ min(0.9∆t∗, T − t)

4. go to 1.

Notes:

29

• Do not use the full optimal time step ∆t∗. This reduces the risk that the next

time step is rejected because the error estimate was slightly off. The factor

0.9 is an adjustable parameter.

• Sometimes it may be useful to not increase the time step too fast to avoid that

the new time step turns out to be too large. You could limit the increase to a

factor of 2, say.

• The local error is estimated to be below the tolerance when using the time

step ∆t; we have also the solution with ∆t/2. Use that solution instead.

• We can use y∆t and y∆t/2 to use Richardson extrapolation to get a higher-order

approximation; we will loose a reliable error estimate.

• During phases when the solution changes more rapidly |a| is larger and ∆t∗

becomes smaller. This decrease is much more pronounced for small p (forward

Euler, say) than for larger p (Runge-Kutta).

The estimate of the local error can be done more systematically without assuming that the errors

add up:

Error taking a single time step of size ∆t:

ye(tj+1)− y∆t(tj+1) = ψ(tj , y(tj))∆t
p +O

(
∆tp+1

)

Here ψ(tj , yj) is the principal error function and y∆t is the numerical solution starting at tj with yj
and taking one regular time step ∆t.

Taking two time steps of size ∆t/2 we get

ye(tj+1/2)− y∆t/2(tj+ 1
2
) = ψ (tj , y(tj))

(
∆t

2

)p

+O
(
∆tp+1

)

ỹe(tj)− y∆t/2(tj) = ψ
(

tj+ 1
2
, y∆t/2(tj+ 1

2
)
)

︸ ︷︷ ︸

ψ(tj ,y(tj))+O(∆t)

(
∆t

2

)p

+O
(
∆tp+1

)

Here ỹe(tj) is the exact solution at tj that started at tj+ 1
2
with the value y∆t/2(tj+ 1

2
) obtained by the

algorithm in the previous step . Thus, in general ỹe(t) 6= ye(t)

We would like to obtain an estimate for the error by comparing y∆t(tj+1) and y∆t/2(tj+1). Consider
therefore

(ye(tj+1)− y∆t(tj+1))−
(
ỹe(tj+1)− y∆t/2(tj+1)

)
=
(
1− 2−p

)
ψ(tj , y(tj))∆t

p +O(∆tp+1).

We need to compare ye and ỹe,

ye(tj+1)− ỹe(tj+1) = ye(tj+ 1
2
)− ỹe(tj+ 1

2
) +O

(
∆t

2

d

dt

(

ye(tj+ 1
2
)− ỹe(tj+ 1

2
)
))

The exact solutions ỹe and ye both satisfy the differential equation

dy

dt
= F (t, y)

30

where we assume F is sufficiently smooth. More precisely, we require that F is Lipschitz continu-

ous, i.e.

‖F (t, y1)− F (t, y2)‖ ≤ L ‖y1 − y2‖ for any y1and y2

with the Lipschitz constant L.

Therefore

O
(
∆t

2

d

dt
(ỹe(t)− ye(t))

)

≤ O
(
∆t

2
L
∥
∥
∥ỹe(tj+ 1

2
)− ye(tj+ 1

2
)
∥
∥
∥

)

and

∥
∥
∥ye(tj+ 1

2
)− ỹe(tj+ 1

2
)
∥
∥
∥ =

∥
∥
∥ye(tj+ 1

2
)− y∆t/2(tj+ 1

2
)
∥
∥
∥ = |ψ (tj , y(tj))|

(
∆t

2

)p

+O
(
∆tp+1

)

We therefore have

ye(tj+1)− ỹe(tj+1) = ye(tj+ 1
2
)− ỹe(tj+ 1

2
)

︸ ︷︷ ︸

y∆t/2(tj+1
2
)

+O
(
∆tp+1

)
= ψ (tj , y(tj))

(
∆t

2

)p

+O
(
∆tp+1

)
.

Thus

y∆t/2(tj+1)− y∆t(tj+1) =
(
1− 2−p − 2−p

)
ψ(tj , y(tj))∆t

p

︸ ︷︷ ︸

τ(∆t)

+O
(
∆tp+1

)

Solving for the local error we get as before

τ(∆t) =
1

1− 21−p
(
y∆t/2(tj+1)− y∆t(tj+1)

)
.

1 10 100 1000 10000 1e+05
Number of Time Steps

1e-09

1e-06

0.001

1

E
rr

or

non-adaptive
adaptive no extrapolation
adaptive with extrapolation

0.001 0.01 0.1 1 10
Computation Time

1e-09

1e-06

0.001

1

E
rr

or

non-adaptive
adaptive no extrapolation
adaptive with extrapolation

Figure 3: Error as a function of number of time steps (a) and as a function of

computation time (b) for RK4 (non-adaptive, adaptive without Richardson, and

with Richardson extrapolation.) Note that the computation time per time step is

smaller for the non-adaptive scheme than for the adaptive one (3 evaluations per

time step). dy/dt = −1/4y3, error at t = 0.9999 with initial condition y(0) = 1.

Note:

31

• It turns out that for (10) forward Euler and backward Euler do not gain from

using an adaptive time step: the computation time with adaptive time step is

in fact larger than without.

Even though the local error estimates are quite good, their sum does not match the

true error arising in the simulation (Fig.4).

a)
10

−4
10

−3
10

−2
10

−1
10

0
10

−10

10
−8

10
−6

10
−4

 1−Time

 E
rr

or

 True Local Error
 Estimated Local Error

b)
10

−4
10

−3
10

−2
10

−1
10

0
10

−10

10
−8

10
−6

10
−4

10
−2

 1−Time

 E
st

im
at

ed
 E

rr
or

/d
t

a)
10

−4
10

−3
10

−2
10

−1
10

0
10

−12

10
−10

10
−8

10
−6

10
−4

 1−Time

C
um

ul
at

iv
e

E
st

im
at

ed
 E

rr
or

b)
10

−4
10

−3
10

−2
10

−1
10

0
10

−15

10
−10

10
−5

10
0

 1−Time

F
ac

tu
al

 T
ot

al
 E

rr
or

Figure 4: a) The estimate of the local error agrees quite well with the true local

error (T = 0.9999). b) The adaptive time step keeps the estimate of the local error

quite constant. The cumulative local error estimate (c) is significantly smaller than

the true error (d).

We assumed that the global error is simply the sum of the local errors. However,

this is in general not the case. An error made at time tn can be amplified (or

reduced) by the subsequent evolution of the system (Fig.5).

Note:

• Instead of specifying a tolerance ∆ for the absolute local error τn one can also

specify a tolerance ∆rel for the relative local error

τn,rel =
τn
|yn|

.

The optimal time step is then given by an analogous expression

∆t∗ =

(
∆rel

T

) 1
p−1

(
∆tpn

|τn,rel(∆tn)|

) 1
p−1

.

32

0 0.2 0.4 0.6 0.8
Timing of Increased Tolerance

0
1e-06
2e-06
3e-06
4e-06
5e-06
6e-06
7e-06

E
rr

or
 a

t
t=

0.
99

99
9

Figure 5: The global error depends on when the local error is incurred. In (10) the

global error is larger when the tolerance is increased early in the simulation. In

the plot the tolerance is increased by a factor of 50 for a duration of ∆t = 0.2 and

the error is measured at T = 0.99999 for dy/dt = −1/4y3.

• If the solution changes sign a condition on the relative error may be too re-

strictive. One could replace the condition on the relative error by one on the

absolute error when the magnitude of the solution becomes too small.

• For systems the errors in each of the components can be monitored and con-

troled. One could require the maximal absolute error or the maximal relative

error to be below some tolerance.

Pair Method for Error Estimate

We can also estimating the error by computing yn+1 with two methods with differ-

ent order of accuracy

yn+1 = yn + a∆tp + b∆tp+1

y∗n+1 = yn + b′∆tp+1.

Then the leading error of yn+1 is a∆t
p

yn+1 − y∗n+1 = a∆tp + (b− b′)∆tp+1

and the estimate for the local error is given by

τn = a∆tp = yn+1 − y∗n+1 +O(∆tp+1)

Note:

• Matlab ode45 uses a pair RK4+RK5 for its error estimation (Dormand-Prince).

The method involves 7 stages and both methods (RK4 and RK5) use the same

intermediate time steps and auxiliary variable, i.e. they have the same coef-

ficients αk and βmk in the Butcher array.

33

Backward-Forward Error Estimate

Another possibility to obtain an error estimate is to use the same method with the

same time step, but integrating once forward and once backward in time

yn+1 − ỹ(tn+1) = a(tn, yn)∆t
p +O

(
∆tp+1

)

y∗n − ỹ∗(tn) = a(tn+1, yn+1) (−∆t)p +O
(
∆tp+1

)

= a(tn, yn) (−∆t)p +O
(
∆tp+1

)

where ỹ(t) is the exact solution starting from yn and ỹ∗(t) is the exact solution if

one goes backward by ∆t from yn+1 at tn+1. The corresponding numerical value is

denoted y∗n. For p even we can solve for the truncation error by adding the two

equations

2a(tn, yn)∆t
p = yn+1

︸︷︷︸

=ỹ∗(tn+1)

−ỹ(tn+1) + y∗n − ỹ∗(tn) +O(∆tp+1)

= ỹ∗(tn+1)− ỹ(tn+1) + y∗n − ỹ∗(tn) + 0
︸︷︷︸

=ỹ(tn)−yn

+O(∆tp+1)

We need to eliminate the exact solutions from this expression. They satisfy

dỹ

dt
= F (t, ỹ)

dỹ∗

dt
= F (t, ỹ∗)

with F (t, y) Lipschitz-continuous. Therefore we can use a Taylor expansion around

tn+1

ỹ∗(tn)− ỹ(tn) = ỹ∗(tn+1)− ỹ(tn+1)−
−∆t (F (tn+1, ỹ

∗(tn+1))− F (tn+1, ỹ(tn+1)))
︸ ︷︷ ︸

O(L·|ỹ∗(tn+1)−ỹ(tn+1)|)

= ỹ∗(tn+1)− ỹ(tn+1)−O

∆tL |yn+1 − ỹ(tn+1)|

︸ ︷︷ ︸

O(∆tp)

Inserting this into the expression for the error we get

τn = a(tn, yn)∆t
p =

1

2
(y∗n − yn) +O

(
∆tp+1

)
.

Note:

• Intuitively, the result makes sense: we obtained y∗n from yn by first taking a

step forward, which incurred an error of ∆tp, and then we took a step back-

ward, which incurred almost the same error again. The two errors accumu-

lated because p is even.

34

5 Neuronal Action Potentials - Hodgkin-HuxleyModel

The brain has O(1011) neurons. What do they do?

A few, very basic aspects of their function:

• Most neurons communicate with each other by firing electric action poten-

tials.

The neurons can be excitable and fire only when their input reaches a thresh-

old or they fire spontaneously and their firing rate is modulated by the strength

of their inputs.

• Most neurons receive input from thousands of other neurons: that input can

be excitatory and inhibitory for a given neuron

• Most neurons send their output to thousands of other neurons: the output

from a given neuron is either excitatory or inhibitory (Dale’s principle), i.e.

there are excitatory neurons and inhibitory neurons.

• Due to the firing threshold the neural response to excitatory inputs yields

something like an AND function;

the response to inhibitory inputs is something like an AND NOT function

• Depending on their response speed neurons can respond to quite different

signals:

– Slow neurons accumulate their input over an extended period of time

and their activity extracts the long-time behavior of their input. These

neurons function as ‘integrators’.

– Fast neurons do not accumulate their input over long time and there-

fore require the inputs to occur almost simultaneously to evoke a spike.

These neurons perform ‘coincidence detection’ ; they can select very spe-

cific inputs from a large collection of inputs.

Neurons have spatial structure:

• they receive their input on their dendrites, which typically are quite ramified.

• they send their output through axons to other neurons, which can be very far

away (‘from head to toe’).

• the voltage in a neuron depends on space

Here we focus on a small piece of membrane of a neuron and model action po-

tentials and excitability. We discuss the model developed by Hodgkin and Huxley

(1952), which has laid the foundation to the mathematical description of the bio-

physical properties of neurons and how they process information in the brain.

Membrane:

35

• The electrical state of a neuron is characterized foremost by the electrical

voltage across its membrane

• The membrane separates regions with very different ion concentrations

– outside the cell the Na+-concentration is high and the K+-concentration

is low

– inside the cell the opposite is the case: [Na+] is low and [K+] is high.

– the cell is kept in this non-equilibrium state by slow pumps

• The membrane is active: it contains ion channels that are selectively perme-

able only for certain types of ions. Particularly relevant are channels for Na+

and K+. These ion channels can open and close depending on the voltage

across the membrane. Thus, depending on the voltage different ion currents

flow across the membrane.

• The membrane is a capacitor:

– currents across the membrane⇒ change in the charge on the capacitor

– change in the charge⇒ change in the voltage across the membrane

– the total current across the membrane consists of various ionic currents

Kirchhoff ’s law yields then the differential equation for the voltage

• –

C
dV

dt
= −INa+ − IK+ − Ileak − Iinj (12)

Notation: positive currents are outward: from inside the cell to outside

the cell

⇒ positive currents make the voltage inside more negative: they hyper-

polarize the cell.

Potassium current IK+

IK+ = ḠK n(t)
4 (V (t)−EK)

• To be open the channel requires 4 ‘particles’ (~molecules) to be in a specific

configuration; the probability for each of the particles to be in that configu-

ration is n. Averaging over many channels the fraction of channels that are

open is given by n.
The operation of the channels can be described using transition rates αn and

βn between the two configurations, which depend on the voltage

dn

dt
= αn(V) (1− n)− βn(V)n (13)

with

αn(V) =
V + 55

100 (1− e−(V+55)/10)
βn(V) = 0.125 e−0.0125(V+65)

36

where V is measured in mV .

We can rewrite the equation for n as

τn
dn

dt
= n∞ − n

with (cf. Fig.6b)

τn(V) =
1

αn + βn
n∞(V) =

αn

αn + βn

Note: The functional form of αn(V) and βn(V) as well as the numerical values

were obtained by fitting to experiments. Different neurons have somewhat

different parameter values.

• Because the K+-concentration is different inside and outside the cell a K+-

current flows even for vanishing voltage difference. In other words, for the

current to vanish one has to apply a sufficiently large voltage across the mem-

brane,

EK = −77mV.
EK is called the reversal potential of this channel. Even for slightly negative

voltage a K+−current flows outward.

• This K+-current is persistent: it remains on as long as the cell is depolarized

(voltage positive).

Sodium current INa+

INa+ = ḠNam
3(t)h(t) (V (t)−ENa) ENa = +50mV

The sodium current is controled by two different ‘particles’

• the activation particle m opens with increasing voltage. This activation is

fast.

dm

dt
= αm(V) (1−m)− βm(V)m (14)

αm(V) =
V + 40

10 (1− e−(V +40)/10)
βm(V) = 4 e−0.0556(V +65)

• the inactivation particle h closes with increasing voltage. The inactivation is

relatively slow
dh

dt
= αh(V) (1− h)− βh(V) h (15)

αh(V) = 0.07 e−0.05(V+54) βh(V) =
1

1 + e−0.1(V+35)
.

Because of the inactivation variable h the sodium current is transient: it

opens when the membrane is depolarized, but even if the cell were to remain

depolarized it would turn off after a while due to inactivation (h goes to 0).

37

a)

0 10 20 30 40 50

−50

0

50

Time

V
ol

ta
ge

0 10 20 30 40 50
0

0.5

1

Time

G
at

in
g

V
ar

ia
bl

e

0 10 20 30 40 50
0

10

20

30

Time

C
ur

re
nt

s

n
m
h

−I
K

I
Na

b)

−100 −50 0 50
0

0.5

1

S
te

ad
y−

S
ta

te
 V

al
ue

s

Voltage [mV]

−100 −50 0 50
0

2

4

6

Voltage [mV]

T
im

e
C

on
st

an
ts

 [m
s]

n
m
h

n
m
h

Figure 6: a) Spiking neuron with constant current injection. For ease of comparison

the absolute value of the negative Na+-current is plotted . b) Voltage dependence

of the parameters for the gating variables.

The action potential is driven by the following mechanism:

1. at rest the potential V is strongly negative: Vrest ∼ −65mV .

2. when an input increases the voltage sufficiently far above Vrest (towards posi-

tive voltage) the activation variable m of INa+ turns on rapidly (cf. time scales

of the activation and inactivation variables in Fig.6b): Na+ ions flow into the

cell (INa+ < 0) and raise the voltage further providing positive feed-back and

amplification of the input.

3. at this depolarized voltage the inactivation variable h starts to decrease, but it
does so much more slowly: INa+ is slowly turned off. Note, that INa+ decreases

also because its driving force V − ENa decreases as the voltage increases.

4. the activation variable n of IK+ also becomes activated: K+ ions flow out of

cell bringing the voltage down and, in fact, leading to an overshoot

5. Na+ and K+ ions are pumped back to where they came from and V goes back

to Vrest.

If the input is not strong enough to activate the Na+-current the voltage changes

only slightly and no action potential is fired.

Notes:

38

• After an action potential the cell cannot be activated again for some time since

the inactivation variable h has not recovered yet; the Na+channels remain

inactivated (closed): the cell has a refractory period.

• For steady input current the cell fires periodically with a frequency that in-

creases with the input current.

39

6 Multi-Step Methods

Quadrature approach

yn+1 = yn +

∫ tn+1

tn

F (t, y(t′)) dt′.

Effectively, the integrand was approximated by a polynomial.

Single-step method used only values between tn and tn+1 to obtain the polynomial

Multi-step methods use also previous time steps tn+1, tn, tn−1, tn−2, tn−3,... as input

for the polynomial:

• explicit: do not include tn+1, the integration involves an extrapolation to [tn+1, tn]

• implicit: include tn+1, the integration uses interpolation within [tn+1, tn]

6.1 Adams-Bashforth Methods6

Explicit method:

Use a polynomial PN(t) that interpolates F (t, y(t)) on the ‘grid points’ tl in the range

[tn+1−N , tn], N ≥ 1, at which y and with it F is known ,

PN(tl) = F (tl, y(tl))

Look for a polynomial L
(N)
k (t) that satisfies

L
(N)
k (tn+1−l) = δk,l

6John Couch Adams (1819-1892), predicted the existence of Neptune based on perturbation cal-

culations (independently also predicted by U. Le Verrier).

