
The Gray-Scott (GS) model describes a chemical reaction-di�usion

system which supports a wide variety of patterns, including localized

pulses (1-D) and spots (2-D) which have been observed numerically and

in experiment. As we will describe below, the system also supports the

dynamic process of \pulse-splitting", which may be thought of as the

reverse of the coarsening process seen in many pattern forming systems.

For the regime we will consider, the governing equations are

@U
@t

= r2U � UV 2 +A(1� U)

@V
@t

= Æ2r2V + UV 2 �BV

U and V are scalar �elds representing chemical concentrations. A

and B are parameters describing the feed of u and v from an external

reservoir with �xed concentrations u = 1 and v = 0. Æ2 << 1 represents

the ratio of their di�usion coeÆcients.



We make the travelling wave ansatz u; v = u(�); v(�); � = x � ct.

This yields

u0 = p

p0 = �cp+ uv2 �A(1� u)

Æv0 = q

Æq0 = � c
Æ
q � uv2 +Bv

Set � = Æ�, c = Æ
 to obtain

_u = Æp

_p = Æ
��Æ
p+ uv2 �A(1� u)
�

_v = q

_q = �
q � uv2 +Bv

Observe the natural separation of the system into fast (v; q) and slow

(u; p) subsystems.



We apply 3 criteria for rescaling:

� Scale making use of numerically determined pattern rich parameter

regimes

� Maintain the fast/slow separation of scales in the system.

� Look for homoclinic orbits and saddle points with small friction 


This suggests
A = Æ2a B = Æ
2�

3 b c = Æ1+�b


u = Æ�bu p = Æ
2�

3 bp v = Æ�
�

3 bv q = bq

where 0 � � < 3
2
and 1
2

< 2�� � �. The results discussed apply only

in this regime, but an upcoming papers discusses how these solutions may

be extended to other regions in the parameter space1. In what follows

we assume all the rescaled quantities are O(1).

1A. Doelman, W. Eckhaus, and T.J. Kaper (1998), submitted



For convenience de�ne � = Æ1�
2�

3 , �2+� = Æ��
�

3 , Æ = ��. Substituting

and dropping hats

_u = �p

_p = �
h

uv2 � �
1

2

(3�+1)a� �(2�+1+�)
p+ �(3��1)au
i

_v = q

_q = �uv2 + bv � �(2+�)
q

In this way a system with 3 free parameters (A;B; c) becomes a system

with 5 free parameters (a; b; 
; �; �). We use the extra freedom to show

geometrically that periodic/homoclinic solutions to this system exist.



Consider the fast subsystem

_v = q

_q = �uv2 + bv � �(2+�)
q

For � = 0 there is the Hamiltonian

K = q2
2

� b
2
v2 + 1
3
uv3

We have a saddle point at (0; 0) connected by the homoclinic orbit

v0 = 3b=(2u0)sech
2(
p

bt=2); q0 = _v0

Observe that u = u0 = constant to leading order in the fast subsys-

tem.



Consider the slow subsystem

u0 = p

p0 = �� 12 (3�+1)a� �(2�+1+�)
p+ �(3��1)au

For � > 0 there is the saddle point (us; ps) = (��
3

2

(��1); 0). Lineariz-

ing yields the eigenvalues (��) and eigenvectors

�� =

1
2
�

1
2

(3��1)
h

�
p

4a+ �(�+3+2�)
2 � �(�+3+2�)

i

p = �� (u� us)

For � > 1, us >> 1 yielding the approximate the stable and unstable

directions

`U;S : p = ��pa+ h:o:t:



To understand the transition from � = 0 dynamics to � 6= 0 dynamics

in the system, consider the generic problem

x0 = f(x; y; �)

y0 = �g(x; y; �)

where x; y 2 <n;m, respectively. Now let �! 0+ to obtain

x0 = f(x; y; 0)

y0 = 0

This is exactly the fast subsystem case. We obtain a reduced dy-

namics on the fast manifold y = constant. Observe that even if 0 <

� << 1, the \leading order behavior" of the fast subsystem remains

una�ected, even though the dynamics of y are no longer trivial. This

regime is analagous to the \inner" (fast) solution of a singular perturba-

tion/boundary layer problem.



Alternatively, introduce � = �t to obtain

�x0 = f(x; y; �)

y0 = g(x; y; �)

Now let �! 0+ to obtain
f(x; y; 0) = 0

y0 = g(x; y; 0)

This is exactly the slow subsystem case. We obtain the slow dynamics

con�ned to the slow manifoldM0 � f(x; y; 0) = 0. This regime is anal-

ogous to the \outer" (slow) solution of a singular perturbation/boundary

layer problem. To understand what happens to the slow manifold for

0 < � << 1 we invoke the Fenichel theorems of geometric singular per-

turbation theory.



We summarize Fenichel's theorems: For suÆciently small �

� there exists a manifoldM� within O(�) ofM0 which is di�eomorphic

to M0 and locally invariant under the slow 
ow.

� there exist manifoldsW s(M�) andW
u(M�), locally invariant under

the slow 
ow, that lie within O(�) of, and are di�eomorphic to,

W s(M0) and Wu(M0), respectively.

� trajectories on W s(M�) (Wu(M�)), approach (depart) M� at an

exponential rate.

