on Z to obtain W, By finiteness of dimension this process terminates with
V=WooW, @ -aw (2.7)

where each W} is the sum of a set of T -isomorphic [irreducible subspaces of
¥, say isomorphic to U, = ¥; and if i # J then L, is not T-isomorphic 1o U
We do not yet know that W} is the sum W, of all T-invariant subspaces of ¥
that are -isomorphic to U,, because we defined W) in Z, not in ¥. We shall
quickly see that in fact W) = W],

Suppose that U is a Mirreducible subspace of ¥. By Lemma 2.8(b) and a
simple inductive argument, it follows that

Ues W (2.8)

for some k. By Lemma 2.7, U is -isomorphic to L. This proves part (a). But
now we see that

H‘;’ = W, (2.9)
as defined in the statement of Theorem 2.5b, and (2.7) implies (2.2), proving
part (b), B

Exercises

2.1. {a) Show that every two-dimensional irreducible representation of §° is isomorphic
to

Pz = ¥z (2100

for some integer & = (),

(b) Show that the representations p* and ' in (2.10) are not isomorphic if
k=1=0, (Hint: Use Exercise X11, 16}

{c) Show that the only one-dimensional irreducible representation of 5° is the
trivial representation.

2.2. Let ©42) act on the four-dimensional space V of 2 = 2 matrices by similarity:
TrA=y"14dy (Fe2),4e )
Show that V= ¥, & V. B ¥, where

Show that

{a) The O42)-action on ¥, is trivial.

(b) The (§2j-action on ¥, is the nontrivial one-dimensional representation, in
which 1 e O(2) ~ 80(2) acts as — I and 7 € S0(2) acts as .

(e} The O{2}-action on V; is isomorphic to the standard action on B = C.

2.3. In the notation of Exercise 2.2, let O42) act on ¥ by matrix multiplication:
7oA = yA.
Show that ¥ = ¥, & V,, where

w={lo o}

and that the O{2}-action on each of V), ¥, is isomorphic to the standard action.
Hence show that ¥ has only one isotypic component, namely ¥ itsell. Find an
irreducible subspace of ¥ that is not equal 1o ¥ or ¥,

§3. Commuting Linear Mappings and Absolute
Irreducibility

In later sections when we compute linearized asymptotic stability of steady-
state solutions to ODEs we will need to understand the structure of linear
mappings that commute with the action of a compact Lie group. We explore
this issue here. The main result is Theorem 3.5, which lets us put commuting
lingar mappings into a certain block diagonal form.

Let I' be a compact Lie group acting linearly on V. A mapping F: V — ¥
commutes with T or is [-equivariant if

Flyv) = yFiv) (3.1)
forallyelve ¥

ExampLEs 3.1, .
(a) Consider the standard action of I' = SO(2) on ¥ = R? defined by rotation

through angle 8. That is,
i cosfl —sind
7 |sin8 cosé

We claim that the linear mappings that commute with this action of SO(2)
all have the form cRy where ¢ = R is a scalar; that is, such linear maps have

the tmatrix form
a —b
|l 3.2
[5 v ] (3.2)

acts on



Certainly such matrices commute with 50(2) because SO(2) is a commutative
group, that is 50(2) satisfies

RR, = R,R,.

The proof of the converse is a straightforward calculation. Suppose that

a b a b
R“[c d]'[c d:]R’ (33)

for all 6. Equate matrix entries on the first row of {3.3) to obtain

(a) acos®— csint = acosd + bsind 14
(b} beost —dsintl = —asinél + beosf, 2y

Since (3.4) holds for all @ it follows that b= —¢ and a = 4. Therefore, the
matrix has the desired form.

(b) Mow consider the standard action of O(2) on B*. We claim that the only
linear mappings that commute with O2) are ¢l, ce B. Note that scalar
multiples of the identity commute with any group representation since they
commute with any matrix. To prove the claim let M be a matrix commuting
with O{2). Since it commutes with $0/2) it must have the form (3.2). It is now
a simple matter to show that if M commutes with

[o 1]

Definition 3.2. A representation of a group I on a vector space V is absolutely
frreducible if the only linear mappings on ¥ that commute with T are scalar
multiples of the identity.

then b = 0.

