The Gray-Scott (GS) model describes a chemical reaction-diffusion
system which supports a wide variety of patterns, including localized
pulses (1-D) and spots (2-D) which have been observed numerically and
in experiment. As we will describe below, the system also supports the
dynamic process of “pulse-splitting”, which may be thought of as the
reverse of the coarsening process seen in many pattern forming systems.
For the regime we will consider, the governing equations are

%—(Z = VU-UV?+A1-U)
%—‘; = V'V +UV?-BV

U and V are scalar fields representing chemical concentrations. A
and B are parameters describing the feed of v and v from an external
reservoir with fixed concentrations v = 1 and v = 0. §? << 1 represents
the ratio of their diffusion coefficients.



We make the travelling wave ansatz u,v = u((),v({), ( = x — ct.
This yields

= P
P = —cpH+uv® —A(l —u)
' = gq
oq = —gq—uvz + Buv

Set ( = dn, ¢ = oy to obtain

U = op

p = 0[-6yp+uw’ — Al —u)]
vo= q

g = —vq—uv®+ Bv

Observe the natural separation of the system into fast (v, ¢) and slow
(u, p) subsystems.



We apply 3 criteria for rescaling:

e Scale making use of numerically determined pattern rich parameter
regimes

e Maintain the fast/slow separation of scales in the system.
e Look for homoclinic orbits and saddle points with small friction ~

This suggests

where 0 < a < % and % < 2—a < 3. The results discussed apply only
in this regime, but an upcoming papers discusses how these solutions may
be extended to other regions in the parameter space'. In what follows
we assume all the rescaled quantities are O(1).
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For convenience define € = 51_%@, €2t7 = §P=5, § = €. Substituting
and dropping hats

U = €p

p p— € |:U/U2 — 6%(3p+1)a — €<2p+1+0)fyp _|_ €<3p_1)au]
vo= q

g = —uv?+bv—e?t)g

In this way a system with 3 free parameters (A, B, ¢) becomes a system
with 5 free parameters (a, b, vy, o, p). We use the extra freedom to show
geometrically that periodic/homoclinic solutions to this system exist.




Consider the fast subsystem
v = ¢
g = —uv?+bv—e?Pg

For € = 0 there is the Hamiltonian

2
¢ _b,2 , 1,3
K——2 SV + U

We have a saddle point at (0,0) connected by the homoclinic orbit
vo = 3b/(2ug)sech?(Vbt/2), qo = Vo

Observe that u = ug = constant to leading order in the fast subsys-
tem.




Consider the slow subsystem

/

U = p

/ _e3Botl), _ (20+140)

p = vp + e~ Hay

For € > 0 there is the saddle point (us,ps) = (e 2(°~1,0). Lineariz-
ing yields the eigenvalues (A+) and eigenvectors

)\:I: — %6%(3/0—1) |::|:\/4a + €(p—|—3—|—2(7)/y2 L €(p+3+20)7]
p = )\:l: (U — us)

For p > 1, us >> 1 yielding the approximate the stable and unstable
directions

¢Us p = te/a+ h.o.t.




To understand the transition from € = 0 dynamics to € # 0 dynamics
in the system, consider the generic problem

' = f(x,y,€)
y = eg(z,y,¢€)

where z,y € R™™, respectively. Now let € — 0T to obtain

x’ = f(x,y,0)
y' =0

This is exactly the fast subsystem case. We obtain a reduced dy-
namics on the fast manifold y = constant. Observe that even if 0 <
e << 1, the “leading order behavior” of the fast subsystem remains
unaffected, even though the dynamics of y are no longer trivial. This
regime is analagous to the “inner” (fast) solution of a singular perturba-
tion/boundary layer problem.



Alternatively, introduce 7 = €t to obtain

Now let € — 07 to obtain

f(x,y,0) =0
y' = g(x,y,0)

This is exactly the slow subsystem case. We obtain the slow dynamics
confined to the slow manifold My = f(z,y,0) = 0. This regime is anal-
ogous to the “outer” (slow) solution of a singular perturbation/boundary
layer problem. To understand what happens to the slow manifold for
0 < € << 1 we invoke the Fenichel theorems of geometric singular per-
turbation theory.



We summarize Fenichel’s theorems: For sufficiently small e

e there exists a manifold M, within O(¢e) of My which is diffeomorphic
to My and locally invariant under the slow flow.

e there exist manifolds W# (M) and W*(M,), locally invariant under
the slow flow, that lie within O(e) of, and are diffeomorphic to,
W#*(My) and W*(My), respectively.

e trajectories on W#(M.) (W*(M,)), approach (depart) M. at an
exponential rate.

