XI. Introduction

22

two at some length since they have an infinite family of irreducible representations. These geometric ideas are applied in Case Study 4 to the problem of Bénard convection in the plane.

Algebra (Chapters XIV-XV). Chapter XIV sets up equivariant singularity theory, concentrating on the recognition problem, tangent spaces, and intrinsic ideals, by analogy with Chapter II. Similarly Chapter XV develops unfolding theory, by analogy with Chapter III, and includes proofs of the main theorems, promised from Volume I. The ideas are illustrated using the dihedral group D₃ (the symmetry group of an equilateral triangle) and its relation to the spherical Bénard problem via spherical harmonics of order 2. Case Study 5 shows how to apply the algebraic methods to the traction problem for an elastic cube, continuing the analysis outlined previously in §2.

Hopf Bifurcation (Chapters XVI-XVIII). At this stage the theory moves away from static bifurcation and begins to acquire dynamic aspects. Chapter XVI develops a general theory of equivariant Hopf bifurcation, concentrating on existence and stability results. Chapter XVII applies this methodology to Hopf bifurcation with circular symmetry (the group O(2)), considering both the generic case and nonlinear degeneracies (by a trick: reduction to amplitude equations). Quasi-periodic motion on a torus occurs here. The closely related groups SO(2), Z_n , and O(n) (acting on \mathbb{R}^n) are also discussed. More complicated examples are dealt with in Chapter XVIII. Hopf bifurcation with dihedral group symmetry D_n is studied in detail and applied to oscillators coupled in a ring. Hopf bifurcation with spherical symmetry and Hopf bifurcation on the hexagonal lattice (relevant to doubly diffusive systems) are sketched.

Mode Interactions (Chapters XIX-XX). Chapter XIX discusses mode interactions without any prescribed symmetry, concentrating on the steady-state/Hopf and Hopf/Hopf cases. Because of the natural S^1 symmetry of Hopf bifurcation, these problems acquire Z_2 and $Z_2 \oplus Z_2$ symmetry during the analysis (rendering results from Volume I applicable). Finally Chapter XX considers mode interactions with O(2) symmetry.

The results are applied to Taylor-Couette flow in long cylinders (i.e., subject to periodic boundary conditions) in Case Study 6, which brings together virtually all of the ideas developed in this volume. The outcome is a coherent description, in symmetry terms, of some of the prechaotic behavior observed in this much-studied experiment.

CHAPTER XII

Group-Theoretic Preliminaries

§0. Introduction

The basic theme of this volume is that the symmetries of bifurcating systems impose strong restrictions on the form of their solutions and the way in which the bifurcation may take place. There are two major subthemes, which we might term "geometric" and "algebraic." These lead us to introduce two pieces of mathematical machinery: group representation theory and equivariant singularity theory. The aim of this chapter is to describe, in a fairly concrete fashion, the requisite mathematical background. In this manner we hope to make the methods accessible to a wide audience.

A symmetry of a system \mathscr{X} is a transformation of \mathscr{X} that preserves some particular structure. The set Γ of all such transformations has seveal pleasant properties, which can be summarized by saying that Γ is a group. In this book \mathscr{X} is a real vector space \mathbb{R}^n , the transformations are linear mappings $\gamma \colon \mathbb{R}^n \to \mathbb{R}^n$, and the structure to be preserved is a particular bifurcation problem. For example, consider the static bifurcation problem

$$g(x,\lambda) = 0 ag{0.1}$$

where $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is a smooth (C^{∞}) mapping, λ being the bifurcation parameter. By "preserved" we mean that for all $\gamma \in \Gamma$

$$g(\gamma x, \lambda) = \gamma g(x, \lambda)$$
 (0.2)

so that every $\gamma \in \Gamma$ commutes with g. It follows that x is a solution if and only if γx is, so the solution set to g=0 is preserved by the symmetries γ . The "geometric" subtheme is the study of how Γ transforms \mathbb{R}^n ; the "algebraic" subtheme deals with the use of (0.2) to restrict the form of g.

We therefore begin in \$1a with some group theory. We introduce the idea

of a Lie group Γ acting on a space \mathbb{R}^n and describe fundamental examples including the orthogonal group O(n), the circle group S^1 , the dihedral group D_n and the *n*-torus T^n . A given abstract group Γ can act as transformations of a space in many ways; this is discussed in §1b and leads to the ideas of an action and a representation of Γ . These are two slightly different ways of looking at the same basic idea: a group of $n \times n$ matrices that is isomorphic, as an abstract group, to Γ .

A Lie group has topological as well as algebraic properties, and the important ones for this book are compactness and, to a lesser extent, connectedness. The representation theory of a *compact* Lie group is especially well understood, and we shall confine attention throughout to the compact case. (Every finite group is compact, and so are O(n), S^1 , and T^n .) In §1c we discuss the existence on a compact Lie group of an invariant (Haar) integral, which is important in a number of situations because it allows us to average over the group. For example, it permits us to assume that Γ acts by orthogonal transformations of \mathbb{R}^n .

In §2 we describe the decomposition of a given representation into simpler ones, called *irreducible* representations. In fact, if Γ is a compact Lie group acting on $V = \mathbb{R}^n$, then we can write V as a direct sum

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

of subspaces V_j , each invariant under Γ , such that V_j has no Γ -invariant subspaces other than $\{0\}$ and V_j . These "irreducible components" of V are the fundamental building blocks of representation theory. The process of decomposing V is in a sense analogous to that of diagonalizing a matrix and is done for the same purpose—to simplify the mathematics.