To justify the terminology we prove:

Lemma 3.3, Let T be a compact Lie group acting on V. If the action of T is
absolutely irreducible then it is irreducible,

Proor. Suppose the action of T is not irreducible. Then there is a proper
I'-invariant subspace W # {0} having a I-invariant complement W+, by
Proposition 2.1. Define n: W@ W' - V to be projection onto W with kerr =
W, 1t is easy to check that = commutes with T and is not a scalar multiple
of the identity. Hence V is not absolutely irreducible. O

Remark. We hasten to point out that if we work with complex representations
of compact Lie groups then Schur’s lemma (Adams [1969], 3.22, p. 40) implies
that the complex versions of irreducibility and absolute irreducibility are
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equivalent concepts. However, this is not true for real reprawenta?;tinns: as
Example 3.1{a) shows. We provide further discussion at the end of this section,

We now discuss several points about linear maps that commute with
nonirreducible representations. The following observation is quite useful.

Lemma 34, Let T be a compact Lie group acting on V, let A: V — V be a linear
mapping that commutes with T, and let W = V be a T-irreducible subspace, Then
A(W) is D-invariant, and either A{W) = [0} or the representations of T on W

and AW are isomorphic,

Paoor, To show that A(W) is [-invariant let z & A(W), s0 that z = A{w) for
we W Since 4 commutes with [T we have

77 = pAlw) = Alyw)

soyze AIW)L

Similarly, ker A is T-invariant since A(v) = 0 implies that 4(yv) = ‘,.rfi_[!{}_=
7 =) Then ker A » W is a T-invariant subspace of W, and irreducibility
implies that either W = ker 4 or ker 4 » W = {0}, In the first case A[H"}l =
{0}. In the second, A{W)is isomorphic to W as a vector space, the isomorphism
being A; but I' commutes with 4 so 4 is a [-isomorphism between A anl::li
A(W).

Lemma 3.4 implies:
Theorem 3.5. Let I be a compact Lie group acting on the vector space V,
Decompose Vointo isotypic components
V=W, @ aW,

Let A: V — V be a linear mapping commuting with I', Then

AW, = W, (3.5)
fork=1,...,5
Proor. Write W, = V, @ --- @ ¥,, where all ¥, are I'-isomorphic to an irre-

ducible L. By Lemma 3.4 either A(V)) = {0} or A(V)} is also [isomorphic to
Uy, In cither case A(V)) = W,. By linearity, A(W,) = W,. O

Finally we return to the question of irreducible but not absolutely irreducible
representations. Suppose I acts irreducibly on V and let
% ={A:V-VF|Alinear, Ay = yd forally e I'}

be the set of all commuting mappings. The real version of S:::hur'ﬁ lemma
(Kirilloy [1976], Theorem 2, p. 119) states that & is an associative nlg_,:trra
over H and is isomorphic to one of B, C, or H, where H is the four-dimensional
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algebra of quaternions. The reason is that by Lemma 3.4 & is a skew field, and
skew fields may be classified into the preceding three types. The case % = R
occurs if and only if V is absolutely irreducible. The example of 80(2) acting
on R* is a case where & = C. To verify this, recall that the commuting

mappings are the matrices
a —b
b a |

The isomorphism % = C identifies such a matrix with a + ib & C. Note that

a b ¢ d ac —bd  ad + EH:]

[—b a][—n‘ r.'] = [—[mi + be) ac — bd
and {a + ib){c + id) = lac — bd) + i{ad + be), so this map is an isomorphism,
The case % = H can also occur; see Exercise 3.1. The distinction between C
and H is a basic one when considering nonabsolutely irreducible representa-
tions. Most representations discussed in this book will in fact be absolutely
irreducible, & = R but the case % = C arises repeatedly in the context of Hopl
bifurcation. We have found no such natural context for representations with
% = H.

