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Figure 5.1. Fictitious bifurcation diagram with symmetry.

has branches of nontrivial solutions corresponding to isotropy subgroups E;
(i=1,2, 3) where dim £, = j. Consider the fictitious bifurcation diagram in
Figure 5.1. Each point on branch I, corresponds to a group orbit of dimension
dimI" — dimX; =4 — j. For example, a point on the £, branch actually
corresponds to a two-dimensional manifold of solutions, and where the
branches corresponding to X, and X, intersect we actually have a 3-manifold
of solutions in R® merging into a 2-manifold. Obviously such intersections
can be very complicated, but fortunately, for most aspects of bifurcation
theory, the detailed geometric picture of how such transitions take place is
not particularly relevant.

Because our schematic bifurcation diagrams are “projections” into Re,
branches of solutions may appear to intersect, even though they do not
actually intersect in ¥ x B. We “solve” this problem by placing bold dots at
genuine intersection points. Thus Figure 5.1 illustrates a situation where
branch I, does intersect branches £, and X,, but branches Z, and I, intersect
only at the origin.

We now turn to the question of orbital stability, Recall that equivariance
under I forces several eigenvalues of dg at g = 0 to zero. The number of these
zero eigenvalues is equal to the dimension of the orbit of solutions. When
making stability assignments we employ two conventions. First, we indicate
eigenvalues of dg with positive real part by “+ " and those with negative real
part by “—". Thus, along the £, branch, the annotation 3 + | — indicates
solutions where dg has three eigenvalues with positive real part and one with
negative real part. Second, eigenvalues forced to zero by the group action are
not included. Along each branch the total number of eigenvalues must equal
dim ¥, which is 6 in this case. Indeed along branch I, the number of eigen-
values forced by the group action to be zero is 2, so that 2 + 4 = 6 gives the
correct number of eigenvalues altogether. Note that at limit points the stahili-
ties of solutions change. For this reason limit points are also indicated by bold
dots,

To end the discussion of stabilities, note that we are secking equilibrium
solutions to a system of ODEs written in the form

d
f + gix, 4} =10

Using this form, eigenvalues with positive real part indicate (linearized) sta-

et BB CELIOL | . GO SN TS S P RARAARAIE

bility, whereas those with negative real part indicate iml:abilh'lt}r. Thus a solu-
tion is orbitally stable when no *—" signs appear in the stability assignments.
Orbitally stable solutions are shown by heavy lines. Note that therf: are
orbitally stable solutions on part of the branches £,, £,, I,, and T {with 3,
4, 5, and 6 positive eigenvalues, respectively). e _

The most important information preserved in these schematic diagrams is
the answers to the following two questions:

{a) Foreach i how many orbits of solutions are there to the equation g = 0,
and which are stable? _ _

{b) For which values of A do transitions in the number of solutions, or their
stability, occur?

The answers to these questions are preserved by projection onto the d-axis,
allowing us to keep track of smooth bifurcations, jump transitions [Whﬂ.n
solutions cease to exist or change stability as A varies), and hysteretic
phenomena. . ]

We end this section by discussing the simplest bifurcation diagrams for
problems with D, symmetry. Not all features of the diagram in F_'lgu:rc 51
appear, but all of these features will be important in later sections. For
example, see Case Study 4.

(b) Bifurcation Diagrams for D, Symmetry

We begin by describing the isotropy subgroups of D, in its standard action
on C = R? generated by

(a) Kz=%

. (5.1)
{h} E: = ez""z.

By computing the isotropy subgroups and applying the equivariant branching
lemma we will be able to determine the expected number of solution branches.
The actual bifurcation diagrams are given at the end of this section in Figu_res
5.3, and 5.4. In this way it should become apparent just how much information
is contained in one of these pictures. :

The lattice of isotropy subgroups, Figure 5.2, depends on whether n is afid
or even. We compute the isotropy subgroups by choosing representative
points on the group orbits. Recall (Lemma 1.1) that points on the same orbit
have conjugate isotropy subgroups. Moreover, any two points on the same
line through (but not including) the origin have the same isotropy subgroup.
Thus it sufficies to compute I, for points z = " on the unit circle.

We claim that z is on the same orbit as a point " with

0<8<nn (5.2)

It is easy to arrange for 0 < @ < 2n/n by sending = to ({')z = g? 35N for
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Figure 5.2. Lattice of isotropy subgroups of D, nz=3)

some appropriately chosen I. Now if n/n < 6 < 2x/n, we have
{iz = gli2niny -t (5.3)

and 0 < 2n/n — 8 < m/n, as promised.
Next observe that if n is odd, we can assume that

0= f =< (3.4)

To see this, let n = 2Zm + 1. Then ({™)e™"* = e = — 1. and this has the same
isotropy subgroup asz = 1,ie, # = 0.

We now leave it to the reader to check that the isotropy subgroup of z = '
isTif0 <8 < n/mZ,(x)if @ = 0: and Z5({x)if nis even and @ = n/n(see (5.3)).
We emphasize that for n even the two Z, isotropy subgroups, Z,(x) and
Z,((x), are not conjugate in D, This is clear on geometrical grounds, since
vertices and midpoints of edges lie on different lines through the origin.
Alternatively, a simple calculation shows that the conjugates of x are the
clements (*x where s is even. For even n, these do not include [k

Since the fixed-point subspaces of both Z;(x) and Z,({x) are clearly one-
dimensional, the equivariant branching lemma implies that generically there
arc unique branches of solutions to bifurcation problems with Dy, symmetry,
corresponding to these isotropy subgroups. In general a given “branch™ of
solutions, defined say for all x & R, may cor respond to either one orbit, or two
distinct orbits, of solutions, depending on whether or not x and — x lie in the
same orbit of I". See Exercise 4.1. In particular for D, with # odd there is one
branch, and when n is even there are two. We show later that when n is odd
the one branch splits into two orbits of solutions, whereas when n is even each
branch corresponds to a unique orbit.

