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two at some length since they have an infinite family of irreducible representa-
tions. These geometric ideas are applied in Case Study 4 to the problem of
Bénard convection in the plane.

Algebra (Chapters X1V-XV). Chapter XIV sets up equivariant sinlgu]a_mt‘y
theory, concentrating on the recognition problem, mngenlrspaws, and intrinsic
ideals, by analogy with Chapter I1. Similarly Chapter XV develops unfolding
theory, by analogy with Chapter I11, and includes pmcfs of the main theorems,
promised from Volume 1. The ideas are illustrated using L!ze dlhrx!ral group
D, (the symmetry group of an equilateral triangle) and its relation to the
spherical Bénard problem via spherical harmonics of urr_ier 2. Case Study 5
shows how to apply the algebraic methods to the tracuon problem for an
elastic cube, continuing the analysis outlined previously in §2.

Hopf Bifurcation (Chapters XVI-XVII). At thn ﬁlage_lhe theory moves
away from static bifurcation and begins to acquire d ynamic aspects. Chap_ter
XVI develops a general theory of equivariant Hopf I:nl‘urcat_mn, concentrating
on existence and stability results. Chapter XVIT applies this metlhodfjlugy to
Hopf bifurcation with circular symmetry (the group Q{2)), ::_unmdermg Ib::rth
the generic case and nonlinear degeneracies (by a trick: reduction to amplitude
equations). Quasi-periodic motion on a torus ocours her_e. The closely related
groups S0(2), Z,, and O(n) (acting on [’) are also dlSL‘-LIESt.“d. More com-
plicated examples are dealt with in Chapter XVIIL anflbnfurcatm‘n with
dihedral group symmetry D, is studied in detail and applied to oy:ulla:mrs
coupled in a ring. Hopf bifurcation with spherical symm:etry_and Hopf bifur-
cation on the hexagonal lattice (relevant to doubly diffusive systems) are
sketched.

Made Interactions (Chapters X1X-X X). Chapter XIX discusses mode mteral
actions without any prescribed symmetry, concentrating on the steady-sr:ata;
Hopfand Hopf/Hopf cases. Because of the natural §' symmetry of Hopf bﬂml'-
cation, these problems acquire Z, and Z, @ Z, symmetry during the anall:,'sw
(rendering results from Volume | applicable). Finally Chapter XX considers
mode interactions with O{2) symmetry. . . :

The results are applied to Taylor-Couette flow in long c_.-,rhmls:.rsil.a.. subject
to periodic boundary conditions) in Case Study 6, which bnflgs together
virtually all of the ideas developed in this volume. The outcome is coherent
description, in symmetry terms, of some of the prechaotic behavior observed
in this much-studied experiment.

CHAPTER XII

Group-Theoretic Preliminaries

§0. Introduction

The basic theme of this volume is that the symmetries of bifurcating systems
impose strong restrictions on the form of their solutions and the way in which
the bifurcation may take place. There are two major subthemes, which we
might term “geometric” and “algebraic.” These lead us to introduce two pieces
of mathematical machinery: group representation theory and equivariant
singularity theory, The aim of this chapter is to describe, in a fairly concrete
fashion, the requisite mathematical background. In this manner we hope to
make the methods accessible to a wide audience.

A symmetry of a system ¥ is a transformation of ¥ that preserves some
particular structure. The set I of all such transformations has seveal pleasant
properties, which can be summarized by saying that I is a group. In this book
A 15 a real vector space R", the transformations are linear mappings y: R" — R",
and the structure to be preserved is a particular bifurcation problem. For
example, consider the static bifurcation problem

gix ) = 0 1)
where g: B" x R — R" is a smooth (C") mapping, i being the bifurcation
parameter. By “preserved” we mean that forallye T

glyx. 4) = ygix. 1) (02)

50 that every y € I' commutes with g. It follows that x is a solution if and only
il yx is, so the solution set to g = 0 is preserved by the symmetries 3. The
“geometric” subtheme is the study of how I transforms R"; the “algebraic™

subtheme deals with the use of (0.2) to restrict the form of g.
We therafors heoin in 813 with came orann theary Wae introdues the idea
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of a Lie group I acting on a space E* and describe fundamu_nal examples
including the orthogonal group O{n), the circle group $'. the dihedral group
D. and the n-torus T". A given abstract group [ can act as transformations
nf"a space in many ways, this is discussed in §1b and leads to the ideas of an
action and a representation of T. These are two slightly anT:ar?m ways _ul'
looking at the same basic idea: a group of n x n matrices that is isomorphac,
as an abstract group, to I, ) :

A Lic group has topological as well as algebraic properties, and the im-
portant ones for this hook are compactness and, to a lesser e_;lcnt, m:_rnnac’tcd-
ness. The representation theory of a compact Lie group is especially well
understood, and we shall confine attention throughout to the compm:trcase.
{Every finite group is compact, and so are O(n), 8', and T") Inlﬁlc we dISCirlSS
the existence on a compact Lie group of an invariant (Haar) integral, which
is important in a number of situations because it allows us 10 aVCrage over
the group. For example, it permits us to assume that T acts by orthogonal
transformations of B, o .