In §3 we discuss linear maps $\mathbb{R}^n \to \mathbb{R}^n$ that commute with an action of Γ . This discussion has important implications for bifurcation problems (0.1) that satisfy (0.2), because the linearization $(dg)_0$ must commute with Γ . Two main points are made. The first is that there is a notion stronger than irreducibility, absolute irreducibility, which ensures that only scalar multiples of the identity commute with Γ . The second is that certain uniquely defined subspaces must be invariant under any mapping that commutes with Γ . We shall use these ideas to restrict the form of $(dg)_0$.

§§4–6 develop the "algebraic" subtheme. In §4 we consider *invariant* functions $f: \mathbb{R}^n \to \mathbb{R}$, that is, functions such that

$$f(\gamma x) = f(x), \quad (x \in \mathbb{R}^n, \gamma \in \Gamma).$$

There are two main results. The first, due to Hilbert and Weyl, states that (when Γ is compact) the *polynomial* invariants are generated by a finite set of polynomials u_1, \ldots, u_s . The second, due to Schwarz, states that every *smooth* invariant f is of the form $h(u_1, \ldots, u_s)$ for a smooth function h. We give examples for the main groups of interest: the proofs are postponed until §6.

In §5 we describe analogous results, due to Poénaru, for equivariant mappings, that is, mappings $g: \mathbb{R}^n \to \mathbb{R}^n$ that commute with Γ as in (0.2). We

emphasize the simple but crucial fact that if f(x) is invariant and k(x) is equivariant, then f(x)k(x) is also equivariant. In more abstract language, the space $\mathscr{E}(\Gamma)$ of equivariant mappings is a module over the ring $\mathscr{E}(\Gamma)$ of invariant functions. These results are needed in Chapters XIV–XV to set up equivariant singularity theory.

In §6 we discuss the proofs of four theorems from §\$4-5: the Hilbert-Weyl theorem, Schwarz's theorem, and their equivariant analogues. This section may be omitted if desired.

In §7 we return to group theory and present three results about torus groups which will be needed in Chapters XIX-XX on mode interactions. This section may be omitted on first reading.

§1. Group Theory

In order to make precise statements about symmetries, the language and point of view of group theory are indispensable. In this section and the next we present some basic facts about Lie groups. We assume that the reader is familiar with elementary group-theoretic concepts such as subgroups, normal subgroups, conjugacy, homomorphisms, and quotient (or factor) groups. We also assume familiarity with elementary topological concepts in \mathbb{R}^n such as open, compact, and connected sets. See Richtmeyer [1978]. Fortunately we do not require the deeper results from the theory of Lie groups, so the material presented here should prove reasonably tractable. We have adopted a fairly concrete point of view in the hope that this will make the ideas more accessible to readers having only a nodding acquaintance with modern algebra.

We treat three main topics in this section. The first consists of basic definitions and examples. The second is the beginnings of representation theory. The third is the existence of an invariant integral, allowing us to employ averaging arguments which in particular let us identify any representation of a compact Lie group with a group of orthogonal transformations.

(a) Lie Groups

Let GL(n) denote the group of all invertible linear transformations of the vector space \mathbb{R}^n into itself, or equivalently the group of nonsingular $n \times n$ matrices over \mathbb{R} . For our purposes we shall define a *Lie group* to be a closed subgroup Γ of GL(n). In the literature these are called *linear Lie groups*, and the term *Lie group* is given a more general definition. However, it is a theorem that every compact Lie group in this more general sense is topologically isomorphic to a linear Lie group; see Bourbaki [1960]. By closed we mean the following. The space of all $n \times n$ matrices may be identified with \mathbb{R}^{n^2} , which contains GL(n) as an open subset. Then Γ is a closed subgroup if it is a closed

subset of GL(n) as well as a subgroup of GL(n). A Lie subgroup of Γ is just a closed subgroup in the same sense.

By defining Lie groups as closed groups of matrices we avoid discussing some of their topological and differentiable structure. However, we often wish to refer to a Lie group by the name of its associated abstract group, a practice that is potentially confusing. For example, the two-element group $\mathbf{Z}_2 = \{\pm 1\}$ is isomorphic as an abstract group to the subgroup $\{I_n, -I_n\}$ of $\mathrm{GL}(n)$ for any n, where I_n is the $n \times n$ identity matrix. Usually, the precise group of matrices in question will be specified by the context. We often use a phrase such as " \mathbb{Z}_2 is the Lie group $\{\pm I_2\}$ " rather than the more precise but cumbersome phrase " \mathbb{Z}_2 is isomorphic to the Lie group $\{\pm I_2\}$." This practice should not cause confusion.

We now give some examples of Lie groups which will prove useful throughout the book.

EXAMPLES 1.1.

(a) The n-dimensional orthogonal group O(n) consists of all $n \times n$ matrices A satisfying

$$AA^t = I_n$$

Here A^t is the transpose of A.

(b) The special orthogonal group SO(n) consists of all $A \in O(n)$ such that $\det A = 1$. The group SO(n) is often called the *n*-dimensional rotation group. In particular SO(2) consists precisely of the planar rotations

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \tag{1.1}$$

In this way, SO(2) may be identified with the circle group S1, the identification being $R_{\theta} \mapsto \theta$. The group O(2) is generated by SO(2) together with the flip

$$\kappa = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
(1.2)

