
Lecture Note Sketches
Spectral Methods for Partial Differential Equations

Hermann Riecke
Engineering Sciences and Applied Mathematics

h-riecke@northwestern.edu

May 23, 2007

1

Contents

1 Motivation and Introduction 6

1.1 Review of Linear Algebra 7

2 Approximation of Functions by Fourier Series 10

2.1 Convergence of Spectral Projection 12

2.2 The Gibbs Phenomenon 20

2.3 Discrete Fourier Transformation 22

2.3.1 Aliasing . 26

2.3.2 Differentiation 27

3 Fourier Methods for PDE: Continuous Time 30

3.1 Pseudo-spectral Method 31

3.2 Galerkin Method . 33

4 Temporal Discretization 35

4.1 Review of Stability 35

4.2 Adams-Bashforth Methods 37

4.3 Adams-Moulton-Methods 39

4.4 Semi-Implicit Schemes 41

4.5 Runge-Kutta Methods 42

4.6 Operator Splitting . 44

4.7 Exponential Time Differencing and Integrating Fac-

tor Scheme . 45

4.8 Filtering . 48

5 Chebyshev Polynomials 53

5.1 Cosine Series and Chebyshev Expansion 53

5.2 Chebyshev Expansion 55

6 Chebyshev Approximation 60

6.1 Galerkin Approximation 60

6.2 Pseudo-Spectral Approximation 61

6.2.1 Implementation of Fast Transform 65

6.3 Derivatives . 67

6.3.1 Implementation of Pseudospectral Algorithm

for Derivatives 70

2

7 Initial-Boundary-Value Problems: Pseudo-spectral

Method 74

7.1 Brief Review of Boundary-Value Problems 74

7.1.1 Hyperbolic Problems 74

7.1.2 Parabolic Equations 75

7.2 Pseudospectral Implementation 75

7.3 Spectra of Modified Differentiation Matrices 77

7.3.1 Wave Equation: First Derivative 77

7.3.2 Diffusion Equation: Second Derivative 78

7.4 Discussion of Time-Stepping Methods for Chebyshev 80

7.4.1 Adams-Bashforth 81

7.4.2 Adams-Moulton 81

7.4.3 Backward-Difference Schemes 82

7.4.4 Runge-Kutta 84

7.4.5 Semi-Implicit Schemes 84

8 Initial-Boundary-Value Problems: Galerkin Method 85

8.1 Review Fourier Case 85

8.2 Chebyshev Galerkin 86

8.2.1 Modification of Set of Basis Functions 86

8.2.2 Chebyshev Tau-Method 87

9 Iterative Methods for Implicit Schemes 90

9.1 Simple Iteration . 91

9.2 Richardson Iteration 92

9.3 Preconditioning . 94

9.3.1 Periodic Boundary Conditions: Fourier 94

9.3.2 Non-Periodic Boundary Conditions: Cheby-

shev . 96

9.3.3 First Derivative 97

10 Spectral Methods and Sturm-Liouville Problems 99

A Insertion: Testing of Codes 104

B Details on Integrating Factor Scheme IFRK4 104

3

C Chebyshev Example: Directional Sensing in Chemo-

taxis 107

D Background for Homework: Transitions in Reaction-

Diffusion Systems 108

4

Index

2/3-rule, 50

absolute stability, 35

absolutely stable, 35

Adams-Bashforth, 36, 40

Adams-Moulton, 39, 40

adaptive grid, 52

aliasing, 26, 34, 48, 63

Arrhenius law, 23

basis, 9

bounded variation, 13

Brillouin zone, 26

Burgers equation, 32, 34

Cauchy-Schwarz, 16

Chebyshev Expansion, 54

Chebyshev Polynomials, 55

Chebyshev round-off error, 71

cluster, 56

CNAB, 47, 106

Complete, 10

Completeness, 11

completeness, 10

continuous, 15

Convergence Rate, 17

cosine series, 53

Crank-Nicholson, 39

Decay Rate, 15

diagonalization, 36

differentiation matrix, 71

Diffusion equation, 32

diffusive scaling, 38

discontinuities, 14

effective exponent , 18

exponential time differencing scheme,

46

FFT, 63, 69

Filtering, 47

Fourier interpolant, 25

Gauss-Lobatto integration, 61

Gibbs, 32

Gibbs Oscillations, 51

Gibbs Phenomenon, 20

Gibbs phenomenon, 54

global, 6

Heun’s method, 42

hyperbolic, 35

infinite-order accuracy, 18

integrating-factor scheme, 45

integration by parts, 16

interpolates, 36

interpolation, 39

Interpolation error, 27

Interpolation property, 25

Lagrange polynomial, 70

linear transformation, 9

Matrix multiplication method, 29

matrix-multiply, 70

Method, 30

modified Euler, 42

natural ordering, 65

Neumann stability, 35

Newton method, 34

non-uniform convergence, 13

normal, 36

numerical artifacts, 52

Operator Splitting, 43

operator splitting error, 44

Orszag, 50

Orthogonal, 10

overshoot, 22

pad, 50

parabolic, 35

Parseval identity, 12

piecewise continuous, 20

pinning, 34

pointwise, 22

predictor-corrector, 40

projection, 9, 11

projection error, 27

5

projection integral, 59

recursion, 65

recursion relation, 55

Runge-Kutta, 41

scalar product, 8

Schwartz inequality, 8, 12

Semi-Implicit, 41

shock, 47

shocks, 32

Simpson’s rule, 42

singularity, 18

smoothing, 51

Spectral Accuracy, 16

spectral accuracy, 24, 59

Spectral Approximation, 18

spectral blocking, 48

spectral projection, 11, 13

stable, 35

stages, 42

strip of analyticity, 18

Sturm-Liouville problem, 57

total variation, 12

Transform method, 28

trapezoidal rule, 24, 60

turbulence, 47

two-dimensionsional, 40

unconditionally stable, 39

unique, 42

Variable coefficients, 31

variable wave speed, 40

Variable-coefficient, 33

vector space, 7

weight, 56

weighted scalar product, 56

6

1 Motivation and Introduction

Central step when solving partial differential equations: approxi-

mate derivatives in space and time. Focus here on spatial deriva-

tives.

Finite difference approximation of (spatial) derivatives:

• Accuracy depends on order of approximation ⇒ number of

grid points involved in the computation (width of ‘stencil’)

• For higher accuracy use higher-order approximation

⇒ use more points to calculate derivatives

• function is approximated locally by polynomials of increas-

ing order

To get maximal order use all points in system

⇒ approximate function globally by polynomials

More generally:

• approximate function by suitable global functions fk(x)

u(x) =
∞∑

k=1

ukfk(x)

fk(x) need not be polynomials

• calculate derivative of fk(x) analytically: exact

⇒ error completely in expansion

Notes:

• For smooth functions the order of the approximation of the

derivative is higher than any power.

• high derivatives not problematic

7

finite differences: local approximation u = u1, u2, ...uN

unknowns: values at grid points

spectral: global approximation u = ũ1, ũ2, ...ũN

unknowns: Fourier amplitudes

Note: in pseudo-spectral methods again values at grid points

used although expanded in a set of global functions

Thus:

• Study approximation of functions by sets of other func-

tions

• Impact of spectral approach on treatment of temporal evo-

lution

We will use Fourier modes and Chebyshev polynomials

Recommended books (for reference)

8

• Spectral Methods in Fluid Dynamics by C. Canuto, M.Y.

Hussaini, A. Quarteroni, and T.A. Zang, Springer (ISBN

3540522050).

• Spectral Methods in MATLAB by L.N. Trefethen, SIAM,

ISBN 0898714656

• Chebyshev and Fourier Spectral Methods by J.P. Boyd, Dover

(2001).

1.1 Review of Linear Algebra

Motivation: Functions can be considered as vectors

=⇒ consider approximation of vectors by other vectors

Definition: V is a real (complex) vector space if for all u,v ∈ V
and all α, β ∈ R(C)

αu + βv ∈ V

Examples:

a) R3 = {(x, y, z)|x, y, z ∈ R} is a real vector space

b) Cn is a complex vector space

c) all continuous functions form a vector space:

αf(x) + βg(x) is a continuous function if f(x) and g(x) are

d) The space V = {f(x)|continuous, 0 ≤ x ≤ L, f(0) = a, f(L) = b}
is only a vector space for a = 0 = b. Why?

Definition: For a vector space V < ·, · >: V × V → C is called a

scalar product or inner product iff

< u, v > = < v, u >∗

< αu+ βv, w > = α∗ < u,w > +β∗ < v,w >, α, β ∈ C

< u, u > ≥ 0

< u, u >= 0 ⇔ u = 0.

Notes:

• < u, v > is often written as u+ · v.

• v is a column vector, u+ is a row vector

Examples:

a) in R3 < u, v >=
∑3

i=1 uivi is a scalar product

9

b) in L2 ≡ {f(x)|
∫∞
−∞ |f(x)|2 dx <∞}

< u, v >=

∫ ∞

−∞
u∗(x)v(x) dx

is a scalar product.

Notes:

• u(x) can be considered the “x−th component” of the abstract

vector u.

• < u, u >≡ ||u|| defines a norm.

• scalar product satisfies Cauchy-Schwartz inequality

| < u, v > | ≤ ||u|| ||v||

(since the cosine of the angle between the vectors is smaller

than 1)

Definition: The set {v1, ...,vN} is called an orthonormal com-

plete set (or basis) of V if any vector u ∈ V can be written as

u =
N∑

i=1

uivi,

with v+
i · vj ≡ < vi,vj >= δij.

Calculate the coefficients ui:

< vj,u >=
∑

ui < vj,vi >=
∑

uiδij = uj

Example: projections in R2

10

u1v1 =< v1,u > v1 is the projection of u onto v1.