40

–2

–1

0

1

2

y

2 4 6 8 10

x

Figure 7: Lagrange polynomial L
(N)
4 (t) vanishes on all grid points except for tn+1−4.

Why would that be useful? Define the function

PN (t) =

N∑

k=1

F (tn+1−k, yn+1−k)L
(N)
k (t)

It satisfies then

PN(tn+1−l) =

N∑

k=1

F (tn+1−k, yn+1−k)L
(N)
k (tn+1−l)

=
N∑

k=1

F (tn+1−k, yn+1−k)δk,l

= F (tn+1−l, yn+1−l)

Thus, PN(t) interpolates F (t, y) on the temporal grid tn.

Use polynomials for L
(N)
k (t). Any polynomial can be written as

(t− α1)(t− α2)...(t− αM)

The polynomial vanishes at all t = αl, choose therefore

αl = tn+1−l

Any polynomial can be written as

(t− α1)(t− α2)...(t− αM)

41

It vanishes at all t = αl, choose the αl at the ‘grid points’

αl = tn+1−l

The polynomial should not vanish at tn+1−k: skip the factor involving αk = tn+1−k

(t− tn)(t− tn−1)...(t− tn+1−(k−1)) · 1 · (t− tn+1−(k+1))...(t− tn+1−N)

We need to normalize the polynomial still at t = tn+1−k: introduce Lagrange poly-

nomials L
(N)
k (t) of order N − 1

L
(N)
k (t) =

t− tn
tn+1−k − tn

t− tn−1

tn+1−k − tn−1
...

t− tn+1−(k−1)

tn+1−k − tn+1−(k−1)

· 1 · t− tn+1−(k+1)

tn+1−k − tn+1−(k+1)

...
t− tn+1−N

tn+1−k − tn+1−N

=

N∏

k 6=m=1

t− tn+1−m

tn+1−k − tn+1−m
1 ≤ k ≤ N

On the grid points tn+1−l

L
(N)
k (tn+1−l) =

N∏

k 6=m=1

tn+1−l − tn+1−m

tn+1−k − tn+1−m

• for l 6= k in the product there is one term with m = l: numerator vanishes:

L
(N)
k (tn+1−l) = 0

• for l = k the value m = l is skipped in the product and in all terms the

numerator and denominator are equal:

L
(N)
k (tn+1−l) = 1

Thus

L
(N)
k (tn+1−l) = δk,l

and we have the interpolant

PN (t) =

N∑

k=1

F (tn+1−k, yn+1−k)L
(N)
k (t)

Examples:

1. N = 1
L
(1)
1 (t) = 1 P1(t) = F (tn, yn) · 1

F is approximated by a constant.

42

2. N = 2

L
(2)
1 (t) =

t− tn−1

tn − tn−1

, L
(2)
2 (t) =

t− tn
tn−1 − tn

P2(t) = F (tn, yn)
t− tn−1

tn − tn−1
+ F (tn−1, yn−1)

t− tn
tn−1 − tn

=
F (tn, yn)− F (tn−1, yn−1)

tn − tn−1
(t− tn−1) + F (tn−1, yn−1)

F is approximated by a straight line.

Notes:

• One could obtain PN(t) also without using the Lagrange polynomials L
(N)
k (t),

but then one would have to solve an N × N matrix problem to get the coeffi-

cients.

The quadrature formula becomes

yn+1 = yn +

∫ tn+1

tn

N∑

k=1

F (tn+1−k, yn+1−k)L
(N)
k (t)dt

= yn +

N∑

k=1

F (tn+1−k, yn+1−k)

∫ tn+1

tn

L
(N)
k (t)dt

Simplify to a equally spaced grid tn = t0 + n∆t

yn+1 = yn +

N∑

k=1

F (tn+1−k, yn+1−k)

∫ tn+1

tn

N∏

1=m6=k

t− tn+1−m

(m− k)∆t dt

Adams-Bashforth 1:

N = 1

yn+1 = yn + F (tn, yn)

∫ tn+1

tn

1 dt = yn + F (tn, yn)∆t

results in forward Euler.

Adams-Bashforth 2:

N = 2

yn+1 = yn + F (tn, yn)

∫ tn+1

tn

t− tn−1

∆t
dt+ F (tn−1, yn−1)

∫ tn+1

tn

t− tn
−∆t dt

= yn +∆t

(
3

2
F (tn, yn)−

1

2
F (tn−1, yn−1)

)

43

With variable time steps this becomes

yn+1 = yn +
∆tn
∆tn−1

{(
1

2
∆tn +∆tn−1

)

F (tn, yn)−
1

2
∆tn F (tn−1, yn−1)

}

.

Notes:

• To start AB2, AB3, ... we need also yn−1 = y−1 and earlier points:

use a one-step scheme for a single time step. Its order can be one less (i.e. 1st

order for AB2); since applied only for a single time step its contribution to the

error is of the same order as the global error of the rest.

• Using the Lagrange polynomials one can relatively easily generate higher-

order AB-methods.

Truncation error for AB2:

τl = ỹn +∆t
dỹ

dt
+

1

2
∆t2

d2ỹ

dt2
+O(∆t3)−

(

yn +∆t (
3

2
F (tn, yn)−

1

2
F (tn−1, yn−1)

)

Assume that at tn−1 and tn we are starting with the exact solution

yn−1 = ỹn−1 yn = ỹn

Use Taylor expansion around (tn, yn) for yn−1

F (tn−1, yn−1) = F (tn, yn)−∆t
∂F

∂t
− (yn − yn−1)

∂F

∂y
+O(∆t2,∆y2)

= F (tn, yn)−∆t
∂F

∂t
−
(
∆tF (tn, yn) +O(∆t2)

) ∂F

∂y
+O(∆t2,∆y2)

In addition,
d2ỹ

dt2
=

d

dt
F (t, ỹ) =

∂F

dt
+
∂F

∂y
F

τl = ∆t

(
dỹ

dt
− (

3

2
− 1

2
)F (tn, yn)

)

+∆t2
(
1

2
(
∂F

dt
+
∂F

∂y
F) +

1

2
(−∂F

∂t
− F ∂F

∂y
)

)

+O(∆t3)

= O(∆t3)

44

6.2 Adams-Moulton Methods7

Implicit Method:

Now include tn+1 in the interpolation grid.

Use again Lagrange polynomials L
(N)
k (t) of order N − 1

L
(N)
k (t) =

N−1∏

k 6=m=0

t− tn+1−m

tn+1−k − tn+1−m

Note: The limits for the indexm is shifted compared to AB to include the new time

tn+1.

The interpolant is then

PN(t) =

N−1∑

k=0

F (tn+1−k, yn+1−k)L
(N)
k (t)

For equally spaced grid tn = t0 + n∆t we get

yn+1 = yn +
N−1∑

k=0

F (tn+1−k, yn+1−k)

∫ tn+1

tn

N−1∏

0=m6=k

t− tn+1−m

(m− k)∆t dt

Example:

Adams-Moulton 1

7Forest R. Moulton (1872-1952), astronomer.

45

yn+1 = yn +∆tF (tn+1, yn+1)

results in backward Euler.

Adams-Moulton 2:

yn+1 = yn + F (tn+1, yn+1)

∫ tn+1

tn

t− tn
∆t

dt+ F (tn, yn)

∫ tn+1

tn

t− tn+1

−∆t dt

= yn +
1

2
∆t (F (tn, yn) + F (tn+1, yn+1))

results in Crank-Nicholson scheme:

yn+1 − yn
∆t

=
1

2
(F (tn, yn) + F (tn+1, yn+1)) .

Note:

• AM2=CN can also be thought of as central difference in time for the time

derivative at time t = tn+1/2

• The main advantage of the implicit schemes is their enhanced stability (see

below).

• In general, implicit methods require the solution of nonlinear equations at

each time step⇒ see below.

6.3 Predictor-Corrector Methods

Avoid the implicit equation by using an approximation to yn+1 on the r.h.s: use a

lower-order explicit scheme to ‘predict’ yn+1.

Examples:

1. AB1 & AM2

y∗ = yn +∆tF (tn, yn)

yn+1 = yn +
1

2
∆t (F (tnyn) + F (tn+1, y

∗))

This is the same scheme as the improved Euler scheme or RK2. It has a

truncation error τ = O(∆t2).

46

2. AB2 & AM3

y∗ = yn +∆t

(
3

2
F (tn, yn)−

1

2
F (tn−1, yn−1)

)

yn+1 = yn +∆t

(
5

12
F (tn+1, y

∗) +
8

12
F (tn, yn)−

1

12
F (tn−1, yn−1)

)

Because the predicted value y∗ is used in the increment, which has already a factor

of∆t the predictor can always be one order less accurate than the corrector without

reducing the accuracy below that of the corrector.

Show this explicitly for the special case F (t, y) = λy

Assume that for tn−1 and for tn we have the exact solution,

yn = ỹn yn−1 = ỹn−1,

and compute the truncation error that we incur in one time step

The exact solution satisfies

ỹn+1 = ỹn +∆tλỹn +
1

2
∆t2λ2ỹn +

1

6
∆t3λ3ỹn +O(∆t4).

Using a predicted value y∗ for yn+1 AM3 is given by

yn+1 = yn +
1

12
∆t {5λy∗ + 8λyn − λyn−1}

We have

yn−1 = e−λ∆tyn = yn − λ∆tyn +
1

2
∆t2λ2yn +O(∆t3).

Write the predicted value as

y∗ = yn + α∆t+
1

2
β∆t2 +O(∆t3).

We get then

ỹn+1 − yn+1 = ỹn − yn +∆t

λỹn −
1

12
[5λ+ 8λ− λ]

︸ ︷︷ ︸

=1

yn

+∆t2
{
1

2
λ2ỹn −

5

12
λα− 1

12
λ2yn

}

+

+∆t3
{
1

6
λ3ỹn −

5

24
βλ+

1

24
λ3yn

}

Using ỹn = yn we get the two conditions

α = λyn β = λ2yn

i.e. in order to obtain a local truncation error of O(∆t4) it is sufficient if we approx-

imate y∗ correctly to O(∆t3)

y∗ = yn +∆tλyn +
1

2
∆t2λ2yn +O(∆t3)

Notes:

47

• Using only the simply differential equation dy
dt

= λy the calculation did not

test the treatment of the term ∂2F
∂y2

that arises at O(∆t3). But the conclusion

obtained with this simpler calculation is correct.

• The predictor-corrector method is not as stable as the implicit method, but

it is more stable than the AB-method of same order and it uses fewer time

levels since the time-levels of of the higher-order AM-portion include tn+1.

7 Stability and Convergence

At each time step errors arise:

• truncation error

• computer makes round-off errors

Question: do the errors grow catastrophically or do they lead only to a finite

modification of the solution? Catastrophic growth occurs if the scheme is unstable.

Demo:

dy

dt
= λy + A sin(ωt), with λ < 0, y(0) = y0 = −A

ω

λ2 + ω2

Analytical solution:

y(t) =
A

λ2 + ω2
(−λ sinωt− ω cosωt)

Plug in:

dy

dt
− λy =

A

λ2 + ω2

(
−λω cosωt+ ω2 sinωt+ λ2 sinωt+ λω cosωt

)
= A sinωt

Note:

• Homogeneous solution

y(t) = aeλt

for large −λ > 0 there is a very rapid decay towards the particular solution,

which would need to be resolved with sufficiently small ∆t.

• Even if a = 0 the decay rate λ limits the maximal time step for explicit

schemes

48

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

y

Figure 8: Example of the evolution in a stiff problem: after a fast initial tran-

sient the system evolves slowly, but the stability of the numerical solution is still

governed by the fast time scale.

Explore simple case:

Forward Euler for
dy

dt
= λy with λ ≤ 0

The exact solution ỹ(t) = y0e
λt implies

ỹ(tn) = y0
(
eλ∆t

)n

Since λ ≤ 0 the exact solution does not grow and does not blow up.

The numerical solution

yn+1 = yn +∆t (λyn) = (1 + ∆t λ) yn

implies

yn = (1 + ∆t λ)n y0

In order for the numerical solution not to diverge we need

|1 + ∆t λ| ≤ 1 ⇔ −1 ≤ 1 + ∆t λ ≤ +1

Thus, the numerical scheme leads to spurious growth if ∆t is too large!

For stability we need

∆t ≤ 2

|λ| .

49

Most problems that have more than one time scale, e.g.,

• Time-varying coefficients that vary on a different time scale than the other

characteristic times of the differential equation (e.g. λ)

du

dt
= −λu+ A cosωt

• Coupled ODEs

du

dt
= λ1u+ uv − u3

dv

dt
= λ2v + uv − v3

have two different time scales (here λ1,2)

• Partial differential equations can be thought of as many coupled ODEs.

In general, the time step has to be chosen to resolve all time scales involved, e.g.

in the examples above

∆t≪ λi ∆t≪ 2π

ω
.

However, often the actual solution does not exhibit temporal evolution at all time

scales at all times, e.g. the evolution could become slow after an initial rapid decay

(cf. Fig.8):

• Initial phase: the accuracy requires resolving the ‘boundary layer’: small ∆t
is unavoidable

• Later phase: the accuracy would not require small ∆t
But: stability may require small time steps∆t, the size of which is determined

by the short time scale of the boundary layer.

Definition:

If a system has disparate time scales and the desired solution exhibits long periods

during which its variation does not reflect the fast time scales the system is called

stiff.

Note:

• To treat stiff problems efficiently, the method must have a large stability re-

gion or be unconditionally stable⇒ use implicit methods

50

Consider now more generally a linear system with N components

d

dt
y = Ly.

In many cases L can be diagonalized

SLS−1 = Λ
d

dt
Sy = SLS−1Sy = ΛSy

with

Λ =

λ1
λ2

...
λN

and λi ∈ C being the eigenvalues of L.

Then it is sufficient to consider the scalar equation

d

dt
y = λy λ ∈ C.

Meaning of complex λ: oscillations

Consider (
du
dt
dv
dt

)

= L

(
u
v

)

=

(
0 1
−1 0

)(
u
v

)

The eigenvalues of L are given by

λ2 + 1 = 0 ⇒ λ = ±i

with the associated eigenvectors

V(1,2) =

(
1
±i

)

The general solution is then given by

(
u
v

)

= A

(
1
i

)

eit + A∗

(
1
−i

)

e−it =

(
2R cos(t + φ)
−2R sin(t+ φ)

)

with A = Reiφ

Definition:

A numerical scheme for the differential equation

dy

dt
= λy λ ∈ C with λr ≤ 0

is called absolutely stable if it corresponds to an iteration

yn = y0 z
n with z ∈ C and |z| ≤ 1.

51

Definition:

The region of absolute stability of a numerical scheme is given by the region A in

the complex plane defined by

A = {λ∆t ∈ C | ‖y‖ bounded for all t} .

Notes:

• If L has eigenvalues λ with positive real part, λr > 0, even the analytical

solutions will diverge: definition of absolute stability is only meaningful if

λr ≤ 0 for all eigenvalues of L.

• The stability condition can be expressed as:

the method does not amplify small differences (e.g. when starting from slightly

different initial values y0).
Thus, the truncation errors made at an earlier time do not get amplified ex-

ponentially with time to destroy the solution over time.

Stability Analysis:

Use the Ansatz

yn = y0z
n with z ∈ C.

Insert it in the numerical scheme and determine z:

|z| ≤ 1 ⇒ y bounded for all times scheme stable

|z| > 1 ⇒ y →∞ for n→∞ scheme unstable

Examples:

1. Adams-Bashforth Methods

(a) Forward Euler:

yn+1 = yn + λ∆t z = 1 + λ∆t = 1 + λr∆t + iλi∆t

thus

|z|2 = (1 + λr∆t)
2 + λ2i∆t

2

The stability limit is a circle in the complex λ∆t−plane.

For λ ∈ R (non-oscillatory systems) the stability limit is given by ∆t =
2/|λr|.

52

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3

Figure 9: The regions of absolute stability for Adams-Bashforth methods.

• The instability is characterized by z ≤ −1 < 0:
The instability induces oscillations in which the solution changes

sign in each time step: this oscillation has nothing to do with the

dynamics of the differential equation, it is completely due to the nu-

merical scheme (cf. demo simulations). This is a typical signature of

a catastrophic numerical instability.

For λ ∈ iR (oscillatory systems) forward Euler is unstable for all ∆t.

• The instability is mild: the growth rate goes to 0 with ∆t → 0 (the

imaginary axis is tangential to the stability limit at λ∆t = 0).

(b) AB2:

yn+1 = yn +∆tλ(
3

2
yn −

1

2
yn−1) z = 1 +∆tλ(

3

2
− 1

2

1

z
)

There is a simple method to plot the stability limits:

Insert z = eiθ into the equation for z:

cos θ + i sin θ = 1 +∆t(λr + iλi)

(
3

2
− 1

2
(cos θ − i sin θ)

)

and solve for λr∆t and λi∆t as a function of θ to get the curve for the

stability limit parametrized by θ.
The stability region for AB2 is smaller than for FE. AB2 also unstable

for λ ∈ iR, but again the growth rate goes to 0 for ∆t→ 0. In fact, it goes

to 0 faster than for FE; instability more mild than for FE.

Third order: also stable for oscillatory systems, stability region includes

a range with λ ∈ C.

Stability region shrinks with increasing order of the scheme.

53

2. Adams-Moulton

(a) AM1=BE

yn+1 = yn +∆tλ yn+1

yn+1 =
1

1−∆tλ
yn

With ∆tλ = ∆t(λr + iλi) we get

|z|2 = 1

(1−∆tλr)
2 +∆t2λ2i

For λr ≤ 0 we have |z| < 1 for any ∆t. Thus, backward Euler is uncondi-

tionally stable for time steps of arbitrary size

(b) AM2=Crank-Nicholson:

yn+1 = yn +
1

2
∆tλ(yn+1 + yn)

(1− 1

2
∆tλ) yn+1 = (1 +

1

2
∆tλ) yn

thus

z =
2 +∆tλ

2−∆tλ
=

2 +∆tλr + i∆tλi
2−∆tλr − i∆tλi

|z|2 =
(2−∆t|λr|)2 +∆t2λ2i
(2 + ∆t|λr|)2 +∆t2λ2i

≤ 1 for λr < 0

Thus:

Crank-Nicholson is also unconditionally stable, i.e. stable for all ∆t.
Of course, the accuracy will set a limit for the time step.