- (c) Let Z, denote the cyclic group of order n. (Recall that the order of a finite group is the number of elements that it contains). We may identify \mathbf{Z}_n with the group of 2×2 matrices generated by $R_{2\pi/n}$; thus \mathbb{Z}_n is a Lie group.
- (d) The dihedral group D_n of order 2n is generated by \mathbb{Z}_n , together with an element of order 2 that does not commute with \mathbb{Z}_n . For definiteness, we identify \mathbf{D}_n with the group of 2×2 matrices generated by $R_{2\pi/n}$ and the flip κ (1.2). This clearly exhibits D_n as a Lie group. Geometrically D_n is the symmetry group of the regular n-gon, whereas Z_n is the subgroup of rotational symmetries.
- (e) All finite groups are isomorphic to Lie groups; see Exercise 1.2.
- (f) The *n*-dimensional torus $T^n = S^1 \times \cdots \times S^1$ (*n* times) is isomorphic to a

Lie group. To show this, identify $\theta \in \mathbf{T}^n$ with the matrix

$$\begin{bmatrix} R_{\theta_1} & 0 & 0 & \dots & 0 \\ 0 & R_{\theta_2} & 0 & \dots & 0 \\ 0 & 0 & R_{\theta_3} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & R_{\theta_n} \end{bmatrix}$$

in GL(2n).

(g) R" is isomorphic to the group of matrices of the form

$$\begin{bmatrix} 1 & a_1 & a_2 & \dots & a_n \\ 0 & 1 & 0 & \dots & 0 \\ & \dots & & & \\ 0 & 0 & \dots & & 1 \end{bmatrix} \in \mathbf{GL}(n+1)$$

where $a_i \in \mathbb{R}, j = 1, ..., n$.

It is important at the outset to eliminate one potential source of confusion. We have already seen that it is possible for a single abstract group to occur in more than one way as a group of matrices. The question that must be addressed is, when should two matrix groups which are isomorphic as abstract groups be considered as essentially the same? This question leads directly into representation theory and is dealt with in subsection (b). To illustrate what is involved, observe on the one hand that changing the basis in R" will change the actual matrices that appear in a given Lie group-surely just a cosmetic change. On the other hand, consider the following two groups of matrices isomorphic to Z2:

$$\{I_2, -I_2\}$$
 (1.3)

and

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}. \tag{1.4}$$

There is a definite geometric distinction between (1.3), where the element of order 2 in Z₂ is a rotation, and (1.4), where it is a reflection. Such a distinction is often important in the theory.

Because Rn2 is a topological space, we can talk about topological properties of Lie groups as well as algebraic ones. In particular we say that a Lie group Γ is compact or connected if it is compact or connected as a subset of \mathbb{R}^{n^2} . Equivalently, Γ is compact if and only if the entries in the matrices defining Γ are bounded. It follows that O(n), SO(n), T^n , and all finite groups are compact; but \mathbb{R}^n and GL(n) are not. Compactness is crucial for much of the theory we develop here. It would be of great significance for applications to modify the theory so that it extends to suitable noncompact groups. For an example, see Case Study 4.

The identity element of Γ is denoted by I. In fact, if $\Gamma \subset \mathbf{GL}(n)$ we must have $I = I_n$, the $n \times n$ identity matrix. The trivial group $\{I\} = \{I_n\}$ is denoted by 1,, or more commonly by 1 when the size of matrix is clear from the context.

As a subset of \mathbb{R}^{n^2} , the group Γ splits into connected components. The connected component that contains I is denoted Γ^0 . For example

$$\mathbf{O}(n)^0 = \mathbf{SO}(n)$$
.

Being a connected component, Γ^0 is a closed subset of Γ . Since Γ is closed in GL(n), so is Γ^0 . Thus Γ^0 is a Lie subgroup of Γ and is compact if Γ is. Moreover, Γ^0 is a normal subgroup of Γ . To see why, recall that $\Sigma \subset \Gamma$ is normal if for each $\gamma \in \Gamma$ we have $\Sigma = \gamma \Sigma \gamma^{-1}$ as a set of matrices. Now $\gamma \Gamma^0 \gamma^{-1}$ is a connected component of Γ since matrix multiplication is continuous, and it contains $\gamma I \gamma^{-1} = I$. Therefore, $\gamma \Gamma^0 \gamma^{-1} = \Gamma^0$, so Γ^0 is normal.

It is not difficult (Exercise 1.3) to show that a compact Lie group Γ has a finite number of connected components, and hence that Γ/Γ^0 is finite.

(b) Representations and Actions

Let Γ be a Lie group and let V be a finite-dimensional real vector space. We say that Γ acts (linearly) on V if there is a continuous mapping (the action)

$$\Gamma \times V \to V$$
 (1.5)
 $(\gamma, v) \mapsto \gamma \cdot v$

such that:

(a) For each $\gamma \in \Gamma$ the mapping $\rho_{\gamma} : V \to V$ defined by

$$\rho_{\gamma}(v) = \gamma \cdot v$$
 (1.6)

is linear.

(b) If $\gamma_1, \gamma_2 \in \Gamma$ then

$$\gamma_1 \cdot (\gamma_2 \cdot v) = (\gamma_1 \gamma_2) \cdot v.$$
 (1.7)

The mapping ρ that sends γ to $\rho_{\gamma} \in GL(V)$ is then called a representation of Γ on V. Here GL(V) is the group of invertible linear transformations $V \to V$. By abuse of language we will also talk of "the representation V." In the sequel we shall often omit the dot and write γv for $\gamma \cdot v$, but for the remainder of this section we retain the dot for clarity. As illustrated shortly, linear actions and representations are essentially identical concepts, differing only in viewpoint. In fact, both (1.5) and ρ must be analytic; see Montgomery and Zippin [1955].