ExERCISES
3.1. Let T be the group SU{2) of unit quaternions
[a+ bi+4cj+dhk:a® +b*+c*+d = 1)
Show that I is a compact Lie group. Let T act on B* = H by left multiplication,
X = pE
Prove that & consists of mappings g, g & H, acting as right multiplication,
dglx) = xg.
Hence show that & = H,

32 LetI' be a Lie group acting irreducibly on a space V. Let 4: V¥ = V be a nonzero
linear map commuting with T. Show that A is invertible and that 4" commutes
with I".

33 Let A, B be commuting matrices. Let £ be an eigenspace, or a generalized
eigenspace, of A. Show that B leaves E invariant,

34 Ialx 2matrix A commutes with x = [} %] then show that 4 is diagonal. 0
a diagonal matrix commutes with a rotation matrix Ry, where 0 is not an integer
multiple of m, show that it is a scalar multiple of the identity. Hence show that the
standard action of D,, n = 3, is absolutely irreducible.

35 Let T act on ¥ =V, & ¥, where ¥, and V, are absolutely irreducible and non-
isomorphic. Let 4: ¥ — ¥ commute with T. Prove that 4 has real eigenvalues and
that at most two distinet eigenvalues ocour,

3.6. Let O(3) act on the space
V= {3 » 3 symmetric trace () matrices}
by similarity:
yod =5y

Show that ¥ is absolutely irreducible. {Hine: Let D be the set of diagonal matrices
in V) Observe that

D={A:icA=dAd0,d=d} i3.6)
where
-1 |

o = 1 : 0 = -]

Let o V - V commute with I". Use (3.6) 10 show that 2(D) = I, Since every
symmelric matrix can be diagonalized, show that = is uniguely determined by its
effect on D. Let f = 2| D. Show that f§ commutes with the permutation matrices
Sy, and that the S;-action on [ is absolutely irreducible. Deduce that the action
of O(3) on ¥ is absolutely irreducible.

37. LetT act on ¥ and let H be a subgroup of T IT V is absclutely irreducible for H,
prove that it is absolutely irreducible for T

§4. Invariant Functions

The goal of this section and the next is to present an efficient way of describing
nonlinear mappings that commute with a group action. We begin with a
discussion of invariant functions. There are two main results: the Hilbert—
Weyl theorem, which gives a theoretical foundation for describing invariant
polynomials, and Schwarz's theorem (Schwarz [1975]). which builds on
Hilbert and Weyl's result, vielding a description of invariant C* germs. See
I1, §1, for a definition and discussion of germs.

Let I be a (compact) Lie group acting on a vector space V. Recall that a
real-valued function f: V¥ — B is invariant under I' if

Siyx) = fix) (4.1)

forall y e T, x € V. An invariant polynomial is defined in the obvious way by
taking f to be polynomial. Note that it suffices to verify (4.1) for a set of
generators of T

ExaMpLEs 4.1.

(a) Let I = Z; act nontrivially on V' = R. That is, —1-x = —x, where Z, =
[£1}. For this example the invariant functions are just the even functions
since (4.1) becomes f{—x) = f{x). It is easy to see that if { is an invariant
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polynomial then there exists another polynomial h such that
1(x) = k{x*). (4.2)

{b) Let 8! act on B? = C in the standard way; that is, #z = ¢™z for e §".
Equation (4.1) states that fle™z) = fi{z) for every 6 £ §'. Since f1— ™ traces
out a circle centered at 0 with radius |z| we see that 8 -invariants are functions
that are constant on circles. We now show (as is already plausible) that if fis
an S'-invariant polynomial on C then there exists a polynomial h: B — B such
that

fiz) = hizZ). i4.3)

{This observation is contained in the proof of Proposition VIII, 2.3; we give
a different proof here.) The proof of (4.3) will be carried out using complex
notation, a trick that is often useful. Write J as a polynomial in the “real”
coordinates z, Z on C in the form

fzh =¥ a 2% (4.4)

where a,; € C.(They are “real” coordinates in the sense that they coordinatize
C as a real vector space. However, for z = x + Iy we have x = (z + Z)/2,
¥ = —ilz — )2, s0 the coeflicients required may be complex. Thus we have
to impose on all polynomials a reality condition: their values must be in R
Here the reality condition is that f is real-valued; that is, [ = f. So the
coeflicients a,; satisly

flag = dg,. (4.5)
Direct computation from (4.4) shows that
fle¥z) =¥ a e Pzog?, i4.6)

