&6 X1 Group-Theoretic Preliminaries

{a) Two one-dimensional irreducibles, the trivial representation and the repre-

sentation in which y & 0(2) acts as multiplication by det .
ib} A countably infinite family of two-dimensional irreducibles defined by

(i) i+ ez

(i) ze=Z

wherezeC=s R and k= 1.2,3, ...

{Hins: I1042) acts irreducibly on a vector space F, show that the subgroup SO(2)

also acts irreducibly on V)

7.3, Show that all irreducibles for Z_ and I3, arc of dimension 1 or 2,

CHAPTER XIII

Symmetry-Breaking in Steady-State
Bifurcation

§0. Introduction

In this chapter we begin to study the structure of bifurcations of steady-state

solutions to systems of ODEs
dx
dr

where g: B" » R — R" commutes with the action of a compact Lie group I”
on ¥ = R". Steady-state solutions satisfy dx/di = (; that is,

glx, A) =0, 0.2}

+ glx, i)=0 0.1}

We focus here on the symmetries that a solution x may possess and in
particular define some simple “geometric” notions that will prove to be of
central importance.

In §1 we note that since I’ commutes with g, if x is a solution then so is yx
for all y e I". The set of all yx for y € I is the orbit of x under T, The amount
of symmetry present in a solution x is measured by its isotropy subgroup

L=k ={aeTiox=x}
The smaller I is, the larger is the orbit of x.
In §2 we introduce the fixed-point subspace
Fix(E) = {re Vlev =vforallo e E}.
It is a linear subspace of V and, remarkably, is invariant under g (even when

d is nonlinear). This leads to a strategy for finding solutions to (0.2) with
preassigned isotropy subgroups X: restrict g to Fix(Z) and solve there. This



strategy will be used repeatedly in the sequel. It is important to be able to
compute dim Fix(Z), and we prove a trace formula for this,

The main result of this chapter, proved in §3. is the equivariant branching
lemma (Theorem 3.2) due to Vanderbauwhede [1980] and Cicogna [1981].
This states that, with certain conditions on Z, a unique branch of solutions to
(0.2) with isotropy subgroup I exists. The main hypothesis is that the fixed-
point subspace Fix(Z) is one-dimensional. Thus the point of view is to pre-
scribe in advance the symmetries required of x and to reduce the problem to
a study of g|Fix(E).

The restriction dim Fix(Z) = 1 is not as arbitrary as it may appear, and this
condition is often satisfied. The problem (0.2} is connected with “spontaneous
symmetry-breaking” as follows. Suppose that (0.1) has for each A a trivial
solution x = 0 (which manifestly has isotropy subgroup I'). Suppose it to be
asymplotically stable for 4 < 0 and to lose stability at 4 = 0. Usually such a
loss of stability is associated with the occurrence of new branches of solutions
x # 0to (0.2), emanating from the trivial branch at i = 0. Such solutions often
have isotropy subgroups T smaller than I', We may ask, Which X typically
arise in this way? In the language of symmetry-breaking, one says that the
solution spontaneously breaks symmetry from I' to . “Spontaneously” here
means that the equation g = 0 still commutes with all of . Instead of a unique
solution x = 0 with all of " as its symmetries, we see a set of sym metrically
related solutions (orbits under I modulo Z) each with symmetry group
(conjugate to) Z. In many examples it turns out that the subgroups X are
maximal isotropy subgroups—not contained in an ¥ larger isotropy subgroup
other than I, (Exceptions to this statement do oceur; see §10.) If dim Fix(Z) = |
then X is maximal, and such  are the most tractable maximal isotropy
subgroups.

Thus the equivariant branching lemma yields a set of solution branches
in a relatively simple way. It is important to decide whether the solutions
associated with any of these branches can be asymptotically stable. In §4 we
show that for some group actions ' on R", all such branches are unstahle.
This means that in some problems it is essential to consider degeneracics; this
leads to problems that can be solved using singularity theory. See Chapters
XIY and XV.

In §5 we discuss in more detail how to represent I-equivariant bifurcations
by a (schematic) bifurcation diagram. Such diagrams are very convenient, but
we make their schematic nature explicit to avoid misunderstandings.

§36-9 apply the theory thus developed 1o two classes of examples: the
groups SO(3) and O(3) acting in any irreducible representation. The proofs
may be omitted if so desired. These representations are obtained in &7, which
links them to the classical idea of “spherical harmonics.”

Finally in §10 we discuss to what extent we may expect spontaneous
symmetry-breaking to occur to maximal isotropy subgroups. This section is
optional. Although many questions remain unanswered, it is possible (o
establish a number of facts. In particular there are three distinct types of
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maximal isotropy subgroup, which we call real, complex, and guaternionic.
A theorem due to Dancer [1980a] effectively rules out all but the real maximal
isotropy subgroups. On the other hand, Chossat [1983] and Lauterbach
[1986] give examples in which submaximal isotropy subgroups arise generi-
cally, and we outline their results. We also describe two contexts in which
solutions occur for all maximal isotropy subgroups. These contexts are varia-
tional equations (Michel [1972]) and periodic solutions near equilibria of
Hamiltonian systems (Montaldi, Roberts, and Stewart [1986]).