In the present case the slow manifold is given by M0 � (u; p; v =

q = 0), where every point of the (u; p) plane is the saddle point base

of a fast homoclinic orbit. By the Fenichel theorems for 0 < � << 1

there persists a perturbed slow manifold M� which is connected to the

fast subsystem via exponentially decaying/growing orbits. Note that the

dynamics onM� is no longer trivial, but that the Fenichel theorems allow

us to maintain the separation of fast and slow subsystems.



Now to understand what happens to the fast subsystem we need

to apply Melnikov's method. Melnikov's method is used to measure the

\splitting distance" between the perturbed stable and unstable manifolds

of a homoclinic orbit in a planar Hamiltonian system. As a generic

example, consider the system

_x = f1(x; y) =
@H

@y
+ �g1(x; y; t)

_y = f2(x; y) = �@H
@x
+ �g2(x; y; t)

where H is the Hamiltonian. Assume the system possesses a homo-

clinic orbit (x(s); y(s)) for � = 0. We do not expect the homoclinic orbit

to survive the perturbation. So to measure the distance between the

stable and unstable manifolds, project the 
ow as follows.



When � = 0, the 
ow follows the path F = (@yH; �@xH)T at every

point in phase space. For a small perturbation we linearize about that

homoclinic orbit and project onto the normal to F , F? = (@xH; @yH).

Integrate over time to determine the Melnikov function �K

��K =

Z 1
�1
dt
�

@H
@x
;
@H

@y
�

�
�

f1(x; y)

f2(x; y)
� �����

(x(s);y(s))

= �
Z 1

�1
dt
�

@H
@x
;
@H

@y
�

�
�

g1(x; y; t)

g2(x; y; t)
� �����

(x(s);y(s))

= �
Z 1

�1
dt _H

�����
(x(s);y(s))

) �K =
R1

�1 dt _H
�����

(x(s);y(s))



If the Hamiltonian represents \energy," then the Melnikov function

represents the di�erence in energy between trajectories on the stable and

unstable manifolds. For our purposes the important feature to note is

that at points where the Melnikov function is 0, transversal intersections

of the stable and unstable manifolds occur { i.e., a homoclinic orbit is

formed.



In the GS model the Melnikov function is given by

�K =

Z 1
�1

_Kdt

=

Z 1
�1

�
��(2+�)
q2 + 1

3
�pv3
�

dt

= �2
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b

5u20
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2 bp0
u0
� ��

�

+ h:o:t:

where we have approximated u = u0; p = � bp0; v = v0; q = q0 + h:o:t:

so that we enter the fast subsystem near the unstable eigendirection `U

of the slow subsystem. Intersections may therefore occur along

p = 1
2
�(1+�)
u



Finally, we may calculate the \change during 
ight", the in
uence of

the fast subsystem on the value of p during the fast excursion. Straight-

forward computation yields
�p =

Z 1
�1
_pdt

= �
Z 1

�1
u0v
2

0dt

= �
6b
p

b
u0

+ h:o:t:

We can use the limits �1 because we linearize around the fast solu-

tion, so the contributions to �p become exponentially small as jtj ! 1

since v0 becomes exponentially small. A similar calculation shows �u =

O(�2).



A stationary 1-pulse may be created as follows. First observe that

the GS model possesses the symmetry (t; p; q) ! (�t;�p;�q). As a re-

sult the solution is symmetric in p, so

��pa+ h:o:t: = 1
2
�
�

��
u0 � 6b
p

b

u0

�
+ h:o:t: forward

+�
p

a+ h:o:t: = 1
2
�
�

��
u0 +
6b
p

b

u0

�
+ h:o:t: return

That is, pbefore takeo� = pintersection�(1=2)�p, and similarly for pafter takeo�.

The factor 1=2 is due to the symmetry of the system. For a stationary

pulse set c / 
 = 0, subtract the equations above to obtain u�0 = 3b
p

b=a

to leading order. This procedure is extended to stationary N-pulse or-

bits by replacing 1=2 with N=2.



Constructing periodic stationary pulses is only slightly more diÆ-

cult, since for 
 = 0 the slow subsystem equations may be solved exactly.

Taking the exact solution we may again derive \forward" and \return"

conditions and obtain

Vmax =

p
a(2Umax � U2
max)

2
p

B

; Umin =

3B
p

Bp
a(2Umax � U2
max)

Here U; V are scaled back to their original magnitude. Note that

as Umax ! 1, approaching the saddle point, the results of the previous

section are recovered.



Now we may try to extend this analysis to travelling patterns,

i.e. redo the same procedure for 
 6= 0. As the \forward" and \return"

equations derived above show, we must evaluate higher order terms of

both the Melnikov function and of `U;S in order to determine if the term

at order (1+�) can be matched. The analysis shows it cannot, hence in

the parameter regime considered no travelling patterns exist.

The preceding analysis raises a few questions whose answers (where

they are known) would unduly extend this poster. However, some ques-

tions you may wish to ask are...

� Are these solutions stable? And hey, where are the N-pulse orbits?

� Is there a multiple scales approach to generating these solutions?

� Numerical experiments seem to suggest travelling waves do exist in

the considered domain. How does this jibe with the analysis here?

(Hint: It involves pulse-splitting.)

� What about 2-D Gray-Scott? Are there any popular articles or,

better yet, web sites I can look up to learn more?