Since fi{e™z) = fiz) as polynomials, they have identical coefficients. From
(4.4, 4.6) we obtain the identity

ay =Py i4.7)
Now (4.7) holds for all # 8! only if x = f or a,; = (. Thus S'-invariance
implies that
fle) =} alzz)
where, by (4.5), a_ e R. If
hix) =3 a,x*
then (4.3) is satisfied.

c) Let ' = D, in its standard action on C. We claim that for every D,-
invariant polynomial fiz) there exists a polynomial g; R* — [ such that

fz)=glzz, 2" + %) {4.8)
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We verify (4.8) in a similar way to (4.3). We may again assume | has the form
(4.4) and satisfies the reality condition (4.5}, Since the action of D, is generated
by

fz =e" (F=2/n) and Kkz=3
we need verify (4.1) only for these elements. The restriction placed on f by the
first generator is (4.7) when # = 2a/n. The restriction placed by « is

(= fy,, 4.9)
and from (4.5, 4.9) we conclude that a,, € R. In summary, we require
a) azel
(b) a,=ay (4.10)

€} a,;=0 unless z= f{modn),
Using (4. 10) we may rewrite (4.4) as

flzy= E A,,E{z"f’ + %2¥)
LR

where
A = 4% if e#f,
# lagl2 if a=p.
Mext, we factor out the largest powers of 7 and use (4. 10c) to arrive at the form

fiz) = Eaﬂ{zi}‘{:‘* + %) (4.11)

for certain coefficients By. Finally we use the identity
2 TE = (2" 4 T (M RN — T (2R g TRy
inductively, to write the polynomial in the form
fia) =¥ CulzzViz" + 2
for certain real coefficients C,,,. Now define
hix,y) =} CimX'y™

We make one very important observation about the invariant polynomials
in Examples 4.1, There is a finite subset of invariant polynomials u,, ..., u,
such that every invariant polynomial may be written as a polynomial function
ofu,,..., u, This finite set of invariants {which is not unique} is said to generate
the set of invariants, or to form a Hilbert basis. We denote the set of invariant
polynomials by #(T'). Note that #T) is a ring since sums and products of
[-invariant polynomials are again [-invariant. The existence of this finite set
of generators is a general phenomenon. The main theoretical result, initiated
by Hilbert and proved by Weyl [1946], is as follows:



Theorem 4.2 (Hilbert—Weyl Theorem). Let I be a compact Lie group acting
on V. Then there exists a finite Hilbert basis for the ring #HT).

Remarks.

{a) The actual computation of a generating set for #I) can be extremely
difficult. In many cases, such as those in Examples 4.1, a set of invariant
generators may be obtained by a combination of tricks and direct calculation.
(b) Since I" is a compact Lie group, we may assume it is a subgroup of the
orthogonal group O(n) by Proposition 1.3, In this case, the norm

Ixi* =x} 4+ + xj

is always [-invariant.

We prove this theorem in §6; similar proofs are given in Weyl [1946]
and Pocnaru [1976]. In individual examples, such as those of Examples 4.1,
we may verify Theorem 4.2 explicitly by exhibiting a finite set of invariant
generators.

Itis not surprising that a similar result to Theorem 4.2 holds for real analytic
functions. It is perhaps more surprising, however, that this sort of result
remains true for C* germs, and it is in this category that we wish to work.
Although a finitude theorem for C* germs was known in special cases (see
Whitney [1943] for Z, acting on R, and Glaeser [1963] for the symmetric
group 8, acting as permutations on E) it was not until Schwarz [1975] that
the C* germ result was proved for general compact Lie groups. We state
Schwarz's theorem here and sketch its proof in §6. We use the notation #(T)
for the ring of I'-invariant germs V¥ — B,

Theorem 4.3 (Schwarz [1975]). Let T be a compact Lie group acting on V. Let
Uys..., Uy be a Hilbert basis for the T-invariant polynomials (). Let f & &(T).
Then there exists a smooth germ h € &, such that

Fix) = hiw,(x),. .. ulx)) 4.12)
Here & is the ring of C* germs R* = R,

We conclude this section with a discussion of some special structure often
found in the ring #(T'), which is quite useful when making explicit calculations.
It implies in particular that when [ in (4.12) is polynomial then there is a
unique choice of the polynomial h.