§1. Orbits and Isotropy Subgroups

LetI" be a Lie group acting on the vector space V. There are two simple notions
used in describing aspects of a group action, which are intimately related to
the way we think of bifurcation problems with symmetry. We explain these
ideas and relations in the following discussion.
The orbit of the action of I on x € ¥ is the set
Tx={ypx:yel} (L.1)

Suppose that f: V¥ — V is I'-equivariant; then when f vanishes, it vanishes on
orbits of T, For if f{x) = 0, then

Jx)=3f{x}=y0=0.
In other words, this calculation shows that symmetric equations []‘".
equivariants) cannot distinguish between points (solutions) on the same orbit.
The isetropy subgroup of x € V is
I={relyx=x] (1.2)

See the following for an example. We think of isotropy subgroups as giving
the symmetries of the point x (under the action of ['). In later sections we shall
attempt to find solutions to f = 0, for some unspecified I'-equivariant map-
ping f, by specifying required symmetries for the solution x, that is, by
specifying the isotropy subgroup of x.

It is natural to ask how the isotropy subgroups of two points on the same
orbit compare. The answer is as follows:

Lemma 1.1. Points on the same orbit of T have conjugate isotropy subgreups.
More precisely,

=7E " (1.3)

T=

Remarks.
{a) Let £ =T be a subgroup and let y e I'. Then

yEr -t ={yey 10 I}

is a subgroup of T, said to be conjugate to E.
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ib) The conjugacy class of E consists of all subgroups of I" that are conjugate
to X

Proor. Let x € ¥ and y e I'. Suppose that ¢ € Z,. We claim that yoy "€ I,
We may check this directly:

yay ™ (7x) = yaly ™ y)x = yox = yx,
the last equality holding since o € £, It follows that
L2y

Replacing x by yx and y by 77! yields £, = y71E__v, which proves the lemma.
O

A convenient method for describing geometrically the group action of I" on
¥ is to lump together in a set W all points of ¥ that have conjugate isotropy
subgroups. We say that W is an orbit type of the action.

We illustrate these ideas by considering the action of the dihedral group D,
on T generated by

K:z—E oand  {:zee?™nz
Geometrically we picture the action of D, as the symmetries of a regular n-gon
centered at the origin in the plane, This r-gon is shown in Figure 1.1 by dashed
lines, when n = 5. We derive in the following the orbit types of this group
action. The result depends on whether n is odd or even, and for simplicity we
consider only the case when n is odd. The complete results may be found in
§5. The vertices on the n-gon, shown as o in Figure 1.1, are mapped into each
other by I'. More precisely, these vertices constitute a single orbit of the action
of I'. The isotropy subgroup of a vertex on the real axis (not at the origin) is
the group Z, generated by w. The other vertices have isotropy subgroups
conjugate to Z;, by Lemma 1.1. Finally, if ¢ s 0 then linearity of the action
implies that £, = Z_. So all points on the lines joining the origin to a vertex
have conjugate isotropy subgroups and belong to the same orbit tvpe,

Mext we consider a point near, but not on, the real axis, indicated by a @
in Figure 1.1. By reflection and rotation we see that its orbit contains 20 points,

Figure 1.1. Orhits of the action of D on C,
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Table 1.1. Orbit Types and Isotropy Subgroups for D,

on C, n odd

Orbit Type Isotropy Subgroup  Size of Orbit
{0} D,

fzeCllm(z") =0,z 20} Z, n

{z e C|lm(z®) = 0} 1 2n

and the only group element that fixes one of these points is the identity in D,
Hence all points in the wedges between the vertex-origin lines belong to the
samme orbit type.

Finally, of course, the origin forms an orbit on its own and is fixed by the
whaole group D, Thus there are three orbit types. We list these, along with
their (conjugacy class of ) isotropy subgroups, in Table 1.1, {In the case n even,
points on the lines joining the origin to midpoints of edges of the n-gon have
nontrivial isotropy subgroups not conjugate to those listed in Table 1.1; see
§3.)

In this example “almost all” points—an open dense set— have trivial iso-
tropy subgroup. It is a general theorem (Bredon [1972], p. 179) that there
exists a unique minimal isotropy subgroup £, for any linear action of a Lie
group I" on a vector space V and that points with this isotropy form an open
dense subset of V. Since Fix(Z;,) contains an open dense subset of ¥ and is
a vector space, it must be the whole of V; therefore, E_;, is the kernel of the
action-—the subgroup of all elements of I that act on V as the identity. The
points with isotropy group ¥_ . are said to have principal orbit type.

We see that in this example, the larger the orbit, the smaller the isotropy
subgroup. We formalize this observation as follows:

Proposition 1.2. Let I be a compact Lie group acting on V. Then
(a) If |T'| < oo, then |T'| = |Z,||Tx].
ib) dimT = dim X, + dimI'x.