Projections take one vector and transform it into another vector:

Definition: L : V → V is called a linear transformation iff

L(αv + βw) = αLv + βLw

Definition: A linear transformation P : V → V is called a pro-

jection iff

P 2 = P

Examples:

1. Pv = N−1v v+ with N = v+ · v is a projection onto v:

Pvu = v
v+ · u
v+ · v

P 2
v u = v

v+

v+ · v ·
(

v
v+ · u
v+ · v

)

= v
v+ · u
v+ · v = Pvu

Notes:

• v+ · v is a scalar while v v+ is a projection operator

• v+ · u/v+ · v is the length of the projection of u onto v

2. Let {vi, i = 1..N} be a complete orthonormal set

u =
N∑

i=1

(v+
i · u)vi = (

N∑

i=1

viv
+
i) · u

thus we have
N∑

i=1

viv
+
i = I

i.e. the sum over all projections onto a complete set yields

the identity transformation: completeness of the set v

3. A linear transformation L can be represented by a matrix:

(Lu)i = v+
i L

N∑

j=1

ujvj =
∑

j

v+
i Lvj uj =

∑

j

Lijuj

with

Lij = v+
i Lvj

The identity transformation is given by the matrix

Iij = v+
i (
∑

k

vkv
+
k)vj =

∑

k

δikδkj = δij

Note: The matrix elements Lij depend on the choice of the basis

Getting back to functions: Vector spaces formed by functions of-

ten cannot be spanned by a finite number of vectors, i.e. no finite

set {v1, ...,vN} suffices ⇒ need to consider sequences and series

of vectors. We will not dwell on this sophistication.

11

2 Approximation of Functions by Fourier

Series

Periodic boundary conditions are well suited to study phenomena

that are not dominated by boundaries. For periodic functions it

is natural to attempt approximations by Fourier series.

Consider the set of functions {φk(x) = eikx|k ∈ N}. It forms a

complete orthogonal set of L2[0, 2π].

1) Orthogonal:

φ+
k · φl ≡< φk, φl >=

∫ 2π

0

(eikx)∗eilx dx = 2πδlk

2) Complete:

for any u(x) ∈ L2[0, 2π] there exist {uk|k ∈ N}

lim
N→∞

||u(x) −
N∑

k=−N

ukφk(x)||2 = 0

i.e.

lim
N→∞

∫ 2π

0

|u(x) −
N∑

k=−N

uke
ikx|2 dx = 0

with the Fourier components given by

uk =
1

2π
< φ+

k , u >=
1

2π

∫ 2π

0

e−ikxu(x) dx

Note:

• Completeness implies

lim
N→∞

N∑

|k|=0

eik(x−x′) = 2π
∞∑

l=−∞
δ(x− x′ + 2πl).

Definition: The spectral projection PNu(x) of u(x) is defined as

PNu(x) =
N∑

|k|=0

ukφk(x).

Thus,

lim
N→∞

||u(x) − PNu(x)||2 = 0.

Notes:

12

• PN is a projection, i.e. P 2
N = PN (see homework)

• PN projects u(x) onto the subspace of the lowest 2N + 1
Fourier modes

• ||PNu(x)||2 = 2π
∑N

|k|=0 |uk|2:

||PNu(x)||2 = < PNu, PNu >

= <
N∑

|k|=0

ukφk(x),
N∑

|l|=0

ulφl(x) >

=
∑

kl

u∗kul < φk(x), φl(x) >

=
∑

kl

u∗kul 2π δkl

= 2π
N∑

|k|=0

|uk|2.

• Parseval identity extends this to the limit N → ∞ :

||u||2 = lim
N→∞

||PNu||2 = lim
N→∞

2π
∞∑

|k|=0

|uk|2

i.e. the L2−norm of a vector is given by the sum of the

squares of its components for any orthonormal complete set.

Thus, as more components are included the retained “en-

ergy” approaches the full energy.

Proof: we have

lim
N→∞

||u(x) − PNu(x)||2 = 0

and want to conclude ||u(x)||2 = limN→∞ ||PNu(x)||2.
Consider

(||u|| − ||v||)2 = ||u||2 + ||v||2 − 2||u|| ||v||
≤ ||u||2 + ||v|2 − 2| < u, v > |

using Schwartz inequality | < u, v > | ≤ ||u|| ||v|| (projection

is smaller than the whole vector).

Now use 2| < u, v > | ≥ 2Re(< u, v >) =< u, v > + < v, u >
(note < u, v > is in general complex).

Then

||u||2−||v||2 ≤ ||u||2+||v|2− < u, v > − < v, u >=< u−v, u−v >= ||u−v||2.

Get Parseval identity with v = PNu.

13

2.1 Convergence of Spectral Projection

Convergence of Fourier series depends strongly on the function

to be approximated

The highest wavenumber needed to approximate a function well

surely depends on the number of “wiggles” of that function.

Definition: The total variation V(u) of a function u(x) on [0, 2π]
is defined as

V(u) = sup
n

sup
0=x0<x1<...<xn=2π

n∑

i=1

|u(xi) − u(xi−1)|

Notes:

• the supremum is defined as the lowest upper bound

• for supremum need only consider xi at extrema

Examples:

1. u(x) = sinx on [0, 2π] has V(u) = 4

14

2. variation of u(x) = sin 1
x

is unbounded on (0, 2π].

Results: One has for the spectral projection:

1. u(x) continuous, periodic and of bounded variation

⇒ PNu converges uniformly to u:

lim
N→∞

max
x∈[0,2π]

∣
∣
∣
∣
∣
∣

u(x) −
N∑

|k|=0

eikxuk

∣
∣
∣
∣
∣
∣

= 0

(pointwise convergence)

Notes:

• example for uniform and non-uniform convergence:

consider u(x) = a
x

– on [1, 2] lima→0 u(x) = 0 converges uniformly

max
x∈[1,2]

∣
∣
∣
a

x

∣
∣
∣ = a→ 0

– on (0, 1) lima→0 u(x) = 0 converges but not uni-

formly

max
x∈(0,1)

∣
∣
∣
a

x

∣
∣
∣ = does not exist sup

x∈(0,1)

∣
∣
∣
a

x

∣
∣
∣ = ∞

15

Thus:

uniform convergence of Fourier approximation ⇒ there is

an upper bound for error along the whole function (upper

bound on global error).

2. u(x) of bounded variation

⇒ PNu converges pointwise to 1
2
(u+(x) + u−(x)) for any x ∈

[0, 2π] where at discontinuities u±(x) = u(x± ǫ)
Note: even if u(x) is discontinuous PNu(x) is always contin-

uous for finite N

3. For u(x) ∈ L2 the projection PNu converges in the mean,

lim
N→∞

∫ ∞

−∞
|u(x) −

∑

k

φkuk|2 dx = 0

but possibly u(x0) 6= PNu(x0) at isolated values of x0, i.e.

pointwise convergence except for possibly a “set of measure

16

0”.

4. u(x) continuous and periodic but PNu does not necessarily

converge for all x ∈ [0, 2π]
Note: What could go ‘wrong’? Are there functions that are

periodic and continuous but have unbounded variation?

consider u(x) = x sin 1
x

on [− 1
π
, 1

π
] (note sin 1

x
is not defined at

x = 0)

u(x) is continuous: limx→0 x sin 1
x

= 0
u(x) is periodic on [− 1

π
, 1

π
]

u(x) not differentiable at x = 0: u′(x) = sin 1
x
− 1

x
cos 1

x

Decay Rate of Coefficients:

The error ||u−PNu|| =
∑

|k|>N |uk|2 is determined by uk for |k| > N
(cf. Parseval identity). Question: how fast does the error decrease

as N is increased?

⇒ consider uk for k → ∞

2π uk = < φk, u >=

∫ 2π

0

e−ikxu(x) dx

=
i

k
e−ikxu(x)|2π

0 − i

k

∫ 2π

0

e−ikxdu

dx
dx

=
i

k
(u(2π−) − u(0+)) − i

k
< φk,

du

dx
>

...

=
i

k
(u(2π−) − u(0+)) + ...+ (−1)r−1(

i

k
)r

(
dr−1u

dxr−1

∣
∣
∣
∣
2π−

− dr−1u

dxr−1

∣
∣
∣
∣
0+

)

+ (−1)r(
i

k
)r < φk,

dru

dxr
> .

Use Cauchy-Schwarz | < φk,
dru
dxr > | ≤ ||φk|| ||d

ru
dxr || as long as

||dru
dxr || <∞ :

|uk| ≤
∣
∣
∣
∣

1

2πk

(
u(2π−) − u(0+)

)
∣
∣
∣
∣
+...+

1

2π

∣
∣
∣
∣
(
1

k
)r

(
dr−1u

dxr−1

∣
∣
∣
∣
2π−

− dr−1u

dxr−1

∣
∣
∣
∣
0+

)∣
∣
∣
∣
+

∣
∣
∣
∣

1√
2πkr

||d
ru

dxr
||
∣
∣
∣
∣
.

Thus:

• for non-periodic functions

|uk| = O
(

1

k
(u(2π−) − u(0+)

)

• for C∞−functions whose derivatives are all periodic iterate

integration by parts indefinitely:

|uk| ≤
1

2πkr
||d

ru

dxr
|| for any r ∈ N.

Decay in k faster than any power law: Spectral Accu-

racy

17

• Cauchy-Schwarz estimate too soft: iteration possible as long

as
∣
∣
∣
∣
< φk,

dru

dxr
>

∣
∣
∣
∣
< ∞

(i.e. dru
dxr ∈ L1, see e.g. Benedetto: Real Analysis):

Thus

dlu
dxl periodic for 0 ≤ l ≤ r − 2

dru
dxr ∈ L1

 ⇒ uk = O
(

1
kr

)

Note:

• only dr−2u
dxr−2 has to be periodic because boundary contribution

of dr−1u
dxr−1 is of the same order as that of the integral over dru

dxr

Examples:

1. u(x) = (x−π)2 is C∞ in (0, 2π), but derivative is not periodic:

uk =
1

2π

∫ 2π

0

e−ikx(x− π)2 dx =
2

k2

origin for only quadratic decay are the boundary terms:

uk = − i

2πk

∫ 2π

0

e−ikxdu

dx
dx =

1

2π

1

k2
(u′(2π−)−u′(0+))+

1

2π

1

k2

∫ 2π

0

e−ikxu′′(x)dx =
2

k2

since u′(2π−) = 2π = −u′(0+) and
∫ 2π

0
e−ikxu′′(x)dx = 0.

2. u(x) = θ(x)x2 − θ(x− π) ((x− 2π)2 − x2) should be similar:

periodic, but discontinuity of derivative

1st derivative has jump, 2nd derivative is δ−function, i.e. in

L1 but not in L2.

Estimate Convergence Rate of Spectral Approximation

Consider approximation for u(x)

E2
N ≡ ||u−PNu||2 =

∑

|k|>N

|uk|2 =
∑

|k|>N

|uk|2
|k|2r

|k|2r
≤ 1

N2r

∑

|k|>N

|uk|2 |k|2r

If dru
dxr exists and is square-integrable then the sum converges and

is bounded by the norm ||dru
dxr ||2

||u− PNu||2 ≤
1

N2r
||d

ru

dxr
||2.