Note:

• AM3 and higher-order AM schemes are not unconditionally stable.

Their stability regions shrink with increasing order.

3. Runge-Kutta

54

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4
Adams−Moulton

AM3
AM4
AM5
AM6

Figure 10: Regions of absolute stability for Adams-Moulton methods. BE and

AM2=CN are unconditionally stable and no stability limits are appear in the λ∆t-
plane.

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Runge−Kutta

RK1
RK2
RK3
RK4

Figure 11: Region of absolute stability for Runge-Kutta methods.

Notes:

• For Runge-Kutta schemes the region of stability grows with increasing

order.

• fourth-order Runge-Kutta stable for λ ∈ R and for λ ∈ iR
– RK4 is a very good all-purpose scheme

55

7.1 Connection between stability and convergence

Definition:

A one-step scheme

yn+1 = yn +∆tF(tn, yn,∆t)
is called consistent for the differential equation dy/dt = F (t, y) if

lim
∆t→0

F(tn, yn,∆t) = F (tn, yn)

Theorem:

A scheme that is consistent and stable converges to the exact solution in the limit

∆t→ 0.

Note:

• in each time step truncation and round-off errors arise. We need that they do

not accumulate catastrophically, but remain bounded.

Notes:

• For linear differential equations

dy

dt
= Ly + b

it is sufficient to consider only homogeneous equation. Inhomogeneous equa-

tion has general solution

y = yh(t) + yp(t)

where
dyp

dt
= Lyp + b

dyh

dt
= Lyh

Consider implementing the equation for w = y − yp(t) with yp(t) given,

dw + yp

dt
= L(w + yp) + b ⇒ dw

dt
= Lw

Proof only for one-step schemes for homogeneous equation:

Go through proof to see how stability and consistency enter the convergence

For linear homogeneous equations the solution to the numerical scheme can be

written formally

y(t+∆t) = S(t+∆t, t) y(t)

56

e.g. forward Euler for dy
dt

= λ(t)y

S(t+∆t, t) = 1 + ∆t λ(t)

analogously for coupled equations and Runge-Kutta etc.

For stable scheme we have

||y(t+∆t)|| ≤ ||y(t)|| ⇒ ||S(t+∆t, t)y(t)|| ≤ ||y(t)|| for all y(t) i.e. ||S(t+∆t, t)|| ≤ 1

The exact solution ŷ(t) satisfies

ŷ(t+∆t) = S(t+∆t, t)ŷ(t) + τ(t +∆t) + ǫ

with the truncation error τ(t) = O(∆tp) = C(t)∆tp and a round-off error ǫ.

Need to compute error at final time tmax = N∆t

Consider first

y(2∆t) = S(2∆t,∆t) (y(∆t)) =

= S(2∆t,∆t)S(∆t, 0) y(0)

Thus

y(N∆t) =
N∏

j=1

S(j∆t, (j − 1)∆t) y(0)

For simplicity assume: differential equation does not depend explicitly on time

S(t+∆t, t) = S(∆t) independent of t

S(N∆t) = (S(∆t, 0))N ≡ SN

Consider error e(t) = ŷ(t)− y(t):

e(t +∆t) = ŷ(t+∆t)− y(t+∆t) = S ŷ(t) + τ(t +∆t) + ǫ− S y(t) = since linear

= S e(t) + τ(t +∆t) + ǫ

Thus:

e(∆t) = S e(0) + τ(∆t) + ǫ1

e(2∆t) = S e(∆t) + τ(2∆t) + ǫ2 = S2e(0) + S {τ(∆t) + ǫ1}+ τ(2∆t) + ǫ2

Note that the round-off error is expected to be different in each time step, ǫj 6= ǫi
for j 6= i.

57

Then, iterating this procedure one obtains

e(N∆t) = SN e(0) + SN−1 {τ(∆t) + ǫ1}+ SN−2 {τ(2∆t) + ǫ2}+ ... + τ(N∆t) + ǫN

= SN e(0) +

N∑

j=1

SN−j {τ(j∆t) + ǫj}

Estimate the size of error

||e(N∆t)|| ≤ ||SN e(0)||+
N∑

j=1

||SN−j {τ(j∆t) + ǫj} ||

≤ ‖e(0)‖+
N∑

j=1

‖τ(j∆t) + ǫj‖ because of stability

The scheme is assumed to be consistent: τ = O(∆tp) with p > 1

||e(N∆t)|| ≤ ||e(0)||+
[

O(∆tp−1) +
maxj {ǫj}

∆t

] N∑

j=1

∆t

︸ ︷︷ ︸

tmax

= ||e(0)||+tmax

{

O(∆tp−1) +
maxj {ǫj}

∆t

}

Note:

• Consistency ensures that truncation error in each time step is smaller than

O(∆t) (e.g. O(∆t2))
• Stability ensures that the local errors that arise in each time step are not am-

plified too much so that their accumulation goes to 0 for ∆t→ 0 (e.g. O(∆t)).
• This result can be shown more generally for nonlinear equations as well.

Thus: The scheme converges to the exact solution with the power of ∆t expected
based on the truncation error.

Of course, the round-off error ǫ limits the accuracy. Worse yet, since it accumulates

with each time step, it leads to a reduction in accuracy with decreasing time step

if the time step is smaller than a minimal time step. For instance, applying the

improved Euler scheme (RK2) (1) to the differential equation y′ = λy one gets for

the truncation error

τj =
1

6
∆t3λ3yj +O(∆t4)

and for double-precision the round-off error ǫj , which is O(10−16y), becomes of the

same order as the truncation error for

∆t3opt =
6

λ3yj
ǫj ⇒ ∆topt = O(10−5) (16)

Note:

• For implicit schemes for which a nonlinear equation has to be solved in each

time step (cf. (21) below) the error incurred by solving this equation only

approximately effectively contributes to the round-off error.

58

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

 Time Step dt

 E
rr

or

Figure 12: The round-off error leads to an increase in error with decreasing time

step when ∆t is too small, ∆t < ∆topt .

8 Implementation of Implicit Methods: Newton’s

Method

For nonlinear problems implicit methods require, in principle, to solve a nonlinear

equation at each time step .

E.g. Crank-Nicholson for
dy

dt
= F (t, y)

reads

yn+1 = yn +
1

2
∆t (F (tn+1, yn+1) + F (tn, yn))

We need to solve a nonlinear equation for u ≡ yn+1

u = yn +
1

2
∆t (F (tn+1, u) + F (tn, yn))

i.e., we need to solve

G(u) = 0 with G(u) = yn +
1

2
∆t (F (tn+1, u) + F (tn, yn))− u. (17)

In general, the most efficient approach is using Newton’s method:

Extrapolate iteratively toG(u) = 0 by expanding around the current iterate (Fig.13):

We want G(u(l+1)) = 0 ⇒ G(u(l)) + (u(l+1) − u(l)) dG
du

∣
∣
∣
∣
u(l))

= 0.

59

Thus, the iteration is given by

u(l+1) = u(l) −
(
dG(u)

du

∣
∣
∣
∣
u(l))

)−1

G(u(l)) (18)

Figure 13: Sketch of Newton’s method: extrapolate to the 0 of the function G(u).

The Newton iteration converges very fast if the initial guess is sufficiently close

to the solution u∞, i.e. if the initial guess is in the basin of attraction of the fixed

point.

To see this, expand

u(l) = u∞ + ǫ(l)

and insert this into the Newton iteration

u∞ + ǫ(l+1) = u∞ + ǫ(l) − G(u∞ + ǫ(l))

G′(u∞ + ǫ(l))

ǫ(l+1) = ǫ(l) −

=0
︷ ︸︸ ︷

G(u∞)+G′(u∞)ǫ(l) + 1
2
G′′(u∞)

(
ǫ(l)
)2

G′(u∞) + ǫ(l)G′′(u∞)

= ǫ(l) − ǫ(l) 1

1 + ǫ(l)G
′′(u∞)

G′(u∞)

−
(
ǫ(l)
)2 1

2

G′′(u∞)

G′(u∞)

1

1 + ǫ(l)G
′′(u∞)

G′(u∞)

ǫ(l+1) =
1

2

G′′(u∞)

G′(u∞)

(
ǫ(l)
)2

+O
((
ǫ(l)
)3
)

60

Definition

The order of the convergence of an iteration method is p if the limit

lim
l→∞

∣
∣ǫ(l+1)

∣
∣

∣
∣(ǫ(l))

p∣∣
= r

exists and is non-zero.

Notes:

• For linear convergence, p = 1, the approach to the fixed point is exponential

ǫ(n) ∝ ǫ(0) rn

• For quadratic convergence, p = 2, the approach to the fixed point is much

faster than exponential

ǫ(l+1) = r
(
ǫ(l)
)2

= r
(

r
(
ǫ(l−1)

)2
r
(
ǫ(l−1)

)2
)

ǫ(1) = r
(
ǫ(0)
)2

ǫ(2) = r
(
ǫ(1)
)2

= r
(

r
(
ǫ(0)
)2

r
(
ǫ(0)
)2
)

ǫ(3) = r
(

r
(

r
(
ǫ(0)
)2
r
(
ǫ(0)
)2
)

r
(

r
(
ǫ(0)
)2
r
(
ǫ(0)
)2
))

Thus, in each iteration the number of factors ǫ(0) is doubled and the number

n(l) of factors r satisfies
n(l+1) = 2n(l) + 1

i.e.

n(1) = 1

n(2) = 2n(1) + 1 = 3

n(3) = 2 (2 · 1 + 1) + 1 = 7

n(4) = 2 (2 (2 ·+1) + 1) + 1 = 15

n(n) =

n−1∑

l=0

2l = 2n − 1

Combined we have then

ǫ(n) = r−1
(
rǫ(0)

)2n

.

• For example for rǫ(0) = 0.1:
while for linear convergence the number of correct digits increases by one in

each step, it doubles in each step for quadratic convergence

exponential 10−1 10−2 10−3 10−4 10−5 10−6

super-exponential 10−1 10−2 10−4 10−8 10−16 10−32

61

Notes:

• In principle, in each time step (18) has to be iterated until u(l) converges to

u∗ ≡ liml→∞ ul which then gives yn+1

• for N coupled equations

dG

du
⇒ Jacobian Jij(u

(l)) =
∂Gi(u

(l))

∂uj

the Jacobian depends on u(l) ⇒ it needs to be evaluated in each iteration:

this can be expensive since the Jacobian matrix is N ×N and can be large.

• Instead of inverting the Jacobian Jij it is better to multiply (18) by J and solve

it in the form

∑

j

Jij(u
(l)
1 , ..., u

(l)
N)
(

u
(l+1)
j − u(l)j

)

= −Gi(u
(l)
1 , ..., u

(l)
N).

Solving N linear equations takes O(N2) operations, while inverting the ma-

trix requires O(N3) operations.
In matlab this takes the form

u(l+1) − u(l) = −J\G(u(l))

• The Jacobian may not be available analytically. In that case we need to de-

termine it numerically

∂Gj

∂ui
≈ 1

δ
(Gj(u1, u2, ...ui + δ, ...uN)−Gj(u1, ..., uN))

where δ 6= 0 is a small scalar number. In general, this needs to be done for

each pair (i, j).

• For time-dependent functions F (t,u) the Jacobian has to be determined at

t = tn+1 since F (t, u) is evaluated at that time (cf. (17)).

• When ∆t is not too large, yn is usually close to yn+1 and yn is already a good

initial guess.

Often it is then sufficient to iterate only once to get close enough to u∗:

yn+1 = yn −
(

dG(u)

du

∣
∣
∣
∣
yn

)−1

G(yn). (19)

Then the method is not fully implicit any more, but it may be quite stable.

This simplified method corresponds to linearizing the nonlinearity around the

current solution.

Example: CN for dy
dt

= f(y)

62

yn+1 − yn =
1

2
∆t (F ((yn+1) + F (yn))

=
1

2
∆t (F (yn + (yn+1 − yn)) + F (yn))

≈ 1

2
∆t

(

F (yn) +
dF

dy

∣
∣
∣
∣
yn

(yn+1 − yn) + F (yn)

)

Solve for yn+1

yn+1 = yn +
∆t

1− 1
2
∆t dF

dy

∣
∣
∣
yn

F (yn)

Compare with the general expression (19) using (17):

G(yn) = yn+
1

2
∆t
(

F (u)|yn + F (yn)
)

−u|yn = ∆t F (yn) and
dG

du

∣
∣
∣
∣
yn

=
1

2
∆t

dF

du

∣
∣
∣
∣
yn

−1

Difficulty:

The regular Newton iteration may not converge at all, when initial guess is not

close enough to the root: the extrapolation may copletely overshoot the root.

One can introduce a relaxation parameter ω

u(l+1) = u(l) − ω
(
dG(u)

du

∣
∣
∣
∣
u(l)

)−1

G(u(l)) 0 < ω ≤ 1 (20)

Choice of ω:

• ‘downhill’ method:

insist that |G(u(l))| decreases under the iteration:

since G decreases locally in the direction defined by the Jacobian decrease ω
by factors of 2 until |G(u(l+1))| < |G(u(l))|

63

• step-size limitation:

extrapolation with the slope (Jacobian) is based on local information, for large

steps higher-order corrections can become significant

⇒ if |u(l+1) − u(l)| is large decrease ω, e.g.

ω =
1

1 + ǫ ln(1 + ∆2)
with ∆ =

∣
∣
∣
∣
∣

(
dG(u)

du

∣
∣
∣
∣
u(l)

)−1

G(u(l))

∣
∣
∣
∣
∣

Notes:

• in both methods ω → 1 as the root is approached: quadratic convergence of

Newton method is preserved asymptotically

• downhill method is very robust, cannot diverge, i.e. y is always bounded

but: if the root is on the other side of a maximum it cannot climb that hill,

must ‘tunnel’ through it

• step-size limitation can climb hills

but: it can diverge, depends on an arbitrary parameter ǫ that may have to be

tuned.

also the functional form ω(∆) is chosen heuristically.

Note:

• More robust for finding zeros of a function is bisection. It is, however, much

slower: in each step error goes down only by a constant factor of 2, i.e the

convergence is only exponential.

64

8.1 Approximate Newton Iteration

Implicit schemes require in general solving nonlinear equation for yn+1: Newton’s

method

For N coupled equations Jacobian is a N ×N-matrix:

• for large N Jacobian J is expensive to invert

• J may have to be determined numerically

Perform approximate Newton iteration

General implicit scheme can be written in the form

yn+1 = b+∆tF(yn+1) (21)

where F and b depend also on ym with m ≤ n.

Thus

G(u) = 0 with G(u) = b+∆tF(u)− u and u = yn+1

Full Newton is given by

u
(l+1)
j = u

(l)
j −

∑

k

(J−1)jkGk(u
(l)) with Jjk =

∂Gj

∂uk

∣
∣
∣
∣
u(l)

Replace Jacobian by an approximation Ĵ to the Jacobian

u
(l+1)
j = u

(l)
j −

∑

k

(Ĵ−1)jkGk(u
(l))

Will the iteration still converge?

In the vicinity of the zero u∞ of G the approximate iteration can be approximated

by expanding u
(l)
j = u∞j + δu

(l)
j ,

δu
(l+1)
j = δu

(l)
j −

∑

k

(Ĵ−1)jk
∑

m

Jkm(u
∞)δu(l)m =

∑

m

Mjmδu
(l)
m

with Mjm = δjm −
∑

k

(Ĵ−1)jkJkm(u
∞)

Such a fixed-point iteration converges if

||Mjk|| < 1

where

||
∑

m

Mjmδum|| ≤ ||M || ||δu|| for all vectors δu

65

since then ||δu(l+1)|| < ||δu(l)|| for all l.
Thus need for convergence that Ĵ is close to J

||Ĵ− J|| < ||Ĵ||
Strategy:

• Calculate J and its inverse not in each iteration but keep the same J for a

number of iteration steps⇒ much faster iteration

• Convergence will be not as good

– takes more steps

– domain of attraction may be smaller

Example:

G(x) = a− 1

cosh(x)

For a = 0.5, x0 = 3.2 one gets

0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

Iteration

x

0 2 4 6 8 10
0

20

40

60

inewton

Ite
ra

tio
ns

0 2 4 6 8 10
0

5

10

15

inewtonN
um

be
r

of
 E

va
lu

at
io

ns
 o

f J
ac

ob
ia

n

Skipping to update the Jacobian every inewton− 1 steps can make the Newton fail

to converge (in the plot this is indicated by 0 iterations for inewton = 3.

Notes:

• When the nonlinear equation (21) is solved only approximately, the remaining

error plays a role that is similar to the round-off error. For very small time

steps,∆t < ∆topt, the error increases with decreasing time step, cf. (16). When

decreasing ∆t, the tolerance for solving (21) may have to be decreased as well.

66

9 Backward-Difference Formulae

As implicit scheme we had so far those of Adams-Moulton type

• backward Euler = AM1

• Crank-Nicholson = AM2

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

y

0 5 10 15 20 25 30 35 40 45 50
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

y

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

y

Figure 14: Different degrees of damping of the fast modes. a) Crank-Nicholson

exhibits fast oscillations, b) Backward Euler damps rapidly without oscillations.

c) Backward-Differencing damps with a single overshoot. dy/dt = λy + A sinωt,
λ = −50, ω = 0.1, A = 30, ∆t = 0.5.

We are interested in the behavior for large λ∆t:

Crank-Nicholson:

z = 1 +
1

2
∆tλ(1 + z)

z =
1 + 1

2
∆tλ

1− 1
2
∆tλ

=
2

∆tλ
+ 1

2
∆tλ
− 1
→ −1

(

1− 4

∆t|λ| ...
)

for ∆t→∞ and λ < 0 real

Backward Euler

z =
1

1−∆tλ
→ 1

∆t|λ| for ∆t→∞ and λ < 0 real

Thus:

Fast modes have large values of ∆tλ, when they are not resolved.

• Crank-Nicholson does not capture the rapid decay of the fast mode; instead

it exhibits oscillations that are only slowly damped. The period of the oscilla-

tions is 2∆t, which clearly shows that they are a numerical artifact.