In §2 we describe the decomposition of a given representation into simpler
ones. called irreducible representations. In fact, if [ is a compact Lie group
acting on ¥ = R", then we can write ¥ as a direct sum

V=V@hae &k

of subspaces ¥}, each invariant under T, such that ¥ has no T-invariant
subspaces other than {0} and ¥;. These “irreducible components” of V" are the
fundamental building blocks of representation theory. The process of §emm-
posing ¥ is in a sense analogous to that of diagnnglizing g matrix and is done
for the same purpose—to simplify the mathematics. !

In §3 we discuss lineqr maps RB" — B that commute with an action of I,
This discussion has important implications for bifurcation problems (0.1) th'fu
satisfy (0.2), because the linearization (dg), must commule wilh_r. Tw::f main
points are made. The first is that there is a notion stronger than uwdupnbﬂnl‘.:.r,
absolute irreducibility, which ensures that only scalar multiples of the identity
commute with T, The second is that certain uniquely defined subspaces must
be invariant under any mapping that commutes with T. We shall use these
ideas to restrict the form of (dg)y. .

5846 develop the “algebraic” subtheme. In §4 we consider invariant func-
tions /: R" — R, that 15, functions such that

fiyx) = flx), (xeR%yel)

There are two main results. The first, due to Hilbert and Weyl, states that
(when I is compact) the polynomial invariants are generated by a finite set of
polynomials tt;, ..., . The second, due to Schwarz, states that every :i.mmrh
invariant f is of the form hiu,.... u;) for a smooth function h. We give ex-
amples for. the main groups of interest: the proofs are postponed until §6.

In §5 we describe analogous results, due to Poénaru, for equi::f:rimt! map-
pings, that is, mappings g: B — ®* that commute with [ as in (0.2). We

§1. Group Theory %

emp_lhas_ize the simple but crucial fact that if f{x) is invariant and kix) is
cqumaEanL then f{x)kix) is also equivariant. In more abstract language, the
space &) of equivariant mappings is a module over the ring #(T) of invariant
functions. These results are needed in Chapters XIV-XV to set up equivariant
singularity theory.

In §6 we discuss the proofs of four theorems from §§4-3: the Hilbert- Weyl
theorem, Schwarz’s theorem, and their equivariant analogues. This section
may be omitted if desired.

In§7 we return to group theory and present three resulis about torus groups

which will 1‘-.13 needed in Chapters XIX-XX on mode interactions. This section
may be omitted on first reading.

§1. Group Theory

In Dlrdl:r to make precise statements about symmetries, the language and point
of view of group theory are indispensable. In this section and the next we
present some basic facts about Lie groups. We assume that the reader is
familiar with elementary group-theoretic concepts such as subgroups, normal
subgroups, conjugacy, homomorphisms, and quotient {or factor) groups. We
also assume familiarity with elementary topological concepts in RB" such as
open, compact, and connected sets. See Richtmeyer [1978]. Fortunately we
donot require the deeper results from the theory of Lie groups, so the material
presented here should prove reasonably tractable. We have adopted a fairly
concrete point of view in the hope that this will make the ideas more accessible
to readers having only a nodding acquaintance with modern algebra.

_ We treat three main topics in this section. The first consists of basic defini-
tions aFld examples. The second is the beginnings of representation theory.
The lh_u'd is the existence of an invariant integral, allowing us to employ
averaging arguments which in particular let us identify any representation of
acompact Lie group with a group of orthogonal transformations.

(a) Lie Groups

Let GL{n) denote the group of all invertible lincar transformations of the
‘r‘EclEfr space R" into itself, or equivalently the group of nonsingular n = n
matrices over K. For our purposes we shall define a Lie group to be a closed
subgroup I' of GL{n). In the literature these are called linear Lie groups, and
the term Lie group is given a more general definition. However, it is a theorem
!-hﬂt every compact Lie group in this more general sense is topologically
'Sﬂmuf'ph':: to a linear Lie group; sce Bourbaki [ 1960]. By closed we mean the
follml.lrmg. The space of all n x n matrices may be identified with R™, which
contains GL(n) as an open subset, Then I is a closed subgroup if it is a closed
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subset of GL{n) as well as a subgroup of GLin). A Lie subgroup of T is just a
sed subgroup in the same sense. ; i i |
cluBg.r deﬁrﬁng I]iiﬁ groups as closed groups of matrices we avoid dmcusm_r!g
some of their topological and differentiable structure. However, we often ‘ﬁ'l'bh
ta refer to a Lie group by the name of its associated abstract group, a practice
that is potentially confusing. For example, the two-element group Z, =-f { t 1}
is isomorphic as an abstract group to the subgroup {1, —_I,,] Dfﬂl-{[i:i] or any
n, where I, is the n = n identity matrix. Usually, the precise group © :atrlc;s
il; question will be specified by the context. We ol‘ulm use a phrase suc a; 2
is the Lie group { £ [, }" rather than the more precise hul_cumbersnmc phrase
“¥., is isomorphic to the Lie group { = 1,}." This practice should not cause
onfusion. o X
’ We now give some examples of Lie groups which will prove useful through

out the book.