18

For u(x) ∈ C∞ with all derivatives periodic the inequality holds

for any r

||u− PNu||2 ≤ inf
r

1

N2r
||d

ru

dxr
||2 (1)

Notes:

• The order of convergence depends on the smoothness of the

function (highest square-integrable derivative)

• In general

||d
ru

dxr
||2 → ∞ faster than exponentially for r → ∞

i) Example

||d
reiqx

dxr
|| = qr||eiqx||

Thus, for simple complex exponential || dr

dxr e
iqx|| grows expo-

nentially in r.
ii) For functions that are not given by a finite number of

Fourier modes the norm has to grow with r faster than ex-

ponentially:

show by contradiction

If ||d
ru

dxr
||2 ∝ η2r then EN ∝

(η

N

)2r

Can then pick a fixed N > η to get

inf
r
EN = 0

⇒ approximation is exact for finite N in contradiction to as-

sumption..

• Effective exponent of convergence depends on N :

Consider

lnEN = ln

(

inf
r

1

N2r
||d

ru

dxr
||2
)

= inf
r

(

ln ||d
ru

dxr
||2 − 2r lnN

)

||dru
dxr ||2 grows faster than exponential ⇒ ln||dru

dxr ||2 grows faster

than linearly for large r

r

small N
large N

19

⇒ can pick N sufficiently large that for small r denominator

N r grows faster in r
⇒ error estimate decreases with r
for larger r the exponential N r does not grow fast enough

⇒ error estimate grows with r
value of r at the minimum gives effective exponent for de-

crease in error in this regime of N .

With increasing N the minimum in the error estimate (solid

circle in the figure) is shifted to larger r
⇒ effective order of accuracy increases with N :

• Convergence faster than any power: infinite-order accuracy

||u− PNu||2 ∼ e−αN

with α depending on the width of the strip of analyticity of

u(x) when u(x) is continued analytically into the complex

plane (cf. Trefethen Theorem 1c, p.30)

Example:

Consider tanh (ξ sin z) with z = x + iy along the imaginary

axis:

tanh (ξ sin iy) =
sinh (ξi sinh y)

cosh (ξi sinh y)
=

sinh (ξi sinh y)

cos (ξ sinh y)

has a first singularity at y± with ξ sinh y± = 1
2
π. Strip of

analyticity has width α ∼ y+ − y− ∼ 1
ξ

Spectral Approximation:

• convergence becomes faster with increasing N

• high-order convergence only for sufficiently large N

20

Finite-Difference Approximation:

• order of convergence fixed

Spectral approximation guaranteed to be superior to fi-

nite difference methods only in highly accurate regime

Approximation of Derivatives

Given u(x) =
∑
uke

ikx the derivatives are given by

dnu

dxn
=

∞∑

|k|=0

(ik)nuke
ikx

if the series for the derivative converges (again, convergence in

the mean)

Note:

• not all square-integrable functions have square-integrable

derivatives
dθ

dx
= δ(x)

• if series for u(x) converges uniformly then its 1st derivative

still converges (possibly not uniformly)

• convergence for dqu
dxq is a power of N q slower than that for u

since one can take only q fewer derivatives of it than of u,

dqu

dxq
=
∑

k

(ik)quk e
ikx

coefficients (ik)quk decay more slowly than uk itself.

the estimate (1) gets weakened by

||d
qu

dxq
− PN

dqu

dxq
||2 ≤ inf

r

1

N2r−2q
||d

ru

dxr
||2 for r > q

• Periodic boundary conditions: non-periodic derivative dru
dxr

equivalent to discontinuous dru
dxr , i.e. dr+1u

dxr+1 not square-integrable

2.2 The Gibbs Phenomenon

Consider convergence in more detail for u(x) piecewise continu-

ous

PNu(x) =
N∑

|k|=0

uke
ikx =

1

2π

∫ 2π

0

N∑

|k|=0

e−ikx′+ikxu(x′) dx′

21

PN can be written more compact as

DN(s) ≡
N∑

|k|=0

eiks =
sin(N + 1

2
)s

sin(1
2
s)

.

since
(

ei 1
2
s − e−i 1

2
s
) [
e−iNs + e−i(N−1)s + ...+ eiNs

]
= ei(N+ 1

2
)s − e−i(N+ 1

2
)s

Insert

PNu(x) =
1

2π

∫ 2π

0

sin
[
(N + 1

2
)(x− x′)

]

sin
[

1
2
(x− x′)

] u(x′) dx′

=
1

2π

∫ x

x−2π

sin(N + 1
2
)t

sin 1
2
t

u(x− t) dt

Completeness

lim
N→∞

DN(s) =
∞∑

|k|=0

eiks = 2π
∞∑

l=−∞
δ(s+ 2πl)

⇒ for largeN DN(s) is negligible except near s = 2πl, l = 0,±1,±2, ...
.

For x near x0 approximate u(x) (possibly discontinuous):

u(x−0) = u− u(x+
0) = u+ x = x0 +

∆x

N + 1
2

22

PNu(x0 +
∆x

N + 1
2

) ≈ 1

2π

∫ ǫ

−ǫ

sin(N + 1
2
)t

sin 1
2
t

u(x0 +
∆x

N + 1
2

− t)dt

=
1

2π
u+

∫ ∆x

N+1
2

−ǫ

sin(N + 1
2
)t

1
2
t

dt+
1

2π
u−
∫ ǫ

∆x

N+1
2

sin(N + 1
2
)t

1
2
t

dt

Now with s = (N + 1
2
)t for N → ∞ and ǫ fixed

∫ ∆x

−(N+ 1
2
)ǫ

sin s

s
ds →

∫ ∆x

−∞

sin s

s
ds

=
1

2

∫ ∞

−∞

sin s

s
ds+

∫ ∆x

0

sin s

s
ds

=
π

2
+ Si(∆x)

with Si(x) the sine integral and limx→∞ Si(x) = π/2.

Similarly:

∫ ǫ(N+ 1
2
)

∆x

sin s

s
ds →

∫ ∞

∆x

sin s

s
ds

=
1

2

∫ ∞

−∞

sin s

s
ds+

∫ 0

∆x

sin s

s
ds

=
π

2
− Si(∆x)

Thus

PNu(x0 +
∆x

N + 1
2

) ≈ 1

2
(u+ + u−) +

1

π
Si(∆x)(u+ − u−)

Note:

23

• Maximal overshoott is 9% of the jump (independent of N)

PNu(x0+
π

N + 1
2

)−u+ = (u+−u−)

(
1

π
Si(π) − 1

2

)

= (u+−u−) 0.09

• Location of overshoot at x0 + π
N+ 1

2

converges to jump position

x0. Everywhere else series converges pointwise to u(x)

• the maximal error does not decrease: convergence is not

uniform in x; but convergence in the L2-norm, since ‘area

between PNu and u goes to 0.

• Smooth oscillation can indicate severe problem: unresolved

discontinuity

To capture true discontinuity finite differences may be bet-

ter.

• Smooth step (e.g. tanhx/ξ):
as long as step is not resolved expect behavior like for dis-

continuous function

slow convergence and Gibbs overshoot (⇒HW), only when

enough modes are retained to resolve the step the exponen-

tial convergence will set in.

2.3 Discrete Fourier Transformation

We had continuous Fourier transformation

u(x) =
∞∑

|k|=0

eikxuk

with

uk =
1

2π

∫ 2π

0

e−ikxu(x)dx

Consider evolution equation

∂u

∂t
= F (u,

∂u

∂x
)

Our goal was to do the time-integration completely in Fourier

space since our variables are the Fouriermodes ⇒ need Fourier

components Fk

Consider linear PDE:

• F (u, ∂
∂x

) = ∂2
xu

24

∂u

∂t
=
∂2u

∂x2

Insert Fourier expansion and project onto φk = eikx

duk

dt
= −k2uk

Consider nonlinear PDEs:

• Polynomial: F (u) = u3

Fk =

∫

u(x)3e−ikx dx =

∫

dx e−ikx
∑

k1

eik1xuk1

∑

k2

eik2xuk2

∑

k3

eik3xuk3

=
∑

k1

∑

k2

uk1uk2uk−k1−k2

convolution requires N2 multiplication of three numbers,

compared to a single such multiplication

for rth−order polynomial need N r−1operations: slow!

• General nonlinearities, e.g.

coupled pendula

F (u) = sin(u) = 1 − 1

3!
u3 +

1

5!
u5 + ...

Arrhenius law in chemical reactions

F (u) = eu =
∞∑

l=0

1

l!
ul

arbitrarily high powers of u, cannot use convolution

Evaluate nonlinearities in real space:

need to transform efficiently between real space and Fourier space

Discrete Fourier transformation:

trapezoidal rule with 2N collocation points

ũk =
1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj) xj =
2π

2N
j

Question: will we loose spectral accuracy with only 2N grid

points in integral?

Notes:

25

• trapezoidal rule: 1
2
11111..111

2
. For periodic functions

1

2
eikx0u(x0) +

1

2
eikx2Nu(x2N) = eikx0u(x0)

• now limited range of relevant wave numbers: −N ≤ k ≤ N
Calculate high wavenumber component

ũN+m =
1

2N

2N−1∑

j=0

e−iN 2π
2N

j
︸ ︷︷ ︸

e−iπj

e−imxj u(xj)

=
1

2N

2N−1∑

j=0

e+iπj e−imxj u(xj)

= ũ−N+m

thus: ũN = ũ−N and there are only 2N independent ampli-

tudes

Fourier space is now periodic ⇔ discrete (rather than con-

tinuous) grid in space

this is the converse of the Fourier spectrum becoming dis-

crete when the real space is made periodic (rather than in-

finite)

Two possible treatments:

1. restrict −N ≤ k ≤ N − 1 (somewhat asymmetric)

in Matlab: (ũ0, ũ1, ...ũN , ũ−N+1, ũ−N+2, ..., ũ−1)

2. in these notes we set

ũN = ũ−N =
1

2

1

2N

2N−1∑

j=0

eiNxju(xj)

i.e.

cN = c−N = 2 and cj = 1 for j 6= ±N

Inverse Transformation

IN(u(xj)) =
N∑

k=−N

ũke
ikxj

Orthogonality:

< φk, φl >N=
1

2N

2N−1∑

j=0

ei(l−k) 2π
2N

j =
∞∑

l−k=−∞
δl−k,2Nm

cancellation of the Fourier modes in the sum for N = 4 and

l − k = 1:

26

Note:

• < φk, φl >N 6= 0 if k − l is any multiple of 2N and not only for

k = l.
high wavenumbers are not necessarily perpendicu-

lar to low wavenumbers

Notation: < ., . >N denotes the scalar product of functions de-

fined only at N discrete points xj

Interpolation property

Consider IN(u) on the grid

IN(u(xl)) =
N∑

k=−N

ũke
ikxl

=
N∑

k=−N

1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)e
ikxl interchange sums to get δ

=
1

2N

2N−1∑

j=0

u(xj)
2N∑

r≡k+N=0

ei(r−N) 2π
2N

(l−j) 1

cr−N

in the r-sum: for r = 2N we have eiπ(l−j) 1
2

and for r = 0 we have

e−iπ(l−j) 1
2

⇒ using completeness sum adds up to 2Nδlj(note that |l−j| < 2N)

Thus

IN(u(xl) =
1

2N

2N−1∑

j=0

u(xj) 2Nδjl = u(xl).

