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The 1-D Complex Ginzburg-
Landau Equation has been the
focus of much interest due to its
surprising versatility. Recent
papers show that what one might
intuitively expect concerning the
CGL eqgn. undergoing a backward
bifurcation without stabilizing
higher order terms 1s not true. One
may naively assume that since the
bifurcation 1s sub-critical, then
bounded solutions should not exist.



We will show that this 1s not the
case and that indeed, bounded,
localized solutions do exist and they
take on certain forms depending on
the parameters. First shown by
Bretherton and Spiegel, the reason 1s
due to non-linear dispersion as the
complex coefficients get large and
dominate. The phase gradient
mechanism (PGM) can also be used
to understand the dynamics. We
then present experiments confirming
the analysis.



Modeling a binary fluid mixture in thermohaline

convection, Bretherton and Spiegel first

investigated the equation:

0,A=A+(1+ic )0 A+ilA

A

‘ 2

Simulations performed gave these results:

a)c, =100. b) ¢, =1. ¢) ¢, =-10.

Fig. 3. The amplitude 1a1? for L. = 20 and (a) u =100, (b)
p =1, after it evolves from white noise of mean-square ampli-
tude 1212 =0.01 at 7 = 0.
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CGL eqn:
0,d=A+(1+ic,)9* A+ (o +ic,)| Al 4

=—1.
Equation 1s invariant under a simultaneous change in
sign of ¢, and c,,so letc, = 0.
Simulations: Most of the bounded solutions show
spatio-temporal chaos.
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FIG. 1. Classification of the long-time behavior of solutions
of Eq. (1) for a==—1 in the ci-c; plane. The system length is

L =2r/0.3 with periodic boundary conditions. The circles cor-
respond to bounded and the crosses to unbounded solutions.
The line ¢y = —4dc¢, separates the two ranges on the left. Along
the horizontal line at ¢, =20 we found stable stationary puises
(with wavelength A =L =2x/2.8). The curve near c; =0 refers
to a water-alcohol mixture with varying separation ratio ¥. At
the indicated positions one has a, ¥=-—=7.5x10""% b,
—3.5% 107 ¢ —0.005; and d, —0.5.




Simulations: Near the stability boundary there seems t«

be a range of bounded solutions showing quasi-

stationary and quasi-periodic pulses.
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Space-time plots of the amplitude R for a= —1,
ci=—4, and c;=20. The system length is L =2x/0.3 with

2.

FIG.

We started with the periodic

periodic boundary conditions.

(b) Ry=0.8,

(a) Ro=1.6, A=2.1.

function 4 =Rocos(kx).

k=1.8.



Analysis:
Let-c¢,,c, = oo
A(x,t)= R(x,t) €™,
—_— C .
B = —1, ratio of the parameters,and € =1/¢,.
2

We now plug into the CGL eqn to get,
O,R=0:R-R(@,) - 9,R0, 6~ 0'¢

Ra¢_—a R—R(@ 6) +20 RI ¢+ RO’ gb+’BR3

We can rearrange the above two equations to

affect certain cancellations to get :

e’0 R+€RIP=(1+")0°R—R( ¢)°)+
(e?+(B+€)R*)R

—1/2€0,R*+€°R*0,0 = (1+€%)0_(R?0.9) -
eli+-pHr")R



We then expand through a nonlinear analysis with €

as the small parameter and assume that the phase, 0,
to be very large.

R=R +&°R +--,

6="6,+ed,+
E
O(e™): R =0,
O(e™): 0, (Ry5)=0.
= @y =9, (1)

1.e. Phase1s independent of space to leading order.

(Primes denote spatial derivatives.)

Define y(¢) = 9,9, (2).
O(’): 9’R,—yR, + BR. =0,
O(e"): -9, (Ri¢N) = 15 0,R; ~(1+7)R; +(1- B)R.



For 3, > 0, we seek periodic solutions so that
the Duffing type eqn at O(e") leads to:

— —

1 1

0 2x0 P 2o P
R0 = [[2 — m(t)]ﬁ} an [[2 — m(t)]ﬁ} €l

- —d

dn(u | m)is a Jacobian elliptic function with period
1

2K(m). Where (1-m)? <dn(u|m)<1,and K(m)is a
complete elliptic integral of the first kind, 0 <m < 1.

Whenm — 1, K — oo, and dn(u,1) — sech(u).
SR (x,8) = 27'/B(t)sech(y/ x), pulse solution.
When m — 0 small harmonic oscillations occur.

1
_ 2
2 m(t):| , wavelength of R, (x,?).
Y (@)

A= 2K(m)[

A should be time independent so once () is known,
m(t) 1s fixed.



Plug R, into the O(g) eqn and require that ¢; be

periodic with wavelength, A, so that the r.h.s.
integrated over one wavelength 1s 0.