• Backward Euler provides strong damping of these modes. Even if they are

not resolved they decay away rapidly.

67

But: Backward Euler is only a 1st−order scheme.

Note:

• Using a code with large ∆tλ is only meaningful if the corresponding fast

modes are not active, i.e. if they have already decayed.

• If the fast modes are active and their fast evolution is relevant then ∆tλ al-

ways has to be small.

Goal: Develop a higher-order scheme with strong damping

Adams-Moulton schemes are based on quadrature:

We interpolated F (t, y(t)) over the interval [tn+1−l, tn+1] and use the interpolating

polynomial to evaluate the integral
∫ tn+1

tn
F (y(t), t) dt.

Now:

Interpolate y and obtain from the polynomial the derivative dy
dt

∣
∣
tn+1

at the new time

step tn+1

dy

dt

∣
∣
∣
∣
tn+1

= F (tn+1, yn+1).

Use again Lagrange polynomials

pN (t) =

N−1∑

k=0

y(tn+1−k)L
(N)
k (t)

with

L
(N)
k (t) =

N−1∏

k 6=m=0

t− tn+1−m

tn+1−k − tn+1−m

Recall

L
(N)
k (tn+1−l) = δkl.

1. N = 2

p2(t) = y(tn+1)L
(2)
0 (t) + y(tn)L

(2)
1 (t)

= yn+1
t− tn

tn+1 − tn
+ yn

t− tn+1

tn − tn+1

=
yn+1 − yn
tn+1 − tn

(t− tn) + yn

Approximate the derivative

dy

dt

∣
∣
∣
∣
tn+1

≈ d

dt
p2(t) =

yn+1 − yn
tn+1 − tn

Thus

yn+1 = yn +∆t F (tn+1, yn+1) +O(∆t2) backward Euler

68

2. N = 3

p3(t) =
(t− tn−1)(t− tn)

(tn+1 − tn−1)(tn+1 − tn)
yn+1 +

(t− tn−1)(t− tn+1)

(tn − tn−1)(tn − tn+1)
yn +

(t− tn)(t− tn+1)

(tn−1 − tn)(tn−1 − tn+1)
yn−1

=
1

∆t2

(
1

2
(t− tn−1)(t− tn)yn+1 − (t− tn−1)(t− tn+1)yn +

1

2
(t− tn)(t− tn+1)yn−1

)

d

dt
p3(t) =

1

∆t2

(
1

2
yn+1(t− tn + t− tn−1)− (t− tn+1 + t− tn−1)yn +

1

2
(t− tn+1 + t− tn)yn−1

)

d

dt
p3(tn+1) =

1

∆t

(
3

2
yn+1 − 2yn +

1

2
yn−1

)

Thus
3

2
yn+1 − 2yn +

1

2
yn−1 = ∆t F (tn+1, yn+1) +O(∆t3)

For variable time steps with ∆tn = tn+1 − tn one gets

d

dt
p3(tn+1) =

2∆tn +∆tn−1

∆tn (∆tn−1 +∆tn)
yn+1−

∆tn−1 +∆tn
∆tn−1∆tn

yn +
∆tn

∆tn−1 (∆tn−1 +∆tn)
yn−1

and the numerical scheme can be written as

2∆tn +∆tn−1

∆tn−1 +∆tn
yn+1−

∆tn−1 +∆tn
∆tn−1

yn+
∆tn
∆tn−1

∆tn
∆tn−1 +∆tn

yn−1 = ∆tnF (tn+1, yn+1)+O(∆t3)

−15 −10 −5 0 5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

5

10

15

20

25
backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

−1 −0.5 0 0.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

Figure 15: a) Regions of absolute stability of Backward Differencing Schemes. b)

Enlargement of a). The regions shrink with increasing order.

Stability:

69

Stability analysis of the backward differencing scheme of 2nd−order:
3

2
z − 2 +

1

2z
−∆tλz = 0

z1,2 =
2±
√
1 + 2∆tλ

3− 2∆tλ

For small ∆tλ

z1 → 1 scheme is consistent

z2 →
1

3

Notes:

• Multi-step schemes that use values from at least 3 different values of t (BD2,

AB2, AM3, ...) have multiple values of z:

– Only one of the modes corresponds to a physical mode. For the scheme to

be consistent that mode has to satisfy z → 1 for ∆t→ 0

– All the additional modes are unphysical.

• The unphysical modes could lead to additional instabilities and could

• have |z| > 1 even for ∆t→ 0.

• For stability we need that all modes are stable, i.e. we need for all z: |zi| ≤ 1.

• Multistep schemes like BD2 require also the solution at tn−1. Therefore one

cannot use them for the first time step for which only yn is available. For that

time step use a one-step method. Since that scheme is only used for a single

time step it can be one order less than the multistep scheme used. For a BD2

scheme one could simply use backward Euler.

For large ∆tλ

z1,2 =
2±
√
1 + 2∆tλ

3− 2∆tλ
→ ±i 1

√

2∆t |λ|
→ 0 for ∆t→∞ and λ < 0 real

Note:

• BD1 and BD2 are unconditionally stable (stable outside the closed region in

Fig.15)

• BD3, BD4, BD5, and BD6 have unstable regions

• BD2 damps fast modes and is 2nd−order. In contrast to backward Euler, how-

ever, even for λ real z becomes imaginary for ∆t > 1
2|λ|

, which implies an

oscillatory response even though the differential equation itself exhibits no

oscillations. Thus, the fast modes decay rapidly, but they do so in an oscilla-

tory fashion, which manifests itself as an overshoot.

70

10 Chemical Oscillations in the Belousov-Zhabotinsky

System

In the 1950s Belousov was investigating catalysis in the Krebs cycle, which un-

derlies the energy production in mitochondria in eukaryotic cells. In a modified

version of the reaction he found persistent oscillations in the concentrations of the

reactants. He could not get his results published because they ‘contradicted the

laws of physics’ 8:

• The response from the editor of the first journal was: the “supposedly discov-

ered discovery” is quite impossible. The manuscript can only be published if

existing theories can be shown to be flawed.

• After 6 years of more careful experiments to decipher the mechanism he sub-

mitted an extended study to another journal. He was told that it can only be

published as a claim, with the manuscript truncated like a letter to the editor

without the new convincing evidence.

Belousov did not publish it at all. His recipe circulated among faculty. In the

early 60s, Zhabotinsky as a graduate student followed a suggestion of his adviser

Schnoll experimented with a recipe of unknown origin and told Belousov about his

results. Belousov sent him an unpublished manuscript which Zhabotinsky cited

in his paper. But they never met. Belousov, Zhabotinsky, Krinsky and Ivanitsky

received the Lenin Prize in 1980. Belousov had died, however, already in 1970.

The BZ reaction has been relevant in particular from a fundamental point of view

as showing that far from thermodynamic equilibrium chemical systems can spon-

taneously form temporal structures, even chaotic dynamics9. In Fig.16, note the

very steep temporal gradients suggesting stiff dynamics.

Figure 16: Chaotic oscillations in the Belousov-Zhabotinsky reaction.

Chemical oscillations functionally important in many biological systems (e.g. Ca-

waves in eggs upon fertilication, circadian clock, hormonal cycles, ovarian cycle

).

8cf. A.T. Winfree, The Prehistory of the Belousov-Zhabotinsky Oscillator, J. Chemical Education

61 (1984) 661.
9R.A. Schmitz, K.R. Graziani, and J.L. Hudson, J. Chem. Phys. 67 (1977) 3020.

71

A very interesting function of chemical oscillations is in the communication be-

tween organisms with chemical waves between organisms:

Individual cells of dictyostelium discoidum (Slime Mold) use cAMP waves to orga-

nize themselves and aggregate10. Starvation of colonies of those cells trigger the

following steps (see Figs.17,18)

1. Individual slime mold cells start emitting cAMP waves; other cells respond

to that cAMP and relay the cAMP waves. This sets up concentric waves or

spiral waves.

2. The slime mold cells then start streaming along the gradients of the cAMP

concentration and coalesce to form a mound.

3. The mound forms a stalk and a fruiting body, which disperses then the cells

over larger distances to seek ‘greener pastures’.

Videos of BZ:

• http://www.youtube.com/watch?v=lOocwfCE5Cs

• good documentary with history:

http://www.youtube.com/watch?v=nEncoHs6ads . It shows a graph of the tem-

poral evolution of colors at min 10:20

• Spirals induced by cutting waves:

http://www.youtube.com/watch?v=3JAqrRnKFHo

Videos of Dictyostelium discoidum evolution

• spiral waves and onset of streaming

http://www.youtube.com/watch?v=OX5Yiz38fgY

• long duration of slime mold moving (slug)

http://www.youtube.com/watch?v=uqi_WTllG7A

• aggregation and formation of fruiting body

http://www.youtube.com/watch?v=tpdIvlSochk

A classical model for the BZ reaction is that developed by Field and Noyesin the

1970’s11, which they called the ‘Oregonator’ (they were at the U. Oregon at that

point; there had been another simpler 3-component model for chemical oscillations

proposed by Prigogine et al. in Brussels, which was called ‘Brusselator’ by Tyson).

10for a review see F. Siegert and C.J. Weijer, Spiral and concentric waves organize multicellular

Dicyostelium mounds, Current Biology 5 (1995) 937. The figures are from that paper.
11R.J. Field and R.M. Noyes, J. Am. Chem. Soc. 96 (1974) 2001.

72

Figure 17: Dictyostelium discoidum aggregation cycle.

It has three components describing Bromous acid, Bromide, and Cerium concen-

trations. An extension to include the photosensitivity of the catalyst Ru(bpy)3+3 has

been published by Amemiya, Ohmori, and Yamaguchi. It is given by

ẋ
ẏ
ż
v̇

=

k01Ay − k02xy + k03Ax− 2k04x
2

−k01Ay − k02xy + hk05z
2k03Ax− k05z

k01Ay + 2k02xy + k04x
2 − k06v

+

−x
−(y − yin)
−z

−(v − vin)

kf +

p2
p1

p1 + 2p2
−p1

φ

(22)

Here the variables are

x = [HBrO2] Bromous Acid

y = [Br−] Bromide

z = [Ru(bpy)3+3] dipyridine Ruthenium

v = [BrMA] Bromomalonic acid

A = [BrO−
3] Bromate

73

Figure 18: a) Dictyostelium discoidum mounds. b) Concentric and spiral waves.

Without going into details of the chemistry, just a couple of examples of the reac-

tions modeled

A+ Y
k01
︷︸︸︷→ X + V (23)

X + Y
k02
︷︸︸︷→ 2V removal of X via feedback through Y and Z (24)

A+X
k03
︷︸︸︷→ 2X + 2Z autocatalytic step (25)

2X
k04
︷︸︸︷→ V + A (26)

Z
k05
︷︸︸︷→ hY (27)

One obtains the differential equations using the law of mass action. It can be vi-

sualized by imagining that reactions occur when the reactants collide with each

other. Assuming that they are being mixed randomly the probability of a collision

is proportional to the concentrations of all participating reactants. For instance, in

reaction (26) two HBrO2 molecules have to collide (x2), which then produces one

BrMA and one BrO−
3 molecule each. Two HBrO2 molecules disappear for each

reaction. Some reactants are assumed to be present in much higher concentra-

tions, which do not change appreciably during the concentration; they are given by

constants in (22).

74

The essential ingredients for the oscillations are the autocatalytic production of X
in (25), which also generates Z, which then forms Y (27), which in turn removes X
in (24) and therefore forms a delayed negative feedback.

In addition, there is influx of y and v from a reservoir with concentrations yin and

vin, respectively. A realization can be diffusion across a membrane that separates

the reservoir from the reaction compartment.

The light-induced reactions are captured with p1,2 with φ being the light flux.

Like many chemical reactions, the system is quite stiff: the reaction rates vary

substantially

k01 = 2H2 1

M3s
k02 = 3 · 106H 1

M2s

k03 = 42H
1

M2s
k04 = 3 · 103 1

Ms
k06 = 2 · 10−31

s

where H = [H+] is of O(1M).

In their paper Amemiya et al. they show that the model can reproduce the light

dependence of the reaction and generate complex dynamics, aspects of which are

also seen in experiments.

75

11 Application to Partial Differential Equations

Evolution of spatially continuous systems: partial differential equations

Examples:

1. Fourier’s Law of Heat Diffusion

Heat flux is driven by differences in the temperature, but no curvature in

the temperature profile is needed: j = j(∂T/∂x). For small gradients one

can ignore nonlinearities in the gradient and models the heat flux as being

proportional to the gradient of the temperature

j(x, t) = −κ ∂
∂x
T

The net flux out of a small region in space of width 2∆x lasting a short time

interval ∆t reduces the temperature inside that region

(j(x+∆x, t)− j(x−∆x, t))∆t = −2∆x cp (T (x, t +∆t)− T (x, t))

In the limit of ∆t→ 0 and ∆x→ 0 the differences become derivatives,

∂j

∂x
= −cp

∂

∂t
T.

Inserting the dependence of the heat flux on the temperature gradient one

obtains
∂

∂t
T = D

∂2

∂x2
T

with

D =
κ

cp

Analogously: Fick’s law of mass diffusion.

To obtain a simple solution make an exponential ansatz since the differential

equation has constant coefficients

T (x, t) = T0e
λt cos qx

76

Inserting into the differential equation leads to the condition

λ = −Dq2

Thus:

• any spatial modulation of the temperature decays over time: diffusion

smooths out variations

2. Wave Equation

Analogous arguments for an elastic string where the restoring forces acting

on a piece of the string enter Newton’s equation of motion lead to

∂2u

∂t2
= c2

∂2u

∂x2

Simple solutions

(a) Plucked string that is fixed at the ends: u(0) = 0 = u(L)

u(x, t) = u0 sin(qx) cos(ωt)

with q = n π
L
. Inserting this ansatz into the wave equation yields the

dispersion relation ω2 = c2q2.

(b) Traveling wave

u(x, t) = u0 cos(qx− ωt) ω2 = c2q2

The maxima of the wave are traveling with a fixed speed

The maxima are at qx − ωt = 2πn. After a short time interval ∆t they
have traveled a distance ∆x,

qx− ωt = 2πn = q(x+∆x)− ω(t+∆t) ⇒ q∆x− ω∆t = 0

77

The wave speed is therefore given by

vϕ =
∆x

∆t
=
ω

q

Using the dispersion relation

ω = cq right-traveling wave vϕ = c

ω = −cq left-traveling wave vϕ = −c

More generally, the linear wave equation allows solutions

u(x, t) = u(x± ct) for arbitrary functions u

The function u is determined by the initial condition.

Simpler wave equation: waves travel only in one direction

∂u

∂t
= c

∂

∂x
u

For a numerical treatment we need to handle also the spatial derivatives

Finite-difference method:

Introduce a spatial grid xj = j∆x with uj = u(xj), 0 ≤ j ≤ N , and approximate the

spatial derivatives by Taylor expansion

uj±1 = uj ± ∆x
∂

∂x
uj +

1

2
∆x2

∂2

∂x2
uj +O(∆x3)

• First derivative

uj+1 − uj−1 = 2∆x
∂

∂x
uj +O(∆x3)

∂u

∂x
=

1

2∆x
(uj+1 − uj−1) +O(∆x2)

This is a central difference scheme (cf. temporal derivative in the CN).

• Second derivative

uj+1 + uj−1 = 2uj +∆x2
∂2

∂x2
uj +O(∆x3)

∂2uj
∂x2

=
1

∆x2
(uj+1 − 2uj + 2j−1) +O(∆x2)

11.1 Unidirectional wave equation

Consider simplified, uni-directional wave equation

∂u

∂t
= c

∂

∂x
u

78

in finite differences
∂uj
∂t

= c
1

2∆x
(uj+1 − uj−1)

The coupled system can be written in terms of the vector

u(t) =

u0
u1
...
uN

as
∂

∂t
u = cDu ≡ F(u)

with

D =

0 c
2∆x

− c
2∆x

0 c
2∆x

− c
2∆x

0 ...
... 0 c

2∆x

− c
2∆x

0

Note:

• In finite domains we need to consider also boundary conditions: see sec.11.3

Now the coupled equations can be treated with one of the time-stepping routines

discussed previously.

Forward Euler:

un+1
j = unj +∆t

c

2∆x

(
unj+1 − unj−1

)
+∆tO(∆t,∆x2)

Note:

• superscript indicates time step, subscript spatial grid point

• forward Euler is first-order in time, second-order in space: (1,2)-scheme

Neumann Stability Analysis:

Ansatz for the solution of the finite-difference scheme is similar to our previous

stability analysis,

unj = U0 eiqxj zn

z = 1 +
1

2

c∆t

∆x

(
eiq∆x − e−iq∆x

)
= 1 + i

c∆t

∆x
sin(q∆x)

The iteration grows if |z|2 > 1

|z|2 = 1 +

(
c∆t

∆x

)2

sin2 q∆x > 1 for all ∆t as long as q∆x 6= 0, π

Thus:

79

• Since all wavenumbers

− π

∆x
≤ q ≤ π

∆X
are possible on a grid with grid spacing ∆x, forward Euler is unstable for the

wave equation for any ∆t.

• The fastest growing modes have large wavenumber:

q =
π

2∆x
⇔ ℓ =

2π

q
= 4∆x.

– Even if the truncation error and the round-off error have only very small

contributions for modes with those high wavenumbers these modes will

eventually take over.

– As the spatial grid is refined the temporal growth rate increases; it di-

verges for ∆x→ 0.

– For a fixed grid size the divergence can be delayed by taking a sufficiently

small time step: the longer the desired duration T of the run the smaller

∆t has to be chosen.

• Forward Euler is not suitable to solve wave equations for extended periods of

time.

Note:

• Inserting the Fourier ansatz u = U(t)eiqx in the wave equation we obtain

dU
dt

= icq U ⇔ du

dt
= λu with λ = icq

Thus, we can use our previous stability results: we know that forward Euler is

not stable for λ ∈ iR and the growth rate grows with increasing wavenumber

q.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3

80

Suitable schemes:

• explicit schemes: AB3, RK4

• implicit schemes: BE, BD2, CN

Dimensional analysis:

In general, any stability limits will be of the form

c∆t

∆x
≤ Λmax

with Λmax a dimensionless number characterizing the scheme (CFL-condition after

Courant, Friedrich, and Lewy).