We can determine more complete information about these branches by
analyzing the general form of D, -equivariant mappings. Recall from Chapter
XIL 85, thatif g: € x R - C commutes with D, then

glz, &) = plu,v, Az + glu, v, )z, (5.5)

where u = zZand v = z* + z". In order for g to be a bifurcation problem, the
linear terms in (5.5) must vanish. Hence

p(0.0,0) = 0. (5.6)

§5. BIUICATION LAAErams ana L, Symmeiry wy

Table 5.1. Solution of g = 0 for D -Equivariant g, n = 3

;;.Ttropy Subgroup Fixed-Point Subspace Equations
D, {0} z=0
Z.iK) R plx? 2xm 3) + x" " 3g(x?, 2x" ) = O

x # 0 [nadd], x = 0 [meven]

Z,({x) R{e™"} plx?, —2x7 4) — x"3qlx?, ~21x" A} m O
[neven] x=0 !

Im(z*) % 0

[n addition, the genericity hypothesis of the equivariant branching lemma
requires

pﬂ.{ﬂ: ‘]rﬂ} = 0. {j.?}
We now prove that a second nondegeneracy hypothesis, namely
4q(0,0,0) # 0, (5.8)

implies that generically the only (local) solution branches to g = 0 are those
obtained using the equivariant branching lemma.

Observe that z and 2" are collinear only when Im(z") = 0. Thus when
Imiz") # 0, solving g = 0 is equivalent to solving

p=q=0. (5.9)

Thus, under the genericity hypothesis (5.8), it is not possible to find solutions
1o (5.9) near the origin. Now Im(z") # 0 precisely when the isotropy subgroup
of z is 1. Thus the only solutions to g = 0 are those corresponding to the
maximal isotropy subgroups. The full solution to g = 0 is given in Table 5.1,
When n is even, {™® = — 1, so that the points z and —z are on the same
orbit. Thus when n is even we may assume x = 0 (not just x # 0) in Table 5.1.
In the remainder of this section we discuss the direction of branching and
the asymptotic stability of the solutions we have found. In this discussion we
restrict attention to n = 5 since n = 3 and n = 4 are exceptional. See Chapter
XV, 84, for a discussion of the case n = 3 and Chapter XVIL §6, for n = 4.
We first explain why n = 3 and 4 are special. When n = 3 there is a non-
trivial D;-equivariant quadratic z*. Then Theorem 4.4 implies that generically
the branch of Z,(x) solutions is unstable, Therefore, in order to find asymp-
totically stable solutions to a D;-equivariant bifurcation problem by a local
analysis, we must consider the degeneracy g(0,0,0) = 0 and apply unfolding
theory. We return to this point in the discussion of the traction problem in
Case Study 5 and the spherical Bénard problem in Chapter XV, §5.
In the case n = 4 the term 2" is cubic, and g(0, 0, 0) enters nontrivially into
the branching equations. See Table 5.1, Exercise 5.1, and Chapter XVII, §6.
We now restrict attention to n = 5. Observe from Table 5.1 that the lowest
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Table 5.2. Data on Solutions of Generic D,-Equivariant
Bifurcation Problems, n = §

Isotropy Branching Equation Signs of Eigenvalues

D, z=0 Pal0,0, 004 (twice)
,_ 000

Z,ik) A= P;(ﬂ_.ﬁﬂlx - P, 00,0,00
x = 0 [neven] —g{0,0,0) [n even]
x # 0 [nodd] —q{0, 0, 0)x [n odd]

PO 0,0)
Y F PP o\ S
Z,ix) 2,00, D.ﬂ}x pul0.0.0)
[meven] x>0 gi0,0,0

order terms in the equation for both Z, solutions are
Pu{-ﬂ:ﬂsu.}xz + pa{{}!ﬂrﬂ}‘] o gl {S'ID]

Thus the Z, branches are supercritical when p,{0, 0, 0p;(0,0,0) =< 0 and sub-
critical when p,(0,0,0)p,(0,0,0) > 0. Generically we may assume that

p.(0,0,0) £ 0 (5.11)

so0 that the direction of branching is determined.

We now discuss stabilities. Both x and {x are reflections, having 1 and — |
as distinct eigenvalues. Therefore, from the restrictions imposed by isotropy
(see (4.8)) dg leaves the corresponding one-dimensional eigenspaces invariant.
Hence the eigenvalues of dg must be real.

A straightforward calculation shows that if we think of g as a function of
real coordinates z, Z, then

(dg)(w) = g, w + g . (5.12)

(The method for computing dg in (5.12) is typically the most efficient when g
is defined using complex variables.) Compute (5.12) to obtain:

(@) g.=p+p2Z+np,2" + (4,2 + ng,z""")z"!

(b) g:=p2* +np 22" +(n— 1)gz" 2 + (q,2 + ng,Z"" L)z,
We list the branching and eigenvalue information in Table 5.2 and now verify
those data. Along the trivial solution z = 0 we have

{dg)y, 1(w) = pi0,0, Jw = (p,(0,0,0)1 + - Jw.

Thus dg is a multiple of the identity, having a repeated eigenvalue whose sign
is sgn(p, (0,0, 0)4) since p,(0, 0, 0) is assumed nonzero.

Next we consider the Z.(x) solutions. The fixed-point subspace is the real
axis (w = w)and the — | eigenspace is the imaginary subspace (w = — w). Since
these subspaces are invariant under dg we can find the eigenvalues directly
from (5.12). They are

(5.13)
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g.+g: and g, — g (5.14)
Using (5.13)and (5.14) we compute these eigenvalues to lowest order. They are
(a) g.+ g:=2p,(0,0,0)x + -~
(b) g.— gz = —(n — 1)g(0,0,0)x"% +---,

assuming that n = 5.1t follows that the signs of the eigenvalues are determined
by p.(0,0,0) and —q(0, 0, 0)x, as recorded in Table 5.2.