More precisely, say that a set of I-invariant polynomials has a relation if
there exists a nonzero polynomial #(y,,...,y,) such that

riwg(x). .. uix)) =0 (4.13)

The ring T} is a polynomial ring if it has a Hilbert basis without relations.
(Warning: A polynomial ring is nor just a ring of polynomials.)
An example of a group action for which #(T) is not a polynomial ring is

I TT TP -

given by I' = Z, acting on R?, where the action of —1 e Z, is defined by
x—+ —x. It is easy to see that #(Z,) is gencrated by all monomials of even
total degree. The polynomials

My =X,  Mp=X1X3, Wy=X3
form a Hilbert basis for #4Z.), but there is a relation
ity — u3 =0,
Indeed it can be shown that no choice of Hilbert basis can eliminate all
relations, so #Z,) is not a polynomial ring,
There is a simple test to determine whether a given Hilbert basis u,, ..., u,

for #(I") makes itinto a polynomial ring. Define the mapping p: V — B2, called
the discriminant of T, by

pIx) = (ug(x) ... 00x)). (4.14)

Lemma 4.4. If the Jacobian (dp), is onte for some x, then #(I') is a polynomial
ring.

Proor, If (dp), is onto, then by the implicit function theorem p(V) contains
an open subset of B, Hence any polynomial mapping r: B* — R is uniquely
determined by r|p(V). Now suppose r satisfies (4.13); that is, r|p(V) = 0. It
follows that r = 0 and that there are no nontrivial relations. O

Note that in the preceding example of Z, p(x,,x,) = (x}, x, x5, %3) and
(dp),: R* — R*. Hence it is impossible for (dp), to be onto. (However, the
converse of Lemma 4.4 has not been proved, so this does not show that #(I)
is not a polynomial ring.)

We may use Lemma 4.4 to check that for Examples 4.1, #(T") is a polynomial
ring. For instance, consider Example 4.1c, where I = D, acts on C. Recall
from (4.8) that

u;(z, %) = =%, sz, Z)=z"+37"
is a Hilbert basis. Then
Mz, Z) =z, 2" + ")

E I
dp = [nz"' HE"'i]'

It follows that detdp = n{z" — "), which is (often) nonzero. By Lemma 4.4,
#(D,} is a polynomial ring.

50 that

Remarks,
(2) When #(T'} is a polynomial ring in the Hilbert basis u,, ..., u,. then every
Invariant polynomial f has uniguely the form
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Jx) = hiuy(x),.... . 0x)).

To prove this, suppose not. Then also f = k(u,(x),...,u,(x)). If r = h — k then
rluy(xh....ulx)) = 0, 50 r is a relation. This is a contradiction.

{b) Even when #(I') is a polynomial ring, uniqueness need not hold in (4.12)
for C™ germs. For example, let Z, act on R in the standard way. Then
u;{x) = x* is a Hilbert basis. By Theorem 4.3 every invariant germ f & &(I)
has the form f(x) = h(x?) for some h € £, However, define

e gl x =0
kix) =
x) )ru if x>0

Then & is smooth, and
S(x) = hix*) + k(x?)

50 uniqueness fails. More generally, if Im p in Lemma 4.4 does not contain a
neighborhood of the origin in B* then uniqueness in (4.12) fails in &(1).

{c) It is, however, true that if #T) is a polynomial ring then the Taylor
expansion of k in (4.12) at the origin is uniquely defined. Since in our analysis
of bifurcation problems we consider only finitely determined situations (that
is, those in which the problem may be reduced to a finite part of the Taylor
expansion of f), it follows that to all intents and purposes uniqueness in £(I)
does hold.