Notes:

• On the grid xj the function u(x) is represented exactly by

IN(u(x)); no information lost on the grid

• IN(u(x)) is often called Fourier interpolant.

27

2.3.1 Aliasing

For discrete Fourier transform function only on the grid: what

happens to the high wavenumbers that cannot be represented on

that grid?

Consider u(x) = ei(r+2N)x with 0 < |r| < N .

Continuous Fourier transform: PNu = 0 since the wavenumber is

higher than N .

Discrete Fourier transform:

u(xj) = ei(2N+r) 2π
2N

j = eir 2π
2N

j = eirxj

On the grid u(x) looks like eirx: IN(u(xj)) = eirxj 6= 0

u(x) is folded back into the 1st Brillouin zone

Notes:

• highest wavenumber that is resolvable on the grid: |k| = N

e±iN 2π
2N

j = (−1)j

• in CFT unresolved modes are set to 0

• in DFT unresolved modes modify the resolved modes: alias-

ing

Relation between CFT and DFT coefficients:

ũk =
1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)

=
1

2N

1

ck

∞∑

l=−∞

2N−1∑

j=0

ei(l−k) 2π
2N

jul

=
1

ck

∞∑

l=−∞

∞∑

m=−∞
δl−k,2Nmul

ũk =
1

ck
uk +

1

ck

∞∑

|m|=1

uk+2Nm

The sum contains the aliasing terms from higher harmonics that

are not represented on the grid.

High wavenumbers look like low wavenumbers and contribute to

low-k amplitudes

Error ‖u− INu‖2
:

28

INu =
N∑

k=−N

ũke
ikx =

N∑

k=−N

1

ck
uk +

1

ck

∞∑

|m|=1

uk+2Nm

eikx

= PNu+RNu

||u−INu||2 = || u− PNu
︸ ︷︷ ︸

all modes have |k|>N

− RNu
︸︷︷︸

all modes have |k|≤N

||2 =
︸︷︷︸

orthogonality

||u−PNu||2+||RNu||2

Interpolation error is larger than projection error.

Decay of coefficients:

if CFT coefficients decay exponentially, uk ∼ e−α|k|, so will the

DFT coefficients:

ũk ∼ 1

ck
e−α|k|+

1

ck

∞∑

|m|=1

e−α|k+2Nm| ∼
︸︷︷︸

geometric series

∼ 1

ck
e−α|k|+

1

ck

2e−2αN

1 − e−2αN
for k ≪ N

Thus:

The asymptotic convergence properties of the DFT are essentially

the same as those of the CFT ⇒ homework assignment

2.3.2 Differentiation

Main reason for spectral approach: derivatives

For CFT one has: projection and differentiation commute:

d

dx
(PNu) =

N∑

k=−N

ikuke
ikx

PN(
du

dx
) =

N∑

k=−N

(
du

dx
)ke

ikx

=
N∑

k=−N

1

2π

∫

e−ikx′ du

dx′
dx′ eikx using i.b.p. :

=
N∑

k=−N

1

2π
ik

∫

e−ikx′

u(x′)dx′ eikx

=
d

dx
(PNu)

For DFT interpolation and differentiation do not commute:

d

dx
(INu) 6= IN(

du

dx
).

29

i.e. d
dx

(INu) does not give the exact values of du
dx

on the grid points.

INu does not agree with u between grid points ⇒ its derivative

does not agree with the derivative of u on the grid points, but

IN(du
dx

) does interpolate du
dx

.

Asymptotically, the errors of In(du
dx

) and of d
dx
IN(u) are of the same

order.

Implementation of Discrete Fourier Transformation

Steps for calculating derivatives at a given point:

i) Transform method

1. calculate ũk from values at collocation points xj:

ũk =
1

2N

1

ck

2N−1∑

j=0

e−ikxju(xj)

2. for rth−derivative
dru

dxr
⇒ (ik)rũk

3. back-transformation at collocation points

dr

dxr
IN(u(xj)) =

N∑

k=−N

(ik)rũke
ikxj

Notes:

• seems to require O(N2) operations

compared to O(N) operations for finite differences

• for N = 2l3m5n... DFT can be done in O(N lnN) operations

using fast Fourier transform1

1In matlab functions FFT and IFFT.

30

• for u real: ũk = ũ∗−k ⇒ need to calculate only half the ũk:

special FFT that stores the real data in a complex array of

half size

N independent variables: ũ0 and ũN real, ũ1,...,ũN−1 complex

ii) Matrix multiplication method

dr

dxr IN(u) is linear in u(xj):

dr

dxr
IN(u(xj)) =

N∑

k=−N

(ik)rũke
ikxj interchange sums

=
2N−1∑

l=0

(
N∑

k=−N

(ik)r 1

2N

1

ck
eik(xj−xl)

)

u(xl)

write in terms of vectors and matrix

u(x0)
...

u(x2N−1)

 = u
dr

dxr
IN(u) =

...
u(r)(xj)

...

Then first derivative

u(1) = Du

with

Djl =
1

2N

N∑

k=−N

ik
1

ck
eik 2π

2N
(j−l) =

1
2
(−1)j+l cot(j−l

2N
π) for j 6= l

0 for j = l

Higher derivatives

u(r) = Dru

Notes:

• D is 2N × 2N matrix (j, l = 0, ..., 2N − 1)

• D is anti-symmetric: Dlj = −Djl

• matrix multiplication is expensive: N2 operations

but multiplication can be vectorized, i.e. different steps of

multiplication/addition are done simultaneously for differ-

ent numbers in the matrix

31

Eigenvalues of Pseudo-Spectral Derivative:

Fourier modes with |k| ≤ N − 1 are represented exactly

Deikx = ik eikx for |k| ≤ N − 1

⇒ plane waves eikx must be eigenvectors with eigenvalues

λk = ik = 0,±1i,±2i, ...,±(N − 1)i

D has 2N eigenvalues: one missing

trD = 0 ⇒∑

k λk = 0 ⇒ last eigenvalue λN = 0

can see that also via: eiN 2π
2N

j = (−1)j = e−iN 2π
2N

j ⇒ eigenvalue must

be independent of the sign of N ⇒ λN = 0

Interpretation: consider PDE

∂u

∂t
=
∂u

∂x
with u = eiωt+ikx

Frequency ω numerically determined by Du: ω = λk

For |k| ≤ N − 1 the solution is a traveling wave with direction of

propagation given by sign of k.

For k = ±N one has u(xj) = (−1)j: does not define a direction of

propagation ⇒ ω ≡ λk = 0.

Note: 0 eigenvalue also in transform method: iNũNe
iNxj+(−iN)ũ−Ne

−iNxj =
0 since ũN = ũ−N .

3 Fourier Methods for PDE: Continuous

Time

Consider PDE

∂u

∂t
= S(u) ≡ F (u,

∂u

∂x
,
∂2u

∂x2
, ...)

The operator S(u) can be nonlinear

Two methods

1. Pseudo-spectral:

u⇒ INu

Spatial derivatives in Fourier space

Nonlinearities in real space

temporal evolution performed in real space or in Fourier

space:

i.e. unknowns to be updated are the u(xj) in real space or

the ũk in Fourier space

32

2. Galerkin method

u⇒ PNu

completely in Fourier space: spatial derivatives, nonlinear-

ities and temporal updating are all done in Fourier space

3.1 Pseudo-spectral Method

Method involves the steps

1. introduce collocation points xj and u(xj)

2. transfrom numerical solution u(xj) ⇒ ũk to Fourier space

3. evaluate derivatives using ũk

4. transform back into real space and evaluate nonlinearities

5. evolve in time either in real space or in Fourier space

du

dt
= S(IN(u))

Note:

IN(u) is not the spectral interpolant of the exact solution u since

solving PDE induces errors as:

1.

IN(
du

dt
) =

d

dt
IN(u)

= IN(S(u)) 6= S(IN(u))

since spatial derivative does not commute with IN

2. time-stepping introduces errors beyond the spectral approx-

imation.

Examples:

1. Wave equation

∂tu = ∂xu

a) Using FFT

∂tu(xj) = ∂xIN(u(xj)) =
N∑

k=−N

ikũke
ikxj

33

Note: ũk and the sum over k (=back-transformation) are

evaluated via two FFTs.

b) Using multiplication with spectral differentiation matrix

D,

∂tu(xj) =
∑

l

Djlu(xl)

2. Variable coefficients

∂tu = c(x)∂xu

a)

∂tu(xj) = c(xj) ∂xIN(u(xj))

multiply by wave speed in real space

b)

∂tu(xj) =
∑

lm

CjlDlmu(xm)

with Cjl = c(xj)δjl diagonal matrix.

3. Reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

a) using FFT

∂tu(xj) = ∂2
xIN(u(xj)) + f(u(xj)) = −

N∑

k=−N

k2ũke
ikxj + f(u(xj))

b) matrix multiplication

∂tu(xj) =
∑

lm

DjlDlmu(xm) + f(u(xj))

calculate DjlDlm only once at the beginning.

4. Burgers equation

∂tu = u∂xu

=
1

2
∂x(u

2) in conservation form

consider both types of nonlinearities2 αu∂xu+ β∂x(u
2)

a)

αu(xj)∂xIN(u(xj)) = αu(xj)
N∑

k=−N

ik ũke
ikxj

2Note: For smooth functions the two formulations are equivalent.Burgers

equation develops shocks at which the solution becomes discontinuous: formu-

lations not equivalent, need to satisfy entropy condition, which corresponds to

adding a viscous term ν∂2

x
u and letting ν → 0.