Exampies 1.1, . .
{a) The n-dimensional arthogonal group Oin) consists of all n » n matrices A

satisfying
Ad =1,

Here A' is the transpose of A.

i i Il AeOfn) such that
The special orthogenal group SO(n) consists _oi all :

ﬂﬂt A= lp":l"he group SO(r) is often called the n-dimensional retation group.
In particular SO(2) consists precisely of the planar rotations

R, = [msﬂ —ﬂnﬁ] (1)

sinfl cost

In this way, SO(2) may be identified with the circle group 8, the i_-:lemiﬁca_tinn
being R,— 0. The group O(2) is generated by SO(2) together with the flip

| 0 (1.2)
e [n —1]‘

(c) Let Z, denote the eyelic group of order n. i Recall that lh:e‘nrde{* ofa ﬁn?:;
group is the number of elements that it contains). We may @znuﬁr Z,wi
the group of 2 = 2 matrices generated by Ry, thus Z_ is a Lie group.

{d) The dihedral group D, of order 2n is gcn_:mmted by Z,. ulrrgelhu:r 1.»«:11_]2| ,1':
element of order 2 that does not commute with Z,. For d:ﬂmt:n:ds.& :a I|I -
tify D, with the group of 2 x 2 matrices generated b-jf‘Rh... and t l: ip
(1.2). This clearly exhibits D, as a Lie group. (;iuometncalty I, is the f:yml
metry group of the regular n-gon, whereas Z, is the subgroup of rotationa
symmetries.

(e) All finite groups are isomorphic to Lie groups; sce Exercise 1.2.

{f} The n-dimensional torus T" = Sl % -+ x 8 (n times) is isomorphic to 2

§l. LUTOUp 1 neory .

Lie group. To show this, identify # € T" with the matrix

R, 0 0 ... O
0 R, 0O .. 0
0 0 R, 0
0 0 0 R,
in GL{2n).
{g) R"is isomorphic to the group of matrices of the form
1l ay a; ... a,
0 1 0
eGLn+ 1)
o0 .. 1

whereg,eR. j=1.....n

It is important at the outset to eliminate one potential source of confusion.
We have already seen that it is possible for a single abstract group to occur
in more than one way as a group of matrices. The question that must be
addressed is, when should two matrix groups which are isomorphic as abstract
aroups be considered as essentially the same? This question leads directly into
representation theory and is dealt with in subsection (b). To illustrate what is
involved, observe on the one hand that changing the basis in " will change
the actual matrices that appear in a given Lie group—surely just a cosmetic

change. On the other hand, consider the following two groups of matrices
isomorphic 1o Z,:

{z, —1;} (1.3)

{[:} ﬂ[_{l:r ﬂ} (1.4)

There is a definite geometric distinction between (1.3), where the element of
order 2 in Z, is a rotation, and {1.4), where it is a reflection. Such a distinction
is often important in the theory.

Because R" is a topological space, we can talk about topological properties
of Lie groups as well as algebraic ones. In particular we say that a Lie group
I is compact or connected if it is compact or connected as a subset of R™,
Equivalently, I is compact if and only if the entries in the matrices defining
I' are bounded. It follows that Oin), SO(n), T, and all finite groups are
compact; but B" and GL{n) are not. Compactness is crucial for much of the
theory we develop here. It would be of great significance for applications to

madify the theory so that it extends to suitable noncompact groups. For an
example, see Case Study 4.

and
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The identity element of I is denoted by 1. In fact, if I’ = GL(n) we must
have I = I,, the n x nidentity matrix. The trivial group {1} = (1.} is denoted
by 1,, or more commonly by T when the size of matrix is clear from the context.

As a subset of R, the group I splits into connected components. The
connected component that contains [ is denoted I'°. For example

O(n)" = 80(n).

Being a connected component, [ is a closed subset of . Since I' is closed in
GL{n), so is I'". Thus I is a Lie subgroup of I and is compact if T is.
Mareover, I'? is a normal subgroup of . To see why, recall that Z< ' is
normal if for each y € T we have T =yEy lasasetof matrices. Now y% ™
is a connected component of I' since matrix multiplication is continuous, and
it contains pfy " = L. Therefore, [Pyt =T 50 ° is normal.

