Dynamics of Defects within the Two-Dimensional
Ginzburg - Landau Equation and the NL SE

Kim Montgomery



Properties of defects

Defects are locations in an amplitude field where the complex ampli-
tude goes to zero and the phase is undefined.

The phase of each defect changes by 27 when encircling a defect in
the clockwise direction.
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Fig. 6. The static dislocation in the oblique-roll case for
parameters  typical for  EHC ( p/g. = 015, § = 0.30/,
£, =005, a=1020,¢=01).

The above simulation of a defect in a roll pattern formed in a aniso-
tropic liquid crystal demonstrates that due to the increase in phase
traveling around the defect, there is an additional roll on one side of



Core Radius of Vortices

In a paper by JC Neu, defects are studied in the nonlinear
Schrodinger equation and the nonlinear heat equation,

Ay +(1_|W|2)W:'il|-’t
Ay + (1 = [y =y,

The time independent case of each of these reduces to the following,
Ay + (1= fulhy =0 (1)

The vortex solution to this of the form,

y = U(r) exp| 1(nd + 6)]

Substituting this into (1), we get,

Uy + Udr ‘Ut + (1 - [UH U=0

U(0)=0 and U(m) =1

The numerical solution of this is illustrated below showing that the
“core radius’.’ of the vortex in-
creases as n increases.

Asymptotically,
U@ ~ 1 — n/2r

Lir]

In the NLHE, vortices withn =
+1 or —1 are stable, and those
with [n| = 1 are unstable.

Tie |



Motion of vorticesintheNLHE
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Fige 1. Conpimued,

-1 vortex.

+1 vorticesand an=

Eventually, two of the oppositely charged vortices combine leaving three n
vortices. This demonstrates that, for the nonlinear heat equation, vortices with

An n= 3 vortex dividesinto four n

=1

winding numbers, |n| > 1, are unstable against division into vortices with a charge

of |n|=1.



Motion of dislocations in roll patterns can cause changes
in the underlying pattern

A. Climb, or motion along the roll axis changes the spacing of the
rolls. Note that for Q<0, P = 0, the dislocation moves upward, and
the pattern behind the dislocation is brought closer to band center.
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Fig. 3. A climbing motion in the normal-roll case for the same
parameters as in fig. 2 excepl for Q=0 (u) $_1= 0.0133,
1 =0.004, and in physical units Ag, = {00421 1 Ay =0,
o, =0, o, =00158"1/T, (b) Q= -00505 V=00198,
.".'-q" ST [}{Hﬁﬂ: lf:."_ J, "-'“4’: -— ﬂ, with the samc values frou o

B. Glide, or motion perpendicular to the roll axis changes the orien-
tation of the rolls.

Fig. 4. A ghding moticn in the normal-roll case lor the same
parameters as before except for P s£i) (a) F= —0.0133, V=
0.0058, Ag, =0, Ag, =000426 72", o, =00158:'1/T,.
v, =0; (b} P,Q. 0, v, asin (a), &g, =0, &g, = 002" 1 !



Deter mination of the dependence of the dislocation
velocity on the perturbation, Q, from thecritical
wavenumber

Carrying out weakly nonlinear analysis of an anisotropic system, near the
threshold, the spatially varying quantities take the form,

U= el/2 [ A, Y, T) @M +c]f(2,T)

Where ¢ can beior1,q.=(q, p)isthecritical wavevector, and X, Y and T are slowly varying variables scaled
as.

x=el2
v=eli2

T=€t

y

An expansion of the physical equations to order €32 yiq s asoivability condition in the
form of the following amplitude equation.

TO aTA = [Elzazx + EZZGZY + Zélézaaan +1- |A|2]A
Wherea=0for normal rollsando ¢ @ < 1 for oblique rolls.

Rotating this amplitude equation and rescaling yieldsasmpler form,

OTA=(A+1- |A|2)A



Stationary Solutions

Substituting A = e (QX *PY) 'into the amplitude equation shows that there are
stationary solutions of the form,

A=(1- Q2 _ P2)1/2 ei(QX +PY)’

Stability analysis of perturbations,
A=B eiQX e'PX [ 1+ a+theiKXeiLX+ a_the-iKXe-iLX]

Shows that solutions are stable for Q2 + P2< 1/3, which is adirect generdization of the Eckhaus Stability limit.