34

β ∂xIN(u2(xj)) = β

N∑

k=−N

ik w̃ke
ikxj

w̃k =
1

2N

2N−1∑

j=0

e−ikxj u2(xj)

b)

∂tu(xj) = αu(x)Du+ βD

u(x0)
2

...
u(x2N−1)

2

Notes:

• spectral methods will lead to Gibbs oscillations near

the shock

• pseudo-spectral methods: on the grid the oscillations

may not be visible; may need to plot function between

grid points as well, but derivatives show oscillations

• all sums over Fourier modes k or grid points j should

be done via FFT.

3.2 Galerkin Method

Equation solved completely in Fourier space

1. plug

u(x) =
N∑

k=−N

uke
ikx

into ∂tu = S(u)

2. project equation onto first 2N Fourier modes (−N ≤ l ≤ N)

∂tul ≡
1

2π

∫ 2π

0

e−ilx∂tu(x) dx =
1

2π

∫ 2π

0

e−ilx S(u(x)) dx

More generally retaining N modes from a complete set of func-

tions {φk(x)}

u(x) =
N∑

k=1

ukφk(x)

< φl, ∂tu > = < φl, S(u) > for 1 ≤ l ≤ N

< φl, ∂tu− S(u) > = 0

Residual (=error) ∂tu−S(u) has to be orthogonal to all basis func-

tions that were kept:

35

PN (∂tPNu− S(PNu)) = 0

optimal choice within the space of N modes that is used in the

expansion

Note: for Galerkin the integrals are calculated exactly either

analytically or numerically with sufficient resolution (number of

grid points ⇒∞)

Examples:

1. Variable-coefficient wave equation

∂tu = c(x) ∂xu

∂tum =

∫ 2π

0

e−imxc(x)
N∑

k=−N

ik uke
ikxdx

=
N∑

k=−N

Cmk ikuk

Cmk =

∫ 2π

0

ei(k−m)xc(x)dx

Note: although equation is linear, there are O(N2) opera-

tions through variable coefficient (Cmk is in general not di-

agonal).

2. Burgers equation

∂tu = αu∂xu+ β∂x(u
2)

αu∂xu = α
N∑

k=−N

N∑

l=−N

uk ilul e
i(k+l)x

β∂xu
2 = β

N∑

k=−N

N∑

l=−N

i(k + l)ukul e
i(k+l)x

project onto e−imx ⇒integral gives δk+l,m and
∑

l yields l ⇒
m− k

∂tum =
N∑

k=−N

i(α(m− k) + βm)ukum−k (2)

Note: again O(N2) operations in each time step.

36

Comparison:

• Nonlinear problems:

Galerkin: effort increases with degree of nonlinearity be-

cause of convolution

pseudo-spectral: effort mostly in transformation to and from

Fourier space: FFT essential

• Variable coefficients:

Galerkin requires matrix multiplication, pseudospectral only

scalar multiplication

• error larger in pseudo-spectral, but same scaling of error

with N

• Unresolved modes:

Pseudo-spectral has aliasing errors: unresolved modes spill

into equations for resolved modes

Nonlinearities generate high-wavenumber modes: their alias-

ing can be removed by taking more grid points (3
2
−rule) or

by phase shifts

• Grid effects:

pseudo-spectral method breaks the translation symmetry,

can lead to pinning of fronts

Galerkin method does not break translation symmetry.

• Newton method for unstable fixed points: not so easy to im-

plement for pseudo-spectral code, quite clear for Galerkin

code: (2) is simply a set of coupled ODEs, whereas for pseudo-

spectral need to include back- and forth-transformations.

4 Temporal Discretization

Consider

∂tu = S(u)

Two possible goals:

1. interested in steady state: transient towards steady state

not relevant

only spatial resolution relevant

2. initial-value problem: interested in complete evolution

temporal error has to be kept as small as spatial error

If transient evolution is relevant then spectral accuracy

in space best exploited if high temporal accuracy is ob-

tained as well: seek high-order temporal schemes

37

4.1 Review of Stability

Consider ODE

∂tu = λu (3)

Definitions:

1. A scheme is stable if there are constants C, α, T , and δ such

||u(t)|| ≤ Ceαt||u(0)||

for all 0 ≤ t ≤ T , 0 < ∆t < δ. The constants C and α have to

be independent of ∆t.

2. A scheme is absolutely stable if

||u(t)|| <∞ for all t.

Note:

• The concept of absolute stability is only useful for dif-

ferential equations for which the exact solution is bounded

for all times.

• absolute stability closely related to Neumann stability

3. The region A of absolute stability is given by the region A
the complex plane defined by

A = {λ∆t ∈ C | ||u(t)|| bounded for all t}

Notes:

• for λ ∈ R the ODE (3) corresponds to a parabolic equation

like ∂tu = ∂2
xu in Fourier space

• for λ ∈ iR the ODE (3) corresponds to a hyperbolic equation

like ∂tu = ∂xu in Fourier space

For a PDE one can think in terms of a system of ODEs coupled

through differentiation matrices,

∂tu = Lu

e.g. for ∂tu = ∂xu one has L = D.

Assume L can be diagonalized

SLS−1 = Λ with Λ diagonal

38

Then

∂tSu = ΛSu

Thus: Stability requires that all eigenvalues λ of L are in the

region of absolute stability of the scheme.

Side Remark: Stability condition after diagonalization in terms

of Su,

||Su(t)|| < Ceαt||Su(0)||
We need

||u(t)|| < C̃eαt||u(0)||
If S is unitary, i.e. if S−1 = S+we have

||Su|| = ||u||

For Fourier modes spectral differentiation matrix is normal

D+D = DD+

⇒ D can be diagonalized by unitary matrix

(Not the case for Chebyshev basis functions used later)

Thus: for Fourier method it is sufficient to consider scalar equa-

tion (3).

4.2 Adams-Bashforth Methods

Based on rewriting in terms of integral equation

un+1 = un +

∫ tn+1

tn

F (t′, u(t′))dt′

Explicit method: approximate F (u) by polynomial that interpo-

lates F (u) over last m time steps and extrapolate to the interval

[tn, tn+1].

Consider

∂tu = F (u)

AB1: un+1 = un + ∆tF (un)

AB2: un+1 = un + ∆t

(
3

2
F (un) − 1

2
F (un−1)

)

Note:

• AB1 identical to forward Euler

39

Stability:

Consider F (u) = λu with λ ∈ C

AB1:

z = 1 + ∆tλ

|z|2 = (1 + λr∆t)
2 + λ2

i ∆t
2

Stability limit given by |λ|2 = 1:

AB1=FE: (1 + λr∆t)
2 + λ2

i ∆t
2 = 1

To plot stability limit parametrize z = eiθ and plot λ∆t ≡ (λr(θ) +
iλi(θ))∆t

AB1:

λ∆t = z − 1

AB2:

λ∆t =
z − 1
3
2
− 1

2z

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3

Notes:

• AB1=FE and AB2 are not absolutely stable for purely dis-

persive equations λr = 0

40

• AB3 and AB4 are absolutely stable even for dispersive equa-

tions λr = 0

• AB1 and AB2: stability limit tangential to λr = 0: for λr = 0
exponential growth rate goes to 0 for ∆t→ 0 at fixed number

of modes (i.e. fixed λ). For fixed tmax can choose ∆t small

enough to limit growth of solution.

AB1: for λr = 0 |z|2 = 1 + λ2
i ∆t

2

|z| tmax
∆t = (1 + λ2

i ∆t
2)

1
2

tmax
∆t ≤ e

1
2
λ2

i ∆t2 tmax
∆t need ∆t≪ O(λ−2

i) = O(N−2)

stable for ‘diffusive scaling’

AB2: for λr = 0 z = 1 + iλi∆t−
1

2
λ2

i ∆t
2 +

1

4
λ3

i ∆t
3 − 1

8
λ4

i ∆t
4

|z|2 = 1 +
1

2
λ4

i ∆t
4

|z| tmax
∆t ≤ e

1
4
λ4

i ∆t4 tmax
∆t need ∆t≪ O(λ

− 4
3

i) = O(N− 4
3)

The growth may be less of a problem for spectral methods

since one would like to balance temporal error with spatial

error

∆tp ∼ e−αN

may have to choose small ∆t anyway independent of stabil-

ity (growth).

But: growth rate is largest for largest wavenumbers k.

• FE stability limit for λi = 0 and λr = −k2 < 0:

∆t <
2

|λr|
=

2

k2
max

=
2

N2

for central difference scheme

∆t <
1

2
∆x2 =

1

2

(
2π

2N

)2

≈ 5

N2

finite-difference scheme has slightly higher stability limit,

but needs smaller ∆x for same spatial accuracy.

Comment on Implementation

Consider

∂tu = ∂2
xu+ f(u)

Forward Euler

un+1 = un + ∆t ∂2
xu

n + ∆tF (un)

Want to evaluate derivative in Fourier space ⇒ FFT

ũn+1
k = ũn

k + ∆t(−k2)ũn
k + ∆tFk(f(un))

41

Fk(f(un)) is the kth-mode of the Fourier transform of f(un)

After updating ũn+1
k transform back to un+1(xj) and calculate f(un+1

j)
for next Euler step.

Alternatively, could transform back into real space and do time

step there

un+1
j = un

j + ∆t∂2
xIN(u) + ∆tf(uj)

Note: choice of where to perform time-step is quite common, not

only in forward Euler.

4.3 Adams-Moulton-Methods

seek highly stable schemes: implicit scheme

→ polynomial interpolation of F (u) including tn+1

Backwards Euler : un+1 = un + ∆tF (un+1)

Crank-Nicholson : un+1 = un +
1

2
∆t
(
F (un+1) + F (un)

)

3rd order Adams-Moulton: un+1 = un +
1

12
∆t
(
5F (un+1) + 8F (un) − F (un−1)

)

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4
Adams−Moulton

AM3
AM4
AM5
AM6

Note:

• Region of stability shrinks with increasing order

42

• Only backward Euler and Crank-Nicholson are uncondition-

ally stable

• AM3 and higher have finite stability limit: we do not get a

high-order, unconditionally stable schem with AM.