For small ∆x the system is stiff :

• Stability limit: ∆tmax → 0 for ∆x→ 0
Fine grids allow high wavenumbers: the code needs to be stable for those

wavenumbers even if the solution does not contain energy in those modes.

Thus, as the spatial grid is refined the time step also has to be refined even if

the temporal accuracy does not require it, since the dynamics of the physical

problem do not get faster with the refinement of the grid.

• The slowest modes are associated with the smallest wavenumbers q = 2π
L
.

The range of time scales is therefore related to the range defined by 1
L
and 1

∆x
,

which is large for ∆x≪ L.

• Algebraically: the largest eigenvalues of the differentiation matrix D are

O(1
∆x

); they become large for large N .

Domain of Dependence

The wave propagates with speed c. The information for the new value at point R
comes from point Q:

• ∆x > c∆t: the point Q is between xj and xj+1 and the information about

R (needed for updating the solution at xj) is available from the grid points

involved in the schemes, xj and xj+1.

• ∆x < c∆t: the point Q is beyond xj+1 and the information about R is not

available from xj and xj+1: the scheme ‘does not know’ how to update R:
unstable.

Note:

• The domain of dependence explains qualitatively why explicit schemes have

a maximal time step limit ∆tmax.

• For implicit schemes the matrix inversion couples xj effectively to all grid

points (cf. (28) below)

81

t

x

x
j

x
j+1

dt

Q

R
velocit

y c=
dx/d

t

dx

t
jj

t
j+1

Figure 19: Space-time diagram for the information flow by the wave.

11.2 Diffusion Equation

To assess the stability of numerical schemes for the diffusion equation

∂u

∂t
= D

∂2u

∂x2

make again a Fourier ansatz

u = U(t)eiqx

and obtain ODEs for each Fourier mode,

dU
dt

= λU with λ = −Dq2 ∈ R

Since λ ∈ R we expect most explicit schemes (e.g. forward Euler) to be stable up to

some ∆tmax.

Dimensional analysis yields in this case

∆tmax =
1

D
∆x2Λmax = O(∆x2)

Note:

• The scaling of ∆t with ∆x in the stability limit is quite restrictive. Numeri-

cally, the diffusion equation is even more stiff than the wave equation: using

implicit schemes is almost required.

• For higher-order problems the scaling becomes yet more restrictive

∂u

∂t
=
∂nu

∂xn
⇒ ∆tmax ≤ O(∆xn).

82

Illustrate this stability limit explicitly:

∂

∂t
u = D(2)u

with

D(2) =

− 2
∆x2

1
∆x2

1
∆x2 − 2

∆x2
1

∆x2

1
∆x2 − 2

∆x2
1

∆x2

...
1

∆x2 − 2
∆x2

Forward Euler:

un+1
j = unj +D

∆t

∆x2
(
unj+1 − 2unj + unj−1

)
+∆tO(∆t,∆x2)

Neumann analysis

unj = U0eiqxj zn

z = 1 +D
∆t

∆x2
(
eiq∆x − 2 + e−iq∆x

)
= 1 + 2D

∆t

∆x2
(cos(q∆x)− 1) < 1

Since z ≤ 1 for all ∆t, stability requires

z ≥ −1

z most negative for q∆x = π. Therefore we get the requirement

∆t ≤ 1

2D
∆x2

Note:

• The mode with largest growth rate has q∆x = π

The excitation of the highest wavenumber is typical for numerical instability

z < −1 also temporal oscillations like in the instability of ODEs

83

Crank-Nicholson:

un+1
j = unj +

1

2
D

∆t

∆x2
(
unj+1 − 2unj + unj−1

)
+

1

2
D

∆t

∆x2
(
un+1
j+1 − 2un+1

j + un+1
j−1

)

−D ∆t

2∆x2
un+1
j+1+(1+D

∆t

∆x2
)un+1

j −D ∆t

2∆x2
un+1
j−1 = unj +D

∆t

2∆x2
(
unj+1 − 2unj + unj−1

)
(28)

in terms of u

1
∆t

+ D
∆x2

−D
2∆x2

−D
2∆x2

1
∆t

+ D
∆x2

−D
2∆x2

...
−D
2∆x2

1
∆t

+ D
∆x2

un+1 =

1
∆t
− D

∆x2
D

2∆x2

D
2∆x2

1
∆t
− D

∆x2
D

2∆x2

...
D

2∆x2
1
∆t
− D

∆x2

un

Notes:

• requires solving large tri-diagonal matrix

• for nonlinear problems issue with inverting matrix in each time step and in

each step of Newton iteration, but likely the matrix is even larger than for

the ODEs.

In general, compared to ODEs issue for PDEs:

• problems typically stiff due to large number of grid points

11.3 Boundary Conditions

Diffusion equation

Consider example
∂

∂t
u =

∂2

∂x2
u 0 ≤ x ≤ L

with two types of boundary conditions

u(x = 0, t) = g0(t)

αu(x = L, t) + β
∂

∂x
u(x = L, t) = gL(t)

At x = 0 Dirichlet boundary condition (e.g. fixed temperature).

At x = L Robin boundary condition. For α = 0 and gL = 0 no-flux (Neumann)

boundary condition ∂
∂x
u = 0.

For simplicity assume forward Euler scheme

un+1
j = unj +

∆t

∆x2
(
unj+1 − 2unj + unj−1

)

with x0 = 0 and xN = L.

84

1. u(x = 0, t) is given

• apply PDE only to grid points j = 1, ...

• u0 = g(t)

2. u(x = L, t) is not given explicitly

• discretize boundary condition

αuN + β
1

2∆x
(uN+1 − uN−1) = gL(t)

• uN+1 is a fictitious point outside the computational domain

• use PDE to update uj for j = ..., N − 1.

• to update uN we need uN+1. We get uN+1 from the boundary condition.

Wave Equation

∂

∂t
u =

∂

∂x
u 0 ≤ x ≤ L

For wave equations not all boundary conditions lead to well-posed problems:

• Wave propagates to the left ⇒ uj obtains its information from uj+1 but not

from uj−1

• uN gets its information from uN+1 outside the computational domain: need

boundary condition at x = L, e.g.

uN = g(t)

• u0 gets its information from u1: u0 completely determined from interior of

the domain: no boundary condition allowed. Use one-sided difference for

updating u0

un+1
0 =

∆t

∆x
(un1 − un0)

Notes:

• if a numerical boundary condition is posed where PDE does not allow a bound-

ary condition scheme becomes unstable (e.g. oscillations propagate into the

interior from that boundary)

• in systems of wave equations waves may propagate in both directions

pose boundary condition on the ‘component’ of the wave that enters the com-

putational domain (incoming characteristic variable) but not on the ‘compo-

nent’ that leaves the domain (outgoing characteristic variable)

85

12 Stochastic Differential Equations

Stochastic differential equations are important in a wide range of applications in

science, engineering, finance, ... To mention just a few examples:

1. Brownian motion of a dust speck

• The dust speck is bombarded by with many, many molecules in rapid

succession. It is impossible to model the motion of all these molecules.

What to do?

• The motion of the molecules is so disordered that collisions are essen-

tially independent of each other over any macroscopic time scale

γ
dx

dt
= F (x) + ξ(t)

• Model the collisions by ξ(t): fluctuates extremely rapidly and unpre-

dictably, i.e. ξ(t1) and ξ(t2) are uncorrelated if t1 6= t2.

2. Chemical reactions

• Molecules are pushed by other molecules: model as ‘noise’ ξ(t).

• Molecules interact with each other

– The molecules may have to be rearranged or chemical bonds may

have to be broken before new bonds can be formed: barriers may

have to be overcome.

– for close distances after rearrangement: attraction through binding

• Model the reacting molecules as ‘particle’ in a potential:

The position in the potential is not really a position of the molecule

but rather a reaction coordinate that describes the rearranging of the

molecules.

3. Ion channels

• Each channel has a certain probability to open or close during a given

time interval

Closed
−−−−−−−−−→
probability α Open

Closed
←−−−−−−−−−
probability β Open

• Averaging over many channels one gets for the fraction n(t) of open chan-

nels
dn

dt
= α (1− n)− β n

86

• But at any given time the actual numberN of open channels probably dif-

fers from the mean; relative to the mean deviations are larger for smaller

number of channels

n(t) will fluctuate around n̄. We can model these fluctuations with a

‘noise’ term
dn

dt
= α (1− n)− β n + ζ

Note: we would have to make sure that noise does not make push n out

of the range [0, 1].

4. Spreading of infectious diseases

• SIS-model:

everybody has a certain probability to contract disease

and certain probability to recover

susceptible
−−−−−−−−−→
probability α infected

susceptible
←−−−−−−−−−
probability β infected

• SIRS-model: resistent period after recovery

• The mean of the healthy/susceptible fraction of the population satisfies

again a differential equation.

• The fluctuations can be modeled with ‘noise’.

We need to discuss a few mathematical concepts:

Random Variables ξ

Consider repeating the same experiment many times:

each time the outcome ξ has a certain probability P (ξ) to occur

the mean of ξ after many repeats will be

E(ξ) ≡< ξ >=

∫

ξP (ξ) dξ

Example: Gaussian distribution

P (ξ) = N(µ, σ2) ≡ 1√
2πσ2

e
−(x−µ)2

2σ2 (29)

with

mean E (ξ) = µ variance E
(
(ξ − µ)2

)
= σ2 (30)

Notes:

87

• The Gaussian distribution is very common for the collection of many indepen-

dent events due to the Central Limit Theorem:

In the limit of large N the probability distribution function for the sum SN =
∑N

i=1 ξi of N identically distributed independent variables is given by a Gaus-

sian distribution. For instance, the collective effect of a large number of kicks

in Brownian motion is Gaussian distributed.

The Gaussian has

µ = NE(ξi) σ2 = NE((ξi − µ)2) (31)

Thus: the mean of the sum grows linearly with N while the standard devia-

tion σ grows like
√
N.

– the Gaussian distribution is also called normal distribution (randn in

matlab).

– the Gaussian is unbounded: arbitrarily large events are possible (al-

though unlikely)

The velocity distribution of a finite number of particles would always

have to be bounded by the total energy: the Gaussian arises in the limit

of large N in which case the total energy diverges.

Stochastic Processes ξ(t):

For any value of the time t the output of a stochastic process is given by a ran-

dom variable ξ(t). Thus, for any sequence t1, t2, ...tN one gets a sequence ξ(t1) ≡
ξ1, ξ(t2) ≡ ξ2, ..., ξ(tN) ≡ ξN of random variables.

Examples of stochastic processes:

• In a Gaussian process each element ξi of the process is normally distributed,

P (ξi) =
1√
2πσ2

e
−(ξi−µ)2

2σ2 〈ξi〉 = µ
〈
(ξi − µ)2

〉
= σ2

More generally, the mean and the variance could depend on time; in that case

µ and σ would be replaced by µi and σ1.
The random variables ξi ≡ ξ(ti) for different times may or may not be inde-

pendent of each other.

• Markov processes

In a discrete Markov process the probability of any event depends only on the

previous event

P (ξn, ξn−1, ξn−2, ...) = P (ξn, ξn−1) = P (ξn|ξn−1)P (ξn−1)

with P (ξn|ξn−1) being the conditional probability to get ξn in the next step if

the value at the previous step was ξn−1.

A Markov process is somewhat like a first-order ODE in the sense that only a

single initial condition is needed.

88

• Wiener process W (t)
The Wiener process models Brownian motion: in Brownian motion the colli-

sions are assumed to be independent of each other: each collision changes the

velocity of the particle randomly

– Successive velocities are independent,

– The difference in the particle’s position is proportional to the velocity ⇒
the increments of the position are independent.

– But successive positions are not independent of each other.

More specifically:

If W (tn) and W (tn+1) are random variables their difference is also a random

variable.

The Wiener process W (t) is a stochastic process that satisfies

– W (0) = 0

– the increments dW (tn) =W (tn+1)−W (tn) during a time interval tn+1− tn
are Gaussian distributed according to

P (W (tn+1)−W (tn)) = N(0, tn+1 − tn).

Thus, the variance of an increment grows linearly with its time differ-

ence.

– increments dW (tn) and dW (tm) are independent random variables if their

time intervals do not overlap.

⇒ W (t) is a Markov process since W (tn+1) = W (tn) + dW (tn).

12.1 Snippets of Ito Calculus

How do we deal with the stochastic differential equation (Langevin equation)

dy

dt
= F (y) + g(y) ξ(t) (32)

What is the issue?

We want such a Langevin equation to model, e.g., Brownian motion. Thus, we

imagine a noise term ξ for which the solution to the simpler equation

dy

dt
= ξ(t)

gives Brownian motion, i.e. a Wiener process.

The noise would therefore have to be the derivative of the Wiener process and

the Wiener process would have to satisfy this differential equation. However, the

89

Wiener process is nowhere differentiable.

If the derivative existed we could compute the expectation value of its square. Con-

sider

lim
∆t→0

〈(
W (t+∆t)−W (t)

∆t

)2
〉

= lim
∆t→0

1

∆t2
∆t = lim

∆t→0

1

∆t
NO!

Thus, the limit ∆t → 0 does not exist and the derivative dy/dt = dW/dt does not

exist.

Similarly, we do not expect the solutions of the more general equation (32) to be

differentiable, i.e. we cannot define the evolution in terms of the usual derivative.

Write the Langevin equation in differential form

dy = F (y(t))dt+ g(y(t)) dW (t) (33)

where we take dW (t) to be the increment of the Wiener process W (t) over an in-

finitesimal time interval: dW (t) =W (t+ dt)−W (t).

To solve (33) we would like to integrate the right-hand side. How do we integrate

over dW (t)? Try to define an integral
∫
g(y(t))dW (t) over the differential dW by

discretizing the time and considering for arbitrary continuous functions g the sum

lim
N→∞

N∑

i=1

g (y(t∗)) dW (ti) with t∗ ∈ [ti, ti+1].

For different realizations of the Wiener process the sum has a different value. To

make sense of the limit we therefore average over multiple realizations and evalu-

ate the sums in the mean-square limit:

For a sequence ζN of random variables we define the mean-square limit via

ms− lim
N→∞

ζN = ζ ⇔ lim
N→∞

〈
(ζN − ζ)2

〉
≡ lim

N→∞

∫

P (ζN) (ζN − ζ)2dζN = 0.

We can now define an integral involving the differential dW (t) by

∫

g(y(t)) dW (t) = ms− lim
N→∞

N∑

i=1

g(y(t∗)) (W (ti+1)−W (ti))with t∗ ∈ [ti, ti+1]

If W (t) was a continuosly differentiable function of t one could write dW (t) = dW
dt
dt

and one would obtain the usual definition of an integral in terms of a Riemann

sum.

If W (t) had bounded variation this would be a Riemann-Stieltjes integral and one

could show that the value of the sum is independent of the specific choice of t∗ ∈
[ti, ti+1]. In that case also the usual integration rules result.

In the Wiener process, however, even during the very short time t∗ − ti the noisy

‘kick’ dW (ti) can change y(t∗) sufficiently to modify the effective ‘kick strength’

g(y(t∗))dW (ti). In general the sum therefore depends on the specific choice of the

value t∗ at which g(y(t)) is evaluated.
Commonly one considers the two possibilities

90

1. Ito :
∫

g(y(t)) dW (t) ≡ lim
N→∞

N∑

i=1

g(y(ti)) (W (ti+1)−W (ti))

The function g(y(t)) is evaluated at left end-point of each interval: the ‘kick’

of the Wiener process (cf. Brownian motion) has a strength corresponding to

the previous position of the particle.

The Ito integral is defined for non-anticipating functions g(y(t)), i.e. g(y(t))
must be statistically independent of the increment W (ti+1)−W (ti).

2. Stratonovich:

∫

g(y(t)) dW (t) ≡ lim
N→∞

N∑

i=1

1

2
(g(y(ti)) + g(y(ti+1))) (W (ti+1)−W (ti))

The function g(y(t)) is evaluated at the mid-point of the interval: the kick of

the Wiener process has an effective strength corresponding to a position at

the ‘middle of the kick’.

The two integrals give different results. For stochastic integrals one therefore al-

ways has to define which of the two interpretations is meant. We will always as-

sume Ito interpretation, i.e.

lim
N→∞

〈
[
∫

g(y(t))dW (t)−
N∑

i=1

g(y(ti)) (W (ti+1)−W (ti))

]2

〉 = 0

Basic Rules

1. dW 2 = dt, dW 2+n = 0 for n > 0
This means that for any non-anticipating continuous function one has

∫ t

0

g(y(t′)) [dW (t′)]
2 ≡ ms− lim

N→∞

N∑

i

g(y(ti)) [W (ti+1)−W (ti)]
2 =

∫ t

0

g(y(t′)) dt′

The proof makes use of the independence of successive increments dW (ti+1)
and dW (ti) and of increments inW and earlier values of g(t)
Note:

• dW 2 = dt corresponds to the property of Brownian motion: the variance

of a diffusing particle grows linearly with time: 〈x(t)2〉 ∝ t
(cf. (31): σ ∝

√
N where in each step a random increment step is added

to the current position.)

• In this sense dW is a differential of order 1
2
.

2. Integration of polynomials

Consider only the simplest cases

91

(a)
∫ t2

t1

dW (t) = W (t2)−W (t1)

i.e. summing up the increments of the Wiener process (=Brownian mo-

tion) gives the distance traversed by the Brownian particle.

(b) Now consider

d(W (t)2) = (W (t+ dt)2 −W (t)2) = (W (t) + dW)2
︸ ︷︷ ︸

dW is the increment of W during dt

−W (t)2 =

= 2W (t)dW + dW 2 = 2W (t)dW + dt

thus

∫ t

0

W (t′)dW =
1

2

W (t)2 −W (0)2
︸ ︷︷ ︸

=0

− 1

2
(t− 0) =

1

2
W (t)2 − 1

2
t

3. Ito’s formula

Consider a function v(y) where y satisfies the stochastic differential equation

(33). What is the differential of v (y(t,W))?

dv =
︸︷︷︸

Taylor expansion

dv

dy
dy +

1

2

d2v

dy2
(dy)2 + h.o.t. =

= v′ (F (y)dt+ g(y)dW) +
1

2
v′′ [F (y)dt+ g(y)dW]2 + h.o.t. =

=

(

v′F +
1

2
v′′g2

)

dt+ v′gdW using (dW)2 = dt

Note:

• Ito’s formula is a stochastic equivalent of the chain rule for v (y(t,W)).