Stationary dislocations
Stationary dislocations take the form,
A=F(@) e
o =tan'( Y/X)
Where r = (X +Y5H,

Plotting F(r) numerically, vields
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Fig. 1. The amplitude Fir) of o static dislocution as o fune-
tion of the distance from the dislocation core |r| in reduced
units.

Showing that the amplitude increases linearly near the core of the dislo-
cation and for large r is approximated by,

F(r) ~1 -1/(2r%)



Moving Dislocations

When Q is not equal to O, the dislocations will no longer be
stationary. Considering nonstationary solutions,

A =B(X,Y,T) e'(QX+PY) (1)

Where|Bl> g 1-Q?-P?,asrg o and the phase changes by two n
going around the dislocation for larger. ( ie, from the far field, the
slowly moving dislocation appears stationary. )

Because the amplitude equation is rotationally invariant, we can
without loss of generality choose a coordinate system in which
velocity V, of thedislocationsisintheY - direction.

Substituting (1) into the amplitude equation for A yields,

dre=1A + 21Q0y +aPOY *1 &P BAE

Shifting thisinto amoving frame yields,

: 2
-VGYB =[A + 2iQdx +2iPoy 1-Q?-P*- BB



Projection onto the Zero Eigenmodes

Because the system is translation invariant, the translation modes, 9,8 and Oy B are zero

eigenvectors of the system.

Projecting onto the zero elgenmodes and adding the complex conjugates yields,

« 32 2
-V <aXB*,aYB> -V <6XB,6YB*>= <aXB ,a «B> +<aXB,a «B*>

+<QyB*, 62YB> +<0xB, 52Y3*>

+iQ<0x B, Oy B> -iIQ<0xB. dxB*>
+ip<QyB*, OyB> iP<QyB, OyB*>
+1- Q- P)[<0xB*, B> +<0yB. B*>]

+ <6XB*, IB|?B> +<6XB, IB|2B*>]

Y 2
-V <aYB*’ aYB> -V <aYB' aYB*> = <aYB .0 «B> + <aYB' 0 B>

+<QyB*, 62YB> +<0yB, 52Y3*>

+Q<0yB*, 0y B> -iQ <dyB. JxB*>
+iP<Qy B*, Oy B> -iP<0yB, JyB*>
+1- Q- P)[<0yB*, B> +<0yB. B*>]

+ <6YB*, IB|?B> +<6YB, |B|2B*>]

To simplify these expressions, notice using one or more iteration of integration by parts, and the fact that the solution is uniform at
infinity.

<axB*, 62XB> ‘<aXB' 62X8*>

<aYB*’ 62Y8> ‘<aYB' 62Y8*>
<aXB*, B> = - <aXB, B*>
<6YB*, B> = - <aYB, B*>

<0y B, BPB> =-<0yB, IB]2B*>



The two projection equations simplify to the following,
V[ < axB*aYB>+cc]:-2iP[< axB*aYB> -od (1)

} * B> -cq] ()]
v<q0yBP>=iel< 0X® oy
Notice that for the case in which P=0, the amplitude equation has the symmetry, B(-X) =B*(X), so equation (1) is satisfied.

Which showsthat the velocity of a dislocation is
In the direction perpendicular to Q, the
perturbation in the critical wavevector.