Remarks,

(a) Proposition 1.2(a) states that the order of the group I is the product of
the order of £, and the size of the orbit of x. This formula may be checked
for T' = D, from Table 1.1, using the fact that |D,| = 2.

(b} Lie groups are always smooth manifolds and have well-defined dimen-
sions. Since isotropy subgroups are always Lie subgroups both dim I and
dim X, make sense. Similarly orbits of Lie groups are always submanifolds
and have well-defined dimensions. Thus dim ['x makes sense.

SkeTCH of ProoF. There is a natural map @: I — I'x defined by
@l = rx. (1.4)
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By definition ¢ maps onto the orbit Tx, and ¢ *(x) = E,. Define the coset
space of a subgroup £ of T to be

FZ={Elyer}
where we recall that the cosets of X in I are the sets
$E = {yalo e I}.
Then ¢ induces a map
y:I/E, —Tx
(1.5)
Wizl = px

which is both one-to-one and onto. In the case that I is finite, a simple
counting of the cosets in I'/E_ verifies part (a). In general, both ¢ and  are
smooth mappings and (dy), is invertible. It follows from the inverse function
theorem that

dim I'x = dim([/Z,)
from which part (b} iz immediate. O

Remark (d) of XII, §4, promised a simple criterion for #(T') to be a poly-
nemial ring. We have now defined the concepts needed to state this: we omit
the proof. Suppose that I' acts on V with minimal isotropy subgroup I_,..
Let {u,(x),...,ulx)} be a Hilbert basis for 2T, If

s=dimV —dimI +dimE,,, (1.6)

then #(T') is a polynomial ring.
In particular, if I is finite then (1.6) reduces 1o

§=dim ¥V, (1.7)

For example, (1.7) trivially implies that #D,} is a polynomial ring whenever
D, acts irreducibly on C.

Exercises

LL Let O(n) act on B"in its standard representation. Find the orbits and the corre-
sponding isotropy subgroups.

1.2. Let I be the group of all symmetries, including reflections, of 3 cube center the
origin of R* with edges parallel to the axes. (In the notation of XIIL, 89, T is the
group (0 @ Z5.) Show that
{a) |I'| = 48 and I" is generated by

-1 0 0 1 0 0 001
K= 01 0 R,=|0 0 —1 R=| 01 ol
0 0 1 01 0 -1 0 0

g‘_ riACU- o .Juusl.mum. CREIM LU LD asT 0L BN

{b) Show that the orbit data for I are as follows:

Orbit [sotropy
Representative Subgroup
(0, 0, O r
{x,0.00 D,
(=, 2,00 ARl
(x,x,x) 5,
(x, .00 %
(x,%,2) z
(x,5.2) 1
| x|, [, || distinct

and # 0

where D is generated by R, and »_ (in obvious notation, compare (a)), £ by
K, and I by (x, y, 2)— (x, 2, ¥L :
{c) Verify Proposition 1.2{a) directly for this example.

L.3. Find the orbits and isotropy subgroups for O3} in its ﬁve-dimen‘sional representa-
tion (as in Exercise XI1, 3.6). Verily Proposition 1.2(b) for this example. {Hint:
Every symmetric matrix can be diagonalveed.)

L4, {(a) Show that in D, all reflections are conjugate. .
ib)} In Dy, show that there are two geometrically distinct types Dfreﬂect!unr thusc

through lines joining the origin to a vertex and those through lines join-

ing the origin to the midpoint of an edge. Prove that all rel‘]ect?nns of the
same type are conjugate in Dy, but that different types of reflection are not

conjugate. Y )
ic) Prove that all reflecticns in Dy, are conjugate in Dy
L5 Let Z,act on RYsothat —1 & Z, acts as (x, y)—(—x, y). Prove that #Z,) is not
a polynomial ring,

§2. Fixed-Point Subspaces and the Trace Formula

This section divides into three subsections, devoted to the following Lopics:

(a) The existence of invariant subspaces for nonlinear equivariant mappings:
the fixed-point subspaces, .

b} A method for computing the dimensions of fixed-point subspaces: the trace
formula, .

i) Ways to use the dimensions of fixed-point subspaces to find an important
class of isotropy subgroups: the maximal isotropy subgroups.



(a) Fixed-Point Subspaces

One of the most remarkable as well as one of the simplest features of nonlinear
I'-equivariant mappings is that their equivariance forces them to have in-
variant lincar subspaces. Moreover, these invariant subspaces correspond
naturally to certain subgroups of T.

Let £ = I be a subgroup. The fixed-point subspace of £ is

Fix(Z)= {xe Viax = xforall o € Z}. 2.1}

Ifit is important to display the space ¥ explicitly we write Fix,(E). Observe
that Fix(E) is always a linear subspace of V since

Fix(E) = q ker(r — Id)

and each kernel is a linear subspace.

Mote that the simplest fixed-point subspaces are Fix(1) and Fix(I). Sinee
the identity subgroup 1 fixed every point, we have Fix(1) = V. At the other
extreme, Fix(T') consists of all vectors in ¥ that are fixed by every element in
I'. Thus Fix(I') is the subspace of ¥ on which I acts trivially. We shall often
adopt the hypothesis that Fix(I') = [0}

We now show that the fixed-point subspaces have the invariance property
asserted earlier.

