Networks of Active Elements Networks of Active Elements
Spring 2002
Hermann Riecke and Sara Solla
Projects



  1. Globally coupled oscillators - Kuramoto model [1,2,3]
  2. Integrate-and-Fire Models of Neurons [4]
  3. Complex Ginzburg-Landau equation [5,6,7]
  4. Dynamics of small-world networks [8,9,10]

References

[1]
S. H. Strogatz. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143(1-4):1-20, September 2000.

[2]
Y. Kuramoto. Chemical oscillations, waves, and turbulence, volume 19 of Springer series in synergetics. Springer, 1984.

[3]
K. Wiesenfeld, P. Colet, and S. H. Strogatz. Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett., 76(3):404-407, January 1996.

[4]
P. C. Bressloff and S. Coombes. Dynamics of strongly coupled spiking neurons. Neural Comput., 12(1):91, January 2000.

[5]
I. S. Aranson and L. Kramer. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys., 74:99, 2002.

[6]
M. van Hecke. The building blocks of spatiotemporal intermittency. Phys. Rev. Lett., 80:1896, 1998.

[7]
Alessandro Torcini Lutz Brusch. Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation. Physica D, 160:127, 2001.

[8]
L. F. Lago-Fernandez, R. Huerta, F. Corbacho, and J. A. Siguenza. Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett., 84(12):2758-2761, March 2000.

[9]
H. Hong, M. Y. Choi, and B. J. Kim. Synchronization on small-world networks. Phys. Rev. E, 65(2):026139, February 2002.

[10]
X. F. Wang and G. R. Chen. Synchronization in small-world dynamical networks. Int. J. Bifurcation Chaos, 12(1):187-192, January 2002.




File translated from TEX by TTH, version 2.78.
On 11 Apr 2002, 15:24.