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Motion of vortices in the NLHE

An n= 3 vortex divides into four n=+1 vortices and a n=-1 vortex.
Eventually, two of the oppositely charged vortices combine leaving three n=1
vortices.  This demonstrates that, for the nonlinear heat equation, vortices with
winding numbers, |n| > 1, are unstable against division into vortices with a charge
of |n|=1.





Determination of the dependence of the dislocation
velocity on the perturbation, Q,  from the critical
wavenumber

Carrying out weakly nonlinear analysis of an anisotropic system, near the
threshold, the spatially varying quantities take the form,

uj = ε1/2 
[ cj A(X', Y', T') ei(qx + py) +cc]fj(z,T)

Where cj can be i or 1, qc = (q , p) is the critical wavevector, and X, Y and T are slowly varying variables scaled

as:

X = H1/2 
x

Y = H1/2 
y

T = Ht

An expansion of the physical equations to order ε3/2
, yields a solvability condition in the

form of the following amplitude equation.

T0 RTA = [[1
2R2

X  + [2
2R2

Y  + 2[1[2 a RXRY +1 - |A|2]A  

Where a = 0 for normal rolls and 0 c a < 1 for oblique rolls.

Rotating this amplitude equation and rescaling  yields a simpler form,

RTA = ( ∆ + 1 - |A|2) A



Stationary Solutions

Substituting A = e i(QX +PY), into the amplitude equation shows that there are
stationary solutions of the form,

A = (1 - Q2 - P2)1/2 e i(QX +PY), 

Stability analysis of perturbations,

A = B eiQx eiPx [ 1 + a+eσt
eiKXeiLX+ a-e

σt
e-iKXe-iLX]

Shows that solutions are stable for Q2 + P2< 1/3, which is a direct generalization of the Eckhaus Stability limit.





Moving Dislocations

When Q is not equal to 0, the dislocations will no longer be
stationary.  Considering nonstationary solutions, 

A = B(X,Y,T) e i(QX +PY)               (1)

Where |B|2  g   1 - Q2 - P2 , as r g  % and the phase changes by two π
going around the dislocation for large r.  ( ie, from the far field, the
slowly moving dislocation appears stationary. )

Because the amplitude equation is rotationally invariant, we can
without loss of generality choose a coordinate system in which
velocity V, of the dislocations is in the Y - direction.

Substituting (1) into the amplitude equation for A yields,

RTB = [∆ + 2iQRX +2iPRY + 1 - Q2 - P2 - |B|2]B

Shifting this into a moving frame yields,

-VRRYB = [∆ + 2iQRRX +2iPRRY + 1 - Q2 - P2 - |B|2]B



Projection onto the Zero Eigenmodes

Because the system is translation invariant, the translation modes, RxB and RYB are zero

eigenvectors of the system. 

Projecting onto the zero eigenmodes and adding the complex conjugates yields,

-V <RXB*, RYB> -V <RXB, RYB*> =  <RXB*, R2
XB>  + <RXB, R2

XB*>

                                                      +<RXB*, R2
YB>  + <RXB, R2

YB*>

                                                      +iQ<RXB*, RXB>  -iQ <RXB, RXB*>

                                                      +iP<RXB*, RYB>  -iP <RXB, RYB*>

                                                      +(1 - Q2 - P2)[<RXB*, B>  +<RXB, B*>]

                                                      + <RXB*, |B|2B>  +<RXB, |B|2B*>]   

-V <RYB*, RYB> -V <RYB, RYB*> =  <RYB*, R2
XB>  + <RYB, R2

XB*>

                                                      +<RYB*, R2
YB>  + <RYB, R2

YB*>

                                                      +iQ<RYB*, RXB>  -iQ <RYB, RXB*>

                                                      +iP<RYB*, RYB>  -iP <RYB, RYB*>

                                                      +(1 - Q2 - P2)[<RYB*, B>  +<RYB, B*>]

                                                      + <RYB*, |B|2B>  +<RYB, |B|2B*>]   

To simplify these expressions, notice using one or more iteration of integration by parts, and the fact that the solution is uniform at
infinity.

<RXB*, R2
XB>   =  - <RXB, R2

XB*>

<RYB*, R2
YB>   =  - <RYB, R2

YB*> 

<RXB*, B>  =  - <RXB, B*>  

<RYB*, B>  =  - <RYB, B*>  

<RYB*, |B|2B>  = - <RYB, |B|2B*>



The two projection equations simplify to the following,

V[ < RXB*RYB> + cc] = -2iP[< RXB*RYB>  - cc]  (1)

V <|RYB|2> = iQ [< RXB*RYB>  - cc]                      (2)

Notice that for the case in which P=0, the amplitude equation has the symmetry, B(-X) =B*(X), so equation (1) is satisfied.