Lemma 2.1. Let f: V' — V be T-equivariant. Let £ = I be a subgroup. Then
fFix(Z)) = Fix(Z). (2.2)

Proor. Let o € E, x e Fix(E), Then

flx) = flox) = af{x) (2.3)

where the first equality follows from the definition of Fix{Z), and the second
from equivariance. From (2.3) we see that o fixed f{x). Therefore, f(x) € Fix(Z).
O

Remark. In Lemma 2.1 we do not require £ to be an isotropy subgroup.
However, for any subgroup Z, Fix(E) is equal to the sum W of all subspaces
Fix{A) where A = T is an isotropy subgroup. To prove this, first let v € Fix(Z).
Then Z, = E and v e Fix(E,). Hence we may take A = I, to show that v e W,
s0 Fix(Z) = W. On the other hand, if we W the w = w; +--- + w, where
w; € Fix(A,), for an isotropy subgroup A; = E. But this means that ow, = w,
for all ¢ & I, so w; € Fix(E); therefore, w & Fix(E) and so W < Fix(E). Hence
W = Fix(Z).

Thus in theory there is no real loss of generality if we let £ run through just
the isotropy subgroups of I'. However, it may sometimes be convenient not

to require I to be an isotropy subgroup, since this condition may not be easy
to check.

For an example where we can check Lemma 2.1 directly, consider once
more ' = D, in its standard action on C. We find Fix(Z) for the isotropy sub-
groups E, Obviously if £ = 1 then Fix(Z) = V; and if £ = D,, then Fix(Z) =
[0.fE=1Z, then Fix(Z) is the real axis; and if £ is a conjugate of Z, then
Fixz(X) is the image of the real axis under an element of D, that is, one of the
lines through the origin and a vertex.

Taking £ = Z, in Lemma 2.1 it follows that every D ~equivariant mapping
[ must leave the real axis invariant. By (XII, 5.12) the general f has the form

flz) = plu,v)z + glu,v)z"™!
where i = 2%, 0 = 2" + 7" [ z = x is real, then
Slx) = plx?, 2x"1x + gix?, 2x")x"

is also real. So Fix(Z,) is invariant under [ as predicted,

An immediate consequence of Lemma 2.1 is the existence of trivial solutions
for Mequivariant mappings f. More precisely, if Fix(T') = {0} then {0} must
be invariant under [, so that fi0) = 0. In fact, we have three equivalent

properties:

Proposition 2.2, Let T be o compact Lie group acting on V. The following are
equivalent:

{a) Fix(T') = {0}.

(b} Every U-eguivariant map 2 V = V sarisfies f10) = O (there always exist
trivial solutions).

ic) The only T-invariant linear function is the zero function.

Remark. The most important implication (a) = (b) we showed previously,
using Lemma 2.1.

Proor. The converse (b) == (a) is proved easily as follows. We claim that for
every v & Fix(I'), the constant mapping fix) = vis I'-equivariant. If so, (b) will
imply that v = f{0) = 0, proving (a). To verify the claim, compute

W)= yo =rv = fiyx).
The first equality is by definition of fx), the second follows since v & Fix(I),
and the third holds since [ is constant.

Mext we show that (a) implies (c). Let L: ¥ — 1 be linear and invariant. We
may write L in the form

Lix)=€v, x>

for some v & V. We claim that v & Fix(I'), whence (a) implies (c). Since L is
-invariant, L{x) = L{y""x) for all y € T, Since I acts orthogonally 7! = 1.
Thus

(o,xy = €u,77" %y = {0,3"%) = {,x)
for all x. Hence yo = ¢ for all ¥ and v € Fix(I"), as claimed.



Finally we prove that (¢)= (b). Let f: ¥ — ¥ be I'-equivariant. We must
show that f(0) = 0. To do this, define

Lix)= (fi0), x>

when? { . »is a -invariant inner product on ¥ We claim that the linear
function L is I'-invariant. If so, then L = 0 and f{0) = 0. To verify the claim,
compute

Liyx) = {fl0hyxy = {37U(0), x) = {f(0),x) = L(x). O

(b) The Trace Formula

In later sections we shall want to compute the dimension of Fix(E). There is
an elegant formula for this, which depends only on the trace tr{z) for o € £,
Because I acts linearly on ¥ we may think of y £ I as acting by the linear
mapping g, x —+yx. By tr(g) we mean the trace of g, on ¥,

Theorem 2.3 (Trace Formula). Let T be a compact Lie group acting on V and
let £ =T be a Lie subgroup. Then

dim Fix(X) = j tris) (24)

z

where [ denotes the normalized Haar integral on E.