Finally we consider the Z,({x) solutions which appear as a distinct orbit of
solutions only when n is even. The eigenspaces of [ corresponding to the
eigenvalues T and —1 are, respectively, R{e'™"} and R{ie'™"}. Using (5.13),
the eigenvalues of (dg), where z = xe™" are

(5.15)

(@) Gelsmserom = p + X*p, — npx" — g,x" + ng,x2"?

() Gelemserm = [P — 1p,x" — (m — 1)gx""2 — gx" + ng,x2~ 2]k,
(5.16)

Using (5.12) we compute
(@) (dg).(e™")

=[p—(n— 1)gx"? + 2x?p, — 2np,x" — 2g,x" + 2ng,x?*"1]ei"?,
(b) (dg).(ie"™") =[p + (n — 1)gx""?]ie™™. (5.17)

Since p = x" g along the Z,({x) solution branch {Table 5.1) and n = 5, the
eigenvalues of (dg). are

[ﬂ} zpk{ﬂ!ﬂfu}xa + .-
(b} ng(0,0,00x""2 4 ---,

giving the last entry in Table 5.2.
Thus we have shown that for n = 5, if we assume

p0)#£0, p(0)+#0, and g0)#0 (5.19)

then the bifurcation diagram of g = 0is determined. For each n there are eight
possible diagrams, depending on the signs of the terms in (5.19). To reduce
the complexity we assume that the trivial solution z = 0 is stable subcritically,
that is, that p,(0) < 0. The remaining possibilities for the bifurcation diagrams
are drawn in Figures 5.3 [nodd] and 5.4 [neven]. These diagrams are con-
structed from the data in Table 5.2, along with a final observation. When n is
even, {"* e D, acts as — 1 on C. Hence solutions z and —z to g = 0 lie on the
same orbit of solutions. This fact accounts for the restriction x > 0 when n is
€ven,

(5.18)

Remarks 5.1.
(2) There is a remarkable parallel between the generic bifurcation diagrams
with D, symmetry when n is odd and when n is even (as long as n = 5), despite
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Figure 5.3. Bifurcation diagrams for D, symmetry when p,(0) < 0, n odd, n = 5.
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Figure 54. Bifurcation diagrams for D, symmetry when Pa(0) < O, meven, m = 6.
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Figure 5.5. Geometric differences in solutions to a PDE with D, symmetry.

the differences in the calculation. In particular, the diagrams for n even may
be obtained from those for » odd by replacing Z,(x) (x > 0) by Z,(x), and
Z,(x) (x < 0) by Z;({x). In spite of this apparent similarity, there is a subtle
difference which is captured by the isotropy subgroups. Imagine a solution to
a D,-equivariant PDE posed on the interior of a regular n-gon in R2, Suppose
that there is a D, -invariant steady state which bifurcates to a solution which
breaks the D, symmetry. As we have shown, generically we expect exactly two
different orbits of solutions to bifurcate, and both should be super- or sub-

F

critical together. However, when n is odd we expect both orbits of solutions
to be invariant under a reflection in a line joining a vertex of the n-gon to the
midpoint of the opposite edge; see Figure 5.5. On the other hand, when n is
even, we expect one orbit of solutions to be invariant under reflection in a line
joining opposite vertices, and another to be invariant under reflection in a line
joining opposite midpoints of edges. See Figure 5.5,

EXERCISE

5.1, Compute the branching equations for generic I, bifurcation.

§6.7 Subgroups of SO(3)

We now cmbark upon an extended example, applying techniques developed
previously to the orthogonal group O(3) and the special orthogonal group
S0(3). Recall that SO(3) is the group of all orthogonal 3 x 3 matrices over
R of determinant 1, In this section we discuss the closed subgroups of S0(3),
We classify them, describe specific realizations, show that the finite ones
have disjoint union decompositions, and list containment relations between
them. In §7 we discuss the irreducible representations of S0O3). In §8 we
find (for all irreducible representations) the dimensions of the fixed-point
subspaces of closed subgroups of S043), and list the isotropy subgroups
of SO(3) with one-dimensional fixed-point subspaces. These results may be
found in Michel [1980], although we follow the presentation by lhrig and
Golubitsky [1984]. In §9 we extend the results to 043). We do not prove
everything in detail. In particular, results from Lie theory that would require
substantial development—and yet are well known—are just stated along
with appropriate references.

(a) Classification

We now describe the closed subgroups of $0(3). Geometrically, SO(3) is the
group of orientation-preserving rigid motions of B that fix the origin. Its
closed subgroups have nice geometric interpretations in lerms of symmetries
of subsets of B*, Choose a plane P in B and an axis 4 orthogonal to P, The
subgroup of transformations leaving P invariant consists of rotations about
A together with reflections through lines in P (combined with reversals in the
sense of 4 to yield elements of S0(3); sce the following discussion). This group
8 isomorphic to O(2). If we require the sense of A to be preserved this is
reduced to the special orthogonal group in two dimensions, or the circle group,
80(2).