(d) Another test to show that #(T) is a polynomial ring, even simpler than
Lemma 4.4, is give in XIII, §1.

EXERCISES

4.1. Let 8 act on C" by (z,,...,2, )= (e"z,,...,e%z2,). Show that a Hilbert basis is
{Relz;z; ) Im(z,Z,)}.

4.2, Let §' act on C? by (z,2;)(e*¥z,, "™:,) where k, | are coprime. Show that a
Hilbert basis is { Rez{ 23) Im(z} 25112, 1%, |22 ).

4.3, Let (f,9)e T* act on C* by (z,, z s (gt ¥Rty @i8ades ) where &y, [, and
k3, Iy are coprime. Find a Hilbert basis. {Hint: Apply Exercise 4.2 to the f-action
and observe the action of @ on a Hilbert basis. Or use brute force on monomials
zf17d)

4.4. Which of the preceding rings of invariants are polynomial rings?

4.5, Let the symmetric group 84, consisting of all permutations of [1,2, 3], act on B?
by permuting a basis. Show that the invariant functions are generated by 5, =
Xy + X3+ X, 8 = XXy + XXy + Xy Xy, and & = x;x,x,. Prove that the ring
of invariants £(S,) is a polynomial ring.

4.6. Prove results analogous 1o the preceding for S, acting on R".

47. Letl” be the group of all symmetries, including reflections, of a cube centered at
the origin of B* = {{x, y,z)} with edges parallel to the axes. (In the notation of

XIIL, &9, this is the group @ @ Z5.) Prove that the ring of T-invariants is
generated by
u=x'+y'+z*

r=x"y"+ yit + x4

W= le},zrz
and that it is a polynomial ring.

The next group of exercises investigates conditions under which a function Fix{Z) -« R
extends to a T-invariant function.

48 Let I act on ¥ and let £ be an isotropy subgroup. Let {7 ¥ — B be [-invariant

and let ¢ = f|Fix(E). Let N = Ny(E).

(a) Show that ¢ is N-invarianl. Hence a mecessary condition for a function
i Fix(E) = B to extend to a C-invariant function on V is that  be N-
invariant

() i has the following more general hidden symmetry property: If there exist
yeT ~ W and ve V¥ such that v, yv € Fix(Z) then @(v) = @(yol

() IF bz Fin(E) = B is N-invariant, then a necessary condition that  should
extend to a [-invanant function |}r ¥~ R 15 that o satisfies the hidden
symmetry condition.

49, Find an example where the hidden symmetry condition is viclated, showing that
the condition in Exercise 4.%{a) is not sufficient for an extension to exist.

4,10, If o; Fix(Z)— B is N-invariant and satisfies the hidden symmetry condition
prove that there exists a continuous I-invariant extension ﬁ': ¥ — K. (Hinr; Work
inside a suitable closed ball center 0. Define & = | |, 7 Fix{E). Prove that Xis
a closed subset of ¥ and that J extends uniguely to a [-invariant function ¢ on
&. Use the Tietze extension theorem to extend  from & to ¥, and average over
I' by Haar intepration.)

4.11. Let T = D, acting on C, £ = Z,(x), and (x) = x? {x € Fix(Z) = R). Observe
that o tmvially satisfies the hidden symmetry condition and 15 N-invariant. By
considering 3-jets (Taylor expansions to degree 3) show that ¢ has no smooth
extension to a [-invariant function C — &,

4.12. Investigate analogous results to Exercises 4.8-4.11 for the cxtension of N-
equivarant mappings on Fix(E) to [N-equivariant mappings on ¥

§5. Nonlinear Commuting Mappings
As usual we let I be a compact Lie group acting on a vector space V. Recall
that a mapping g: V — V commutes with T or is T-equivariant if

alyx) = yalx) (5.1)

forally e [, x e V. In §3 we discussed some of the restrictions placed on linear
mappings g by (5.1). In this section we describe the restrictions placed on
nonlinear g.



The main cbservation is that the product of an equivariant mapping and
an invariant function is another equivariant mapping.

Lemma 5.1. Let f: V- R be a D-invariant function and let g: V =V be a
[-egquivariant mapping. Then fg: V — Vis -equivariant.