For example, there is an action of the circle group S^1 on $\mathbb{C} \equiv \mathbb{R}^2$ given by

$$\theta \cdot z = e^{i\theta}z$$
 $(\theta \in S^1, z \in \mathbb{C}).$

We verify that this is an action. Clearly (a) holds. To check (b), calculate

 $\theta_1 \cdot (\theta_2 \cdot z) = \theta_1 \cdot (e^{i\theta_2}z) = e^{i\theta_1}e^{i\theta_2}z = e^{i(\theta_1 + \theta_2)}z = (\theta_1 + \theta_2) \cdot z.$

where by an accident of notation
$$\theta_1 + \theta_2$$
 is the "product" in the group S^1 . This action gives rise to a representation ρ of S^1 for which ρ_{θ} is the rotation matrix

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

on $\mathbb{R}^2 \equiv \mathbb{C}$. The difference in viewpoint is that an action tells us how a group element y transforms a given element $v \in V$, whereas a representation tells us how γ transforms the entire space V. More technically, ρ defines a homomorphism of Γ into GL(V); see Exercise 1.4. An action of Γ on V may be defined by specifying (1.5) only on generators of Γ , as long as this action is consistent in the sense that (1.7) is satisfied.

EXAMPLES 1.2.

gi. Group rincory

- (a) Every linear Lie group Γ is a group of matrices in GL(n) for some n. As such, Γ has a natural action on $V = \mathbb{R}^n$ given by matrix multiplication.
- (b) Every group Γ has a trivial action on $V = \mathbb{R}^n$ defined by $\gamma \cdot x = x$ for all $x \in \mathbb{R}^n, y \in \Gamma$.
- (c) For every integer k the circle group S^1 has an action on $V = \mathbb{C} \equiv \mathbb{R}^2$ defined by

$$\theta \cdot z = e^{ik\theta}z. \tag{1.8}$$

47

Notice that k = 0 corresponds to the trivial action of example (b). The action for k = 1 is the one discussed previously in the text.

(d) Each action of $S^1 = SO(2)$ defined in (c) extends to an action of O(2) on C by letting

$$\kappa \cdot z = \overline{z} \tag{1.9}$$

where κ is the flip (1.2).

(e) Each Lie group $\Gamma \subset GL(n)$ acts on the space of $n \times n$ matrices A by similarity: $\gamma \cdot A = \gamma A \gamma^{-1}$.

It is often possible to give two different descriptions of "the same" action. More precisely, the two actions may be isomorphic in the following sense. Let V and W be n-dimensional vector spaces and assume that the Lie group Γ acts on both V and W. Say that these actions are isomorphic, or that the spaces V and W are Γ -isomorphic, if there exists a (linear) isomorphism $A: V \to W$ such that

$$A(\gamma \cdot v) = \gamma \cdot (Av) \tag{1.10}$$

for all $v \in V$, $\gamma \in \Gamma$. Note that the action of γ on the left-hand side of (1.10) is

that on V, whereas on the right it is on W. Another way to say this is that we get the same group of matrices if we identify the spaces V and W (via the linear isomorphism A). To avoid cumbersome terminology we say that V and W are Γ -isomorphic. It is easy to extend these ideas to the case where Γ acts on Vand a group Δ , isomorphic to Γ , acts on W.

For example, the actions (1.8, 1.9) of O(2) for k and -k are isomorphic. To see why, denote the two actions by the symbols \cdot and *. Define A by $A(z) = \overline{z}$. Then for $y \in SO(2)$ we have

$$A(\gamma \cdot z) = e^{ik\theta}z = e^{-ik\theta}\overline{z} = e^{-ik\theta}(Az) = \gamma * (Az),$$

and further

$$A(\kappa \cdot z) = \overline{z} = z = \kappa * \overline{z} = \kappa * (Az),$$

so (1.10) holds.

In the same way, the groups SO(2) and S1 are isomorphic, and the action (1.8) of S^1 on \mathbb{C} with k=1 is isomorphic to the standard action of SO(2)defined in Example 1.2a.

(c) Invariant Integration

Every compact Lie group Γ in GL(n) can be identified with a subgroup of the orthogonal group O(n). Since it is often useful to assume this, we sketch the proof. The identification is made using Haar integration, a form of integration that is invariant under translation by elements of Γ . In this subsection we define Haar integration, show how its existence leads to the identification of Γ with a subgroup of O(n), and give explicit examples of Haar integration.

Haar integration may be defined abstractly as an operation that satisfies three properties. Let $f: \Gamma \to \mathbb{R}$ be a continuous real-valued function. The operation

$$\int_{\gamma \in \Gamma} f(\gamma) \quad \text{or} \quad \int_{\Gamma} f \quad \text{or} \quad \int_{\Gamma} f \, d\gamma \in \mathbb{R}$$

is an integral on Γ if it satisfies the following two conditions:

- (a) Linearity. $\int_{\Gamma} (\lambda f + \mu g) = \lambda \int_{\Gamma} f + \mu \int_{\Gamma} g$ (1.11)where $f, g: \Gamma \to \mathbb{R}$ are continuous and $\lambda, \mu \in \mathbb{R}$.
- (b) Positivity. If $f(\gamma) \ge 0$ for all $\gamma \in \Gamma$ then $\int_{\Gamma} f \ge 0$. It is a Haar integral if it also has the property
- (c) Translation-Invariance. $\int_{\gamma \in \Gamma} f(\delta \gamma) = \int_{\gamma \in \Gamma} f(\gamma)$ (1.12)for any fixed $\delta \in \Gamma$.

The Haar integral can be proved to be unique. Because Γ is compact, $\int_{\Gamma} 1$ is finite. We may therefore scale the Haar integral so that $\int_{\Gamma} 1 = 1$. This yields the normalized Haar integral. For compact groups the Haar integral is also invariant under right translations; i.e.,

$$\int_{\gamma \in \Gamma} f(\gamma \delta) = \int_{\gamma \in \Gamma} f(\gamma) \text{ for all } \delta \in \Gamma.$$
(1.13)

The proof of existence and uniqueness of the Haar integral is in Hochschild [1965], p. 9. Vector-valued mappings may also be integrated, by performing the integration separately on each component.