The symmetries of a regular n-gon lying in P yield a subgroup of 0(2)
isomorphic to the dihedral group D,. This consists of rotations through 2kr/n



CHAPTER XVII

Hopf Bifurcation with O(2) Symmetry

§0. Introduction

The object of this chapter is to study Hopf bifurcation with O(2) symmetry
in some depth, including a formal analysis—that is, assuming Birkhoff normal
form—of nonlinear degeneracies. The most important case, to which most
others reduce, is the standard action of ©(2) on B2, Since this representation
is absolutely irreducible the corresponding Hopf bifurcation occurs on R* &
F2. We repeat the calculations of XVI, §7(c}, in a more convenient coordinate
system and in greater detail. In §1 we find that there are two maximal isotropy
subgroups, corresponding to standing and rotating waves, as in the example
of a circular hosepipe. We also give a brief discussion of nonstandard actions
of 0(2), for which the standing and rotating waves acquire extra spatial
symmetry. In §2 we derive the generators for the invariants and equivariants
of 0(2) x 8" acting on R? @ B2 In §3 we apply these results to analyze the
branching directions of these solutions in terms of the Taylor expansion of
the vector field,

In §4 we reformulate Hopf bifurcation with O(2) symmetry in terms of
phase/amplitude equations. To do this we assume that the vector field is in
Birkhoff normal form to all orders and introduce suitable polar coordinates.
Eliminating the phases leads to amplitude equations on R* which turn out to
be the most general equations that commute with the standard action of the
dihedral group D,. We apply the results to obtain the stabilities of the rotating
and standing wave solutions, showing that one of these two branches is stable
only if both are supercritical, in which case (generically) precisely one branch
15 stable, Which branch is stable is determined by cubic terms in the vector
field.

In &5 we show that these results generalize without difficulty to Hopf
pifurcation for Ofn) in its standard action on B".

We return to ((2) Hopl bifurcation in §6 but now allow the bifurcation to
be degenerate. The amplitude equation method reduces this problem to
degenerate static bifurcation with D, symmetry, and we use the methods of
Chapters XIV and XV to classify such bifurcations in low codimension. An
interesting feature is that modal parameters enter at topological codimension
0. The corresponding bifurcation diagrams are described in §7. In codimension
{ we find 2-tori with linear Now, and in codimension 2 we find 3-tori,

Finally in §8 we consider the simpler cases of Hopf bifurcation with S0(2)
or Z,, symmetry, acting on B2, These illustrate the way the analysis works for
non-absolutely irreducible representations. Here the existence of solutions
follows from the usual Hopf theorem, but the analysis of their symmerries is
more naturally carried out within the framework set up in Chapter XVL In
particular we show that for nonstandard actions the generic branches are
rotating waves with additional spatial symmetry.

§1. The Action of O(2) x S*

We begin by investigating the group-theoretic and invariant-theoretic gener-
alities of O(2) Hopl bifurcation. In subsection (a) we summarize the results
of this section and §2 and 3. In (b) we write the group action in convenient
coordinates. In (c) we find the isotropy subgroups and related data, and in (d)
we consider how to modify the results for nonstandard actions of 0§2). The
results include the verification, in the new coordinate system, of the results
described without proof in XVI, §7c,

ia) The Main Results

The first example we consider is the standard action of I’ = 0(2) on B* = C.
The other actions (in which S0(2) acts by k-fold rotations, k > 1) reduce to
this case, but some care is needed when interpreting the results; see subsection
(d). In the philosophy of Chapter X VI, the first step in studying nondegenerate
Hopf bifurcation is to find the conjugacy classes of isotropy subgroups of
0(2) x §' acting on C @ C. We will show that the isotropy lattice consists of
four conjugacy classes as in Figure 1.1. Since the fixed-point subspaces of
30(2) and Z, @ Z5 are each two-dimensional, Theorem 4.1 implies that
there exist two distinct branches of periedic solutions corresponding to these
isotropy subgroups, provided the usual transversality condition, that eigen-
values cross the imaginary axis with nonzero speed, holds.

This group-theoretic structure has several implications for Hopf bifurcation
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Figure 1.1. The isotropy lattice of O(2) = §'.

to periodic solutions in a system of ODEs with O(2) symmetry, which we now
list.

Since the element (n, 1) € O(2) x S" acts trivially on C @ C, every periodic
solution x(r) obtained in this analysis has the following property:

Spatial rotation of x(r) through the angle = has the
same effect as shifting the phase of x(t) by half a period.

That is,
R x(f) = x{t + =n). (1.1)
Periodic solutions x(1) with SO(2) symmetry have a more general property:

Spatial rotation of x(r) through any angle @ has the
same effect as shifting the phase of x(r) by 0.

That is,
Byx(t) = x(t + 6),
In particular, such solutions satisfy
x(8) = Ryx(0). (L2)

Periodic solutions satisfying (1.2) are called rotating waves. In rotating waves
there is a coupling between spatial and temporal symmetries. There have been
numerous studies of bifurcation to (and from) rotating waves. We mention
Renardy [1982] and, in the context of reaction—diffusion equations, Erneux
and Herschkowitz-Kaufman [1977] and Auchmuty [1979].

Solutions with Z, @ Z5 isotropy possess a purely spatial symmetry in
addition to (1.1). Let x & O(2) be the flip, acting by complex conjugation on
C. Then periodic solutions x(t) with isotropy subgroup Z, @ Z5 satisfy
kx(f) = x(t). We call this solution a standing wave. As we have already seen in
XVI, §7, these solutions correspond to the two modes of an oscillating hosepipe
mentioned in XI, §1.

The submaximal isotropy subgroup Z5 acts trivially and thus has a four-

it

= -

Figure 1.2. Branching and stability in nondegenerate Hopl bifurcation with O(2)
symmetry. § = standing wave; R = rotating wave,

dimensional fixed-point subspace. Solutions of this type occur only in de-
generate 0{(2) Hopf bifurcation and correspond (for vector fields in Birkhoff
normal form) to invariant tori with linear flow. We discuss such degeneracies
in §6.