ProokF. This follows [rom an easy calculation. Forall p € I’ and x € ¥ we have:
(fa)(yx) = flyx)g(yx)
= fix)-yg(x)
= yf(x)g(x)
= fgix). (5.2)

The first and fourth equalities in (5.2) use the definition of fg; the second
equality follows by [-invariance and I-equivariance; and the third follows
because p acts linearly on ¥ and {x) 15 a scalar. O

For example, when I'=Z, acts on B by —1-x= —x, then the Z,-
equivariant mappings are just the odd functions; that is, they satisfy g —x) =
=gl(x). It is well known that every odd function may be written as an even
function times x, This was proved in Corollary VI, 2.2; nevertheless we
reproduce the argument here. Since g(0) = 0 we use Taylor's theorem to write
glx) = fix)x. Since g is odd,

Si—x}x = flx)x,

so [ is even. Moreover, we know that fix) = hix?) for a suitably chosen
smooth b, by (4.3} and Theorem 4.2 {or by Lemma VI.2.1). Hence

glx) = hix*)x. (5.3)

We now abstract some general principles from the preceding observations.
Let #(I') be the space of I'-equivariant polynomial mappings of ¥ into ¥, and
let &) be the space of T-equivariant germs (at the origin) of C* mappings
of V into V. Lemma 5.1 implies that #T') is a module over the ring of invariant
polynomials #(T7), and equally that #{I') is a module over the ring of invariant
function germs #(I). This means that if f & #(I") and g € #(") then fg & #(T),
with a similar statement for ¢, and this is the content of Lemma 5.1,

The results for I' = £, can be stated in symbols:

(a) FZy) = P(Zy){x},
(b) &IZy) = E(Z;){x}.

In words, the module £{Z.,) (or F(Z,)) is generated over the ring £(Z,) (or
#Z,)) by the single £ -equivariant mapping x. In general, we say that the
equivariani polynomial mapping g,, ..., g, generate the module #(T") over the
ring #(I') if every [-equivariant g may be written as

(3.4)

g=hag + + 14 (5.5)

for invariant polynomials f,. ..., f. A similar definition may be made for &T).
The next theorem follows from, and is similar in spirit to, the Hilbert-Weyl
theorem. A proof is given in §6.

Theorem 5.2, Ler T be a compact Lie group acting on V. Then there exists a
finite set of T-equivariant polynomials g, ..., g, that generates the module AT,

The I-equivariant version of Schwarz's theorem (Theorem 4.3) is proved in
Poénaru [1976]. We present this proof in §6 too.

Theorem 5.3 (Poénaru [1976]). Let T be a compact Lie group and let g, ...,
g, generate the module #A) of [-equivariant polynomials over the ring 4T,
Then g, ..., 4, generate the module &{T') over the ring £T).

The implications of Theorems 5.2 and 5.3 are illustrated by the following
examples,

ExampPLES 5.4.
(a) Let I' = 8 in its standard action on ¥ = C. We claim that every S'-
equivariant mapping g € £(S') has the form

glz) = plzZ)z + giz%)iz (5.6)

where p and g are real-valued §'-invariant functions. This has already been
proved in Proposition VIIL, 2.5 in slightly different notation; we give a different
proof here.

Let g: C — C be an 8"-equivariant polynomial. In the coordinates z, Z it has
the form

g =Y byziz* (5.7)

where b, € C. The equivariance condition (5.1) can be restated as an invariance
condition

gix) = 3 'glyx), (5.8)
which is often more convenient to use. In the case I = 8! we have
g=e "y bt Nzt = § b AL 15.9)

Hence by, = 0 unless j = k + 1. Thus
glz) = 3 by alzz )z
and g has the form (5.6), where
piy) = E RefBy 1),
gyl = E Imiby, . o) 3"
Now apply Theorem 5.3



ib) Let I' = O(2) in its standard action on C. We claim that every O(2)-
equivariant mapping g £ £{0(2)) has the form

glz) = pizz)z. (5100

To prove this, observe that g is in particular $'-cquivariant, hence has the
form (5.6). But O(2) is generated by §' = S0(2) and the flip &, which acts by
Kz = I Now compute

qz) = p(zz)z — gq(zz)iz. (5.11)
The only way that g(Z) can equal g(z) is if g(z7) = 0, thus proving the claim.