Proposition 1.3. Let Γ be a compact Lie group acting on a vector space V and let ρ_{γ} be the matrix associated with $\gamma \in \Gamma$. Then there exists an inner product on V such that for all $\gamma \in \Gamma$, ρ , is orthogonal.

Remark. Proposition 1.3 implies that we may identify compact Lie groups in GL(n) with closed subgroups of O(n).

PROOF. The idea is to use the Haar integral to construct an invariant inner product $\langle , \rangle_{\Gamma}$ on V, that is, one that satisfies

$$\langle \rho_{\delta} v, \rho_{\delta} w \rangle_{\Gamma} = \langle v, w \rangle_{\Gamma}$$
 (1.14)

for all $\delta \in \Gamma$. The construction proceeds as follows. Let $\langle \cdot, \cdot \rangle$ be any inner product on V and define

$$\langle v, w \rangle_{\Gamma} = \int_{\Gamma} \langle \rho_{\gamma} v, \rho_{\gamma} w \rangle.$$
 (1.15)

This is also an inner product by (1.11). Invariance of the Haar integral (1.12) shows that the inner product (1.15) satisfies (1.14).

EXAMPLES 1.4.

gr. Group rincory

 (a) Let Γ be a finite Lie group of order |Γ|. Then the normalized Haar integral on Γ is

$$\int_{\Gamma} f \equiv \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f(\gamma). \tag{1.16}$$

(b) Let Γ = SO(2). Every continuous function f: SO(2) → R uniquely determines a continuous 2π -periodic function $\tilde{f}: \mathbb{R} \to \mathbb{R}$ such that

$$\tilde{f}(\theta) = f(R_{\theta}).$$

The normalized Haar integral on SO(2) is

$$\int_{\Gamma} f \equiv \frac{1}{2\pi} \int_{0}^{2\pi} \tilde{f}(\theta) d\theta. \tag{1.17}$$

The abstract definition of the Haar integral that we have given is sufficient for our purposes, because we use it only as a tool to prove abstract results such as Proposition 1.3. There is, however, an explicit definition of the Haar integral that uses the manifold structure of Lie groups; see Exercise 1.8.

Se. Hitchactomity

EXERCISES

1.1. Two elements α , β of a Lie group Γ are *conjugate* in Γ if $\alpha = \gamma^{-1}\beta\gamma$ for some $\gamma \in \Gamma$. Show that all elements of $O(2) \sim SO(2)$ are conjugate in O(2).

- 1.2. Two subgroups H, K of a Lie group Γ are conjugate in Γ if $H = \gamma^{-1}K\gamma$ for some
 - (a) Show that the closed subgroups of O(2) are conjugate to SO(2), D_n , or Z_n .
 - (b) Find up to conjugacy all subgroups of D_n , $n \ge 3$. (Hint: consider separately the cases n even, n odd.)
- 1.3. Show that every finite group G is isomorphic to a Lie group. (Hint: if $\gamma \in G$ then the map $\delta \mapsto \gamma \delta$ is a permutation of G. Now consider the corresponding permutation matrix.)
- 1.4. Show that every compact Lie group has a finite number of connected components.
- 1.5. Let $\rho: \Gamma \to \mathbf{GL}(V)$ be a representation of the group Γ as defined by (1.6, 1.7).
 - (a) Show that ρ is a group homomorphism.
 - (b) Show that $\ker \rho$ is a normal subgroup of Γ .
- 1.6. Let ρ and σ be representations of the Lie group Γ on the same space V. Show that if ρ and σ are isomorphic then $\ker \rho = \ker \sigma$. Conclude that if $\ker \rho \neq \ker \sigma$ then ρ and σ are distinct.
- 1.7. Let $f: V \to \mathbb{R}$ be continuous, and let a compact Lie group Γ act on V. Show that

$$\hat{f}(x) = \int_{\gamma \in \Gamma} f(\gamma x)$$

has the property that $\hat{f}(\gamma x) = \hat{f}(x)$ for all $\gamma \in \Gamma$.

1.8. (Warning: This exercise requires knowledge of the elementary theory of manifolds.) To define the Haar integral explicitly we must use the fact that every Lie group Γ is a smooth manifold. Let U be an open neighborhood of 0 in \mathbb{R}^k where $k=\dim\Gamma$ and let $\mathscr{X}\colon U\to\Gamma$ be a smooth parametrization satisfying $\mathscr{X}(0)=1.$ Let $f \colon \Gamma \to \mathbb{R}$ be continuous with the support $\operatorname{supp}(f)$ of f contained in $\mathcal{X}(U)$. Define $\int_{\Gamma} f$ as follows.