Further, by using the invariant theory of 0(2) x S, the stabilities of the
two primary branches can be determined. The stabilities depend on the
coefficients of two third order terms, which we call py(0) and r(0), in the
Birkhoff normal form. The possibilities are shown in Figure 1.2, on the
assumption that the trivial state is stable subenitically and unstable super-
critically. Observe that for either branch to consist of {orbitally) asymptotically
stable periodic solutions, both branches must be supercritical. If so, then one
branch is stable and the other unstable. This relationship contrasts dramati-
cally with the usual exchange of stability in standard Hopf bifurcation, see
X111, 54.

(b) The Group Action

We start by rewriting the action of 0(2) x 8! in a2 more convenient form. We
claim that there exist coordinates (z,,z,) on ©2 for which the action is given
by
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(a) Blz,,2;) = (e®2,,e"2;) =8
(b} @lzy,2:)=(e%z,,e"z;)  (peSO(2)) (1.3)
) wlzy,2;) = (23.2) {x = {lip in O{2)).

These coordinates were used by van Gils [1984] and pointed out to us by A,
Vanderbauwhede. We derive them from those given by the general theory,
There I' = (2) acts diagonally on C & C; that is, we have

(@) @lw,,w;y) =(e®w;,e®w;)  (pe8SO(2)

o (L4

(b}  rlwy,wy) = (W, W;) j
in the usual coordinates (w,,w,). We construct new coordinates (z,,z,) by
finding a two-dimensional subspace Z, = C* such that

(a) SO(2) x §8' leaves Z, invariant,

1.5
(b) C2=Z @®Z, whereZ,=«rZ,. ¢

Concretely, we have Z, = C{(1,i)}. However, it is instructive to deduce the
existence of Z, abstractly: we “diagonalize” the action of SO(2) x §'. This is
a torus group and it acts nontrivially. Theorem XTI, 7.1, states that nontrivial
irreducible representations of tori are two-dimensional. Let Z, be a two-

dimensional irreducible subspace; then 2, satisfies (1.5(a)). We claim that

Z; = kZ, is also invariant under SO(2) = §'. Suppose that # 8", Then
e = wifl), whence 02, = Z,. Similarly for o € $0(2) we have px = k(— o),
which implies that £, = £.. Now £, n £, = {0} since il is invariant under
0(2) x §' and this acts irreducibly on C?; recall Lemma XVI, 3.4(b). Thus
{1.3(h)) holds.

If we choose a complex coordinate z, on Z, and let z; = xz; then (1.3(c))
holds. Since §' acts on C? without fixed points and commutes with &, we can
choose z, so that {1.3(a)) holds. Since @ € SO(2) acts standardly on C and
diagonally on C%, it acts on Z, by ', Since kg = — ¢ the action is by e ¥
on Z;. Interchanging Z, and Z, il necessary, we have (1.3(b)). Alternatively,
a concrete calculation yields the same result. Namely, in the coordinates
za( L) + 7, (1, —i),

@lz), ;) = (e7%2,,e%z;)  (p eSO(2))

Klzy,23) = (25,2,)

(1.6)

(c) The Isotropy Lattice

We can now compute the (conjugacy classes of) isotropy subgroups for the
preceding action of 0(2) x §'.

Proposition 1.1. There are four conjugacy classes of isotropy subgroups for the
standard action of O(2) x 8" on T2, They are listed, together with their orbil
representatives and fixed-point subspaces, in Table 1.1.
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Table 1.1. Group-Theoretic Data for the Standard Action of 0(2) = §' on
q-:z
En-rat Bepresentative  Isotropy Subgroup  Fixed-Point Subspace  Dimension

e

{0,0) 02 = 8§ [} 0

a0, a >0 SO(2) = {(0.0)} {(z,, 0)) 2

fa,a) >0 L@ 5 ={i0,0), fizy.21)} 2
i, (m, ), il JI]E

ja,bha=h=0 Z5 = [(0,0)(mm)}  {(z,22)] 4

Remarks 1.2,

{a) The manifold (O(2) x S‘},-fﬁﬁﬁlflj has two connected components, each a
circle {sec Remark XIV, 1.3). The orbit representatives for these two com-
ponents are (a,0) and (0, a). The isotropy subgroup for (0, a) is the conjugate
{(6, —8)} of S0O(2). Physically, the solutions corresponding to these points
are both rotating waves; however, they correspond to the two possible senses
of rotation—"clockwise” and “counterclock wise.”

(b} The manifold (O(2) x S W(Z, & Z5) is a connected 2-torus, foliated by
circular trajectories. Each circle corresponds to a particular choice of axis for
the reflectional “flip” symmetry, which can be any conjugate k@ of k. That is,
in the fixed-point subspace for each isotropy subgroup conjugate to £, & £5
we find a periodic solution. All such solutions lie in the same group orbit. They
glue together to form the 2-torus.

(c) We consider (a) and (b} for the “hosepipe™ example of XI, §1. As already
remarked, the rotating wave oscillations correspond to the isotropy subgroup
50i2), as in Remark (a). There are two distinct senses of rotation, and there
is a unigque solution (up to choice of phase) in each sense. The standing wave
solutions have isotropy subgroup Z, @ Z5. The first Z., generated by the flip,
imposes mirror symmetry in some axis (and confines the oscillation to a fixed
vertical plane). The Z2% symmetry means that, just as for a pendulum, the
oscillations to left and right are identical except for a phase shift of 7. The axis
of reflection for a flip symmetry can be any radial line throught the origin:
different radial lines correspond to different (conjugate) choices of flip. There
is a circle’s worth of radial lines corresponding to the circle’s worth of (circular)
trajeciories foliating the 2-torus,

Proor oF Proposimion 1.1. Elements in the same orbit have conjugate isotropy
subgroups. Hence by (1.2) we may assume that (z,,2.) = (a,b) where a, b = 0
are real. By applying ¥ we may assume that a = b = 0. The computation of
isotropy subgroups and fixed-point subspaces is now routine, but as an
illustration we give details,

Clearly (0, 0)is fixed by the whole of O(2) = 8! and is the only point so fixed.