ic) LetI" = D inits standard action on C. We claim that every D, -equivariant
germ g & £(D, ) has the form

g(z) = plu,v)z + qlu,v)z"? (5.12)
whereu =Fandp = 2" 4 7",
We begin again with a D,-equivariant polynomial g of the form
g(z) = ¥ byziz* (5.13)

where by, € C. We first obtain restrictions on the b, by using the equivariance
of g with respect to &, where k2 = . Now

giF) = ¥ Buc'zt
Hence g(z) = giz) implies that by, is real,
Recall that D, is generated by x and { = 2n/n, which acts as multiplication
by ¢%. Now equivariance with respect to { implies that
g(z) = e "gle¥z)
= ¥ byelt-iizih, (5.14)

Hence by = 0 unless j = k + 1(mod s). (I is here that the analysis begins to
differ from the case T’ = 8')) )

_ \}*‘g now show that z and """ generate the module #(D,) over #(D,). In
!ndl?idual terms in (5.13) we can factor out powers of zZ, which are D, -
invariants, until we are left cither withj =0 ork = (. Since j = k + 1 imod n)
the terms z'"*! and 2“1, [ =0, 1, 2, ..., generate the module F(D,).
However, the identities

(a) olitEm+l (z" + Enjzuti]nl | [z'f}'z"ﬂ

(b) zF3e-l_ (om E-E-[hznrr — (z5)nzitt i (5.15)
show that the generators 2", 2™ are redundant for | = 2. Similarly
£ 2" =(z"+ Tz — (z7)7""",
(d) 2l = (2 4 T9F" — (3 M

Hence the generators z"*! and z*" ! are redundant. This proves the claim.

To end this section we discuss when the representation of a M-equivariant
g in (5.5) in terms of given generators gy, ..., g, is unique. We say that g,,...,
g, freely generate the module £I) over &(T') if the relation

figi + -+ f8. =0, (5.16)

where f, € £(I'), implies that

fiz-=finl {5.17)
We also say that £(I') is a free module over £(T'). (This definition is the module
version of linear independence in vector spaces.) It is clear that if g,, ..., g,

freely generate &(I') then every g e &) may be written uniquely as g =

fray + -+ fg, where f, e &),
Each module discussed in the preceding examples is free. We show this for

Example 5.3(c), where I = I},. Suppose that
pzZ 2" + TNz + gz " + TE T =0 (5.18)
Suppose there exists z € C at which g(zz, z* + 2") # 0. By continuity g +# 0 in
a neighbourhood of z. Multiply (5.18) by  and solve for
Z" = pl27, 2" + T")2Z/qlzZ, 2" + 2") (5.19)
The right-hand side of (5.18) is real, but 2" is never real-valued on an open set
{or else it would be everywhere real) so we have a contradiction. Hence g = 0.

But (5.18) now implies p = 0. Hence £(D, ) is a free module over the ring £(D,,)
with free generators z and %%

EXERCISES

5.1. Let 8" act on C" as in Exercise 4.1. Prove that the equivariants are generated as
a module over the invariants by the mappings z— 2, z— iz fork =1, ... m

52 Let 8' act on C* as in Exercise 4.2, Prove that the equivariants are generated as
a module over the invariants by the mappings (7,2, )—

(24,00, (iz,, 00, (7,23, 00, (i7" 25,0,

(0,250, (yizy ), (0,20 737" (0,02 237").
53 Let T? act on ©? as in Exercise 4.3, Find generaiors for the equivariants.
54. Which of the preceding modules of equivariants are free?

55 LetT = O @ Z3 be the symmetry group of a cube acting on B* as in Exercise 4.7,
Prove that the module of T-equivariants is generated by the mappings

x x} ¥yt
X,=|7r X;=|y X;= 2xy |,
z 2 x*ytz

and is a free module over the ring of invariants.



