Interdisciplinary Nonlinear Dynamics (438)

Fall 2001 Hermann Riecke

Problem Set 1

For Discussion Section October 5

Note: the discussion section will be on Fridays 3:30-4:30 in M152. This week Sandeep will give an introduction to Matlab.

Some Short Nice Problems from Strogatz Do 2.2.9, 2.2.10.

2. Population Growth with Eggs

Consider the dynamics of a population of animales that lay eggs and investigate the following simple model. The animals propagate by laying eggs, which need a time τ to hatch. The rate at which they lay eggs is adversely affected if the population N is too dense, i.e. assume the rate decreases linearly in N. Similarly the death rate increases linearly with N. Thus, you get

$$\frac{dN}{dt} = -aN(t) - bN(t)^2 + \alpha N(t - \tau) - \beta N(t - \tau)^2. \tag{1}$$

- (a) Nondimensionalize the evolution equation by using the magnitude of the death rates |a| and |b| as characteristic scales (in order to leave the delay as a control parameter). In this process α , β , and τ will be rescaled to $\tilde{\alpha}$, $\tilde{\beta}$, and $\tilde{\tau}$. In the rest of the problem we will omit the $\tilde{}$ over the symbols again and write α , etc.
- (b) Use the matlab program available on the class web site to solve first the usual logistic equation, in which the delay vanishes, $\tau = 0$, and a = -1 and b = 1. Compare the numerical to the analytical solution by calculating

$$E^{2} = \frac{\int_{0}^{t_{max}} (n_{ex}(t) - n_{num}(t))^{2} dt}{\int_{0}^{t_{max}} (n_{ex}(t))^{2} dt},$$
(2)

where n is the dimensionless density and t_{max} is chosen appropriately so that n has just about reached its stationary value. Measure the error E as a function of the time step, decreasing the time step Δt by factors of 2. Plot $E(\Delta t)$ double-logarithmically and confirm that for small Δt it is linear in Δt . Choose the time step small enough to get the error below 1%.

- (c) To get a feeling for the *stability* of the simple forward Euler method used in the matlab program investigate the behavior of the numerical solution as you increase Δt in factors of 2 up to values of $\Delta t = 3$. What change in the behavior do you observe?
- (d) Modify the matlab program to solve the (dimensionless) evolution equation for $\tau \neq 0$. The initial conditions require the knowledge of n(t) for $-\tau < t < 0$. Use n(t) = 0 for that range of t (no eggs laid yet).
- (e) Study the dynamics of the equation numerically for $\tau = 3$ and $\beta = 3.7$ over a range of α between 10 and 20 (all in dimensionless quantities). Does the behavior change qualitatively when changing α ? How does it differ from that of the simple logistic equation without delay? How is this behavior possible although the equation is only first-order in time?

¹Use the matlab command loglog instead of plot.

(f) Establish that the behavior you observe is not a numerical artifact by performing a convergence test for one representative case. Since you do not know the exact solution plot the difference $n(t_0, \Delta t) - n(t_0, \Delta t/2)$ for some suitably chosen fixed t_0 double-logarithmically as a function of Δt and establish that this difference shows the correct scaling in Δt .

3. Uniqueness of Solutions

Consider

$$\frac{du}{dt} = f(u). (3)$$

- (a) Show that for functions f(u) that satisfy the Lipschitz condition in an interval $[u_0 \Delta u, u_0 + \Delta u]$ around a stable fixed point u_0 the time to reach that fixed point is infinite. Discuss this result in view of the theorem stated in class about the uniqueness of solutions.
- (b) In class it was stated that if f'(u) is continuous the solution to (3) is unique. Discuss in this context the equation

$$\frac{du}{dt} = |u|,\tag{4}$$

for which clearly f'(u) is not continuous. Is the solution to this equation unique for all initial conditions? Why not? Why?

4. Adams-Bashforth and Predictor-Corrector Methods

Consider the differential equation

$$\frac{du}{dt} = f(u). (5)$$

The solution $u_{j+1} \equiv u(t + \Delta t)$ can be written exactly as

$$u_{j+1} = u_j + \int_{t_i}^{t_{j+1}} f(u(t)) dt,$$
 (6)

where $t_i = j \Delta t$.

- (a) Approximate f(u(t)) by a polynomial in t, i.e. expand f(u(t)) in a Taylor expansion about t_j . Approximate the derivative $\frac{df}{dt}$ by a finite-difference expression involving only f at times $t \leq t_j$. Considering the term quadratic in Δt as an error term and inserting the expansion into the integral in (6) yields the Adams-Bashforth method. What order in Δt is the error of this time-stepping method?
- (b) Use the trapezoidal method to approximate the integral in (6). This would require the knowledge of u_{j+1} , which is still unknown. Determine the approximation \bar{u} for the u_{j+1} in the integral by a forward Euler step (this step is called the predictor step) and use it to determine then u_{j+1} (this step is called the corrector step). What order in Δt is the error for this predictor-corrector scheme?