Ifa = b = 0then(a, b) cannot be fixed by any group element not in SO(2)
8! (that is, involving k) since |z, | and |z;] must be preserved. Now
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so (¢, 8) fixes (a, b) if and only if # + ¢ = 0 (mod 2r). Hence (g, &) = (0,0) or
{m, m).

Similarly if a > 0, the point (a,0) can be fixed only by elements (p,6) of
S0(2) x S*, and now weneed # — o = 0 (mod 2n), that is, ¢ = 0.

Finally (a,a) is fixed by x. Hence its isotropy subgroup is generated by i,
together with a subgroup of SO(2) x S!. It can be fixed by (@, #) € SO(2) = 8!
only if # + ¢ = 0 (mod 2x), which as earlier leads to {(0,0), (m, )}. Together
with x these generate Z, @ Zj as claimed. |

(d) Nonstandard Actions of O(2)

We now indicate how to modify the preceding calculations for a (nontrivial)
nonstandard action of O(2). Consider the representation g for which

¢rz=2e": (@ e S0(2))
KZ2=T1,
where [ = 1is an integer. We can obtain this representation by composing the
standard representation p, with the group homomorphism
o ON2) = 1002)
pr+lo
K+ K
whose kernel is
Z,={2mnjilm=0,. . I- 1} = O(2).

Then the (nonstandard) action p(y) of y € O(2) on T is the same as the
standard action of a(y) on C. Thus the representation g behaves just as the
standard representation g, does except that Z, acts trivially.

The same is true of the corresponding action of 0(2) x §' on 2, in which
0(2) acts diagonally by (w;, wz)— {e"*w,,e"®w;). As in subsection (a) we can
choose coordinates (z,,2,) so that this action takes the form

fz,.2;3) = ':emzlﬁemzi}
@lz,.2;) = (7%z,,e"2,)
w(zy.23) =(z;,2; )

Again this is just like the standard action, except that 7, acts trivially. The
orbit data are the same as in Table 1,2, except that Z, must be added to every
isotropy subgroup. Thus the rotating wave solutions have an additional cyclic
symmetry Z, of order |, and the standing waves have dihedral group symmetry
D, = {x, Z,> (plus the original kernel Z5).

L. MLITMLEMIL B ANMULE 1ML eyl LT
EET

The invariants and equivariants for nonstandard actions of O(2) are the
same as those for the standard action (since the kernel Z, acts trivially and
hence does _m:rt change the invariance or equivariance conditions), The pre-
ceding considerations apply generally to nonstandard representations of 0(2)
or50(2), and similar ideas apply to nonstandard representations of D, and Z,,.

§2. Invariant Theory for O(2) x §'

In order to determine the direction of branching (super- or subcritical) and
the stability of the branches of periodic solutions, we must compute the
0(2) x 8" invariants and equivariants for the preceding action. (As just noted
these are identical for all nontrivial actions of 0(2).) The results are as foilows:

Proposition 2.1.
{a) Every O(2) = 8'-invariant germ [ has the form

flzy,2;) = P(N,A)

where N = l20] + |23, A = 8%, and 8 = |z,)2 — |z, 2.
ib) Every O(2) = 8'-equivariant germ g has the form

g{znzzl=!P+iql[f‘]+tr+is:-5[ o ] (2.1)
- 2

where p, q, r, and s are O(2) » §'-invariant germs.

P.RDOF. As usnfal Sch W%ln's theorem lets us assume that (and g are polynomial.
First we consider the invariance of f under SO(2) x §', which implies that

A" "z,,e"*92;) = fiz,,2,).
Define y; = (/2,9/2), 4, = (—¥/2,/2) € SO(2) x S§'. Then
flz1,e"223) = fiz,,2) = fle'z1,2,). (2.2)

Thus f = h(u,v) where u = |z,|%, v = |z,|* By x-invariance h{u,v) = hiv, u),
Whence h(u,v) = k(u + v,uv). Then N = u + vand A = (v — u)* = N? — duv
Provide an alternative Hilbert basis. Note that § = v — u.

DNDW suppose that_ @z 22) =g (2y. 220 g2(2,, 24)) 15 equivariant under
(2) x 8. Then (again using , and ;)

(8) @,(21,2;) = e Vg (e™ 12, 2,)
(b) gilz1.2;) = g4(z;,e%22;) (2.3)
ic) 9'1{3|-32:| =gylzz.24)

Identity (2.3(b)) impli o
: plies that g, = h(z,,|z,|?), and (2.3(a "
MaplzyP) = Kz, Bz, Pz 2f*) and (23(a)) implies that
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Recall that u=|z,)* v=|z:|>. Using the coordinate change (u,v)~—
{4 + v,u — v) we can wrile

ke, v) = llu + v,v — u)

and decompose [ into an even and an odd function in the second coordinate,
Thus

kiu,v) = lolu + v, (v — w*) + Llu + oo — ul Mo — u).
Summarizing the preceding results we have
gylzy,2;) = P(N,A)z, + R(N,A)dz,.
Then (2.3(c)) just specifies g, in terms of g, :
galzy,25) = P(N,A)z; — RN, A)éz,.