Remark. If I is finite then (2.4) can be rephrased as

- 1
dimFix(Z)= — ¥ tr(a). (2.5)
|E| ol

See Example XIIT, 1.4
Proor. Define the linear transformation A: ¥ — ¥ by

A= J‘ a. (2.6)
£

Because the Haar integral is E-invariant, we see that

A=In’a
I

where ¢’ is any fixed element of E, It follows that
A= A; 2.7)
that is, 4 is a linear projection. To check (2.7), compute

P m s wmssw T e v =

,12-,{1:',4=j(j a)
del

By (2.7)

V=kerd@®ImaA
ia) erd @ Im (2.8)

b)) AllmA=Id
We verify (2.8b) first. Suppose x £ lm A4, 50 x = Ay. Using (2.7) we have
Ax = Ay = Ay = x,

proving (2.8b), To verify (2.8a) observe that dimker A + dimIm 4 = dim V,
since A is linear. Thus it suffices to show that ker 4 »Im A = {0}, However,
if x e ker 4 mIm A then x = Ax by (2.8b), and Ax = Q.

It follows directly from (2.8) that

tr(A) = dim Im 4. (2.9)

We claim that Im A4 = Fix(Z). The theorem will then follow since dimIm A =
dim Fix(E) and

trid) = J. trig).
ook

To prove the claim, observe that Fix(Z) = Im 4 by (2.8(b)). Conversely,
Fix(Z) = Im A by (2.8(a)). More precisely, suppose x e Fix(£) Write x =
k+ ywhere k e ker 4 and ye Im A. Then x = dx = Ak + Ay = y. This can
happen only if k = 0 and x € Tm 4. O

In certain cases it is possible to usc the trace formula to reduce the calcula-
tion of dim Fix(Z) to finding the dimensions of fixed-point spaces Fix(A) for
certain subgroups A of . This reduction, stated in Lemma 2.5 later, will be
of particular use when we discuss the fixed-point subspaces for subgroups of
SO(3) and Of3) in §56-9.

Definition 2.4. Let H,, ..., H, be subgroups of a group I. We say that X is the
disjoint umion of H,, .., H, if



(a) E=H,u---uH,
B) HimH,=1 foralli#j

We use the notation £ = H, s+ O H, to denote disjoint unions.
) When X has a disjoint union decomposition then we can compute dim Fix(E)
in terms of the numbers dim Fix (H;):

i.;e:l;;a 25.LetZ=H,w--GH, bea Jinite subgroup of T, with T dcting on
: "

— I [
dim Fix(E) = & [rgl | Hy| dim Fix(H,) — (k — 1)dim VJ. (2.10)

ProoF. From (2.5) we see that

dim Fix(E) = I_}Ii_l Zz tr{a)

] k
=— [Z Y trh) =k — mru}] {2.11)
IE| L= ae,
where the second equality is obtained by splitting the sum over I into a sum
over the H,. Since ¥ is a disjoint union of the H; we must add te(/) (k times)
for the overlap on the identity element. Since we want to count trif) only once
we subtract the overenumeration, obtaining (2.11).
To derive {2.10) from (2.11) we make two observations, First, tr(f) = dim V.
Second, we apply the trace formula (2.5) directly to each H;, obtaining

dim Fix(H,) = % E‘ trih).

Substitute this in (2.11) to yield the desired result, (=

(¢) Maximal Isotropy Subgroups

It is important to be able to determine, in as simple a manner as possible,
whether a given closed subgroup is an isotropy subgroup. That is, we wish to
do this without knowing the orbit structure of I", We now consider a distin-
guished class of isotropy subgroups for which this question may be answered
using the dimensions of fixed-point subspaces.

Definition 2._6. Let I' be a Lic group acting on V. An isotropy subgroupZ =T
15 maximal if there does not exist an isotropy subgroup A of I satisfying
EgAcT.

Lemma 2.7. Let Fix(I') = {0}, and let £ he asubgroup of T. Then £ is a maximal
isotropy subgroup of T if and only if :

{a) dimFix(Z) >0

(b) dim Fix(A) = 0 for every closed subgroup A 2 . 212
Proor. Suppose X is a maximal isotropy subgroup of T. Then dim Fix(X) = 0
singe £ must fix some nonzero vector, by the definition of an isotropy sub-
group. Suppose A 2 £ and suppose there is a vector x € ¥ fixed by A. Then
the isotropy subgroup £, of x satisfies £, = A = Z. Since I is a maximal
isotropy subgroup we must have £, = T'. But Fix(I") = [0}, s0 x = 0. There-
fore, dim Fix(A) = 0.

Conversely, suppose that  satisfies (2.12). Then some nonzero vector x € V
is fixed by E, so E, contains E. Since , is an isotropy subgroup, it is closed.
IfE, # E then (2.12(b}) implies that dim Fix(Z,) = 0, contrary to Z, being an
isotropy subgroup. Therefore £ = I, s0 i an isotropy subgroup. The same
argument now proves that £ is maximal. 0O

Lemma 2.7 provides a strategy for finding the maximal isotropy subgroups
of T if we know enough about the dimensions of fixed-point spaces of sub-
groups of I Namely, we find the largest closed subgroups with nonzero
fixed-point subspaces. We use this strategy in 866-9 to compute the maximal
isotropy subgroups of 50(3) and 0(3),

Exercrses
11, Find the fixed-point subspaces for the isotropy subgroups of Exercizes 1.1 and 1.3.