Which shows that the velocity of a dislocation is
in the direction perpendicular to Q, the
perturbation in the critical wavevector.



An Equation for the Velocity of a Dislocation

Using integration by parts on the right hand side of the second solvability condition yields,

V <|RYB|2>-cc = iQ [- <RXRYB*,B> +<RXRYB,B*> 

                         +
"
%BRXB*| Y=% dX+ 

?
BBRYB*| X=%dY] 

                             -% Y=-% -% X=-%

V <|RYB|2> -cc= iQ [
"
%BRXB*| Y=% dX+ 

?
BBRYB*| X=%dY]    (3)

                                   -% Y=-% -% X=-%

Using the limit that the dislocation goes to the uniform solution as r goes to infinity,

B ~ (1-Q2) 1/2 eiθ(X,Y)       for large r

Inserting this into (3) it becomes obvious that the right hand side of three is a closed

contour integral of -i(1-Q2)Rsθ  where Rs is the tangential derivative. Because the contour integral of Rsθ  is

equal to 2π,  equation (3) reduces to 

V(Q) = -µ 2SQ( 1 - Q2) 

Where,

µ-1 
= <|RyB|2>

Note, for small perturbations Q < 0, where the pattern is widened compared to the critical wavelength, the dislocation climbs in
the positive Y direction.
The frequency behind the dislocation is increased moving the system toward bandcenter. 



An Expression for V as Q g 0

Because m diverges for large r , we cannot simply evaluate µ,
for Q = R = 0, and we need a better expression for B.

Inserting the expression,

B ~ (1-Q2) 1/2 eiθ(X,Y)       

Valid for large r into the amplitude equation yields the phase
equation,

VRYθ +∆θ = 0

Because there is a discontinuity in theta as we go around the
defect, it is necessary to insert the derivative of a delta
function on the left hand side of this equation.  Assuming the
discontinuity line is in the y direction, then solving using a
fourier transform yields:

RYθ = |V| X K1(|V| r / 2) exp(-VY/2)/ (2r) 





Asymptotic Vortex Dynamics for the Non-linear
Schrodinger Equation

Nonlinear Schrodinger Equation
∆ψ  + (1 - |ψ|2)ψ = - i ψt

We derive trajectories for vortices in the nonlinear Schrodinger equation by matching a core expansion in a vicinity

O(1) from the vortices with a far field expansion O(1/H) from the vortices.

Assumptions:
1. The vortices are far apart. 
2.  The vortices move slowly.

A vortex trajectory is  associated with X = Q(T,ε).

Introduce slow time and space scales 

X = Hx

T = H2
T

Core expansion:

ψ = ψ(r,T,e)

r = x - Q(T,ε)/ε

Far field expansion:

Ψ= Ψ(X,T,ε)



Leading Order Core and Far-Field Solutions

Because the vortices are separated by distances (1/ε) and are moving slowly, the
leading order core expansion is expected to be a vortex state:

ψ = U(r) exp[ i(nθ + θ0(T,ε))]

Far from the vortex, the far field approaches the uniform solution which has a
modulus of one.  So the far field solutions has a first order solution:

Ψ0
 = U(X,T,ε) exp[iΘ0(X,T,ε)] 

Where Θ0(X,T,ε) is a slowly varying phase.



Far Field Expansion

Scaling the nonlinear Schrodinger equation, to the slow time and space variables
yields,

ε2∆ψ  + (1 - |ψ|2)ψ = - i ε2ψT

Substituting the far field expansion,

Ψ0
 = U(X,T,ε) exp[iΘ0(X,T,ε)] 

Into the far field NLSE, and separating the real and imaginary components yields,

(U2-1)U = -ε2
U(ΘT + |'Θ|2) + ε2∆U (1)

U∆Θ = -UT - 2'U.'Θ   (2)

Equation 1 shows that U = 1 + O(ε2
), which substituted into the above expressions yields,

U = 1   -ε2
U(ΘT + |'Θ|2) /2 + O(ε4

)

∆Θ = O(ε2
)

So, the far field expansion to first order is

Ψ0
 = exp[iΘ0(X,T,ε)] 

Where the slowly varying phase satisfies,

∆Θ0
 = 0



Core Expansion for Large r

ψ = U(r) exp[ i(nθ + θ0(T,ε))]

For large r, we know that U(r)= 1 + O(1/r2)

So,

ψ = exp[ i(nθ + θ0(T,ε))] +O(1/r2)

Because, the phase of the core expansion, for large r must
match that of the outer expansion, we have the condition

(nθ + θ0(T,ε)) = Θ0(X,T,ε)

Must hold as εr goes to 0 , for large r.