Let $L_{\delta}: \Gamma \to \Gamma$ be left translation by δ ; that is, $L_{\delta}(\gamma) = \delta \gamma$. For $\delta \in \mathcal{X}(U)$ the composition

$$\widetilde{L}_\delta = \mathcal{X}^{-1} \circ L_\delta \circ \mathcal{X}$$

is a smooth mapping on a neighborhood of 0 in Rk. Let

$$J(\delta) = \det(d\tilde{L}_{\delta})_0.$$

Now define

$$\int_{\Gamma} f = \int_{U} f[\mathcal{X}(u)]J(u)^{-1} du. \tag{1.18}$$

Suppose that $\sigma \in \Gamma$ and $\sigma(\operatorname{supp}(f)) \subset \mathcal{X}(U)$. Show that

$$\int_{U} f[\sigma \mathcal{X}(u)] J(\sigma u)^{-1} du = \int_{\Gamma} f.$$

(Comment: When the Lie group Γ has a single parametrization X such that

$$\overline{\mathcal{X}(U)} = \Gamma$$

then (1.18) defines a Haar integral on Γ since $\Gamma \sim \mathcal{X}(U)$ has "measure zero" and $\int_{\Gamma} = \int_{\mathcal{X}(U)} \cdot \cdot \cdot$

§2. Irreducibility

The study of a representation of a compact Lie group is often made easier by observing that it decomposes into a direct sum of simpler representations, which are said to be irreducible. We describe the basic properties of this decomposition in this section. The main result, Theorem 2.5, states that the decomposition always exists. In general it is not unique, but the sources of nonuniqueness can be described and controlled.

Let Γ be a Lie group acting linearly on the vector space V. A subspace $W \subset V$ is called Γ -invariant if $yw \in W$ for all $w \in W$, $y \in \Gamma$. A representation or action of Γ on V is irreducible if the only Γ -invariant subspaces of V are $\{0\}$ and V. A subspace $W \subset V$ is said to be Γ -irreducible (or irreducible if it is clear which group Γ is intended) if W is Γ -invariant and the action of Γ on W is irreducible. For example, the actions of SO(2) and O(2) on \mathbb{R}^2 defined in Example 1.2c, d are irreducible when $k \neq 0$.

One of the fundamental features of actions of compact Lie groups is that invariant subspaces always have invariant complements. More precisely:

Proposition 2.1. Let Γ be a compact Lie group acting on V. Let $W \subset V$ be a Γ-invariant subspace. Then there exists a Γ-invariant complementary subspace $Z \subset V$ such that

$$V = W \oplus Z$$
.

PROOF. By Proposition 1.3 there exists a Γ -invariant inner product $\langle , \rangle_{\Gamma}$ on V. Let $Z = W^{\perp}$ where

$$W^\perp = \big\{ v \in V \colon \big\langle w, v \big\rangle_\Gamma = 0 \text{ for all } w \in W \big\}.$$

The Γ -invariance of the inner product implies that W^{\perp} is a Γ -invariant complement to W.

It follows directly from this proposition that every representation of a compact Lie group may be written as a direct sum of irreducible subspaces:

Corollary 2.2 (Theorem of Complete Reducibility). Let Γ be a compact Lie group acting on V. Then there exist Γ -irreducible subspaces V_1, \ldots, V_s of V such that

$$V = V_1 \oplus \cdots \oplus V_s. \tag{2.1}$$

PROOF. We may assume V nonzero. Then there exists a nonzero Γ -irreducible subspace $V_1 \subset V$ (take V_1 to be of minimal dimension among the nonzero Γ -invariant subspaces). By Proposition 2.1 there is a Γ -invariant complement Z to V_1 in V. Now repeat the process on Z, choosing a nonzero Γ -invariant subspace $V_2 \subset V$. Since V is finite-dimensional this process must terminate, yielding the desired decomposition (2.1).

Some specific examples may help to clarify the implications of this result.

EXAMPLES 2.3.

 (a) Define an action of O(2) on R³ as follows. Let the rotations R_θ ∈ SO(2) act by rotating the (x, y)-plane through angle 2θ and leaving the z-axis fixed: that is, define

$$\theta \cdot (x, y, z) = (x \cos 2\theta - y \sin 2\theta, x \sin 2\theta + y \cos 2\theta, z).$$

Let the flip $\kappa \in \mathbf{O}(2)$ act by

$$\kappa \cdot (x, y, z) = (x, -y, -z).$$

Observe that

$$V_1 = \mathbb{R}^2 \times \{0\} = \{(x, y, 0)\}$$

$$V_2 = \{0\} \times \mathbb{R} = \{(0,0,z)\}$$

are O(2)-invariant subspaces and that O(2) acts irreducibly on each.

(b) There is a standard irreducible action of O(3) on \mathbb{R}^5 . Let V be the vector space of symmetric 3 × 3 matrices of trace zero. Such matrices have the form

$$\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & -(a+d) \end{bmatrix}$$

so dim V = 5. Define

$$\gamma \cdot A = \gamma^t A \gamma$$

for $\gamma \in \mathbf{O}(3)$ and $A \in V$. Thus $\mathbf{O}(3)$ acts on V by similarity.

Next view $O(2) \subset O(3)$ as follows. Identify the matrix $\delta \in O(2)$ with

$$\begin{bmatrix} \delta & 0 \\ 0 \\ \hline 0 & 0 \end{bmatrix}$$

in O(3). In this way, we can view O(2) as acting on V. It is a straightforward calculation to show that

$$V_1 = \begin{bmatrix} a & b & 0 \\ b & -a & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$V_2 = \begin{bmatrix} 0 & 0 & c \\ 0 & 0 & d \\ c & d & 0 \end{bmatrix}, \text{ and }$$

$$V_3 = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & -2a \end{bmatrix}$$

are invariant irreducible subspaces of V under the action of O(2). Since $V_1 \oplus V_2 \oplus V_3 = V$ we have decomposed V as in Corollary 2.2.

In general, the decomposition of V in (2.1) is not unique. It will be useful in later sections to understand the sources of nonuniqueness and to find conditions under which the decomposition (2.1) is unique. In particular, such a discussion will simplify the computation of linearized asymptotic stability for solutions of differential equations. The remainder of this section is devoted to the issue of nonuniqueness, beginning with an example.