22 Let E be an isotropy subgroup of T. Show that the largest subgroup of I that
leaves Fix(E) setwise invariant is ¥ = N(Z). If dim Fix(E) = 1 show that N/I is
either 1 or &,. If it is Z, show that the corresponding bifurcation is of pitchfork
type.

2.3. Show that for the group @ & Z5 of Exercise 1.2, the fised-point subspaces are as
follows:

Isotropy Fixed-Point
Subgroup  Subspace Dimension

r [{0,0,0)) o
D, {lx.0,00} 1
F ARl AN {ix, %, 00} 1
S fix, x. %)} 1
43 HENALY 2
Z; {ix, x.2)} 2
1 B 3

24 LetT=Z,@2Z, act on B? by (x, ¥)—(4x 4+ as in X, §1(a). Show that the



action of I” is not irreducible, but that Fix(I") = {0}; that is, Mequivariant bifurca-
tion problems have a trivial solution.

2.5, Show that the group © of rotational symmetries of a cube has a disjoint union
decompasition into cyclic subgroups.

2.6. Verify Theorem 2.3 directly for the three maximal isotropy subgroups of O & Zj
listed in Exercise 2.2,

27. Let I act on ¥ and let X be an isotropy subgroup. It is clear that dim Fix(E) is
the dimension of the trivial part of the isotypic decomposition of ¥ for £, that is,
the multiplicity with which the trivial representation of £ occurs on V. If instead
we ask the multiplicity of some other representation, then there is an analogous
formula to Theorem 2.3 which may be deduced from the orthogonality relations
for characters (see X111, §7(f)). This exercise asks for 3 bare-hands proof of a special
case.

Let £ = @2), and ler p be the representation on ® in which 5002} acts trivially
and x acts as — 1. Show that the dimension of the isotypic component corre-
sponding Lo p s

J- tra — J- tra.
R i TR LR s TR

(Hinr: Let

A= j o - I T
LEL LU e D2~ 53,

and mimic the proof of Theorem 2.3.)

§3. The Equivariant Branching Lemma

In this section we prove a simple but useful theorem of Vanderbauwhede
[!QEEI] and Cicogna [1981] to the effect that isotropy subgroups with one-
dimensional fixed-point subspaces lead to solutions of bifurcation problems
with symmetry.

Definition 3.1. Let I be a Lie group acting on a vector space ¥, A bijurcation
f:-c;bfm w';:rh symmetry group I is a germ g e &, (T') satisfying g(0.0) = 0 and
Flo,a0 =

Here we rg.call n-::_rl,atinn used earlier in this volume as well as in Volume I
A germ g € &, ;(T) is the germ of a Iequivariant mapping, which by abuse
of notation we also denote by g. Here g: V = | — V satisfies

glyx, 4) = pgix, A) {3.1)

for all y e I'. By convention our germs are based at the origin (x, 4) = (0,0).
In Definition 3.1 we require that g{0,0) = 0 to avoid trivial complications.

If FixiT')= {0} then Proposition 2.2 implics that g{0,4) =0, and hence
gl0,0) = 0. However, in general (0, 0) need not vanish.

We also require that (dg)s o = 0. Recall that dg is the n = n Jacobian matrix
obtained by dilferentiating g in the V-directions. Here n = dim V. If (dg), o is
nonzero, then we can use the Liapunov-Schmidt reduction with symmetries
{see V111, §3) to reduce g to the case where the Jacobian vanishes, Of course,
this process will change n to a smaller value n' and will also change the
representation of I'. Nevertheless, we assume that this reduction has already
been performed and we therefore assume (dyg), , = 0.

We claim that generically we may assume the action of I' on V' = B*® to be
absolutely irreducible. Before stating the result more precisely, we must discuss
the term generic. A rigorous definition is somewhat technical, and we try
instead to convey the underlying idea.

Recall from Chapter IT that a bifurcation problem gix, ) is equivalent to a
limit point singularity +x? + i precisely when the defining conditions

g0 =0, g, 00 =0 (3.2)
and the nondegeneracy conditions
#ucl0.0) #£ 0, g,(0,0) #0 (3.3)

are satisfied. We say that among those bifurcation problems g in one state
variable having a singularity at the origin (i.e., those g satisfving (3.2)) it is
generic for the singularity to be a limit point. More succinctly, we say that the
“generic singularity™ is a limit point.

We abstract this process as follows. Let g be a germ satisfying some property
#, where the defining conditions for # consist of a finite number of equalities
imvolving a finite number of derivatives of g evaluated at the origin. The
equalities in (3.2) provide an example, with & being the property “g has a
singularity at the origin.” A set § of germs is generic for property # il there
exists a finite number of inequalities  involving a finite number of derivatives
of g at the origin, such that g € § if and only if g has property # and g satisfies
the inequalities in Q. Thus, in the example, Q@ is given by (3.3) and limit
points—those germs satisfying (3.2, 3.3)—are generic singularities.