It is not difficult (Exercise 1.3) to show that a compact Lie group I has a
finite number of connected components, and hence that [T is finite.

(b) Representations and Actions

Let T be a Lie group and let ¥V be a finite-dimensional real vector space. We
say that I acts (limearly) on V if there s a continuous mapping (the action)

Ire V=V
(1.3)

()=
such that:

{a) Foreach ye T the mapping ;- ¥ — V defined by
p ) =70 (1.6)
is linear.
{b) 1fy,, 72 € T then

el v) = {'}'1']"1} "l [lﬂ'

The mapping p that sends y to p, € GL(V) is then called a representation of
I on V. Here GL(V) is the group of invertible linear transformations V¥ — V.
By abuse of language we will also talk of “the representation V. In the sequel
we shall often omit the dot and write yu for v v, but for the remainder of this
section we retain the dot for clarity. As illustrated shortly, linear actions and

representations are essentially identical concepts, differing only in viewpoint.
In fact, both {1.5) and p must be analytic; see Montgomery and Zippin [1955].

For example, there is an action of the circle group §' on C = B? given by
f-z=e" @eSzeC)
We verify that this is an action. Clearly (a) holds. To check ib), calculate

-

H] I[EI'E} - HI .'eﬁﬁz} - eiﬁ,el-e;,z - El[dl-igljz =, [81 + ﬂ }1 .
P

where b?f an Ia-:f:i::l!am of notation #, + f, is the “product” in the group §!
This action gives rise to a representation p of 8' for which p, is the mL:tim;

matrix
cosfl  —sin#
sinf? cos#

on B? = C, The difference in vi int i
‘ ewpoint is that an action tells us how

;[eme:ntt ¥ tn:nsﬁ:lmls a g:n.:en element v e V, whereas a rﬂpresenrnrianat;ﬁ: ':E

ow _ill ransfnlinrs theﬂentire space V. More technically, p defines a homo-
morphism of I into GL(V); see Exercise 1.4. A i
bt 4. An action of [ on ¥ may be

_ : . y On genera i this action i

consistent in the sense that (1.7) is .’jzsﬁ&d’:om PRI A

ExaMPLES 1.2

{a) Every linear Lie group I is a ices i
1 group of matrices in GL{n) for
such, I' has a natural action on V' = B® given by mairix mlfil::plicast?:: e

ib} Every group T has a rrivial acti =R"
Al ion on ¥ = R" defined by 7 x = x for all

i<} For every int :
ud by ry integer k the circle group 8' has an action on V = C = @*

ik

-z ="z (18)

Notice that k = 0 corres o
. ponds to the irivial action of example ;
for k = 1 is the one discussed previously in the text. SRR

{d) Each action of §' = :
C by letting no 502) defined in (c) extends to an action of O(2) on

Ki2=2
where & is the flip (1.2). L

{e} Each Lie
: group F=G
similarity: y- 4 = }'Ij:l;-"l, L) acta on.the space of n x » matrices 4 by

Iti i i
e r;quii-:ige?uislihle to give Lwo diiffcr?m descriptions of “the same™ action.
W ::di :1;:1: actions may be isomorphic in the following sense. Let
el sional vector spaces and assume that the Lie group I
and W. Say that these actions are isamorphic, or thal the spaces

and W are I'-; B i !
Siich tha isomorphic, if there exists a (linear) isomorphism A: V' — W

Aly-v) =y (Av) (1.10)

for ay)
ve ¥,y el Note that the action of y on the left-hand side of {1.10) is



30 ¥11. Group-Theotetic Prelminarncs

that on V, whereas on the right it is on W. Another way to say this is that we
get the same group of matrices if we identify the spaces V' and W (via the linear
isomorphism A). To avoid cumbersome terminology we say that ¥ and W are
[-isomorphic. It is casy Lo extend these ideas to the casc where I" acts on V
and a group 4, isomorphic to T, acts on W.

For example, the actions (1.8, 1.9) of O(2) for k and —k are isomorphic. To
see why, denote the two actions by the symbols - and +. Define A by Alz) =2
Then for y € SO(2) we have

Aly-2) = ez = ¢™™% = ¢ *(Az) = y+(42),

and further
Alg-z)=T=z=KeI= K#lAz),

so (1.10) holds.
In the same way, the groups SO(2) and S! are isomorphic, and the action
{18 of 8 on C with k = 1 is isomorphic to the standard action of SO(2)

defined in Example 1.2a.