Implementation of Crank-Nicholson

Consider wave equation

∂tu = ∂xu

(

1 − 1

2
∆t ∂x

)

un+1 =

(

1 +
1

2
∆t ∂x

)

un

With matrix multiply method

∑

l

(

1 − 1

2
∆tDjl

)

un+1(xl) =
∑

l

(

1 +
1

2
∆tDjl

)

un(xl)

would have to invert full matrix: slow

With FFT or for Galerkin insert u(x) =
∑

k e
ikxũk and project

equation onto φk:
∫ 2π

0
dx e−ikx...

(

1 − 1

2
∆t ik

)

ũn+1
k =

(

1 +
1

2
∆t ik

)

ũn
k

ũn+1
k =

1 + 1
2
∆t ik

1 − 1
2
∆t ik

ũn
k

Note:

• Since derivative operator is diagonal in Fourier space, in-

version of operator on l.h.s. is simple:

time-stepping in Fourier space yields explicit code although

implicit scheme.

This is not possible for finite differences.

• With variable wave speed one would have

(

1 − 1

2
∆t c(x) ∂x

)

un+1 =

(

1 +
1

2
∆t c(x) ∂x

)

un

⇒FFT does not lead to diagonal form: wavenumbers of u(x)
and of c(x) couple

⇒projection leads to convolution of c(x) and ∂xu
n+1: expen-

sive

43

• The scheme does not get more involved in higher dimen-

sions

e.g. for diffusion equation in two dimensions

∂tu = ∇2u

one gets

ũn+1
kl =

1 − ∆t (k2 + l2)

1 + ∆t(k2 + l2)
ũn

kl

That is to be compared with the case of finite differences

where implicit schemes in higher dimensions become much

slower since the band width of the matrix becomes large

(O(N) in two dimensions, worse yet in higher dimensions).

Note:

• make scheme explicit by combining Adams-Moulton with

Adams-Bashforth to predictor-corrector

AB: predictor O(∆tn−1)

AM: corrector O(∆tn)

⇒ O(∆tn)

each time step requires two evaluations of r.h.s ⇒not worth

if expensive

Advantage: scheme has same accuracy as AB of O(∆tn) but

greater range of stability with same storage requirements

4.4 Semi-Implicit Schemes

Often time step is limited by instabilities due to linear derivative

terms but not due to nonlinear terms:

Treat

• linear derivative terms implicitly

• nonlinear terms explicitly

Note: implicit treatment of nonlinear terms would require ma-

trix inversion at each time step

Example: Crank-Nicholson-Adams-Bashforth

Consider

∂tu = ∂2
xu+ f(u)

un+1 − un

∆t
=

1

2
∂2

xu
n+1 +

1

2
∂2

xu
n +

3

2
f(un+1) − 1

2
f(un) + O(∆t3)

44

(

1 − 1

2
∆tD2

)

un+1 =

(

1 +
1

2
∆tD2

)

un + ∆t

(
3

2
f(un+1) − 1

2
f(un)

)

3 Steps:

• FFT of r.h.s.

• divide by (1 + 1
2
∆tk2)

• do inverse FFT of r.h.s. ⇒un+1
j

un+1
j = F−1

(
1

1 + 1
2
∆tk2

{(

1 − 1

2
∆t k2

)

F(un
i) + ∆tF

(
3

2
f(un

i) − 1

2
f(un−1

i)

)})

or written as

ũn+1
k =

1

1 + 1
2
∆tk2

{(

1 − 1

2
∆t k2

)

F(un
i) + ∆t

(
3

2
fk(u

n
i) − 1

2
fk(u

n−1
i)

)}

4.5 Runge-Kutta Methods

Runge-Kutta methods can be considered as approximations for

the integral equation

un+1 = un +

∫ tn+1

tn

F (t′, u(t′))dt′

with approximation of F based purely on times t′ ∈ [tn, tn+1].

Runge-Kutta 2:

trapezoidal rule for integral

∫ tn+1

tn

F (t′, u(t′))dt′ =
1

2
∆t
(
F (tn, u

n) + F (tn+1, u
n+1)

)
+ O(∆t3)

approximate un+1 with forward Euler:

Heun’s method

k1 = F (tn, u
n)

k2 = F (tn + ∆t, un + ∆t k1)

un+1 = un +
1

2
∆t (k1 + k2) + O(∆t3)

Other version : mid-point rule ⇒ modified Euler:

un+1 = un + ∆tF

(

t+
1

2
∆t, un +

1

2
∆tF (tn, u

n)

)

Note:

45

• Runge-Kutta methods of a given order are not unique (usu-

ally free parameters)

General Runge-Kutta scheme:

un+1 = un + ∆t
s∑

l=0

γlFl

F0 = F (tn, u
n)

Fl = F (tn + αl∆t, u
n + ∆t

l∑

m=0

βlmFm) 1 ≤ l ≤ s

Notes:

• Scheme has s+ 1 stages

• For βll 6= 0 scheme is implicit

• Coefficients αl, βlm, γl determined by requiring highest order

of accuracy:

in general this does not determine the coefficients uniquely

Runge-Kutta 4

corresponds to Simpson’s rule

k1 = F (tn, u
n)

k2 = F (tn +
1

2
∆t, un +

1

2
∆tk1)

k3 = F (tn +
1

2
∆t, un +

1

2
∆tk2)

k4 = F (tn + ∆t, un + ∆tk3)

un+1 = un +
1

6
∆t (k1 + 2k2 + 2k3 + k4) + O(∆t)5

46

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Runge−Kutta

RK1
RK2
RK3
RK4

Notes:

• stability regions expand with increasing order

• RK4 covers parts of imaginary and of real axis: suited for

parabolic and hyperbolic problems

4.6 Operator Splitting

For linear wave equation or diffusion equation we have exact so-

lution in Fourier space,

∂tu = ∂2
xu ⇒ ũn

k = ũk(0) e−k2tn

Can we make use of that for more general problems?

For finite differences we discussed

∂tu = (L1 + L2)u

solution approximated as

un+1 = e(L1+L2)∆tun

= eL1∆teL2∆tun + O(∆t2)

this corresponds to

∂tu = L2u and then ∂tu = L1u

47

alternating integration of each equation for a full time step ∆t

Apply to reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

L1u ∼ ∂2
xu L2u ∼ f(u)

Treat L2u in real space, e.g. forward Euler

u∗(xj) = un(xj) + ∆t f(un(xj))

Treat L1u in Fourier space

ũn+1
k = e−k2∆tũ∗k exact!!

Written together:

ũn+1
k = e−k2∆t (un

k + ∆t fk(u
n
l))

Notes:

• could use any other suitable time-stepping scheme for non-

linear term: higher-order would be better

• But: operator splitting error arises.

Could improve

e(L1+L2)∆tun = e
1
2
L1∆teL2∆te

1
2
L1∆tun + O(∆t3)

If intermediate values need not be available the 1
2
∆t−steps

can be combined:

un+2 = e
1
2
L1∆teL2∆te

1
2
L1∆te

1
2
L1∆teL2∆te

1
2
L1∆tun + O(∆t3) =

= e
1
2
L1∆teL2∆teL1∆teL2∆te

1
2
L1∆tun + O(∆t3)

approximate eL2∆t by second-order scheme (rather than for-

ward Euler) to get over-all error of O(∆t3).

• time-stepping is done in real space and in Fourier space

• to get higher order one would have to push the operator

splitting error to higher order.

4.7 Exponential Time Differencing and Integrat-

ing Factor Scheme

Can we avoid the operator-splitting error altogether?

Consider again reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

48

without reaction the equation can be integrated exactly in Fourier

space

un+1
k = e−k2∆tun

k

Go to Fourier space (‘Galerkin style’)

∂tuk = −k2uk + fk(u) (4)

Here fk(u) is k−component of Fourier transform of nonlinear term

f(u)

To assess a good approach to solve (4) it is good to consider sim-

pler problem yet:

∂tu = λu+ F (t) (5)

where u is the Fourier mode in question and F plays the role of

the coupling to the other Fourier modes.

We are in particular interested in efficient ways to deal with the

fast modes with large, positive λ because they set the stability

limit:

1. If the overall solution evolves on the fast time scale set by λ,

accuracy requires a time step with |λ∆t| ≪ 1 and an explicit

scheme should be adequate.

2. If the overall solution evolves on a slower time scale τ ≫
1/|λ|, which is set by Fourier modes with smaller wavenum-

ber (i.e. F (t)evolves slowly in time) then one would like to

take time steps with |λ|∆t = O(1) or even larger without

sacrificing accuracy, i.e. ∆t≪ τ .

In particular, for F = const. one would like to obtain the

exact solution u∞exact = −F/λ with large time steps.

Use integrating factor to rewrite (5) as

∂t

(
ue−λt

)
= e−λtF (t)

which is equivalent to

un+1 = eλ∆tun + eλ∆t

∫ ∆t

0

e−λt′F (t+ t′)dt′.

Need to approximate integral. To leading order it is tempting to

write

un+1 = eλ∆tun + eλ∆t∆t F (t).

This yields the forward Euler implementation of the integrating-

factor scheme.

49

For F = const. this yields the fixed point

u∞IF

(
1 − eλ∆t

)
= ∆t eλ∆t F.

But: for −λ∆t ≫ 1 one has u∞IF → 0 independent of F and defi-

nitely not u∞IF → u∞exact ≡ −F/λ. To get a good approximation of

the correct fixed point u∞exact one needs therefore still |λ|∆t≪ 1!

Note:

• even for simple forward Euler fixed point (un+1 = un) would

be obtained exactly for large ∆t (disregarding stability)

un+1 = un + ∆ (λun + F)

Problem: Even if F evolves slowly, for large λ the integrand

still evolves quickly over the integration interval: to assume the

integrand is constant is a poor approximation.

Instead: assume only F is evolving slowly and integrate the ex-

ponential explicitly

un+1 = eλ∆tun + eλ∆tF (t)
1

λ

(
1 − e−λ∆t

)

This yields the forward Euler implementation of the exponential

time differencing scheme,

un+1 = eλ∆tun + ∆t F (t)

(
eλ∆t − 1

λ∆t

)

Notes:

• now, for F = const and −λ∆t → ∞ one gets the exact solu-

tion u∞ETD → −F/λ.

• for |λ|∆t≪ 1 one gets back the usual forward Euler scheme

(eλ∆t − 1)/λ∆ → 1.

For the nonlinear diffusion equation one gets for ETDFE

un+1
k = e−k2∆tun

k + ∆t Fk(ul(t))

(

1 − e−k2∆t

k2∆t

)

where in general Fk(ul(t)) depends on all Fourier modes uk.