Actually, even this definition must be qualified. The inequalities 0 must not
contradict any of the defining equalities of #. For example, if # is defined by
g.00,0) = 0 then Q should not include the inequality g,(0,0) # 0. We do not
intend that the empty set § be considered generic,

We find it convenient to use the word generic when we do not wish to specify
the inequalitics ( explicitly. The important point is that a “typical” germ with
property # will be generic, where by rypical we mean “not satislying any
additional constraints” (e.g., on derivatives). This follows since an atypical
germ must violate an inequality in (), that is, satisfy a further equality.

For example, in applications one expects to see only limit point singularities
in steady-state bifurcation problems gix, 1), unless some other constraint such
as symmetry is placed on g. (The effect of symmetry is to constrain certain



terms of the Taylor series of g, so symmetry effectively imposes conditions on
derivatives of g at the origin} In Volume | we focused on nongeneric or
degenerate singularities, since these are expected to occur “generically” in
multiparameter systems. A major theme of this volume is to identify a *generic”
class of one-parameter bifurcation problems with symmetry.

The following proposition, whose proof will be sketched at the end of this
section, is a first step in that direction,

Proposition 3.2 Let G: RY = [ — R" be a one-parameter family of ]'-fquimn'ant-

mappings with G(0,0) = 0. Let V' = ker(dG), o. Then generically the action of
I on V is absolutely irreducible.

Remark. When one is interpreting this proposition in the preceding frame-
work, # is defined as follows. A germ G has property # il it is a germ of a
one-parameter family of I'equivariant mappings, and G(0,0) = 0. The in-
equalities 0 which imply that the action of T on ker(dG), , is absolutely
irreducible are left unstated.

Proposition 3.2 supports our assumption later that T acts absolutely irre-
ducibly on B*and that g: R" x R — R"isa [-equivariant bifurcation problem.
We use the assumption of abselute irreducibility as follows. Apply the chain
rule to the identity g(yx, 4) = yg(x, 4) to obtain

(dglo. iy = yidaks s (3.4)

Absolute irreducibility states that the only matrices commuting with all vel
are scalar multiples of the identity. Therefore idg), ;, = ¢(4)1. Since (dg), , = 0
by Definition 3.1, we have ¢(0) = 0. We now assume the hypothesis

c'{0) # 0, (3.5)

which is valid generically.

We next state the result of Vanderbauwhede and Cicogna, which—despite
the simplicity of its proof—forms the basis of many bifurcation results for
symmetric problems,

Theorem 3.3 (Equivariant Branching Lemma). Let T' be a Lie group acting
absolutely irreducibly on V and let g € &, ,(T') be a T-equivariant hifurcation
problem satisfying (3.5). Let E be an isotropy subgroup satisfying

dim Fix(Z) = 1, (3.6)

Then there exists a unique smooth solution branch to g = 0 such that the isotropy
subgroup of each solution is E.

Remarks 3.4,
(2) We may restate the equivariant branching lemma as follows: Generically,
bifurcation problems with symmetry group I' have solutions corresponding

to all isotropy subgroups with one-dimensional fixed-point subspaces, Since
% isan isotropy subgroup satisfying (3.6} it follows that £ is a maximal isotropy
subgroup. Thus the equivariant branching lemma gives us a method for
finding solutions corresponding to a special class of maximal isotropy sub-
groups. To see that £ is maximal, suppose A 2 I is an isotropy subgroup.
Then Fix{A) & Fix(E), whence Fix(A} = {0}, which is impossible.

(b} Cicogna [1981] generahzes Theorem 3.3 to the case in which dim Fix{X)
is odd, using a topological degree argument. However, to obtain effective
information in this case we must also assume that I is a maximal isotropy
subgroup. Otherwise, the solutions in Fix(Z) whose existence is being asserted
might actually have a larger isotropy subgroup than .

In fact, we prove a slightly more general result than Theorem 3.3:

Theorem 3.5. Let T be a Lie group acting on V. Assume

(a) Fix(I') = {0},

(b) E = I is an isotropy subgroup satisfving (3.6),

(c) g: V x B — V is a T-equivariant bifurcation problem satisfying
(dg;dp,alvg) # 0 (3.7)

where vy € Fix(X) is nonzera.
Then there exists a smooth branch of solutions (tog, A1) to the egquation
git, A} =10,

Two remarks make it clear why Theorem 3.3 follows from Theorem 3.5
First, it is easy to show that nontrivial irreducible actions satisly Fix(I') = {0},
since by Lemma 2.1 Fix(T) is an invariant subspace. Second, when T acts
absolutely irreducibly,

(dg)o olvg) = Ke'(0)

for some nonzero constant K. Hence (3.5) is equivalent to (3.7),

Remarks.

(a) The advantage of hypothesis (3.5) over (3.7) is that it holds simultaneously
for all subgroups £ of T

(b) The advantage of Theorem 3.5 is that it does not require that ' act
irreducibly on ¥. However, a separate nondegeneracy condition (3.7) is required
for each subgroup I satisfying (3.6).

(¢] Since the solution branch (tvg, A(f)) lies in Fix(X) = B, each solution for
t # 0 has as its symmetries the isotropy subgroup I,

Proor oF Treorem 3.5, Tt follows from Lemma 2.1 that
g: Fix(E) = B — Fix(Z).