= Dd,y =2E(m)y(1-v/7,).

Where E(m) is a complete elliptic integral of 2" kind.
D =D(K(m),E(m),m)>0Vm.

SinceE(m)>0,if y =7y,, (i.e.freq=7,/€) then
amplitudeis stablewhen D > 0.

7= 3/3[(ﬁ ~4)-28-1, " ’;Zﬂ

_ L 1-mKm)|
v, >0 for ﬁ>ﬁd(m)_1+3[1 22_mE(m)}

anddivergesat 3, (m).
I[fm=1,then B, =4. [f m<1,then 3, >4.

Noteamplitudeblowsupat 3,. Forgiven

positivevalueA, a solutionexistsfor 8 > 4",



Numerical simulations comparing results of the
analytics to the full CGL eqn.

A and c, are held fixed.
Amplitude blows up for 8 < B, = 4.

B, =7.1forc, =20and B, = 7.8 for ¢, =100.

Pulses become unstable against oscillations for 8 > 3, .

s
16 [ s numeric, ¢, = 100
« ® numeric, c, = 20
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FIG. 3. Minimum Rpnin and maximum Rnax of stable, sta-
tionary pulses as a function of B=—ci/c) for L =A=2r/2.8.
The solid line is calculated from Eq. (6). The circles refer to

numerical simulations with ¢;=20 and the triangles to c:
=100.



Figures. ¢, =15 throughout.
a) Stationary pulses: B =5, ¢, =-3.
b) Oscillatory Instability: f =10,¢, =—1.5.
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¢) Spatio-Temporal Chaos: 8 =0, ¢, =0.
d) De-focusing Regime: 8 =-7.5,¢, =2.
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Stabilization Mechanism.
Let A=Re”’, k =0+¢ (Phase Gradient).

OR =R+ R’ —k’R—2c,koR — c,Ro:k + 9°R,
2 2

atk = —Czasz — 2Clkaxk + Clax|:aij| + ax{ax (132 k)jl
R R

Set ¢, = 0 and disregard the last term in both eqns.

Assumec, >>1.

We then get for the simplified model :
OR> =2R*(1+R*—k?)
atk — —Czasz.



Consider an I.C. of a small amplitude plateau, which
goes to 0 on both sides. Let k=0 itially.

R 1s approximately constant in the plateau region. As
d R’ increases, d R’ gives rise to Phase gradients, k,

that lead to a saturation of the amplitude in this
region. This Phase Gradient Mechanism (PGM)
makes the two plateau regions move toward the
center. Then the sharp gradients cause the
propagation speed to steadily increase and the pulse
narrows. Then suppression occurs. The simplified
model 1s only valid up to this suppression point. In
the full model, the amplitude settles down and phase
slips then occur. Instead, we get freezing of the
phase gradient as d,k — 0 and 0,R — R(l — kz)

Note we neglected smoothing term and other higher
order terms.



Comparison of simplified model with full CGL eqn.
Plots of R (top) and k (bottom).
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ie. 3 Simulations of the model equations (L0 and (1D (o and (¢) and the CGLE () (b and () forh = 0, ¢ = 15: we show the modulus
U and the local phase gradientA 2= i, ¢ for some suceessive time steps. The initial conditions were A = 0.01 (tanh(x — 16) —tanh(x —=24))
avand (o and 4 = 0 1 (anhey — 44 = tanh(x = S0))) ((b) and (d)).



Experiments:

Binary mixture of alcohol and water heated from
below in an annular cell.

Let € be the linear onset and W be the separation
ratio. €=0 characterizes no growth.

For €>0, traveling wave solutions appear and for ¥
>-.05 we get erratic pulsing which becomes more
frequent as € increases. Also the left and right
traveling waves are uncorrelated so this suggests that
the coupling term 1s negligible.

As € increases, the density of the pulses increase in
time and they become more localized in space.

The nonlinear term ¢, acts to damp the waves in

regions of strong spatial gradients. This makes the
edges steepen and contract and the peaks then grow
linearly without saturation until they collapse.



Space-time plots
a) e=1.8x10
b) €=5.6x10
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Conclusions:

Even for a sub-critical bifurcation the CGL eqn.
allows for stable localized structures that do not blow
up even though higher order stabilizing terms were
omitted. These structures can take various forms
depending on the parameters ¢, and c,.

Spatially periodic soliton type solutions exist and can
be characterized analytically. An Oscillatory

instability kicks in for B > 3,. Then as [3 gets large,

we get localized pulses exhibiting spatio-temporal
chaos. This corresponds with the relevant
experimental regime. Then if ¢, > 0, a qualitatively

different solution 1s found that seems related to hole-
like solutions represented elsewhere.
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