(c) Invariant Integration

Every compact Lie group I in GL(n) can be identified with a subgroup of the
orthogonal group O(n). Since it is often useful to assume this, we sketch the
proof. The identification is made using Haar integration, a form of in tegration
that is invariant under translation by elements of I, In this subsection we
define Haar integration, show how its existence leads to the identification of
T with a subgroup of Oin), and give explicit examples of Haar integration.
Haar integration may be defined abstractly as an operation that satisfies
three properties. Let {7 —R be a continuous real-valued funetion. The

operation
j fiy) or Jf or j-fch'eﬂ
7eTr r T

is an integral on T if it satisfics the following two conditions:

(a) Linearity. [r(Af + pg) = AJcf + nfrg

where [, g: I’ = [ arc continuous and 4, p € R (1.11)
(b) Positivity.  fiy) =z 0 for allye T then [ f = 0.

It is a Haar integral if it also has the property
(c) Translation-Invariance. [, r f187) = Jrer )

for any fixed d e T (1.12)

The Haar integral can be proved to be unique. Because T is compact, [ 1 i
finite. We may therefore scale the Haar integral so that {1 = 1. This yields
the normalized Haar integral. For compacl groups the Haar integral is also
invariant under right translations; i.c.,

Wie RAEATURS B auarsF

.Lr Jipd) = J-“r fly) foralldel. (1.13)

The proof of existence and uniqueness of the Haar integral is in Hochschild
[l?!’fnﬁ]. p. 9: Vector-valued mappings may also be integrated, by performing
the integration separately on each component,

}’mpusitinn 1.3 I_der r be a compact Lie group acting on a vector space V' and
et p, be the matrix associated with y € T. Then there exists an inner product on
V such thar for all y e T, p, is orthogonal.

Remark. Proposition 1.3 implies that we may i i i
: ; y identify compact L i
GL(n) with closed subgroups of On). ’ PR

ProoF. The idea is to use the Haar integral to construct an invarignt inner
product { , »pon V, that is, one that satisfies

P, Pywir = (0 Wiy (1.14)

for all 4 € T'. The construction :
proceeds as follows. Let { | i
product on ¥ and define €0 besmyinner

oW = jr 4 AU, W (1.15)
This is also an inner product b i i
_ v (1.11). Invariance of the Haar integral (1.1
shows that the inner product (1.15) satisfies (1.14). gral(l 3
ExaMpLES 1.4,

{;I:: [Ift I be a finite Lie group of order |T'|. Then the normalized Haar integral
15

| .
L fm T rgrj'-'[.r']- (1.16)
(b} Let T = SO(2). Every continuous function f: SO i
) : . ¢ :802)=Ru ly deter-
mines a continuous 2n-periodic function [ R - R Su::h} that e
J18) = f(R,).
The normalized Haar integral on SO(2) is

cmd [
J=g| JOrd. (1.17)

I'orr:e abstract definition of the Haar integral that we have given is sufficient

i 1;: ﬁmsﬁm? because we use it only as a tool to prove abstract results

e oposition 1.3, T_hcm is, however, an explicit definition of the Haar
gral that uses the manifold structure of Lie groups; see Exercise 1.3
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s inTi gy forsomey e T
1.1, Two elements a, fi of a Lie group I are conjugate in I“li_:: = -,.11 iy for s yel.
- Show that all elements of 02) ~ S0(2) are conjugate 1o 02

i : =L
1.}, Two subgroups H, K of a Lie group I ane conjugate 10 Tif H =y 1Ky for some

raf ];‘Inuw that the closed subgroups of OH2) are mnju,gatc_ tnr Sﬂgﬁg;ﬁﬁ;ﬁ .
ik Find up to conjugacy all subgroups of Dy, n = 3. (Hint: ©

the cases n even, n odd.) A
i is i ic to a Lie group. (Hiet: if y € O then
that every finite group G is isomorphic to : -
. tsl:l::mp fis 7 is & permutation of 6. Now consider the corresponding permu
tion matrix.)

mponents,
1.4. Show that gvery compact Lie group has a fimte number of connected compa

15 Letp: T =GL{V)bea representation of the group [ as defined by (1.6, L7k
" {a) Show that p is a group homomorphism.
{b] Show that ker pisa pormal subgroup of T.

tions of the Lie group T’ on the same space ¥ Show that

1.6, Letpand o be representa D i

if pand o are isomorphic then ker p = kera. Conclude that if
p and o are distinct.

i [
1.7, Let f: ¥ = R be continuous, and let a compact Lie group I act on
fix) = [ firx)
pal’

has the property that f(yx) = flxjforallyel’ a5
1.8, (Warning: This exercise requires knowledge of the clementary 1hmrie of mlﬂﬂ;ﬂ :p
A To define the Haar integral explicitly we must MFEE‘:;?U;T.LFG ?:‘ s
i ifold. Let U’ be an opén nelghb d of

li: _'-5 dﬁmﬁpgﬂlhﬁﬁlg . T be a smooth parametrization sat,sl'}'u:tg L'y {OL};[LFI:.::

f:_l' —» B be continuous with the suppart suppl [} of f contained in Z(L).
ir{:ts IE?I‘I?"“T;T be left translation by &, that is, Lyly) = & For e (L) the