Example 2.4. Let V be the four-dimensional space of 2×2 matrices and let SO(2) act on V by matrix multiplication on the left. That is,

$$\theta \cdot A = R_{\theta}A$$

where $\theta \in SO(2)$ and $A \in V$. Observe that $V = V_1 \oplus V_2$ where

$$V_1 = \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}, \qquad V_2 = \begin{bmatrix} 0 & c \\ 0 & d \end{bmatrix},$$

and that SO(2) acts irreducibly on V_1 and V_2 .

However, we also have $V = V_1 \oplus V_2'$, where (say)

$$V_2' = \begin{bmatrix} 8c & c \\ 8d & d \end{bmatrix}$$

and SO(2) acts irreducibly on V_2' .

It will turn out that the reason for nonuniqueness in the decomposition of Corollary 2.2 is the occurrence in V of two isomorphic irreducible representations. Recall the definition (1.10) of Γ -isomorphism. We state this more precisely in Corollary 2.6 later. The main result of this section is as follows:

Theorem 2.5. Let Γ be a compact Lie group acting on V.

- (a) Up to Γ-isomorphism there are a finite number of distinct Γ-irreducible subspaces of V. Call these U1, ..., U1.
- (b) Define W_k to be the sum of all Γ -irreducible subspaces W of V such that Wis \Gamma-isomorphic to Uk. Then

$$V = W_1 \oplus \cdots \oplus W_t$$
. (2.2)

37

Remark. The subspaces W_k are called the isotypic components of V, of type U_k , for the action of Γ . The name is chosen to reflect that fact that all irreducible subspaces of W_k have the same isomorphism type. By construction the isotypic decomposition (2.2) is unique.

Before proving Theorem 2.5 we show how it implies that the nonuniqueness in the choice of irreducible summands in Proposition 2.1 is directly related to the repetition of irreducible representations among the V_i in (2.1).

Corollary 2.6.

(a) If $W \subset V$ is Γ -irreducible then $W \subset W_k$ for a unique k, namely, that k for which W is Γ-isomorphic to U_k.

(b) Let Γ be a compact Lie group acting on V. Let $V = V_1 \oplus \cdots \oplus V_s$ be a decomposition of V into a direct sum of Γ -invariant irreducible subspaces. If the representations of Γ on the V_j are all distinct (not Γ -isomorphic) then the only nonzero Γ -irreducible subspaces of V are V_1, \ldots, V_s .

PROOF. Part (a) follows directly from Theorem 2.5 since if W is Γ -irreducible then it is Γ -isomorphic to some unique U_k , and then by definition $W \subset W_k$. It is useful, however, to have (a) stated explicitly.

For (b), consider the isotypic components W_k of V. Each V_i is isomorphic to some U_k , hence lies in W_k for some k. It follows that the W_k are just the V_i , perhaps written in a different order. If $W \neq 0$ is a Γ -irreducible subspace of V then by part (a) we have $W \subset W_k$ for some k. But $W_k = V_j$ for suitable j, and irreducibility of V_i implies that $W = V_i$.

The proof of Theorem 2.5 depends on two lemmas, which we deal with first.

Lemma 2.7. Let Γ be a compact Lie group acting on W. Suppose that

$$W = \sum_{\alpha} U_{\alpha}$$

where each U_{α} is a Γ -invariant subspace that is Γ -isomorphic to some fixed irreducible representation U of Γ . Then every Γ -irreducible subspace of W is Γ -isomorphic to U.

Remark. Because of nonuniqueness, a Γ -irreducible subspace of W may not be one of the U_a . The lemma says that, provided all the U_a are Γ -isomorphic, every Γ -irreducible subspace of W is Γ -isomorphic to any one of the U_a .

PROOF. Because of our intended application, the theorem is stated in a way that allows the index α to run over an infinite set. In fact this represents no real increase in generality, since we first show that

$$W = U_{a_1} \oplus \cdots \oplus U_{a_s}, \tag{2.3}$$

a direct sum of a finite subset of the U_a . The proof is by induction. Suppose

we have found a subspace

$$W' = U_{\alpha_1} \oplus \cdots \oplus U_{\alpha_{t-1}} \subset W.$$

If W' = W we are done. If not, some U_{α_i} is not contained in W'. Then $U_{s_*} \cap W' \subset U_{s_*}$ must be $\{0\}$ by irreducibility. Therefore the sum $W' + U_{s_*}$ is direct and we have a subspace

$$W'' = U_{z_1} \oplus \cdots \oplus U_{z_r}$$

By finiteness of dimension, (2.3) must hold for large enough s. Now let X be a Γ -irreducible subspace of W. There exists $t \leq s$ such that

$$X \not\subset U_{\alpha_1} \oplus \cdots \oplus U_{\alpha_{r-1}}$$
 (2.4)

$$X \subset U_{\alpha_1} \oplus \cdots \oplus U_{\alpha_r}$$
 (2.5)

There is only one such t. By irreducibility of X,

$$X \cap (U_{a_1} \oplus \cdots \oplus U_{a_{\ell-1}}) = 0. \tag{2.6}$$
Let π be the projection
$$\pi \colon U_{a_1} \oplus \cdots \oplus U_{a_\ell} \to U_{a_\ell} \xrightarrow{\mathcal{U}_{a_\ell}} U_{a_\ell}$$

Then (2.6) implies that $\pi | X$ is a Γ -isomorphism of X onto $\pi(X)$; and $\pi(X) \subset U_{\mathfrak{g}}$. implies that $\pi(X) = U_{\sigma_{\epsilon}}$ by irreducibility of $U_{\sigma_{\epsilon}}$. Therefore X is Γ -isomorphic to U_{α} , hence to U.