In the present case the slow manifold is given by My = (u,p,v =
g = 0), where every point of the (u,p) plane is the saddle point base
of a fast homoclinic orbit. By the Fenichel theorems for 0 < ¢ << 1
there persists a perturbed slow manifold M, which is connected to the
fast subsystem via exponentially decaying/growing orbits. Note that the
dynamics on M, is no longer trivial, but that the Fenichel theorems allow
us to maintain the separation of fast and slow subsystems.



Now to understand what happens to the fast subsystem we need
to apply Melnikov’s method. Melnikov’s method is used to measure the
“splitting distance” between the perturbed stable and unstable manifolds
of a homoclinic orbit in a planar Hamiltonian system. As a generic
example, consider the system

: oH
L = fl(xvy) — a_y +€gl<x7y7t)

. OH
Yy = f2<33,y) — _8—33 =+ 692(x7y7t)

where H is the Hamiltonian. Assume the system possesses a homo-
clinic orbit (z(s),y(s)) for e = 0. We do not expect the homoclinic orbit
to survive the perturbation. So to measure the distance between the
stable and unstable manifolds, project the flow as follows.




When € = 0, the flow follows the path F = (9,H, —0,H)" at every

point in phase space. For a small perturbation we linearize about that
homoclinic orbit and project onto the normal to F, F+ = (9, H, 8, H).
Integrate over time to determine the Melnikov function AK

an = [Ca(GE G0 (pn)
i )
—oe Y ? (2(5),(5))
B s oxr’ Oy ga(x,y,t)
= 6/ dt H

= AK = [* dtH

(z(s),y(s))

(z(s),y(s))




If the Hamiltonian represents “energy,” then the Melnikov function
represents the difference in energy between trajectories on the stable and
unstable manifolds. For our purposes the important feature to note is
that at points where the Melnikov function is 0, transversal intersections
of the stable and unstable manifolds occur — i.e., a homoclinic orbit is
formed.




In the GS model the Melnikov function is given by

AK = / Kdt
> 1

60 2
= € < \/_> <ﬂ — EU’Y> + h.o.t.
Hu? U

where we have approximated u = ug,p = €pg,v = vo,q = qo + h.o.t.
so that we enter the fast subsystem near the unstable eigendirection ¢V
of the slow subsystem. Intersections may therefore occur along

p p— %6(1+0-)fyu




Finally, we may calculate the “change during flight”, the influence of
the fast subsystem on the value of p during the fast excursion. Straight-
forward computation yields

Ap = / pdt

— o0

= € / ugvg dt
6b/b

Ugp

+ h.o.t.

— €

We can use the limits 00 because we linearize around the fast solu-
tion, so the contributions to Ap become exponentially small as |t| — oo
since vy becomes exponentially small. A similar calculation shows Au =

O(e?).



A stationary 1-pulse may be created as follows. First observe that
the GS model possesses the symmetry (¢,p,q) — (—t, —p, —q). As a re-
sult the solution is symmetric in p, so

—ey/a+hot. = %e €7 Yug — 62\0/5 + h.o.t. forward
+eva+hot. = Le(eyup+ %\O/B + h.o.t. return

That iS, Pbefore takeoff — pintersection_(1/2)Apa and Simﬂaﬂy for Pafter takeoff-
The factor 1/2 is due to the symmetry of the system. For a stationary
pulse set ¢ o v = 0, subtract the equations above to obtain u(jf = 3by/b/a
to leading order. This procedure is extended to stationary N-pulse or-
bits by replacing 1/2 with N/2.

—— . .




Constructing periodic stationary pulses is only slightly more diffi-
cult, since for v = 0 the slow subsystem equations may be solved exactly.

Taking the exact solution we may again derive “forward” and “return”
conditions and obtain

2U g0 — U? BvV B
Vmaaz — \/a( max) Umzn 5 \/7

2v/ B 7 \/a(QUmax —U2..)

maa

Here U,V are scaled back to their original magnitude. Note that

as Unae — 1, approaching the saddle point, the results of the previous
section are recovered.
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Now we may try to extend this analysis to travelling patterns,
i.e. redo the same procedure for v # 0. As the “forward” and “return”
equations derived above show, we must evaluate higher order terms of
both the Melnikov function and of ¢V*° in order to determine if the term
at order (14 o) can be matched. The analysis shows it cannot, hence in
the parameter regime considered no travelling patterns exist.

The preceding analysis raises a few questions whose answers (where
they are known) would unduly extend this poster. However, some ques-
tions you may wish to ask are...

e Are these solutions stable? And hey, where are the N-pulse orbits?
e Is there a multiple scales approach to generating these solutions?

e Numerical experiments seem to suggest travelling waves do exist in
the considered domain. How does this jibe with the analysis here?
(Hint: It involves pulse-splitting.)

e What about 2-D Gray-Scott? Are there any popular articles or,
better yet, web sites I can look up to learn more?