Note:

• If g depends on the dependent variable y the noise is called multiplicative.

• If g is independent of y the noise is called additive.

Example:

Determine the exact solution for the linear Langevin equation with multiplicative

noise

dy = ay(t)dt+ by(t) dW (34)

92

Without the noise term we would divide by y

dy

y
= a dt

and by integrating both sides we would get

ln y = at + C y = y0e
at.

Use this as a starting point and consider the differential of ln y and use Ito’s formula

d (ln y) =

(
1

y
ay +

1

2
(− 1

y2
b2y2)

)

dt+
1

y
by dW

=

(

a− 1

2
b2
)

dt+ b dW (35)

Thus, comparing with (34) we get

d (ln y) =
dy

y
− 1

2
b2 dt
︸︷︷︸

dW 2

and the differential d(ln y) is not simply dy/y, but includes an additional term aris-

ing from dW 2. Consequently,
∫
y−1dy is not simply ln y.

Because the coefficients of the differentials on the right-hand-side of (35) are con-

stants we can integrate the expression for d(ln y) on both sides and get

∫ t

0

d (ln y) = ln y(t)− ln y(0) = (a− 1

2
b2)t + b (W (t)−W (0)

︸ ︷︷ ︸

=0

)

y(t) = y(0)e(a−
1
2
b2)t+bW (t)

Note:

• The exact solution is still a stochastic process and depends, of course, on the

realization W (t)

• Since y is a stochastic variable one cannot simply use separation of variables

and divide through by y and integrate: the usual integration rules do not

apply to the integral
∫
y−1dy if y is a stochastic variable. For general stochastic

variables f the rules apply only to integrals like
∫
df .

• A strategy to solve such stochastic equations is to find a variable transforma-

tion that the takes the equation into one with constant coefficients. This is

only possibly if F (y) and g(y) satisfy certain conditions.

• The multiplicative noise modifies the growth rate by −1
2
b2. This effect would

be missed if we did not pay attention to Ito’s formula.

93

12.2 Numerical Methods

For the numerical solution of stochastic differential equations two goals are possi-

ble

1. Strong approximation: pathwise approximation

The numerical solution y(t) approximates the exact solution ỹ for any given

realization W (t) of the Wiener process,

τs(t) ≡ E(|y(t)− ỹ(t)|) = 1

N

N∑

k=1

|yk(t)− ỹk(t)|.

Here yk(t) is the numerical result one obtains for the kth−realization of the

Wiener process.

2. Weak approximation: approximation of expectation values

The numerical solution does not approximate the exact solution for any given

individualW (t); it approximates only mean values of the exact solution. More

precisely, for any f(y) in a class of test functions the numerical solution ap-

proximates the expectation values of f(y)

τm(t) =< f(ỹ(t)) > − < f(y(t)) >

Typically one would require convergence of the

(a) mean: f(y) = y

(b) variance: f(y) = y2

Notes:

• For the strong approximation the numerical realizations W (t) of the noise

have to approximate the exact realizations.

• For the weak approximation the numerical noise can be quite different than

the exact noise as long as it yields a y(t) for which sufficiently many expecta-

tion values agree (e.g. mean, variance, higher moments 〈(y(t))m〉).

12.2.1 Strong Approximation

i) Euler-Maruyama Scheme

Consider

dy = f(y, t)dt+ g(y, t)dW (36)

Discretize time and integrate over a short time interval ∆t

∫ t+∆t

t

dy =

∫ t+∆t

t

f(y, t′)dt′ +

∫ t+∆t

t

g(y, t′)dW (t′)

94

Using a left-endpoint rule with only a single interval one obtains the Euler-Maruyama

scheme

yn+1 = yn + f(yn, tn)∆t+ g(yn, tn)∆Wn (37)

where

∆Wn =W (tn +∆t)−W (tn).

The ∆Wn are Gaussian distributed with variance ∆t. They are δ−correlated

〈∆Wn∆Wn′〉 = ∆t δn,n′.

Using a normally distributed variable ∆W̃ that has variance 1 we get ∆Wn by

setting

∆Wn =
√
∆t∆W̃ with P (∆W̃) =

1√
2π
e−

∆W̃2

2 (38)

The noise strength is characterized by g(yn, tn).

Notes:

• For each time step generate a new random number ∆Wn that obeys Gaussian

statistics (normal distribution); in matlab this is done with randn.

• If y is a vector, usually the random processes for different components of y

are independent: for each component of y one has to generate a different

independent random number

To check the convergence of the strong approximation we need to compare solutions

with different time steps ∆t for the same realization W (t). A good strategy is

to first generate the increments for a Wiener process (Brownian walk) with the

smallest ∆t needed and then coarsen that walk by factors of 2 by adding adjacent

increments.

1. Start with smallest ∆t, generate increments ∆W
(0)
n for all time steps tn us-

ing a random number generator for a normal (Gaussian) distribution with

variance ∆t (cf. (29,38)).

2. Increase the time step to ∆t(1) ≡ 2∆t and generate the corresponding Wiener

process with increments ∆W
(1)
n by adding pairs of successive increments,

∆W (1)
n = ∆W

(0)
2n +∆W

(0)
2n+1 n = 0, 1, ... (39)

Use this Wiener process to run the code with time step 2∆t.

3. Continue to add up the appropriate increments of the Wiener process with

increments ∆W
(l)
n to generate Wiener processes with increments ∆W

(l+1)
n ,

l = 2 . . . , corresponding to time steps ∆t(l+1) = 2l+1∆t. These compound incre-

ments have the variance

〈
(
∆W (l)

n

)2〉 = 2l

95

since
〈(

∆W
(2)
1

)2
〉

=

〈(

∆W
(1)
1 +∆W

(1)
2

)2
〉

=

〈(

∆W
(1)
1

)2
〉

+
〈

∆W
(1)
1 ∆W

(1)
2

〉

︸ ︷︷ ︸

=0

+

〈(

∆W
(1)
2

)2
〉

4. Use 2l∆t and∆W
(l)
n , l = 1, 2, . . ., for successively less accurate approximations

in (37).

Note: for f(yn, tn) = 0 and g(yn, tn) = 1 the Euler scheme (37) generates exactly

the same W (t) for all l. Changing the time step for a given realization makes no

difference since the coarsened Brownian motion adds the steps of the finer repre-

sentation of the realization.

Order:

• One can show that, in general, the forward Euler scheme has a global trun-

cation error of O(∆t 12).

• For dg
dy

= 0, i.e. for additive noise, forward Euler is of order O(∆t1) as in the

deterministic case (see (41) below)

ii) Milstein Scheme

We want to get higher-order approximations.

Consider first again deterministic case

dy

dt
= F (y)

Note:

• for simplicity we assume F does not depend explicitly on time.

Rewrite as integral equation

y(t+∆t) = y(t) +

∫ t+∆t

t

F (y(t′))dt′

To evaluate the integral we rewrite the integrand

F (y(t′)) = F (y(t)) +

∫ t′

t

dF (y(t′′))

= F (y(t)) +

∫ t′

t

∂F

∂y

dy

dt
dt =

≈
︸︷︷︸

left endpoint rule

F (y(t)) +
∂F

∂y

∣
∣
∣
∣
y(t)

dy

dt

∣
∣
∣
∣
t

(t′ − t).

96

Inserting this into the integral we get

y(t+∆t) = y(t) + ∆tF (y(t)) +
∂F

∂y

dy

dt

∫ t+∆t

t

t′ − t dt′

= y(t) + ∆tF (y(t)) +
1

2
∆t2

∂F

∂y

dy

dt

Note:

• This is the 2nd-order Taylor-series scheme we had early on.

Analogously, consider now the stochastic differential equation in integral form

y(t+∆t) = y(t) +

∫ t+∆t

t

F (y(t′)) dt′ +

∫ t+∆t

t

g (y(t′)) dW (t′)

We want to go beyond the left-end-point rule to evalute these integrals.

Again, we write the integrands as integrals over differentials

F (y(t′)) = F (y(t)) +

∫ t′

t

dF (y(t′′))

Because y is a stochastic process we have to use Ito’s formula to calculate the dif-

ferential dF and analogously dg.

For any function v(y)with y satisfying the stochastic differential equation (33) Ito’s

formula gives

dv =

(
dv

dy
F +

1

2

d2v

dy2
g2
)

dt+
dv

dy
g dW

Rewriting Ito’s formula as an integral we get

v(y(t′)) = v(y(t)) +

∫ t′

t

(
dv

dy
F +

1

2

d2v

dy2
g2
)

dt′′ +

∫ t′

t

dv

dy
g dW (t′′)

Use this with v(y) = F (y) and v(y) = g(y) to rewrite the two integrands

y(t+∆t) = y(t) +

∫ t+∆t

t

[

F (y(t)) +

∫ t′

t

(
dF

dy
F +

1

2

d2F

dy2
g2
)

dt′′ +

∫ t′

t

dF

dy
g dW (t′′)

]

dt′

+

∫ t+∆t

t

[

g(y(t)) +

∫ t′

t

(
dg

dy
F +

1

2

d2g

dy2
g2
)

dt′′ +

∫ t′

t

dg

dy
g dW (t′′)

]

dW (t′)(40)

= y(t) + ∆t F (y(t)) + g(y(t))∆W
︸ ︷︷ ︸

Euler-Maruyama

+h.o.t.

We want the leading-order term beyond the Euler-Maruyama scheme: since dW 2 =
dt the dominant term is
∫ t+∆t

t

∫ t′

t

dg (y(t′′))

dy
g (y(t′′)) dW (t′′) dW (t′) =

dg (y(t))

dy
g (y(t))

∫ t+∆t

t

∫ t′

t

dW (t′′) dW (t′) + ...

97

Here it was sufficient to evaluate the integrand at the left endpoint since this in-

tegral is part of the correction to the left endpoint approximation for the integral

over F (y(t′)).

Evaluate the integral
∫ t+∆t

t

∫ t′

t

dW (t′′) dW (t′) =

∫ t+∆t

t

[W (t′)−W (t)] dW (t′)

=
1

2

(

W (t+∆t)2 −W (t)2 − 1

2
∆t

)

−W (t) (W (t+∆t)−W (t))

=
1

2
(W (t+∆t)−W (t))2 − 1

2
∆t =

1

2
∆W 2 − 1

2
∆t

Note:

• ∆W 2 6= ∆t in any given realization. Only 〈∆W 2〉 = ∆t. The relation dW 2 = dt
between the differentials is also understood in the mean-square limit.

Omitting the other integral terms one obtains the Milstein scheme

yn+1 = yn +∆t F (yn) + g(yn)∆W +
1

2

dg(yn)

dy
g(yn)

(
∆W 2 −∆t

)
(41)

Notes:

• As in (37) the Wiener process in (41) has variance ∆t.

• Milstein scheme can be shown to have strong convergence of order ∆t1 (i.e.

global truncation error).

• The additional effort to implement theMilstein scheme compared to the Euler-

Maruyama scheme is small. It improves the accuracy significantly.

• For additive noise one has dg
dy

= 0: the Euler-Maruyama scheme is then iden-

tical to the Milstein scheme and also becomes strong of O(∆t) (see homework)

To go beyond O(∆t) we need to deal with the other integrals
∫ t+∆t

t

∫ t′

t

dW (t′′)dt′
∫ t+∆t

t

∫ t′

t

dt′′dW (t′)

They cannot be expressed simply in terms of ∆W and ∆t. We need to introduce an

additional random variable

∆z =

∫ t+∆t

t

∫ t′

t

dW (t′′)dt′

One can show

〈∆z〉 = 0 〈(∆z)2〉 = 1

3
∆t3 〈∆z∆W 〉 = 1

2
∆t2

Note:

98

• expect ∆z to be of O(∆t 32), very loosely speaking.

• with ∆z included the scheme would become of O(∆t 32).

iii) Implicit Schemes

As in the deterministic case stability may severely limit the size of the time step

and may require implicit schemes.

However, if one tries to implement a fully implicit scheme one runs into difficulties:

As an example, consider the backward Euler scheme for

dy = ay dt+ by dW

yn+1 =
yn

1− a∆t− b∆W
Since ∆W is Gaussian distributed and therefore unbounded and can have either

sign the denominator can vanish (and change sign) for some ∆W .

⇒ treat only the deterministic term implicitly

1. Backward Euler

yn+1 = yn +∆tF (yn+1, tn+1) + g(yn, tn)∆W

2. Backward Milstein

yn+1 = yn +∆tF (yn+1, tn+1) + g(yn, tn)∆W +
1

2

dg(yn)

dy
g(yn)

(
∆W 2 −∆t

)

12.2.2 Weak Approximation

If only averages and moments like 〈yn〉 are of interest the strong approximation

is not needed, i.e. any given run need not to converge to the exact solution corre-

sponding to the given realization of the noise.

In particular:

The noise used in the simulation need not be the same noise as in the stochastic

differential equation.

i) Forward Euler

For

yn+1 = yn + F (yn)∆t+ g(yn)∆W̃

the increments ∆W̃ need not be Gaussian distributed. It is sufficient if ∆W̃ satisfy

the conditions

|〈∆W̃ 〉|+ |〈∆W̃ 3〉|+ |〈∆W̃ 2〉 −∆t| ≤ K∆t2 (42)

Notes:

99

• The noise∆W̃ need not be a Wiener process, i.e. ∆W̃ need not be
∫ t+∆t

t
dW (t′).

Eq.(42) shows that the noise need only capture the first few moments of the

Wiener process, which satisfies

〈∆W 2m+1〉 = 0 m ≥ 0 〈∆W 2〉 = ∆t

Thus, the noise may differ from the Wiener process at order O(∆t2).

• The noise could be a simple coin toss

P (∆W̃ = ±
√
∆t) =

1

2

It seems however that in matlab there is no random number generator for

such a dichotomic noise: one would have to use a Gaussian distributed num-

ber x and then pick
√
∆t or −

√
∆t depending on the sign of x. This would be

slower than using the Gaussian distribution.

• This weak Euler scheme has a weak convergence of O(∆t).

ii) Order-2 Weak Taylor Scheme

By keeping all the integrals in (40) and keeping also a term coming from dW 2dt at
the next order one gets

yn+1 = yn + Fn∆t + gn∆W +
1

2
gn
dgn
dy

(
∆W 2 −∆t

)
+

+
dFn

dy
gn∆z +

1

2

(

Fn
dFn

dy
+

1

2

d2Fn

dy2
g2n

)

∆t2 +

+

(

Fn
dgn
dy

+
1

2

d2gn
dy2

)

(∆W∆t−∆z)

with

∆z =

∫ t+∆t

t

∫ t′

t

dW (t′′)dt′

For weak convergence ∆W can be replaced by ∆W̃ and ∆z by 1
2
∆W̃∆t if

|〈∆W̃ 〉|+ |〈∆W̃ 3〉|+ |〈∆W̃ 5〉|+ |〈∆W̃ 2〉 −∆t| + |〈∆W̃ 4〉 − 3∆t2| ≤ K∆t3

Notes:

• the conditions are satisfied by a Gaussian random variable and also by a

three-state discrete random variable with

P (∆W̃ = ±
√
3∆t) =

1

6
P (∆W̃ = 0) =

2

3

100

With that replacement we get the simplified weak scheme

yn+1 = yn + Fn∆t + gn∆W̃ +
1

2
gn
dgn
dy

(

∆W̃ 2 −∆t
)

+
1

2

(

Fn
dFn

dy
+

1

2

d2Fn

dy2
g2n

)

∆t2

+
1

2

(
dFn

dy
gn + Fn

dgn
dy

+
1

2

d2gn
dy2

)

∆W̃∆t

Note:

• To generate ∆W̃ generate a uniformly distributed variable ξ ∈ [0, 1] (using
rand in matlab) and pick ±

√
∆t or 0 depending on the value of ξ,

0 ≤ ξ ≤ 1

6
∆W̃ = +

√
3∆t

1

6
< ξ <

1

3
∆W̃ = −

√
3∆t

1

3
< ξ ≤ 1 ∆W̃ = 0

12.2.3 Application of Weak Approximation: Feynman-Kac Formula

Consider the heat equation for a bar that is cooled by ambient air

∂T

∂t
=

1

2

∂2T

∂x2
−K(t, x)T

with initial condition

T (x, 0) = T0(x)

Note:

• use Newton’s law of cooling with x−dependent coefficient (e.g. x−dependent
circulation)

Consider first solution without the cooling term,

T (x, t) =

∫ ∞

−∞

1√
2πt

e−
(x−x′)2

2t T0(x
′) dx′ (43)

Check by plugging in.

Note: can state this fact in the form

T (x, t) =

∫ ∞

−∞

G(x, t; x′) T0(x
′) dx′

with G(x, x′) being the Green’s function for the heat equation

∂G(x.t; x′)

∂t
=

1

2

∂2G(x, t; x′)

∂x2
lim
t→0

G(x, t; x′) = δ(x− x′)

101

G(x, t; x′) =
1√
2πt

e−
(x−x′)2

2t

The diffusion equation can be solved using a weak approximation to stochastic

differential equation for random walker:

Probability distribution for increments of Wiener process

P ′(∆W) =
1√
2π∆t

e−
∆W2

2∆t

By the central limit theorem we get the probability distribution function for the

position W (t) = x +
∑n

j=1∆Wj at time t = n∆t of a walker that starts at x at time

t = 0,

Px(W, t) =
1√

2πn∆t
e−

(W−x)2

2n∆t =
1√
2πt

e−
(W−x)2

2t

i.e. variance grows linearly with number of steps.

Thus, one can read the solution (43) as

T (x, t) = 〈T0(W (t))〉x ≡
∫ ∞

−∞

Px(W, t)T0(W) dW

Notes:

• 〈...〉 denotes the average over Wiener processes that start at position x

• to get the temperature at a position x and time t one starts many random

walkers at position x, which at time t would reach W (t). The temperature is

given by the value of the average of T0(W (t)) over those walks.