Finally, note that P and R are complex-valued invariant funr:t_ic:m» Thus we
complete the proof of (2.1) by setting P =p + igand R = r + is. 0

§3. The Branching Equations

Suppose that we have a system of ODEs on R4,
¥+ Xix,A)=0 (3.1)

where X is smooth and O{2)-invariant. Suppose also that

L]
(@X)o,0 = [_ ; D]

igenvalues of (dX), , cross the imaginary axis with nonzero
:;:c-c:.h?[thg:f;{fgl, 84 implies Ehat}(:,l'terc is a Liapunov—sfzhmidlt reduction tf
a mapping glz,,72,4,7) of C2 x R x R C? commuting w:ih_t){Z] x 8,
whose zeros are in one-to-one correspondence with periodic solutions of (3.1)
of period near 2. Here 1 is the period-perturbing parameter.
By Proposition 2.1, g has the form

I Z

g=(p+ :q}[”’] +(r+ is]a[ ' } (3.2)
L5 T2

where p, g, r, 5 are functions of N, A, 4, and 1. The Liapunov—Schmidt

reduction shows that

(@) pl0)=0,
(b) qf0)=0,
(¢) pal0y#0
To find the zeros of g, it suffices to look at representative points on 0(2) % §'

p.A0) =0,
qil:‘]} B '|1 {3-]‘]

{eigenvalue crossing condition).
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Table 3.1. Branching Equations for 0(2) x §* Hopf
Bifurcation

Orbit Representative
(a) (0,0)

Isotropy Subgroup  Branching Equations

Q_LE] x g Ce

b) (a0} a=0 S0(2) R
g—ats= 0

e} (a,a), a>0 Z, 32 p=0
g=10

(d) (i h), a=h=0 Z5 p=g=r=s5mi

Table 3.2. Branches of Periodic Solutions for 0(2) Hopf

Bifurcation
MName Isotropy Subgroup  Branching Equation
Trivial solution 02 » §? zm=[)
Rotating wave §ﬁ:z} A= mﬂh_ ro) at 4

pall)

—2p.(0
Standing wave 7, @ Z5 1w 2200,
pal0)

orbits. That is, when solving g = 0 we may assume that z, = a and z, = bare
real. It is now easy to check that the equation g = 0 reduces to the entries of
Table 3.1.

By (3.3(b)) we can always use the equation involving g to solve for 1. This
is a specific instance of general arguments in the proof by Liapunov—Schmidt
reduction. Generically r(0) and 5(0) are nonzero: thus generically there are no
solutions with isotropy subgroup Z.

It is now easy to solve for the leading terms of the branching equations for
rotating waves (2)) and standing waves (Z, @ Z5). These are given in
Table 3.2. Assuming that p;(0) < 0, or equivalently that the trivial solution is
stable subcritically, it is now possible to establish the directions of branching
for rotating and standing waves shown in Figure 1.2 earlier.

§4. Amplitude Equations, D, Symmetry, and Stability
Return now to the system of ODEs (3.1) and assume that it is in Birkhoif

Normal form. As we saw in XVI, §6, this means that X commutes with
0(2) x S rather than just 0i2). By Proposition 2.1,

X=(p+ Iq}[i'} +ir+ fx}ﬂ[_z;z] 4.1)
F4
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where p, ¢, r, s are functions of N, A, 4, and p{0) = 0, g(0) = 1. By Theorem
X¥1, 10.1, the Liapunov-Schmidt reduced function g of (3.2) for this X has
the explicit form

F?[Z;,Z;,A,T}=X{E,,Zl,il"'“ +T}I{ji}. [4_2}

2

Thus the branching equations for X are precisely those given in Tables 3.1
and 3.2, since the t-dependence enters in a simple way in those equations,

(a) Amplitude Equations

One of the remarkable facts about the Birkhoff normal form (4.1) is that it lets
us separate the 4 » 4 system of ODEs into amplitude and phase equations,
which in turn permit a simple analysis of the stability of the rotating and
standing waves, Write
z; = xe
(4.3)
z; = ye's,

Then (4.1) implies that the system (3.1) becomes
HL+ilp+ig+ir+is)d)z, =0 4
2y +(p +ig — (r + i8)d)z, = 0.
In the amplitude,/phase variables (4.3) these become
(a) X+(p+rd)x=0
J+(p—rdly=0
(b) Wy + (g +s58) =0
by + (g —58) =0

where p, g, r, s are functions of N = % + 2, A =(y* — x*)%, and i: and
& = y* — x* (This calculation may be performed by differentiating the identity
x? = 2,2, to obtain

(4.5)

x% = Relz;-Z,) = —(p + rd)z,Z,.

Similarly one uses the identity y* = z,z,.)

Nontrivial zeros of the amplitude equations correspond to invariant circles
and invariant tori. In particular when y = 0(the rotating waves branch) zeros
correspond to circles; when x = y (the standing waves branch) zeros corre-
spond to invariant 2-tori in the original four-dimensional system. On such a
torus we see from (4.3(b)) that i, = W, since § = 0. Therefore, trajectories on
this 2-torus are all circles. Compare this observation with the group-theoretic
Remark 1.2(b). In particular, this qualitative feature of the flow persists even
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when the vector field is not in Birkhoff normal form. Finally, a zero x > y=0
of the amplitude equations corresponds to an invariant 2-torus with linear
flow (¥, and W, constant). This linear flow is in general quasiperiodic. As
remarked earlier, however, generically r(0} # 0, so there are {locally) no zeros
of the amplitude equations with x > y > 0. So such tori do not oceur in
nondegenerate O(2)-symmetric Hopl bifurcation. Tt is not surprising, how-
ever, that when considering degencrate cases such as r(0) = 0, such tori do
occur. This observation of Erneux and Matkowsky [1984] will be discussed
in more detail later.

Lemma 4.1. A zero of the amplitude equations is asymptotically stable if and
only if” the corresponding steady-state, periodic trajectory, or invariant 2-torus
is (orbirally) asymptotically stable in the four-dimensional system.