For higher-order accuracy in time use better approximations for

the integral (see Cox and Matthews, J. Comp. Physics 176 (2002)

50

430, for a detailed discussion of various schemes and quantitative

comparisons for ODEs and PDEs).

The 4th-order Runge-Kutta version reads (using c ≡ λ∆t)

u1k = un
k E1 + ∆t Fk(u

n, tn)E2

u2k = un
k E1 + ∆t Fk(u1, tn +

1

2
∆t)E2

u3k = u1k E1 + ∆t

(

2Fk

(

u2, tn +
1

2
∆t

)

− Fk (un, tn)

)

E2

un+1
k = un

kE
2
1 + ∆t

{

Fk (un, tn) E3 + 2

(

Fk

(

u1, tn +
1

2
∆t

)

+ Fk

(

u2, tn +
1

2
∆t

))

E4 + Fk (u3, tn + ∆t) E5

}

with

E1 = ec/2 E2 =
ec/2 − 1

c

E3 =
−4 − c− +ec (4 − 3c+ c2)

c3

E4 =
2 + c+ ec (−2 + c)

c3

E5 =
−4 − 3c− c2 + ec (4 − c)

c3

For |c| < 0.2 the factors E3,4,5 can become quite inaccurate due

to cancellations and it is better to replace them by their Taylor

expansions

E2 =
1

2
+

1

8
c+

1

48
c2 +

1

384
c3 +

1

3840
c4 +

1

46080
c5 +

1

645120
c6 +

1

10321920
c7

E3 =
1

6
+

1

6
c+

3

40
c2 +

1

45
c3 +

5

1008
c4 +

1

1120
c5 +

7

51840
c6 +

1

56700
c7

E4 =
1

6
+

1

12
c+

1

40
c2 +

1

180
c3 +

1

1008
c4 +

1

6720
c5 +

1

51840
c6 +

1

453600
c7

E5 =
1

6
+ 0 c− 1

120
c2 − 1

360
c3 − 1

1680
c4 − 1

10080
c5 − 1

72576
c6 − 1

604800
c7

Note:

• diffusion and any other linear terms retained in λ are treated

exactly

• no instability arises from linear term for any ∆t

• large wave numbers are strongly damped, as they should be

(this is also true for operator splitting)

compare with Crank-Nicholson (in CNAB, say)

un+1
k =

1 − 1
2
∆tk2

1 + 1
2
∆tk2

un
k

51

for large k∆t

un+1
k = −(1 − 4

∆tk2
+ ...)un

k

oscillatory behavior and slow decay.

Note:

• some comments on the 4th-order integrating factor scheme

are in Appendix B.

4.8 Filtering

In some problems it is not (yet) possible to resolve all scales

• shock formation (cf. Burgers equation last quarter)

• fluid flow at high Reynolds numbers (turbulence): energy

is pumped in at low wavenumbers (e.g. by motion of the

large-scale walls), but only very high wavenumbers experi-

ence significant damping, since for low viscosity high shear

is needed to have significant damping.

In these cases aliasing and Gibbs oscillations can lead to prob-

lems.

Aliasing and Nonlinearities

Nonlinearities generate high wavenumbers

u(x)2 =
N∑

l=−N

N∑

k=−N

uluke
i(k+l)x

p-th order polynomial generates wavenumbers up to ±pN . On

the grid of 2N points not all wavenumbers can be represented ⇒
Fourier interpolant IN(u(x)) keeps only ±N : higher wavenumber

aliased into that range.

Example:

on grid xj = 2π
2N
j with only 2 grid points per wavelength 2π

q
with

q = N

u(xj) = cos qxj = cosN
2π

2N
j = cos(πj) = (−1)j

u(xj)
2 = cos2 qxj = (+1)j = 1 cos2 qxj is aliased to a constant on that grid

52

Note: in a linear equation no aliasing arises during the simu-

lation since no high wavenumbers are generated (aliasing only

initially when initial condition is reduced to the discrete spatial

grid)

Aliasing can lead to spectral blocking:

If dissipation occurs essentially only at the very high unresolved

wavenumbers:

• dissipation is missing

• aliased high wavenumbers feed energy into the lower, weakly

damped wavenumbers

• energy piles up most noticeably at the high-end of the re-

solved spectrum (|k| = N) because there the correct energy

is smallest (relative error largest)

• pile up can lead to instability

(from J.P. Boyd Chebyshev

and Fourier Spectral Methods, p. 2107)

If resolution cannot be increased to the extent that high wavenum-

bers are resolved, improvement can be obtained by filtering out

those wavenumbers that would be aliased into the lower spec-

trum.

Quadratic nonlinearities lead to doubling of wavenumbers:

The interval [−qmax, qmax] is mapped into [−2qmax, 2qmax]

[−qmax, qmax] → [−2qmax, 2qmax]

53

-N N

q 2q
2q-2N

Require that the mapped wavenumber interval does not alias into

the original wavenumber interval

2qmax − 2N ≤ −qmax

i.e. require

qmax ≤ 2

3
N

More generally: for pth-order nonlinearity choose

qmax =
p+ 1

2
N

Algorithm:

1. FFT: ui → ũk

2. take derivatives

3. filter out high wavenumbers: ũk = 0 for |k| > p+1
2
N

4. inverse FFT: ũk → ui; this function does not contain any

‘dangerous’ high wavenumbers any more

5. evaluate nonlinearities ui → up
i

6. back to 1.

(from

J.P. Boyd Chebyshev and Fourier Spectral Methods, p. 212)

54

Orszag’s 2/3-rule:

For quadratic nonlinearity set the highest N/3 Fourier-modes to

0 in each time step just before the back-transformation to the

spatial grid:

• evaluating the quadratic nonlinearity (which is done in real

space):

– the ‘good’ wavenumbers [0, 2
3
N] contained in u(x) gen-

erate the wavenumbers [0, 4
3
N] of which the interval

[N, 4
3
N] will be aliased into [−N,−2

3
N] and therefore

will contaminate the highest N/3 modes (analogously

for [0,−2
3
N]).

– the ‘bad’, highestN/3 modes [2
3
N,N] generate wavenum-

bers [4
3
N, 2N] which are aliased into [−2

3
N, 0] and would

contaminate the ‘good’ wavenumbers.

• setting the highest N/3 modes to 0 avoids contamination of

good wavenumbers; no need to worry about contaminating

the high wavenumbers that later are set to 0 anyway.

Alternative view:

For a quadratic nonlinearity, to represent the wavenumbers [−N,N]
without aliasing need 3

2
· 2N grid points:

want 3N grid points for integrals ⇒ before transforming the Fourier

modes [−N,N] back to real space need to pad them with zeroes to

the range [−3
2
N, 3

2
N].

Thus: To avoid aliasing for quadratic nonlinearity need 3 grid

points per wavelength

cos qxj = cos(N
2π

3N
j) = cos(2π

j

3
)

Notes:

• for higher nonlinearities larger portions of the spectrum have

to be set to 0.

• instead of step-function filter can use smooth filter, e.g.

F (k) =

1 |k| ≤ k0 (= 2
3
N)

e−(|k|n−|k0|n) |k| > k0

(6)

with n = 2, 4.

55

• 2
3
−rule (and the smooth version) makes the pseudo-spectral

method more similar to the projection of the Galerkin ap-

proach

• does not remedy the missing damping of high wavenumbers,

but reduces the (incorrect) energy pumped into the weakly

damped wave numbers.

Gibbs Oscillations

Oscillations due to insufficient resolution can contaminate so-

lution even away from the sharp step/discontinuity: can be im-

proved by smoothing

Approximate derivatives, since they are more sensitive to oscilla-

tions (function itself does not show any oscillations on the grid)

∂xu⇒
N∑

k=−N

ik ũke
ikx filter to

N∑

k=−N

ik F (k) ũke
ikx

with F (k) as in (6).

Note:

• result is different than simply reducing number of modes

since the number of grid points for the transformation is

still high

• filter could also smooth away relevant oscillations ⇒ loose

important features of solution

e.g. interaction of localized wave pulses: oscillatory tails

of the pulses determine the interaction between the pulses,

smoothing would kill interaction

56

Notes:

• It is always better to resolve the solution

• Filtering and smoothing make no distinction between nu-

merical artifacts and physical features

• Shocks would better be treated with adaptive grid

5 Chebyshev Polynomials

Goal: approximate functions that are not periodic

5.1 Cosine Series and Chebyshev Expansion

Consider h(θ) on 0 ≤ θ ≤ π

extend to [0, 2π] to generate periodic function by reflection about

θ = π

g(θ) =

h(θ) 0 ≤ θ ≤ π

h(2π − θ) π ≤ θ2π

Then

g(θ) =
∞∑

k=−∞
ḡke

ikθ =
∞∑

k=−∞
ḡk(cos kθ + i sin kθ)

Reflection symmetry: sin θ drops out

g(θ) =
∞∑

k=−∞
ḡk cos kθ =

∞∑

k=0

gk cos kθ

57

with

gk = ḡk for k = 0 gk = 2ḡk for k > 0

ḡk =
1

2π

∫ 2π

0

e−ikθg(θ)dθ =
1

π

∫ π

0

cos kθg(θ)dθ reflection symmetry

Write as

gk =
1

π

2

ck

∫ π

0

cos kθ g(θ)dθ with ck =

2 for k = 0

1 for k > 0

This is the cosine transform.

Notes:

• Convergence of the cosine series depends on the odd deriva-

tives at θ = 0 and θ = π

• If dg
dθ

6= 0 at θ = 0 or θ = π then gk = O(k−2) even if function

is perfectly smooth in (0, π):

gk =
2

πck

∫ π

0

cos kθ g(θ)dθ i.b.p

=
2

πck

1

k
sin kθ g(θ)

∣
∣
∣
∣

π

0

− 2

πck

1

k

∫ π

0

sin kθ
d

dθ
g(θ)dθ i.b.p

=
2

πck

1

k2
cos kθ

d

dθ
g(θ)

∣
∣
∣
∣

π

0

− 2

πck

1

k2

∫ π

0

cos kθ
d2

dθ2
g(θ)dθ

boundary terms vanish for all k only if

g′(0) = 0 = g′(π)

Since cos kπ = (−1)k non-zero slopes at the endpoints cannot

cancel for all k.