An Equation for the Velocity of a Didocation

Using integration by parts on the right hand side of the second solvability condition yields,

V <|6YB|2>-cc=iQ[- <0y 0yB* B> +<0y 0y B.B*>
+ ijaxB*|Y=m dXxX+ ?BBaYB*|X=(IJdY]
-0 Y =-w -0 X=-m0
V <|9yBP>-cc=iQ[ ijaXB*IY=m dX+ _7BB@YB*IX=de] 3)

-0 Y=-0m -0 X=-m

Using the limit that the dislocation goes to the uniform solution asr goes to infinity,

B~ (1-Q%) V2dO(X.Y)  for |arger

Inserting thisinto (3) it becomes obvious that the right hand side of threeisaclosed
contour integral of -i(]_-QZ)a Se where d Sisthetangential derivative. Because the contour integral of O Se S

equal to 2r, equation (3) reducesto

V(Q) =-p2mQ(1- Q)

Where,

- qoyers

Note, for small perturbations Q < 0, where the pattern is widened compared to the critical wavelength, the dislocation climbsin
the positive Y direction.
The frequency behind the dislocation isincreased moving the system toward bandcenter.



An Expression for VasQg0

Because m diverges for larger , we cannot simply evaluate ,
for Q = R =0, and we need a better expression for B.

Inserting the expression,
B ~ (1-Q?) Y240(X.Y)

Valid for large r into the amplitude equation yields the phase
equation,

VayO +A8 = 0

Because there is a discontinuity in theta as we go around the
defect, it is necessary to insert the derivative of adelta
function on the left hand side of this equation. Assuming the
discontinuity lineisin they direction, then solving using a
fourier transform yields:

Y0 = V| X K,(IV| r/ 2) exp(-VY/2)/ (2r)



In the limiting cases Vr/2 <=1 and V1/2 =>1, where the Bessel
function can be simplified, we obtain,

Ovy0 = tan '(Y/X) exp(-VY/2)/ (2r) Vi/2 <<1

3v0 = (VI Xexp( -V [Y+]/2)/ (2r %) Vi/2 =>1

For disturbances in front of the dislocation Y=0, the decay is
exponential and behind the disturbance, Y=0, r=| Y|, the decay
1§ algebraic.

Using these two limits, the velocity equation becomes,
VIn(Vy/V) =-2Q VR ==>1

V In(r/&)) =-2Q VR <<l

With &=1.13 and V, =3.29.



Asymptotic Vortex Dynamicsfor the Non-linear
Schrodinger Equation

Nonlinear Schrodinger Equation
Ay +(1- WPy =-i vy

We derive trgectories for vortices in the nonlinear Schrodinger equation by matching a core expansion in avicinity
O(1) from the vortices with afar field expansion O(1/€ ) from the vortices.

Assumptions:

1. The vortices are far apart.
2. Thevortices move slowly.

A vortex trgjectory is associated with X = Q(T,e).
Introduce slow time and space scales

X = €X
T=¢2

Core expansion:
v=y(r,T.e
r=x-Q(T,e)le
Far field expansion:

P=P(X,Te)



L eading Order Core and Far-Field Solutions

Because the vortices are separated by distances (1/¢) and are moving slowly, the
leading order core expansion is expected to be a vortex state:

v = U(r) exp[ i(n6 + BT €))]

Far from the vortex, the far field approaches the uniform solution which has a
modulus of one. So the far field solutions has afirst order solution:

PO_yX, T €) expli®®(X,T,e)]

Where G)O(X ,T,€) isaslowly varying phase.



Far Field Expansion

Scaling the nonlinear Schrodinger equation, to the slow time and space variables
yields,

e2Ay +(1- Py =-iePyr

Substituting the far field expansion,

FO- X, Te) expli© (X, T,e)]

Into the far field NL SE, and separating the real and imaginary components yields,

(UZ1)U = -e2y01+VOP) +€2AU (1)
UA® =-U1 - 2VUVO (2)

Equa[i onlshowsthatU=1+ 0(82), which subgtituted into the above expressions yields,

u=1 €2y@1+IVOP) /2 + O(e4

A® = O(e4

So, the far field expansion to first order is
PO opi@%(X,T,6)]
Where the slowly varying phase satisfies,

A@O:O



Core Expansion for Larger

v = U(r) exp[ i(n6 + 8gT€))]

For large r, we know that U(r)= 1 + O(1/r?)

S0,
w = expl i(n® + 8g€))] +O(1/r?)