Simplified Far-Field Solution

Because Θ, satisfies Laplaces equation, the solution for the
first order far field phase subject to the boundary conditions
takes the form,

Θ0
 = nθ(R) + H(X,T,ε)

Where H is a harmonic function of X near X=Q.

Expanding the harmonic function,

Θ0
 ~ nθ(R) + q0 + K.R + O(R2)

Then expanding the exponential function yields in the far-field
expansion yields,

Ψ 0= exp[ i(nθ + θ0)] [ 1 + iK. R +O(R2)] 

Where q0 = q0(T,e) = H(Q,T,e) and K = 'H(Q,T,e) 



Core Expansion

Substituting ,

ψ ~ ψ(r,T,ε)

r = x - Q(T,ε)/ε

∆ψ  + (1 - |ψ|2)ψ = - i ε2ψT

∆ψ + (1 - |ψ|2)ψ  = -i(ε2ψT-εQ' . ∆y)

Substituting the expansion,

ψ ~ ψ0
 + ε ψ1

Yields first and second order expansions,

∆ψ0
   + (1 - |ψ0

 |2)ψ0
  =  0

Lψ1
 = iQ' . ∆ψ0

Where Lu  = ∆u + (1 - 2|ψ0
|2)u - (ψ0

)2u*



Matching the Core and Far-Field Solutions

Imposing the matching condition between the core and far field
expansions,

ψ0
(r,T,ε) + εψ1

(r,T,ε) - Ψ0
(εr,T,ε) = εψ1

(r,T,ε) 

                                          - iεK.r exp[i((nθ + θ0
)] + O(ε2

r2 +1/r2) (3)

Or,

ψ1
(r,T,ε) - iK.r exp[i((nθ + θ0

)] = O(r)

Where r = O(εp
)  -1< p <-1/3 is necessary to ensure that the error terms in (3) are smaller than the difference in listed in 3.

Equation ,

Lψ1
 = iQ' . 'ψ0

As well as the matching condition can be used to determine the velocity of the trajectories
Q'.

Because L is self adjoint,

"D Re( u (Lv)* - v (Lu)*) dx  = "
RD Re( u (Rnv)* - v (Rnu)*) dx  

If we let, u = e . 'ψ0
  and v = ψ1

, where ψ0
 is the leading order solution, a vortex state,  ψ1

 is determined by the matching
condition, and D is a circular region with a radius for which the matching condition is valid.

After a considerable amount of effort, this simplifies to,

Q' = 2 K + O(1)

Where K = 'H(Q,T,e) 



Velocity Equation for Dislocations in the NLSE

Q' = 2 K + O(1)

Where K =K = 'H(Q,T,e) .

Where H was previously referred to in the phase equation for the near and far field
phases,

Θ0
 = nθ(R) + H(X,T,ε)       (1)

If the system has more that one vortex, a boundary condition as above must hold
for each of the vortices, so the above condition generalized to the following:

          N

Θ0
 = Σ ni

θ(X - Qi) + C(T)          (2)

        i =1

Comparing (1) and (2), we expect H to have the form,

Η = Σ nj
θ(X - Qj)

       j Ri

Where  θ(R) from equation (1) is equal to θ(X - Qi).

        



ODE Governing Dislocation Trajectories in the NLSE

Then it follows that, because where X = (x,y) 

'θ(X) = 'tan-1(y/x)  = (-y/x2 , 1/x) / (1 + y2/x2)

'θ(X) = (-y , x)/ (x2 +y2) = ( -y , x) /|X|2

K simplifies to,

K = 'H(Qi,T,ε) = Σ nj J(Qi - Qj)/|Qi-Qj|
2

                            j Ri

Where

J = ( 0   -1 )
      ( 1    0 )

So, the differential equation governing the trajectories of the vortices becomes,

Qi = 2 Σ nj J(Qi - Qj)/|Qi-Qj|
2

          j Ri











Conclusions:

1. The velocity of the defects in a system governed by the
Ginzburg-Landau system, can be approximated for a system
near band - center.

2. This velocity is perpendicular to the perturbation in the
underlying wavevector.

3. As the GLE defects move, they perturb the underlying
system such that it moves toward band center.

4. Assuming defects in the Nonlinear Schrodinger Equation,
are far apart and move slowly, asymptotic methods can be
used to derive ODE's governing their motion. 

REFERENCES:

1. Vortices in Complex Scalar Fields, John C. Neu, Physica D 43 (1990) 385-406.
2. Structure and Dynamics of Dislocations in Anisotropic Pattern-Forming Systems,
E. Bodenschatz, W. Pesch, and L. Kramer, Physica D 32 (1988) 135-145.
3. Interaction and Dynamics of Defects in Convective Roll Patterns of Anisotropic Fluids,
Journal of Statistical Physics, Vol 64 5/6, (1991).