’H

composition

Show that

[=2"'oLe¥
is a smooth mapping on & neighborhood of 0 in Rk Let
118 = det{dLyJo-

Mow define
J = j f[fﬂli]-]fl“}'1d“- (1.18)
r T
Suppose that o & [ and sisuppi /1) = (L) Show that

LJ’[U-‘ﬂH}]Jlﬂu}"dﬂ = Lf-

Hee BERAILRLERNILILY

2

(Comment: When the Lie group I has a single parametrization & such that
F(U)=T

then (1.18) defines a Haar integral on T since I ~ #{U') has “measure zero™ and
fr = fauen)

§2. Irreducibility

The study of a representation of a compact Lie group is often made casier by
observing that it decomposes into a direct sum of simpler representations,
which are said to be irreducible. We describe the basic properties of this
decomposition in this section. The main result, Theorem 2.5, states that the
decomposition always exists. In general it is not unigue, but the sources of
nonuniqueness can be described and controlled.

Let I' be a Lie group acting linearly on the vector space V. A subspace
W = V is called T-invariant if yw e W for all w e W, y eI A representation
or action of I' on V is irreducible if the only I'-invariant subspaces of Vare
[0} and V. A subspace W = V is said to be T-irreducible (or irreducible if it is
clear which group I' is intended) if W is T-invariant and the action of ' on
W is irreducible. For example, the actions of $0{2) and 0(2) on R? defined
in Example 1.2¢, d are irreducible when & = 0.

One of the fundamental features of actions of compact Lie groups is that
invariant subspaces always have invariant complements. More precisely:

Proposition 2.1. Let I' be a compact Lie group acting on V. Let W = V be a

F-invariant subspace. Then there exists a T-invariant complementary subspace
£ = V such that

V=WaZ

Proor. By Proposition 1.3 there exists a [-invariant inner produci ¢ , »-on
V. Let Z = W' where

W= lveV: {w,od =0forall we W),
The Iinvariance of the inner product implies that W* is a T-invariant
complement to W, O

It follows directly from this proposition that every representation of a
“ompact Lie group may be written as a direct sum of irreducible subspaces:

%hry 2.2 (Theorem of Complete Reducibility). Let I be a compact Lie group
acting on V. Then there exist T-irreducible subspaces ¥V, ..., V, of V such that

V=V1$”'$P;r {2.1}
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ProoF. We may assume ¥ nonzero. Then there exists a nonzero I-irreducible
subspace ¥, = V (take ¥, 1o be of minimal dimension among the nonzero
T-invariant subspaces). By Proposition 2.1 thereis a IM-invariant complement
Z to ¥, in V. Now repeat the process on Z, choosing a nonzero [-invariant
subspace ¥ = V. Since ¥ is [inite-dimensional this process must terminate,

yielding the desired decomposition (2.1} O

Some specific examples may help to clarify the implications of this result.

ExamrLes 2.3
{a) Define an action of 0(2) on E? as follows. Let the rotations R, e 5O(2)

act by rotating the (x, y)-plane through angle 26 and leaving the z-axis fixed:
that is, define

8-(x,y,7) = (xcos 20 — ysin 28, x sin 20 + ycos 28, z)
Let the flip k & 2} act by
Ke(xpz) = =y =2k
Observe that
V, = R? x {0} = {(x,». 00}
¥, = {0} x B = {(0,0,2)}
are O(2)-invariant subspaces and that O(2) acts irreducibly on each.

{h) There is a standard irreducible action of 0O(3) on R*. Let V be the vector
space of symmetric 3 x 3 matrices of trace zero. Such matrices have the form

a b c
b d e
¢ e —la+d)

so dim ¥ = 3. Define
yrA =y

for 7 € O(3) and A £ V. Thus O(3) acts on ¥ by similarity.

Next view 0(2) = O(3) as follows. Identify the matrix d & @2) with

& |0

0

0 01

in O{3). In this way, we can view (2] as acting on V. Tt is a straightforward
“caleulation to show that

a B O
V,=|b —a 0}
0o o0 0

PR . -
00 ¢
V;=|0 0 4| and
c d 1
a 0 0
;=10 a 0
00 —-2a

are invariant irreducible subspaces of ¥ under the action of O{2). Since
¥y @ Vo @ ¥y = ¥ we have decomposed V as in Corollary 2.2,

In gn:n;ral, the decomposition of ¥ in (2.1} is not unique. It will be useful in
1‘.““ sections to understand the sources of nonuniqueness and to find condi-
tions .u.nder _wh:r:h the decomposition (2.1) is unigque. In particular, such a
discussion mlll simplify the computation of linearized asymptotic 3tal;ility for
solutions of differential equations. The remainder of this section is devoted to
the issue of nonuniqueness, beginning with an example.,

ExampLE 2.4. Let IV be the four-dimensional space of 2 % 2 matrices and let
S0(Z) act on ¥ by matrix multiplication on the left. That is,

#-4=FR4
where 8 £ SO(2) and A & V. Observe that ¥V = V, @ ¥, where

V. a 0 [
' [b CI:I' . [{] d]’

and that $0(2) acts irreducibly on V, and V.
However, we also have V = ¥V, @ V;, where (say)

Vi = e ¢
Bd d
and S042) acts irreducibly on V;.