Because, the phase of the core expansion, for large r must
match that of the outer expansion, we have the condition

(N0 +6g8) = 0%(X,T,g)

Must hold as er goesto O, for larger.



Simplified Far-Field Solution

Because O, satisfies Laplaces equation, the solution for the
first order far field phase subject to the boundary conditions
takes the form,

00_.0(R) + H(X,T.e)

Where H is aharmonic function of X near X=Q.
Expanding the harmonic function,

©0_0(R) + g, + KR + O(R?)

Then expanding the exponentia function yieldsin the far-field
expansion yields,

Y 0: exp[ i(ne + 60)][1+iK-R+O(R2)]

Where gy = qy(T,e) = H(Q,T,e) and K = V H (Q,T,e)



Core Expansion

Substituting ,

v~ y(r,T.e)

r=x-Q(T,e)le

Ay +(1- yPw=-ieyT

Ay + (1- yP)y =-i(e2yTEQ - Ay)
Substituting the expansion,

v ~y0 gyl

Yieldsfirst and second order expansions,

AYO 4 (1- jy0uy0
LwlziQ' . AWO

whereLu =AU + (1 - 2|\|IO|2)U_ (WO

)ZU*



Matching the Core and Far-Field Solutions

|mposing the matching condition between the core and far field
expansions,

Wo(r T,€) + Swl(r T,€) - ‘PO(SV T,€) = Swl(f ,T,€)

- 1eKr exp[i((nO + 90)] +0(82r2+ur2) ©)

Or,
1 S ' 0
Voere) - 1K1 expli((n6 + 6Y) _q,

Wherer = O(Sp)

-1< p <-1/3 is necessary to ensure that the error termsin (3) are smaller than the differencein listed in 3.

Equation,

oyl o VO

Aswell as the matching condition can be used to determine the velocity of the trajectories
Q.

Because L is self adjoint,

Ip Re(u(Lv)* -v (Lu)*) dx =Sy Re(U (@ -v@nd" o

—e- VO 1
Ifwelet, u=e VW andv =Y~ where \II0 isthe leading order solution, a vortex state, \|Il is determined by the matching

condition, and D isacircular region with aradius for which the matching condition isvalid.
After a considerable amount of effort, this ssimplifiesto,

Q=2K+0()

Where K = VH(Q,T,e)



Velocity Equation for Dislocationsin the NL SE

Q' =2K +0(2)
WhereK =K = VH(Q,T,e) .

Where H was previously referred to in the phase equation for the near and far field
phases,

00 0R) +H(X,Te) (1)

If the system has more that one vortex, a boundary condition as above must hold
for each of the vortices, so the above condition generalized to the following:

N
003 nox-Q)+C(m) (2
=1

Comparing (1) and (2), we expect H to have the form,

H=X no(X - Q)

j Ri

Where 6(R) from equation (1) isequal to 6(X - Q,).



ODE Governing Dislocation Trajectoriesin the NL SE
Then it follows that, because where X = (X,y)

VO(X) = Vtan}(y/x) = (-y/x?, Ux) I (1 + y2/x?)

VO(X) = (-y , X) (< +y?) = (-y , X) /IXP

K simplifiesto,

K=VH(Q,Te) =2 n JQ - QYIQ-QF
J RI

Where

So, the differential equation governing the tragjectories of the vortices becomes,

Q,= 22 n; J(Q; - Qj)/|Qi'Qj|2
j RI



NLSE Trajectories of Two Vortices n=1,1
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NLSE Trajectories of Two Vortices n=1,-1
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NLSE Trajectories of Two Vortices n=1,-1
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NLSE Trajectories of Three Vortices n=-1,-1,-1
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Conclusions;

1. The velocity of the defectsin a system governed by the
Ginzburg-Landau system, can be approximated for a system
near band - center.

2. Thisvelocity is perpendicular to the perturbation in the
underlying wavevector .

3. Asthe GLE defects move, they perturb the underlying
system such that it movestoward band center.

4. Assuming defectsin the Nonlinear Schrodinger Equation,
arefar apart and move slowly, asymptotic methods can be
used to derive ODE's governing their motion.
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