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1. Amplitude Equation via Multiple Scales

Consider the partial differential equation,

O = Rp + v0ptp — (02 + 1) + apOptp + Bp 0. (1)

(a) Perform a linear stability analysis of the basic state 9 = 0. What kind of a bifurcation do you expect?

(b) Consider R as the control parameter and perform a weakly nonlinear analysis to obtain an evolution
equation for the amplitude of the pattern. (Take the amplitude space-independent, i.e. do not
introduce slow spatial variables.)

¢) Find a set of simple, spatially periodic solutions to the resulting evolution equation. Are they quali-
g Y
tatively similar to the simple periodic solutions we found for the Swift-Hohenberg model? Is there a
qualitative difference between eq.(1) and the Swift-Hohenberg model?

2. Center-Manifold Reduction

Consider the coupled equations

= = (a=Dzty+pay+(@+y)’, (2)
dy _
- = T+ (a—1)y. (3)

(a) Perform a linear stability analysis of the trivial state (z,y) = (0,0) and determine the eigenvectors
associated with the two eigenvalues.

(b) Considering the symmetries of egs.(2,3) and the result of your linear stability analysis, what kind of
bifurcation do you expect?

(¢) Introduce new coordinates in which the linear operator is diagonal.

(d) In these new coordinates, determine a center manifold of (0,0) and the evolution equation on that
manifold. Based on your symmetry argument, how should you scale the amplitude of the bifurcating
mode relative to the control parameter a? In your expansion keep terms up to third order in the
amplitude.

Note: you may want to consider small 3, i.e. 8 being of the same order as the amplitude.

(e) Sketch a typical bifurcation diagram showing the dependence of the solution to the resulting amplitude
equation on a.
3. Convection in Anisotropic System

Nematic liquid crystals have a preferred axis of orientation indicated by their director. Quite a few
convection experiments have been performed in this system with the director aligned horizontally, e.g. in



the z-direction [1]. These systems are not isotropic. In certain parameter regimes the convection modes
that destabilize the motionless state have the form

Y(x,t) = Ae"*TPY | B! TPY 4 c.c. + h.o.t. (4)

With periodic boundary conditions the translation (z — x + Az,y — y + Ay) and reflection symmetries
(x = —xz, y — —y) of the system induce certain symmetry operations on the amplitudes A and B. By
suitable combinations of the translations in the z- and y-direction and of the two reflections the symmetry
operations can be written as

(4,9)(A,B) = (¢'?A,e"B), ¢, P €R, (5)
K‘l(AaB) = (BaA), (6)
ko(A,B) = (A*,B"). (7)

The operations {(, ), K1, K2} form the symmetry group I' of the system. In his problem we identify the
symmetries of all possible states of this system.

(a) Show that an arbitrary element v € I', which can be thought of as an arbitrary combination of the
basic elements k1,2 and (¢,), can be expressed as

Y = KLRg(g,9),  I,m integer. (®)

(b) Show that all elements (A, B) € C? are on some group orbit of (a,b) € R? with b > a > 0.

(c) By considering the action of the general group element x4 x%*(4,1) on the general element (a,b) € R?
identify all isotropy subgroups X4 py of I.

(d) For each isotropy subgoup ¥(4,p), identify the corresponding fixed-point subspace.

(e) Considering the linear mode given in eq.(4), what kind of patterns do the elements of the various
fixed-point subspaces correspond to?
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