C;: 1;.;|]I turn out that the reason for nonuniqueness in the decomposition of
. ollary 2.2 is the occurrence in b of two isomorphic irreducible representa-
10ns. _Rncajl the definition (1.10) of [-isomorphism. We state this more pre-
cisely in Corollary 2.6 later. The main result of this section is as follows: .

Theorem 2.5, Let I be a compact Lie group acting on V.

(a) Up to T-isomorphi '
phism there are a finite number of distinct T-i i
P et o o of distinct T-irreducible

(b) Define W, to b i
\ % e the sum of all T-irreducible subspaces W of V
5 [-isomorphic to U,. Then B

V=wWe oW 2.2)
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Remark. The subspaces W, are called the isotypic components ol ¥, of type L,
for the action of I'. The name is chosen to reflect that fact that all irreducible
subspaces of W, have the same isomorphism type. By construction the isot ypic
decomposition (2.2) is unique.

Before proving Theorem 2.5 we show how it implies that the nonumgueness
ini the choice of irreducible summands in Proposition 2.1 is directly related to
the repetition of irreducible representations among the V; in (2.1

Corollary 2.6.
fa) f WeVis T-irreducible then W = W, for a unigue k , namely, that k for

which W is T-isamorphic to Us.

(b} Let T be a compact Lie group actingon V. Lee V=V, @@k be a
decomposition of V into a direct sum of ['-invariant irreducible subspaces. If the
representations of T on the V; are all distinet (not T-isomorphic) then the only
nonzero T-irveducible subspaces of V are Vi, ..., V.

Proot. Part (a) follows directly from Theorem 2.5 since if W is [-irreducible
then it is T-isomorphic to some unique Uy, and then by definition W = W
It is useful, however, to have (a) stated cxplicitly.

For (b), consider the isotypic components W, of V. Each ¥} is isomorphic to
some U, hence lies in W, for some k. It follows that the W are just the ¥,
perhaps written in a different order. If W # 0 is a T-irreducible subspace of
V then by part (a) we have W = W, for some k. But W, = ¥ for suitable j, and
irreducibility of ¥, implies that W = 1}, O

The proof of Theorem 2.5 depends on two lemmas, which we deal with first.

Lemma 7. Let T be a compact Lie group acting on W. Suppose that
w=YU,

where each U, is a T-invariant subspace that is T-isomorphic to some fixed
irreducible representation U of T. Then every T -irreducible subspace of W is

T-isomorphic to U,

Remark. Because of nonuniqueness, & -irreducible subspace of W may not
be one of the U,. The lemma says that, provided all the U, are [C-isomorphic,
every [-irreducible subspace of W is I'-isomorphic to any one of the U,

ProOF. Because of our intended application, the theorem is stated in a way
. that allows the index a lo run over an infinite set. In fact this represents no

real increase in generality, since we first show that
: W=U, @&, 2.3
a direct sum of a finite subset of the U,. The proof is by induction. Suppose

i LTTEUUCIUILY
i)

we have found .a subspace
W=U,® @, <W
E Fi;ll‘: ;Jve ;:‘; [dl:;nci]]r not, some U, is not contained in W'. Then
dj? s w;ilam v b{ﬁ p}H:E.r irreducibility. Therefore the sum W' + U, is
W =U,@ @U,.

By finiteness of dimension, (2.3) must hold for large enough s-.;:
Now let X be a I'-irreducible subspace of W, There exists t < s such that

Xel, @&l (2.4)
XclU,®-aU,. (2.5)
There is only one such ¢. By irreducibility of X,
XA, @ =
- - f_'ll: 'I@ H}Uh_]}r—ﬂ- _ ‘{lﬁ‘
Let n be the projection b i il il

- 'I-n - ' = e

. U-*:@""@U-.—;{U;:. ; '_,—-. 3 - 27

'Th;llf {Hﬂ % p{l,jvgs that x| X is a I™-isomorphism of X onto #(X); and (X) < U,
implies that n(X) = U : ;and E
to U,,, hence to gﬂ, 5, by irreducibility of U, . Therefore X is I'-isomorphic
O