Since dim Fix(Z) = | we have



gitvg, 1) = hit, Aug.

Moreover, the assumption that Fix(T) 10} impli
et . = plies by Corollary 2.2 that

has a trivial solution. So A0, 4) = 0. Applying Taylor's theorem tg h vields 4

g[ﬂ.ln, j.:' = k{:, .i]ﬂ,lﬂ.
By Definition 3.1

k(0,0)vy = (dg)a qlvg) =0
and further
k. (0, u.]'f‘-u - {dﬂi}n.ﬂ{i’ﬂ} #

by assumption. Apply the implicit functio A
: n theorem to solve k(z, 1) =
A = A(r) as required. Lb rg

ExampLE 3._6. I' = D, acting on ¥ = C. We know that the 1sotropy subgroup
of every point on the real axis is a two-clement subgroup Z, generated by the
reflection x: 2+~ Z. See Table 1.1. Moreover, the only complex numbers fixed
by k are thetreals. Thus Fix(Z,) = Rand dim F iX(Z;) = 1. We conclude using
the equivariant branching lemma, that generically D, -equivariant hil‘ur::ation
problems have solution branches consisting of solutions with Z, symmetry,

We end this section with the following, as promised.

Sx_m:n OF PROOF GF_Pmmsmon 3.2. In this sketch we show onl v that there
exist small perturbations G, of G such that T acts absolutely irreducibly on

ker(dG,)y, . This argument can be expand i .
sty ed, with
of genericity, panded, with some effort, to give a proof

TI'T:"E! br;gin by claiming that the action of I on V' may be assumed irreducible.
Write BY = V' @ W where W is I-invariant and write

V=Va-a¥k

where f.ach lj is irreducible. In fact we can take W to be the sum of the
%)::;ﬁ]m:-d ilgEnSEaﬂES corresponding to nonzero eigenvalues of dGy g
ine M: B" — R" to be the unique linear mapping such that :

MW =0
MV, =0
M1V, = 1d,,
Let & € B and consider the I-equivariant perturbation
Gy(x, 4) = G(x, 4) + eMx,

Qhe r.ilgen valueslof{d G.)o,oare0on V,, and nonzero on W, Apply a Liapunov—
. midt red!mtwn 1o G, near (0,0) to obtain a bifurcation problem on V.
nce I acts irreducibly on V,, we have verified the claim,

We now assume that g: ¥ x R — ¥ is a bifurcation problem with symmetry
group I and that I acts irreducibly but not absolutely irreducibly on V. We
claim that in these circumstances there exist small perturbations of g which
have no steady-state bifurcations near the origin. Let & be the vector space
of linear mappings on ¥ that commute with I, Recall from XII, §3, that & is
isomorphic to one of R, C, or H, and that # = R means that I acts absolutely
irreducibly on V. Now I” acts irreducibly on V, so (0, /) = 0. The linear maps
L; = (dg),, ; commute with T and form a curve in &, Since g is a bifurcation
problem, L, = 0, so the curve passes through the origin. Generically we may
assume that p = (d/dA1L |-, # O; that is, the curve L, has a nonzero tangent
vector at 4 = 0.

Assume that dimyg % > 1, so that " does not act absolutely irreducibly on
V. We can choose 0 # d & & such that p and & are linearly independent. For
& € B define the T-equivariant perturbation

g.(x) = gix, 4) + edx.

When & = 0, the curve
(dg o, = (dgly. s + &8 = L, + ed

in % misses the origin entirely for 4 near 0.

Thus L + &b is not zero. A general argument now shows that it has no zero
eigenvalues. Indeed, il x € & has a zero eigenvalue then 2 = 0. To see this,
suppose that av = 0 where @« # 0, v # 0. Since @ is a division algebra, 2™*
exists, and v = lp = 2 'ap = a7 '0 = 0. This contradiction forces « = 0 as
claimed.

Thus when g is a bifurcation problem whose symmetry group I acts
irreducibly but not absolutely irreducibly, small perturbations of g have no
steady-state bifurcation whatsoever, (]

Remark. Proposition 3.2 does not exclude the possibility that [-invariant
equilibria can lose stability by having center subspaces with irreducible but
not absolutely irreducible representations of I, This can happen generically
with Hopf bifurcation, but not with steady-state bifurcation. See the definition
of I'-simple in XV, §1.

ExErcIses

3.1, Use the results of Exercises 1.2 and 2.3 to investigate steady-state bifurcation with
the symmetry 0 & Z5 of the cube (see Melbourne [ 1967a]). Prove that
{a) Generically three branches of solutions bifurcate, with isotropy subgroups I,
8,,and Z} @ ZY.
(b) Generically there are no solution branches corresponding to the isotropy
subgroups Z5, Z5, and 1.

32 Let 2,3 Z, act on B* by { £ x, £y} as in Chapter X. Show that the existence of
the pure mode solutions (X, 1.11(k), {c)) can be obtained by applying the equivari-