• the picture of diffusing random walkers would have suggested the converse

procedure:

start with T0(x
′) random walkers at position x′ and time t = 0. At time t their

distribution would give the temperature distribution.

• since Px(W, t) = PW (x, t) the two approaches are equivalent

• Starting with walkers at x′ would not allow to compute the temperature at a

given position x directly. Would have to average over walks starting at many

different initial positions, most of which would not end up at x and would

therefore not contribute to the value of T (x, t).

With cooling the walkers (corresponding to ‘heat particles’) at positionW (t) ‘decay’
at a rate K(t,W (t))
Over a given pathW (t) the number of walkers ‘shrinks’ by a factor

e−
∫ t
0 K(t′,W (t′))dt′

102

therefore one gets the Feynman-Kac formula

T (x, t) = 〈e−
∫ t
0 K(t′,W (t′))dt′T0(W (t))〉x ≡

∫ ∞

−∞

Px(W, t) e
−

∫ t
0 K(t′,W (t′))dt′T0(W) dW

Note:

• again, it does not matter whether the walker goes from x toW (t) or the other

way round; the decay is the same.

Note:

• Feynman introduced this formula in the context of the Schrödinger equation

i
∂ψ

∂t
=
∂2ψ

∂x2
+ V (x)ψ

for the complex wave function ψ(x, t),which determines the probability to find

a quantum-mechanical particle at position x.

To get the expectation value solve the problem

dy = dW y(0) = x

du = K(t, x(t)) dt u(0) = 0

then

T (x, t) = 〈e−
∫ t
0 K(t′,W (t′))dt′T0(W (t))〉x = 〈e−u(t)T0(y(t))〉

Note:

• through the initial condition y(o) = 0 the average is over random walks that

start at position x

• only interested in mean values: can replace dW by dW̃

yn+1 = yn +∆W̃ with P (∆W = ±
√
∆t) =

1

2
un+1 = un +K(tn, un)∆t

Note:

• Feynman-Kac formula works also when diffusion is backward: in that case

the direct simulation of the partial differential equation is unstable

103

13 Fluctuations and Tipping Points

As an application of stochastic differential equations we consider systems that un-

dergo sudden transitions to quite different states when a parameter is changed,

i.e. they exhibit saddle-node bifurcations or first-order transitions.

Simple mechanical example: catastrophic snap-through of a pre-stressed beam.

• In this transition the system goes to a state that is very different from the

initial state.

• This system has strong hysteresis: once the beam has snapped through it is

not sufficient to release the load to get it back into the original position.

Such catastrophic transitions have also been discussed in the context of climate

change. The worry is that through the increasing amount of greenhouse gases in

the atmosphere, which reduce the amount of infrared radiation that transports

heat away from the earth, could lead to a rise in the earth’s temperature that

triggers a transition to a climate that would be so different from our current climate

that adaptation would be very difficult (e.g. significantly rising ocean levels).

Small Ice-Cap Instability:

Ice reflects sun light more strongly than water. Therefore, the melting of ice

(Greenland, arctic, antarctica) increases the amount of radiation absorbed by the

earth which increases the energy influx. This could lead to further melting of ice.

This positive feedback may lead to a run-away melting. Conversely, if an ice cap be-

comes large enough it could reduce the temperature sufficiently to lead to further

growth of the ice.

Consider a minimal energy-balance model for the small ice-cap instability12 .

c
dT

dt
= (1− α(T))Fsw − ǫσT 4

Here

• Fsw the influx of energy through short-wave radiation

• σT 4 the black-body radiation emitted by the earth (Stefan-Boltzmann law).

• α(T) is the reduction of the influx by albedo, which is assumed to depend on

the temperature via the temperature-dependence of the coverage of the earth

12D. Notz, The future of ice sheets and sea ice: between reversible retreat and unstoppable loss,

PNAS 106 (2009) 20590.

104

with ice.

A reasonable fit is apparently obtained with13

α(T) =

αi T ≤ Ti

αo + (αi − αo)
(T−To)2

(Ti−To)2
Ti ≤ T < To

αo T ≥ To

with αi > αo. This function is meant to mimic that for T > To all of the

oceans are free of ice, while for T < Ti they are completely covered with ice

(snowball earth). The steeper slope for lower temperature captures that there

is more area near the equator where the ice melts first when a snowball earth

is heated up and therefore a change in temperature has a bigger effect on

the albedo. Conversely, there is very little area near the poles and a change

in temperature has not much impact on the albedo once almost all ice has

melted.

T is an average temperature of that model earth ⇒ to have all oceans be

frozen over T has to be well below the freezing temperature of water since the

temperature is much higher at the equator and conversely for the transition

to the ice-free state.

• ǫ is an effective emissivity describing the partial opaqueness of the atmo-

sphere to long-wave (thermal) radiation. This emissivity is reduced by green-

house gases.

Fixed points and bifurcation diagram:

Solve for ǫσ

ǫσ =
Fsw

T 4
[1− α(T)]

a)
200 220 240 260 280 300 320 340

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−7

 Temperature [K]

 S
ca

le
d

E
m

is
si

vi
ty

 ε

b)
200 220 240 260 280 300 320 340

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−7

 Temperature [K]

 S
ca

le
d

E
m

is
si

vi
ty

 ε

Figure 20: Fixed points for the energy-balance model for Ti = 260, To = 290, αo =
0.1. a) αi = 0.3 b) αi = 0.6.

To read Fig.20 as a bifurcation diagram, flip it over. The dynamics is the identified

by considering limiting values of the temperature: For T →∞ one gets dT/dt<0.

13R. Pierrehumbert, Principles of Planetary Climate, 2009.

105

• For high values of the effective emissivity there is a single solution: snowball

earth (T < Ti)

• For small values of the effective emissivity the only solution is ice-free earth

(T > To)

• For intermediate values three solutions exist, two of them have partial ice

covering.

With a change in emissivity the saddle-node bifurcations can be passed and a sud-

den transition occurs. In this model one has two possible jumps

• decreasing ǫ one has a jump from a snowball earth to either ice-free or a

partially frozen earth

• increasing ǫ one has a jump from a partially frozen earth to a snowball earth.

Near the bifurcation points small perturbations of the temperature could induce a

jump transition: dangerous!

Can one predict the vicinity of a bifurcation point before it is too late?

Consider a yet simpler model with a simpler nonlinearity

dy

dt
= F (y) ≡ µy + βy3 + γy5 + h (44)

with µ < 0, β > 0 and γ < 0.

This system has a potential, i.e. its dynamics can be written as

dy

dt
= −dU

du
with U = −1

2
µy2 − 1

4
βy4 − 1

6
γy6 − fy.

As µ is increased from very negative values a second minimum develops for y > 0
and eventually the minimum near y = 0 disappears in a saddle-node bifurcation.As

this point is approached the minimum near y = 0 becomes quite shallow since it

merges with a maximum. Mathematically, the saddle-node bifurcation is deter-

mined by the condition

dF

dy

∣
∣
∣
∣
at fixed point

= 0 ⇔ d2U

dy2
= 0 and

dU

dy
= 0.

Even small noise can induce large flucutations in such a shallow minimum

• consider the variance of y as a function of µ and test whether one can in-

deed discern a substantial increase as µ is ramped towards the saddle-node

bifurcation.

One goal of the homework is to assess what conditions are more favorable to use

such fluctuations as early warning signs in (44).

106

14 Two-Point Boundary-Value Problems

Consider a different type of ordinary differential equation: boundary value prob-

lems

Examples:

1. Placing a satellite

equation of motion for satellite

m
d2x

dt2
= F (x, t)

usually one has initial values

x(0) = x0
dx

dt

∣
∣
∣
∣
t=0

= v0

When placing a satellite task is different. Given are

x(0) = x0 x(T) = xfinal

initial velocity is not given; even final time may not be prescribed.

2. Eigenvalue problems

(a) Consider the motion of a string

∂2u

∂t2
= c(x)2

∂2u

∂x2
u(0, t) = 0 u(L, t) = 0

where the wave speed c(x)may depend on the position, because the thick-

ness of the string varies.

Look for harmonic motion

u(x, t) = eiωtU(x)

c(x)2
d2U(x)

dx2
= −ω2U(x)

eigenmodes and eigenfrequencies are determined by this boundary-value

problem:

need to choose ω such that U(x) satisfies both boundary conditions

(b) Heat diffusion

∂T

∂t
=

∂

∂x

(

D(x)
∂T

∂x

)

α0,LT + β0,L
∂T

∂x
= γ0,L at x = 0, L

again linear and time-independent coefficients: exponential ansatz

T (x, t) = eσtΦ(x)

107

∂

∂x

(

D(x)
∂Φ

∂x

)

= σΦ α0,LΦ+ β0,L
∂Φ

∂x
= γ0,L at x = 0, L

or interested in steady temperature distribution

∂

∂x

(

D(x)
∂T (x)

∂x

)

= 0 α0,LT + β0,L
∂T

∂x
= γ0,L

3. Electrostatics

Poisson equation for the potential Φ generated by density ρ of free charges

∇ · (ǫE) = 4πρ E = −∇Φ

with ǫ the dielectric coefficient of the material.

Typically the potential is given on the boundary

In one dimension

∂

∂x

(

ǫ(x)
∂Φ

∂x

)

= 4πρ(x) Φ(0) = Φ0 Φ(L) = ΦL

where dielectric coefficient can depend on location.

14.1 Shooting Method

Consider first an analytical example: mass-spring system

d2x

dt2
+
k

m
x = 0 (45)

to get unique solution we usually pose initial conditions

x(0) = x0
dx

dt

∣
∣
∣
∣
t=0

= v0

Consider here boundary-value problem

x(0) = x0 x(tf) = xf

General solution for differential equation (45)

x(t) = A cos(ωt) +B sin(ωt) with ω2 =
k

m

Need

x(0) = x0 = A x(tf) = xf = A cos(ωtf) +B sin(ωtf)

We need to tune v0 such that the final position is the desired position. Since we

have the general analytical solution, we have an explicit expression that connects

108

the initial velocity with the final position: we can simply solve forB, which happens

to be the initial velocity,

B =
xf − x0 cos(ωtf)

sin(ωtf)

Thus

x(t) = x0 cosωt+
xf − x0 cos(ωtf)

sin(ωtf)
sinωt

In the numerical method we also have to tune v0, but we cannot simply solve for

it. But we have a numerical way to connect v0 to the final position. We then ‘fiddle’

with v0 until we hit the desired final position.

To stick to our general formulation in terms of first-order systems, we rewrite the

second-order equations as two first-order equations

dx

dt
= v

dv

dt
= ω2x

implemented, e.g., as forward Euler

xn+1 = xn +∆t vn

vn+1 = vn +∆t ω2xn

To even get started we need to have x0 and v0.
We have to guess v0 and see where this leads to in terms of x(T)
Write this as a formal map that takes the initial condition with yet unknown v0
and maps it to the final state

x(tf) = Xf(x0, v0)

v(tf) = Vf(x0, v0)

Then we need to solve

G(v0) ≡ Xf(x0, v0)− xf = 0

i.e. need we need to find a root of G(u): use Newton iteration

ul+1 = ul − 1
dG
du

∣
∣
ul

G(ul)

We need derivative dG
du
: approximate by comparing G for closely spaced initial

guesses

in the first step pick closely spaced v1,20

dG

du
≈ G(v20)−G(v10)

v20 − v10
for successive steps

dG

du
≈ G(ul)−G(ul−1)

ul − ul−1

Note:

109

• evaluating G(u) requires solving the ordinary differential equation over the

whole time interval; this can be a slow process: using ul,l+1 as comparisons for

derivative avoids solving the ode twice in each Newton step

Algorithm

1. guess v10

2. numerically solve ODE to get x1(tf), v
1(tf) ≡ u1

3. guess v20

4. numerically solve ODE to get x2(tf), v
2(tf) ≡ u2

5. perform Newton iteration

ul+1 = ul − (ul − ul−1)

Xf (x0, ul)−Xf (x0, ul−1)

(
Xf(x0, v

l
0)− xf

)

6. upon convergence u→ u∞: v0 = u∞ and

x(tf) = Xf(x0, u
∞)

v(tf) = Vf(x0, u
∞)

14.2 Application: Control of Robot

Consider a model for a simple robot consisting of an extendable arm on a pivot

110

It is described by

• extension r of the arm

• angle φ of arm relative to x−axis

• radial velocity dr
dt

• angular velocity dφ
dt

Newton’s law of motion

d

dt

(

(I +mr2)
dφ

dt

)

= τ(t)

d

dt

(

m
dr

dt

)

= f(t) +mr

(
dφ

dt

)2

• τ external applied torque

• f applied radial force

• centrifugal force mr
(
dφ
dt

)2

• I is the moment of inertia of the arm with respect to an axis through its center

of mass

• m the mass of the arm.

For numerical treatment write in terms of first-order equations

dφ

dt
= ω (46)

dr

dt
= v (47)

dω

dt
=

1

Ieff
(τ(t)− 2mrωv) (48)

dv

dt
=

f(t)

m
+ rω2 (49)

with

Ieff = I +mr2

The goal is to determine the time-dependent force and torque such that the arm

moves from an initial position

[r(0), φ(0),
dr

dt
(0),

dφ

dt
(0)] = [r0, φ0, v0, ω0]

111

to a final position

[r(tf), φ(tf),
dr

dt
(tf),

dφ

dt
(tf)] = [rf , φf , vf , ωf]

at a time tf .
There are inifinitely many ways to do that.

To make the problem meaningful introduce a cost function

P =

∫ tf

0

E(τ, F, ...) dt

Now: find solution that goes from initial position to final position and minimizes

the cost function.

Here use the cost function

P =
1

2

∫ tf

0

α τ(t)2 +
1

α
f(t)2 dt

Note:

• Why not take the work performed by the robot?

Accelerating and breaking usually both require effort although during break-

ing energy is extracted from robot⇒ take quadratic form in the forces.

• With the parameter α we can emphasize more whether applying a torque or

a linear force requires more resources.

14.3 Minimization with Constraints: Pontryagin’s Principle

To obtain the optimal path for the robot we need

• the minimum of a cost function

P =

∫ tf

o

E (x(t′), u(t′)) dt′

• under the constraint
d

dx
x(t) = F (x(t), u(t))

• where u(t) is a time-dependent control variable that should enable us to ‘steer’

the solution x(t) to the desired final position x(T) = xf .

Note:

• Here we have generalized the cost function to allow also a dependence on x(t).

112

• The function u(t) can be thought of as playing the role of τ(t).

• For simplicity we consider initially only one control variable and add f(t)
later.

Consider first a yet simpler example:

Find the minimum xm of P (x) under the constraint g(x) = 0 with x ∈ R
n

Figure 21: The condition for the minimum under a constraint is given by ∇P ‖ ∇g.

Compare the minimum under a constraint with a regular local minimum:

Local Minimum without constraint:

• At a local minimum xm the function P (x) does not change to linear orderwhen

x is shifted by an amount ∆x in any direction, i.e. ∇P = 0.

Minimum under constraint:

• At a minimum xm under the constraint g(x) = 0 the function P (x) does not

change to linear order if x is changed by an amount ∆x along the surface

defined by g(x) = 0.

Rephrase the condition for the constrained minimum:

• At a minimum xm under a constraint ∇P need not be zero, but P (x) is only

allowed to change in directions ∆x that violate the constraint g(x) = 0, i.e. in
the direction in which g(x) changes: ∇g(x).

Thus

∇P‖∇g ⇒ ∇P + λ∇g = 0

Note:

113

• the parameter λ is called a Lagrange multiplier

In general, for multiple constraints gn(x) = 0 and higher dimensions:

∇P need not be 0, it can have components in the directions in which one of the

gn changes, because changes of x in those directions are not allowed by the con-

straints,

∇P = λ̃1∇g1 + λ̃2∇g2 + ...λ̃N∇gN
Write it as

∇
(

P (x) +

N∑

n=1

λn gn(x)

)

= 0 (50)

Now: How do we deal with an integral and the constraint given by a differential

equation?

Consider a finite-difference discretization of the integral and the differential equa-

tion:

We seek

• minimum of

P = ∆t

N∑

n=1

E(xn, un)

• under the multiple constraints

xn+1 = xn +∆tF (xn, un)

i.e.

gn(x,u) = xn +∆t F (xn, un)− xn+1

Note:

• The vector x in (50) is now replaced by xn together with un:

x = (x0, x1, ...xN , u0, ...uN)

• ∇ is also replaced,

∇ → (
∂

∂x0
,
∂

∂x1
, ...,

∂

∂xN
,
∂

∂u0
, ...,

∂

∂uN
)

The Lagrange multiplier equation (50) reads now

∂

∂xj

{

∆t
N∑

n=1

E(xn, un) +
N∑

n=1

λn (xn +∆t F (xn, un)− xn+1)

}

= 0 (51)

114

and

∂

∂uj

{

∆t

N∑

n=1

E(xn, un) +

N∑

n=1

λn (xn +∆t F (xn, un)− xn+1)

}

= 0 (52)

Using ∂xn

∂xj
= δjn one gets

∆t
∂E

∂xj
+ λj

(

1 + ∆t
∂F

∂xj

)

− λj−1 = 0

Thus

λj−1 = λj +∆t

(

λj
∂F

∂xj
+
∂E

∂xj

)

Here

λj = λ(tj) λj−1 = λ(tj −∆t).

Replacing ∆t→ −∆t we see that this expression corresponds to the forward Euler

scheme for

dλ(t)

dt
= −

(

λ
∂F (x, u)

∂x
+
∂E(x, u)

∂x

)

, (53)

which is to be solved in parallel to

dx(t)

dt
= F (x(t), u(t)). (54)

The connection between u(t) and λ(t) is given by (52) which results in

∆t
∂E

∂uj
+ λj∆t

∂F

∂uj
= 0,

i.e. the algebraic equation

λ
∂F (x, u)

∂u
+
∂E(x, u)

∂u
= 0. (55)

Notes:

• For a single dynamical variable x(t) we have a single constraint and a single

Lagrange parameter λ(t), each of which satisfies a differential equation.

• We have an algebraic equation connecting the Lagrange parameter λ(t) with

the control variable u(t). It is an algebraic equation rather than a differential

equation because u appears only with the index n and not n± 1.