Lemma 2.8. Let I be a compact Lie group acting on V. Let X, Y be T-invariant

subspaces of V such that no two T-i i
e C-irreducible subspaces W e X, Z = Y are

(@) X Y= {0},
b) If We X @ Y is Teirveducible, then W= X or We ¥

Proor,

E}bil::]ﬂexx m Yis [-invariant, any [-irreducible subspace of X ~ ¥ would be
st and_ ¥, nunfrar}' to the assumptions on X and ¥. Thus X ~ ¥ has
o) onzero T-irreducible subspaces, and this is possible only when X 1 ¥ =
{I:.]}’ ‘I?eh; Corollary 2.2 -
ity Dfsl:rbiﬁ:}l::s[‘rnx and W Y of W are Iinvariant, By the irreduc-
e it Wr:x :‘I J'l:" = {0} or W = X; and similarly for Y. If W ¢ X and
e et = {0} = WY Let ny and zy denote the projections of

0 X and Y, respectively. Then W is ['-isomorphic to 7, (W) and to

Ty(W) as in the . .
¥ani ¥ proof of Lemma 2.7. But this contradicts the b ypotheses on
|

Proo ;
U:: I:F 'II:I:JEDRE‘M 2.5._ Choose a [-irreducible subspace U, = V. Let W be
Wy tai::.‘3 1 [“'—mvana‘m su_h:qmms of ¥ that are I'isomorphic to Ul. If
1 »then choosea I'invariant complement Z to W] and repeat the pm::ess

W

C
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on Z to obtain W;. By finiteness of dimension this process terminates with
V=W@eWw;® W 27
where each W, is the sum of a set of T-isomorphic T-irreducible subspaccs of
¥, say isomorphic to U, = Vi and if i # j then U, is not lj—lsomurphu: to U}
We do not vet know that W, is the sum W, of all T-invariant sy.hspaces of ¥
that are T-isomorphic to U, because we defined W in Z,naot in V. We shall

quickly see that in fact Wy = W,.
Suppose that U is a T-irreducible subspace of V. By Lemma 2.8(b] and a

simple inductive argument, it follows that
U= W, (2.8)

for some k. By Lemma 2.7, U is I'-isomorphic Lo U,. This proves part {a). But
now we see that
W= W, (2.9)

as defined in the statement of Theorem 2.5b, and (2.7) implies (2.2), pruvian
part (h).

EXERCISES

2.1. (a) Show that every two-dimensional irreducible representation of 8! is isomorphic
to
o) = "2 (2.10)

for some integer k = 0. 5. : i
{b) Show that the representations p* and p' in (210) are not isomorphic

k = [ = 0, (Hin: Use Exercise XI1, 1L6.) . a!
ic) Show that the only one-dimensional irreducible representation of 8' is the

trivial representation.
32 Let O(2) act on the four-dimensional space V' of 2 % 2 matrices by similarity:
7oA =414y e As V)

Show that ¥ = ¥, @& ¥, & V; where

Show that

{2} The O(2)-action on ¥, is trivial. ) . —

(b} The ©f2Faction on ¥ is the nontrivial one-dimensional representation, 10
which 7 & 0(2) ~ $0(2) acts as —I and y € 80(2) acts as I .

(¢} The O{2)-action on V¥, is isomorphic to the standard action on R*= .

""""" ik ¥

23 In the notation of Exercise 2.2, ket O(2) act on ¥ by matrix multiplication:

prodm=gpd
Show that ¥V = ¥, @ ¥,, where

n={2 ol

and that the O{2)-action on each of ¥« ¥y is isomorphic 1o the standard action,

Hence show that V has only one isotypi i i
I _ YMe component. namely ¥ itself. Find
irreducible subspace of ¥ that is not equal to ¥, or V. e

§3. Commuting Linear Mappings and Absolute
Irreducibility

In later sections when we compute linearized asympiotic il

state §0Iutiuns to ODEs we will need to undur:;mil the itt‘:::lzltlﬂcﬂi; tﬁang:;
mappings that commute with the action of a compact Lie group. We explore
t_hus issue here. The main result is Theorem 1.5, which lets us put commutin
linear mappings into a certain block diagonal form ’

Let I be a compact Lie group acting li i
1 ! g lincarly on V. A mapping F: v = V
commutes with I' or is T-equivariant if e h

Fi) = yF () i
for all relreV

ExawmipLes 3.1,
(a) Consider the standard action o

f 7= — 3 .
through angle 8, That is, S0(2)on ¥ = B* defined by rotation

[ﬂu@ ! —sin [I:[
Ra | MET
sin? cosfd

h!f matr i Xm u-lti p!“:a “I'D:“.

We claim that the linear mappings that commute with
all have the form ey where ce R
the matrix form

acts on

] this action of $0(2)
15 a sgalar; that is, such linear maps have

B =
b a | (3.2)




