Interdisciplinary Nonlinear Dynamics (438)

Fall 2001

Hermann Riecke

Problem Set 3

For Discussion Section October 19

1. Hysteresis and Jumps

a) Study the following model numerically.

$$\frac{du}{dt} = e^{0.3u} \sin 2u + e^{-0.1u} + A(t)$$

$$A(t) = \sin(\omega t).$$

$$(1)$$

$$A(t) = \sin(\omega t). \tag{2}$$

Use as initial condition u(t=0)=0 and run the solution to $t_{max}=200$. Choose $\omega=0.05$ to mimic a slow change of the "forcing" A. How does the time-dependence of the solution change qualitatively when you increase the amplitude A in steps from A = 1 to A = 23? Make sure that your solution is numerically resolved. Plot in the same graph A(t) and use it to identify ranges of A for which the solution exhibits hysteresis.

b) Interpret the result in terms of the bifurcations that the solutions to (1) undergo when A(t) is replaced by a constant A_0 and A_0 is scanned over the range covered by A(t) in your simulation.

2. Perturbed Transcritical Bifurcation

To unfold the transcritical bifurcation consider adding a perturbation h to obtain

$$\partial_t x = \mu x - x^2 + h. \tag{3}$$

Determine all possible bifurcation diagrams that are obtained as μ or h are varied, respectively. Try to sketch the solution surface $x = x(\mu, h)$. By projecting onto the (μ, h) -plane, determine the complete phase diagram, which shows how many solutions are obtained for any combination of the two parameters μ and h.

3. Perturbed Pitch-Fork Bifurcation

In class we considered the equation

$$\partial_t x = \mu x - x^3 + h \tag{4}$$

as the general form of perturbing the pitch-fork bifurcation. Often, instead the equation

$$\partial_t y = \nu y - y^3 + \alpha + \beta y^2 \tag{5}$$

is considered. It makes the fact more apparent that a special feature of the pitch-fork bifurcation is the missing of all even terms in x.

- (a) Introduce a suitable variable transformation form relating y and x as well as ν and μ that brings (5) into the form (4). What is the connection between the coefficients ν , α , β , and μ and h?
- (b) Use (5) to show that among the perturbations of the pitch-fork bifurcation are also diagrams of the form shown below.

Can such a bifurcation diagram also be obtained in (4)? If so, how do the parameters μ and h have to be varied to get it?

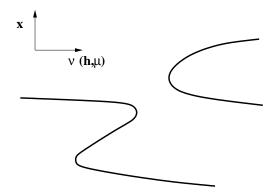


Figure 1: One possible perturbation of the pitch-fork bifurcation

4. Non-generic Scaling for Period

Strogatz: 4.3.10.

5. Superconducting Josephson Junction

Read Ch.4.6 in Strogatz and do the problems: 4.6.1, 4.6.2, 4.6.3.