ProoF. A zero (x,, yg) of the amplitude equations (4.5(a)) is asymptotically
stable if every trajectory (x(r), y(t)) with initial point sulficiently close to (x,, y,)
stays mear (xg, yy) for all 1 = 0, and lim,_ , (x(1), p(1)) = (X5, ¥s) Let M be
the connected component of the orbit of O(2) x §' that contains (xg. ¥a
this consists of points (z,,2,) with absolute values x,, y,. By definition this
means that any trajectory (z,(t), z3(r)) of the four-dimensional system, with
21(0), 23(0)) sufficiently close to M, converges in norm to M. On M, 4, and
¥; are constant, so the trajectory (z,(1), 23(1)) converges Lo a single trajectory
on M. This is what is meant by orbital asymptotic stability. O

(b) D,-Symmetry

Let the dihedral group D, act on C as symmetries of the square. That is, the
action is generated by

@) ze—:z
4.6
(b} ze=iz. (44

By Examples XI1, 4.1(c), the general D -equivariant mapping has the form
Pz + gz* where p and g are functions of u = 27 and p = Re(z*). If we let
f=x+]y then we have u=x*+ y* =N and ve=x* —6x?pl 4yt =
=0 + 3P 4 2(y* — x?)2 =24 — NL. Moreover, as mappings B2 — B2, the
mappings

s~ zand 737

Lorrespond to

BIC] = CIGo52- -0l

It follows that the general form of the amplitude equations is exactly the same
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as the general form of the Dy-equivariant mappings from R* into R*. The D,
symmetry may be thought of as what remains of the original O(2) x 8!
symmetry after reduction to the amplitude equations.

This has two consequences: one mildly useful and one extremely important,

Suppose we let
hix, 5,4 = p(N,A, &) [j—l + F(N, A, 2)d [ j}} (4.7)
Then the amplitude equations (4.5) hav-e the form
E] + hix, y,A) =0 (4.8)

The mildly useful observation is that the D, symmetries restrict the form of
dh at solutions, so that the asymptotic stability of steady states can easily be
computed. This we do later; however, these resulls can also be obtained by
direct calculation without knowledge of the underlying D, symmetry.

The important observation is that it is now possible to classify the degener-
ate O(2)-equivariant Hopf bifurcations, by classifying the Dg-equivariant
germs h up to D,-equivalence. We do this in §6. Moreover, the solutions so
obtained include not only the periodic solutions of rotating and standing
waves, but also the invariant 2-tori with linear flow,

Remark. This situation has already occurred in our study of degenerate Hopl
bifurcation in Chapter VIIL There we had a simple conjugate pair of purely
imaginary eigenvalues, with no spatial symmetry. The Birkhoff normal form
commutes only with 8! acting on T and has the form

# 4+ p(zz, Az + qlzz, )iz = 0.

This cquation splits into amplitude and phase equations on setting = = xe™,

giving
i+pxLHx=0
b+ qlx?,4) = 0.

The form of the amplitude equation is just that of the general Z,-equivariant
mapping. Indeed we studied degenerate Hopf bifurcation in Chapter VIII by
using the classification of Z,-equivariant mappings under Z,-equivalence
given in Chapter V1.

This kind of reduction (I-equivariant Hopf bifurcation — I' x 8! Birkhoff
normal form — E-equivariant amplitude equations) seldom happens in such
a nice way, but when it does, we have a method for studying the degeneraté
I-equivariant Hopf bifurcations. For an invariant-theoretic interpretation,
see Exercise 4.1,

We end this section with a discussion of the asymptotic stability of rotating

and standing waves. These results are summarized in Table 4.1.
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Table 4.1. Stabilities of Rotating and Standing Waves in 0(2) Hopf
Bifurcation

Orbit Isotropy
Mame Representative  Subgroup Signs of Eigenvalues
Trivial solution 0 D, pli0,0,4)  [twice]

(. ph—+lx, —¥ r

py—T+ x2p, — rN) — 2xr,
Gtanding wave x=y (x, ¥I—+(y. x) =
Pw

Rotating wave  y=10

j—

A rotating wave (y = 0) has 1sotropy subgroup in D, generated by the
reflection (x, ) (x, —y). At a rotating wave solution the Jacobian dh must
commute with the matrix [5  _9]. Thus dh is diagonal and the eigenvalues
of dh are just (p + or), and p — ér. Since § = —x* and p + ér = 0 on this
branch, we obtain the information in Table 4.1,

A standing wave (x = y) has isotropy subgroup generated by (x, y)— (1. x).
Thus dh commutes with the matrix [¢ 3] and so has the form [§ }], which
has eigenvalues a + b. Now

a=[(p+drix],
b=(p+ dr)x

and p= 6 =0 along the standing waves branch. This information lets us
compute the signs of cigenvalues of dh at the standing wave solution, also
listed in Table 4.1

Table 4.1 leads to the stability assignments given in Figure 1.2, since in
nondegenerate 0(2)-equivariant Hopf bifurcation we assume that

pA0) 20, py0)#£0,  r0)#0, py0)—r0)£0. (49

As we shall see, these are precisely the nondegeneracy conditions needed to
classify the least degenerate D -equivariant bifurcation problems.

Exercises

4.1. This exercise provides an alternative viewpoint on the introduction of amplitude/
phase variables. Consider the system (3.1), & + X(x, ) = 0, where X is as in (4.1).
Obtain expressions for dN/dt and dA/dr as functions of N and A, where N and A
are the invariant generators of Proposition 2.1(a). Note that orbits of 0(2) x 8
are parametrized by the values of invariants, so these expressions may be intepreted
as the dynamics of orbits. Show that the resulting equations are equivalent to the
amplitude equations (4.3(a)). Interpret the D, -equivariance of the amplitude
equations in terms of the geometry of the image of the mapping (z,, 2, )=+ (N, A}

42, More generally, suppose that % + X(x,4) is a T-equivariant ODE, and let
{1,....1,) be a system of invariant generators for I'. Show that dlfdr is -