• Both differential equations are initial-value problems, i.e. we need to specify

x(0) and λ(0).
For our control problem we are only given x(0). The initial value λ(0) is arbi-

trary, but we have to satisfy also x(T) = xf . Thus, the condition for the final

value x(T) needs to be translated into an initial condition λ(0).

115

Apply now the results from the single dynamical variable to our robot equations.

• The dynamical system is given by four variables (φ(t), r(t), ω(t), v(t)). Thus

there are 4 variables x(i)(t) which satisfy the 4 constraints given by the origi-

nal dynamical system (46,47,48,49),

dx(i)

dt
= F (i)(x(j), u(j)) i = 1 . . . 4.

To satisfy these four constraints we need four Lagrange parameters λ(i)(t).
Using discrete time steps as in (51), eq.(50) becomes then

∇
(

N∑

n=1

E (τn, fn) +
4∑

k=1

N∑

n=1

λ(k)n g(k)n

)

= 0.

Thus, the 4 constraints g(k) defining the dynamical system are added together.

Here we have made use of the fact that in our robot problem P does not de-

pend on x.
Here

∇ =

(

∂

∂x
(1)
1

, . . . ,
∂

∂x
(k)
n

, . . .
∂

∂x
(4)
N

,
∂

∂τ1
, . . . ,

∂

∂fN

)

.

• Comparison with (51) and (53) shows that in continuous time the Lagrange

parameters λ(i)(t) satisfy the evolution equations

dλ(i)

dt
= −

4∑

k=1

λ(k)(t)
∂F (k)(x(1)(t), x(2)(t), x(3)(t), x(4)(t), τ(t), f(t))

∂x(i)
+
∂E(τ(t), f(t))

∂x(i)
︸ ︷︷ ︸

=0

 , i = 1 . .

(56)

• There are two control variables

u(1)(t) = τ(t) u(2)(t) = f(t)

They are related to the Lagrange parameters via (55)

4∑

k=1

λ(k)
∂Fk(x

(j), τ, f)

∂τ
+
∂E(τ, f)

∂τ
= 0 (57)

4∑

k=1

λ(k)
∂Fk(x

(j), τ, f)

∂f
+
∂E(τ, f)

∂f
= 0 (58)

Evaluating (56,57,58) we obtain

116

dλ(1)

dt
= 0 (59)

dλ(2)

dt
=

2m

Ieff

(

ωv + r
dω

dt

)

λ(3) − ω2λ(4) (60)

dλ(3)

dt
= −λ1 +

2m

Ieff
rvλ(3) − 2rωλ(4) (61)

dλ(4)

dt
= −λ(2) + 2m

Ieff
rωλ(3) (62)

with

τ =
1

α

λ(3)

Ieff
F = α

λ(4)

m
(63)

Now:

• Known are the initial and final conditions for φ, r, ω, v

• Unknown are the initial conditions for λ(i), i = 1...4

• ⇒ total count is o.k.: 8 equations for 8 variables

Now the situation is similar to that of positioning a satellite:

Some of the initial conditions have been replaced by final conditions.

Shooting method:

Consider the mapXf from initial condition x0 = (φ0, r0, ω0, v0), λ0 = (λ
(1)
0 , λ

(2)
0 , λ

(3)
0 , λ

(4)
0)

to the state of the robot at time tf ,

x(tf) = Xtf (x0, λ0)

λ(tf) = Λtf (x0, λ0)

For a given x0 we need to satisfy a 4-component vector function

Xtf (x0, λ0) = xf ⇔ G(λ0) ≡ Xtf (x0, λ0)− xf = 0.

The Newton iteration

ul+1
i = uli −

∑

j

(
J−1

)

ij
Gj(u

l
1, .., u

l
4)

is solved as ∑

j

Jij(u
l
1, ..., u

l
4)
(
ul+1
j − ulj

)
= −Gj(u

l
1, ..., u

l
4)

with Jij the Jacobian of G

Jij =
∂G(i)

∂λ(j)
.

117

G(λ0) is obtained by solving (46-49) and (59-62) numerically using a suitable time-

stepping routine.

Jij is obtained by solving (46-49) and (59-62) with slightly modified initial condi-

tions for one λi at a time

∂G(i)

∂λ(j)
≈ G(i)(λ(1), ..λ(j) + δλ, ...λ(4))−G(i)(λ(1), ..., λ(4))

δλ
δλ≪ 1

Since x(tf) is the relevant output, we iterate Newton until |x(tf)− xf | < tol

Upon convergence set λ
(i)
0 = u(i)∞ gives the correct initial conditions for λ(i)

The time-dependence of the required force and torque is then given by the time-

dependence of λ via (63)

Components of Code:

• Main program

calls Newton

• Newton solver

calls time evolution to get G and calls Jacobian

• Jacobian

calls time evolution for Jij

• time evolution

calls time-stepping routine; can be any kind depending on task:

– order of scheme

– adaptive/non-adaptive

– explicit vs. implicit

• output initial conditions for λi and path [φ(t), r(t), ω(t), v(t)].

14.3.1 Pontryagin’s Principle using Functional Derivatives

The derivation of (53) and (55) can be done without introducing finite-difference

approximations. Use variational calculus instead.

In order to write (51) without introducing discrete times introduce

W {x(t), u(t)} ≡
∫ tf

0

E(x(t′), u(t′) + λ(t′)

(

−dx
dt

+ F (x(t′), u(t′))

)

dt′

Note:

• W
{
x(t), dx

dt

}
is called a functional of x(t): it maps a function into a scalar

number

118

• one can think of x(t) as the tth−component of the infinite-dimensional vector

x

• W is then a function of infinitely many vector components x(t)

Introduce the functional derivative δW
δx(t)

instead of the partial derivative ∂W
∂xj

via

δW ≡W {x(t) + δx(t)} −W {x(t)} = δW

δx(t)
δx(t)

Then (omitting u(t) for simplicity)

δW =

∫ tf

0

E (x(t) + δx(t)) + λ(t)

{
d

dt
(x(t) + δx(t))− F (x(t) + δx(t))

}

dt−W {x(t)}

expanding the integrand in δx cancels the terms without δx

δW =

∫
∂E

∂x
δx+ λ

{
d

dt
(δx(t))− ∂F

∂x
δx(t)

}

dt

We are looking for a saddle of W , i.e. a ‘point’ x(t) for which W{x(t)} does not

change when x(t) is slightly varied in a fashion that is arbitrary except at the end-

points t = 0 and t = tf , where we require x(0) = x0 and x(tf) = xf

δx(0) = 0 = δt(tf) (64)

If it were not for the term dδx
dt

we could argue that the prefactor of δx(t) in the

integrand has to vanish, since the variation δx(t) is an arbitrary function.

Perform integration by parts making use of (64)

δW =

∫
∂E

∂x
δx− d

dt
(λ) δx(t)− λ∂F

∂x
δx(t)dt

then
∂E

∂x
− d

dt
λ− λ∂F

∂x
= 0

Recover the dependence on u(t), which does not appear with a time-derivative in

W :

no integration by parts and no time-derivative of λ

∂E

∂u
− λ∂F

∂u
= 0

When there are more than one dependent variable

W {x1(t), x2(t), ..., xN(t), u1(t), ...uM(t)} =

∫ tf

0

E(..., xi(t
′), ..., uj(t

′)...)dt′ +

+
N∑

k=1

λk(t
′)

(
dxk
dt

+ Fk(..., xi, ...uj...)

)

dt′

119

one obtains

d

dt
λi =

∂E

∂xi
−

N∑

k=1

λk
∂Fk

∂xi

0 =
∂E

∂uj
−

N∑

k=1

λk
∂Fk

∂uj

14.4 Shooting Method for Linear Problems

For linear differential equations one has superposition principle

⇒ can determine coefficients for the linear superposition directly without Newton

iteration

Revisit as a simple example the harmonic oscillator with arbitrary time-dependent

inhomogeneous terms

d

dt

(
x
v

)

−
(

0 v
ω2 0

)(
x
v

)

=

(
Ix(t)
Iv(t)

)

(65)

with general boundary conditions

B0

(
x(0)
v(0)

)

+Bf

(
x(tf)
v(tf)

)

= b

Note:

The boundary conditions x(0) = x0, x(tf) = xf correspond then to

B0 =

(
1 0
0 0

)

Bf =

(
0 0
1 0

)

b =

(
x0
xf

)

Since the equations are linear and inhomogeneous equation, the general solution

is given by a superposition of the general solution for the homogeneous problem

and a particular solution

(
x(t)
v(t)

)

= s1

(
x1(t)
v1(t)

)

+ s2

(
x2(t)
v2(t)

)

+

(
xp(t)
vp(t)

)

with (
x1(t)
v1(t)

)

=

(
cosωt
−ω sinωt

) (
x2(t)
v2(t)

)

=

(
1
ω
sinωt

cosωt

)

and

(
xp
vp

)

satisfying (65)

Note:

120

• it does not really matter much which initial condition the particular solution

satisfies, since the initial (and terminal condition) will be taken care of by the

general homogeneous solution.

We can write the solution as

y(t) = Y(t) s+ yp(t)

with the fundamental solution Y(t) given by

Y(t) =

(
x1(t) x2(t)
v1(t) v2(t)

)

and

s =

(
s1
s2

)

yp(t) =

(
xp(t)
vp(t)

)

The fundamental solution satisfies the initial conditions

Y(0) = I ≡
(

1 0
0 1

)

The b

oundary condition can then be written as

B0 (Y(0)s+ yp(0)) +Bf (Y(tf)s+ yp(tf)) = b

(B0Y(0) +BfY(tf))
︸ ︷︷ ︸

M

s+B0yp(0) +Bfyp(tf)− b
︸ ︷︷ ︸

−b̂

= 0

Obtain the coefficients s then by

s = M−1b̂

Note:

• no Newton iteration needed to determine coefficients s.

Algorithm for n coupled equations:

1. integrate homogeneous initial-value problem n times with n initial conditions

1
0
...
0

,

0
1
0
...

, ...

0
...
0
1

←→ Y(0)

121

2. integrate inhomogeneous initial-value problem once with initial condition

yp(0) =

0
0
0
0

3. determine s from

s = M−1b̂

4. solve initial-value problem with initial conditions (Y(0)s = s)

y(0) = s

Notes:

• last step needed:

– fundamental solution typically does not get stored at all intermediate

times

– for different initial conditions adaptive time step may have led to differ-

ent intermediate times in the different columns of Y(t)

– solution is needed at different intermediate times than were used for

Y(t)

• problems can arise if fundamental solution contains exponentially growing

solutions

round-off errors can lead to large errors in particular when solving the matrix

equation for s

• as usually, solve for s as s = M\b̂

• typical application: eigenvalue problems, since they are linear

122

15 Applications

15.1 Application 1a: Fluid Flow: Vortex Dynamics

It turns out that for simulations of smooth vorticity fields point vortices are not

suited. Approximating sheets of vorticity in a mixing layer by lines of vortices

leads to singularities.

Improvement is obtained by using blob vortices, i.e. vortices with finite extent.

Example simulation from Leonard (J. Comp. Phys. 37 (1980) 289).

Schematic set-up of mixing layer: inflow of two layers of fluid with two different

velocities, mixing occurs starting at the end of separating plate

Vortex blobs are created numerically at the end of the separation plate

Vorticity contours of simulation

123

Corresponding positions of vortex blobs

124

125

15.2 Application 2: Ostwald Ripening and the Decay of Is-

lands on Surfaces

Consider the surface of a crystaline material during deposition of material from

the vapor phase:

• Typically the surface is flat (terraces) except for mono-atomic steps between

the terraces. The terraces form islands.

• At sufficiently high (but not too high) temperatures individual atoms on the

surface (adatoms=adsorbed atoms) are diffusing along the surface. (At yet

higher temperatures the terraces cease to be flat). The adatoms tend to pref-

erentially attach at the step edges (more bonds established than on flat sur-

face)

adatom can more easily attach to concavely curved surface than to convex

surface: ‘larger contact area’

⇒it is observed that small islands shrink and large islands grow reflecting

the smaller convex curvature of the large islands.

• In principle, the adatoms can also jump up or down the steps between ter-

races. In many materials these jumps are relatively rare.

Consider simple model for the decay of a single island in a pit

• Diffusion is fast enough compared to growth/decay of islands to be in steady

state

∂tρ = ∆ρ ⇒ ∆ρ = 0. (66)

ρ is the density of atoms diffusing on the surface (terrace) between steps.

• Assume dynamics on each terrace independent of ρ on adjacent islands: ne-

glect jumps between terraces; to hop down or even up a step the atoms would

have to overcome the Ehrlich barrier.

• Atoms can attach to step but also detach from the step: the more atoms dif-

fusing around the more likely they are to attach to the step

→ for some density of diffusing atoms as many atoms attach as detach: equi-

librium

126

→ net attachment rate of adatoms to up-step proportional to deviation of ρ
from equilibrium value

K (ρ− ρeq(R))
atoms attach if ρ > ρeq, i.e. if density of ‘gas’ too high, K > 0.
If the atoms do not like to attach to the step a higher density is needed

keep the atoms from detaching →equilibrium value ρeq(R) is higher for more

strongly curved steps, i.e. for smaller radius of curvature R of the step

ρeq(R) = ρeq∞ e
γΩ

kBT
1
R

γ line tension (= one-dimensional surface tension), Ω surface area covered by

single atom, kB Boltzmann constant, T temperature. ρeq∞ is the equilibrium

density for a straight step.

Note:

– R < 0 concave step: atoms more attracted to wall than for straight wall,

even for smaller density atoms attach easily.

– R > 0 convex step: atoms less likely to attach, higher density needed to

have them attach.

• attaching adatoms supplied by diffusive flux jD from dense to dilute regions

jD = −Ddρ

dx

with D diffusion constant. Here for radial geometry

|jD| =
∣
∣
∣
∣
−Ddρ

dn

∣
∣
∣
∣
= |K (ρ− ρeq(R))|

with d
dn

normal derivative

We will determine signs later depending on which orientation the step has.

•

To diffuse, the atoms need to detach from the surface, hop over, and reat-

tach at a neighboring location.

→ temperature dependence of diffusion

D = D0e
−

Ed
kT

127

with Ed surface diffusion barrier (activation energy for detaching/breaking

bond with atom on surface)

• When attaching the atoms gain a binding energy: Ef adatom formation en-

ergy

→ Temperature dependence of equilibrium density

ρeq∞ = C0e
−

Ef
kT

for higher Ef the atoms attach more readily and fewer atoms are in the gas

phase.

• attachment of adatoms moves the edge

dr0(t)

dt
= κD

dρ(r0)

dr
dr1(t)

dt
= κD

dρ(r1)

dr

At r0 island shrinks for dρ
dr
< 0; at r1 pit shrink for dρ

dr
< 0.

To get an evolution equation for the radii r0,1(t) we need the densities ρ(r0) and

ρ(r1): determine the density profile from Laplace equation (66).

For simplicity: assume circular island in circular pit

∆ρ ≡ d2ρ

dr2
+

1

r

dρ

dr
= 0

Need boundary conditions

−Ddρ
dr

(r0) = flux out of the inner step

−Ddρ
dr

(r1) = flux into the outer step

Signs of fluxes: for ρ > ρeq adatoms attach to the step

• at r0: negative flux

−Ddρ
dr

(r0) = −K (ρ(r0)− ρeq(r0))

• at r1: positive flux

−Ddρ
dr

(r1) = +K (ρ(r1)− ρeq(r1))

128

Seek evolution equations for r0,1(t):

General solution for diffusion equation:

ρ = A+B ln r

(Obtain via v = dρ
dr
: v′ = −v/r⇒dv/v = −dr/r⇒v ∼ 1/r⇒ρ ∼ ln r)

Insert

D
B

r0
= −K ((ρeq(r0)−A− B ln r0))

D
B

r1
= K ((ρeq(r1)− A− B ln r1))

need only dρ
dr
∝ B:

−A =
DB

Kr1
− ρeq(r1) +B ln r1

−DB
r0K

= ρeq(r0) +
DB

Kr1
− ρeq(r1) +B ln r1 −B ln r0

B(r0, r1) =
ρeq(r1)− ρeq(r0)
D
K
(1
r0
+ 1

r1
) + ln r1

r0

=
Kr0r1 (ρ

eq(r1)− ρeq(r0))
D(r0 + r1) +Kr0r1 ln

r1
r0

< 0

ρeqr0 = ρeq∞ e
γΩ
kT

1
r0

ρeqr1 = ρeq∞ e
− γΩ

kT
1
r1

Insert general solution in evolution equations for radii

dr0(t)

dt
= κDB(r0, r1)

1

r0

dr1(t)

dt
= κDB(r0, r1)

1

r1

Notes:

• as islands shrinks r0 → 0 then B → −∞ exponentially fast through ρeq(r0):
evolution becomes very fast in the final phase

• adaptive time step should be useful.

References

[1] H. Levine, W. J. Rappel, and I. Cohen. Self-organization in systems of self-

propelled particles. Phys. Rev. E, 6302(2):017101, January 2001.

129

15.3 Adams-Moulton Methods

Implicit Method:

Now include tn+1 in the interpolation grid.

Use Lagrange polynomials L
(N)
k (t) of order N − 1

L
(N)
k (t) =

N−1∏

k 6=m=0

t− tn+1−m

tn+1−k − tn+1−m

Note: limits for index m shifted compared to AB

Interpolant is then

PN(t) =
N−1∑

k=0

F (tn+1−k, yn+1−k)L
(N)
k (t)

For equally spaced grid tn = t0 + n∆t we get

yn+1 = yn +

N−1∑

k=0

F (tn+1−k, yn+1−k)

∫ tn+1

tn

N−1∏

0=m6=k

t− tn+1−m

(m− k)∆t dt

Example:

Adams-Moulton 1

yn+1 = yn +∆tF (tn+1, yn+1)

results in backward Euler.

130

Adams-Moulton 2:

yn+1 = yn + F (tn+1, yn+1)

∫ tn+1

tn

t− tn
∆t

dt+ F (tn, yn)

∫ tn+1

tn

t− tn+1

−∆t dt

= yn +
1

2
∆t (F (tn, yn) + F (tn+1, yn+1))

results in Crank-Nicholson scheme:

yn+1 − yn
∆t

=
1

2
(F (tn, yn) + F (tn+1, yn+1)) .

131