Lemma 2.8. Let Γ be a compact Lie group acting on V. Let X, Y be Γ -invariant subspaces of V such that no two Γ -irreducible subspaces $W \subset X$, $Z \subset Y$ are Γ-isomorphic. Then:

- (a) $X \cap Y = \{0\},\$
- (b) If $W \subset X \oplus Y$ is Γ -irreducible, then $W \subset X$ or $W \subset Y$.

PROOF.

- (a) Since $X \cap Y$ is Γ -invariant, any Γ -irreducible subspace of $X \cap Y$ would be in both X and Y, contrary to the assumptions on X and Y. Thus $X \cap Y$ has no nonzero Γ -irreducible subspaces, and this is possible only when $X \cap Y =$ [0]; see Corollary 2.2.
- (b) The subspaces $W \cap X$ and $W \cap Y$ of W are Γ -invariant. By the irreducibility of W, either $W \cap X = \{0\}$ or $W \subset X$; and similarly for Y. If $W \not\subset X$ and $W \neq Y$ then $W \cap X = \{0\} = W \cap Y$. Let π_X and π_Y denote the projections of $X \oplus Y$ onto X and Y, respectively. Then W is Γ -isomorphic to $\pi_X(W)$ and to $\pi_{\gamma}(W)$ as in the proof of Lemma 2.7. But this contradicts the hypotheses on X and Y.

Proof of Theorem 2.5. Choose a Γ -irreducible subspace $U_1 \subset V$. Let W_1' be the sum of all Γ -invariant subspaces of V that are Γ -isomorphic to U_1 . If $W_1' \neq V$, then choose a Γ -invariant complement Z to W_1' and repeat the process

on Z to obtain W_2' . By finiteness of dimension this process terminates with

$$V = W'_1 \oplus W'_2 \oplus \cdots \oplus W'_s \tag{2.7}$$

where each W'_k is the sum of a set of Γ -isomorphic Γ -irreducible subspaces of V, say isomorphic to $U_k \subset V$; and if $i \neq j$ then U_i is not Γ -isomorphic to U_j . We do not yet know that W'_k is the sum W_k of all Γ -invariant subspaces of Vthat are Γ -isomorphic to U_k , because we defined W'_k in Z, not in V. We shall quickly see that in fact $W'_k = W_k$.

Suppose that U is a Γ -irreducible subspace of V. By Lemma 2.8(b) and a simple inductive argument, it follows that

$$U \subset W'_{k}$$
 (2.8)

for some k. By Lemma 2.7, U is Γ -isomorphic to U_k . This proves part (a). But now we see that

$$W'_{k} = W_{k}$$
, (2.9)

as defined in the statement of Theorem 2.5b, and (2.7) implies (2.2), proving part (b).

EXERCISES

2.1. (a) Show that every two-dimensional irreducible representation of S1 is isomorphic

$$\rho_{\theta}^{k}(z) = e^{ki\theta}z \qquad (2.10)$$

for some integer k > 0.

- (b) Show that the representations ρ^k and ρ^l in (2.10) are not isomorphic if k > l > 0. (Hint: Use Exercise XII, 1.6.)
- (c) Show that the only one-dimensional irreducible representation of S1 is the trivial representation.
- 2.2. Let O(2) act on the four-dimensional space V of 2×2 matrices by similarity:

$$\gamma \cdot A = \gamma^{-1} A \gamma$$
 $(\gamma \in \mathbf{O}(2), A \in V).$

Show that $V = V_1 \oplus V_2 \oplus V_3$ where

$$V_1 = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \right\}$$

$$V_2 = \left\{ \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix} \right\}$$

$$V_3 = \left\{ \begin{bmatrix} c & d \\ d & -c \end{bmatrix} \right\}.$$

Show that

- (a) The O(2)-action on V₁ is trivial.
- (b) The O(2)-action on V_2 is the nontrivial one-dimensional representation, in which $\gamma \in \mathbf{O}(2) \sim \mathbf{SO}(2)$ acts as -I and $\gamma \in \mathbf{SO}(2)$ acts as I.
- (c) The O(2)-action on V₃ is isomorphic to the standard action on R² = C.

2.3. In the notation of Exercise 2.2, let O(2) act on V by matrix multiplication:

$$\gamma \cdot A = \gamma A$$
.

Show that $V = V_1 \oplus V_2$, where

$$V_1 = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} \right\}$$

$$V_2 = \left\{ \begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \right\},$$

and that the O(2)-action on each of V_1 , V_2 is isomorphic to the standard action. Hence show that V has only one isotypic component, namely V itself. Find an irreducible subspace of V that is not equal to V_1 or V_2 .

§3. Commuting Linear Mappings and Absolute Irreducibility

In later sections when we compute linearized asymptotic stability of steadystate solutions to ODEs we will need to understand the structure of linear mappings that commute with the action of a compact Lie group. We explore this issue here. The main result is Theorem 3.5, which lets us put commuting linear mappings into a certain block diagonal form.

Let Γ be a compact Lie group acting linearly on V. A mapping $F: V \to V$ commutes with Γ or is Γ -equivariant if

$$F(\gamma v) = \gamma F(v)$$
 (3.1)

for all $\gamma \in \Gamma$, $v \in V$.

EXAMPLES 3.1

(a) Consider the standard action of $\Gamma = SO(2)$ on $V = \mathbb{R}^2$ defined by rotation through angle θ . That is,

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

acts on

$$\mathbb{R}^2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \right\}$$

by matrix multiplication.

We claim that the linear mappings that commute with this action of SO(2) all have the form cR_{θ} where $c \in \mathbb{R}$ is a scalar; that is, such linear maps have the matrix form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \tag{3.2}$$