58

• in general, only odd derivatives of g(θ) contribute to bound-

ary terms:

1

kl+1
cos kθ

dl

dθl
g(θ)

∣
∣
∣
∣

π

0

for l odd

Thus:

• for general boundary conditions Fourier (=cosine) series con-

verges badly: Gibbs phenomenon

5.2 Chebyshev Expansion

To get the derivative of the function effectively to vanish at the

boundaries stretch the coordinates at the boundaries infinitely

strongly. This can be achieved by parametrizing x using the angle

θ on a circle:

Consider f(x) on −1 ≤ x ≤ 1

Transform to 0 ≤ θ ≤ π using x = cos θ, g(θ) = f(cos(θ))

Function is now parametrized by θ instead of x

Consider Fourier series for g(θ)

g′(θ) = −f ′(cos θ) sin θ ⇒ dg

dθ
= 0 at θ = 0, π

Generally: all odd derivatives of g(θ) vanish at θ = 0 and θ = π.

Proof: cos θ is even about θ = 0 and about θ = π ⇒ f(cos θ) is also

even about those points ⇒all odd derivatives vanish at θ = 0, π.

Thus: the convergence of the approximation to g(θ) by a cosine-

series does not depend on the boundary conditions on f(x)

59

f(x) = g(θ) =
∞∑

k=0

gk cos kθ extension of g to 2π is even

=
∞∑

k=0

gk cos(k arccosx)

Introduce Chebyshev polynomials

Tk(x) = cos(k arccosx) = cos kθ

f(x) =
∞∑

k=0

fk Tk(x)

Properties of Chebyshev Polynomials

• Tk(x) is a kth−order polynomial

show recursively:

T0(x) = 1 T1(x) = x

Tn+1(x) = cos ((n+ 1) arccosx) = cos ((n+ 1)θ)

Trig identities:

cos ((n+ 1)θ) = cosnθ cos θ − sinnθ sin θ

cos ((n− 1)θ) = cosnθ cos θ + sinnθ sin θ

cancel sinnθ sin θ by adding and use cos(θ) = T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x)

Note: recursion relation useful for computation of Tn(x)

• Tn(x) even for n even, odd otherwise

• Tn(x) =
∑

j ajx
j ⇒ aj have alternating signs

60

• the expansion coefficients are given by

fk = gk =
1

π

2

ck

∫ π

0

g(θ) cos kθ dθ

rewrite in terms of x:

θ = arccosx dθ =
1√

1 − x2
dx

fk =
2

πck

∫ 1

−1

f(x)Tk(x)
1√

1 − x2
dx

ck =

{
2 k = 0
1 k > 0

• The convergence of f(x) in terms of Tk(x) is the same as that

of g(θ) in terms of the cosine-series. In particular, boundary

values are irrelevant (replace x by cos θ in f(x))

• The Chebyshev polynomials are orthogonal in the weighted

scalar product

< Tk, Tl >≡
∫ 1

−1

Tk(x)Tl(x)
1√

1 − x2
dx = ck

π

2
δkl

• The weight
√

1 − x2
−1

is singular but
∫ 1

−1

1√
1 − x2

dx

is finite.

• Derivatives of Tk(x) :

d

dx
is not diagonal for basis of Tk(x)

d

dx
Tk(x) 6= λTk(x)

in particular: the order of the polynomial changes upon dif-

ferentiation.

Considering d
dθ

cos(n± 1)θ one gets

d

dx
Tk±1 =

d

dθ
cos(k ± 1)θ

dθ

dx

= −(k ± 1)
1
dx
dθ

(sin kθ cos θ ± cos kθ sin θ)

1

k + 1
Tk+1(x) −

1

k − 1
Tk−1(x) =

1

sin θ
(sin kθ cos θ + cos kθ sin θ − sin kθ cos θ + cos kθ sin θ)

thus

2Tk(x) =
1

k + 1

d

dx
Tk+1(x) −

1

k − 1

d

dx
Tk−1(x)

Thus: differentiation more difficult than for Fourier modes.

61

• Zeroes of Tk(x)

Tk(x) = cos (k arccosx) = cos kθ

⇒ Tk(x) has k zeroes in [−1, 1]

kθl = (2l − 1)
π

2
l = 1, ..., k

xl = cos
2l − 1

2k
π

The zeroes cluster near the boundaries.

• Extrema of Tk(x) (Chebyshev points)

kθl = lπ xl = cos
l

k
π l = 1, ..., k

Tk(xl) = (−1)l

Extrema are also clustered at boundary

Chebyshev polynomial look like a cosine-wave wrapped around

a cylinder and viewed from the side

• Transformation to θ = arccosx places more points close to

boundary: small neighborhood dx is blown up in dθ

x = cos θ dθ = − 1

sin θ
dx

⇒ dθ → ∞ for θ → 0, π
df

dθ
→ 0

all derivatives vanish at boundary: no Gibbs phenomenon

for non-periodic functions

62

• understanding of properties of functions often aided by know-

ing what eigenvalue problem they solve: what is the eigen-

value problem that has the Tk(x) as solutions?

Tk(x) = cos kθ
d2

dθ2
cos kθ = −k2 cos kθ

rewrite in terms of x = cos θ

d

dθ
= − sin θ

d

dx
= −

√
1 − x2

d

dx

thus Tk(x) satisfies the Sturm-Liouville problem

√
1 − x2

d

dx

(√
1 − x2

d

dx
Tk(x)

)

+ k2Tk(x) = 0

with boundary conditions: Tk(x) bounded at x = ±1
Note: Sturm-Liouville problem is singular: coefficient of

highest derivative vanishes at boundary ⇒ no boundary val-

ues specified but only boundedness

The singularity is the origin of hte good boundary resolu-

tion (no Gibbs). Fourier series is solution of regular Sturm-

Liouville problem

6 Chebyshev Approximation

Approximate f(x) on a ≤ x ≤ b using Chebyshev polynomials

Again depending on the evaluation of the integrals

• Galerkin expansion

• Pseudospectral expansion

6.1 Galerkin Approximation

PNu(x) =
N∑

k=0

ukTk(x)

with

uk =
2

π

1

ck

∫ +1

−1

1√
1 − x2

u(x)Tk(x)dx

Note:

63

• need to transform first from interval a ≤ t ≤ b to −1 ≤ x ≤
+1 using

x =
2t− (a+ b)

b− a

Transformation to θ = arccosx showed

uk = O(k−r) if u ∈ Cr−1 (∂r
xu ∈ L1)

i.e. if rth derivative is still integrable (may be a δ−function)

Show this directly in x:

πck
2
uk =

∫
1√

1 − x2
u(x)Tk(x)dx

using k2Tk(x) = −
√

1 − x2 d
dx

(
√

1 − x2Tk)

πck
2
uk = − 1

k2

∫
1√

1 − x2
u(x)

√
1 − x2

d

dx

(√
1 − x2

d

dx
Tk(x)

)

dx =

= − 1

k2
u(x)

√
1 − x2

d

dx
Tk

∣
∣
∣
∣

+1

−1

+
1

k2

∫ +1

−1

du

dx

√
1 − x2

d

dx
Tk(x)dx = since u(x) bounded

=
1

k2

{

du

dx

√
1 − x2Tk(x)

∣
∣
∣
∣

+1

−1

−
∫ +1

−1

d

dx

(
du

dx

√
1 − x2

)

Tk(x)dx

}

Note:

even without the 2nd integration by parts it seems that uk =
O(k−2)
⇒ it seems that even for d2u

dx2 /∈ L1 one gets uk = O(k−2)

But:
d

dx
Tk(x) =

d

dx
cos(k arccosx) = O(k)

⇒ for du
dx

∈ L1 and d2u
dx2 /∈ L1:

uk = O(
1

k2

d

dx
Tk(x)) = O(

1

k
)

Again, convergence of Chebyshev approximation can be shown to

be

||PNu(x) − u(x)|| ≤ C

N q
||u||q

with ||u|| being the usual L2−norm (with weight
√

1 − x2
−1

and

||u||q being the qth Sobolev norm

||u||2q = ||u||2 + ||du
dx

||2 + ...+ ||d
qu

duq
||2

For derivatives one gets

||d
ru

dxr
− dr

dxr
PNu|| ∼ ||u− PNu||r ≤

C

N
1
2
+q−2r

||u||q

Note:

64

• for each derivative the convergence decreases by two pow-

ers of N ; in Fourier expansion each derivative lowered the

convergence only by a single power in N .

• for C∞−functions one still has spectral accuracy, i.e. expo-

nential convergence

• the estimate for the rth derivative is not precisely for the

derivative but for the r−Sobolev norm (cf. Canutor’s book

for detials)

• rule of thumb: for each wavelength of a periodic function

one needs at least 3 Chebyshev polynomials to get reason-

able approximation.

6.2 Pseudo-Spectral Approximation

For Galerkin approximation the projection integral

uk =
2

πck

∫ π

0

u(cos θ) cos kθdθ

has to be calculated exactly (e.g. analytically)

For pseudospectral approximation calculate integral based on a

finite number of collocation points.

Strategy: find most accurate integration formula for the func-

tions in question

Here: u(cos θ) is even in θ⇒ u(cos θ) cos kθ has expansion in cosnθ

⇒ need to consider only cosnθ when discussing integration method

Analytically we have

∫ π

0

cosnθ dθ = π δn0

Similar to Fourier case: use trapezoidal rule

∫ π

0

g(θ)dθ ⇒
N∑

j=0

g(
πj

N
)
π

Nĉj
with ĉj =

2 j = 0, N

1 otherwise

Show: Trapezoidal rule is exact for cos lθ, l = 0, ..., 2N − 1

1. l = 0 ∫

dθ = π =
π

2N
+ (N − 1)

π

N
+

π

2N

65

2. l even

cos lθj =
1

2
(eilθj + e−ilθj) with θj =

π

N
j

⇒
N∑

j=0

1

ĉj
eil π

N
j =

︸︷︷︸

eilπ=e0 for l even

N∑

j=1

(
eil π

N

)j

=
eilπ − 1

eil π
N − 1

eil π
N = 0 using

N∑

j=1

qj = q
1 − qN

1 − q

Note: for l = 2N the denominator vanishes:

cos 2N
π

N
j = 1 ⇒

∑

6= 0 trapezoidal rule not correct

3. l odd:

cos lθ odd about θ = π
2

cos lθj = cos l
π

N
j

cos lθN−j = cos
(

l
π

N
N − l

π

N
j
)

= − cos
(

−l π
N
j
)

⇒
N∑

j=0

cos lθj = 0

Transform in x−coordinates

∫ 1

−1

p(x)√
1 − x2

dx =

∫ π

0

p(cos θ)dθ =
N∑

j=0

p(cos
π

N
j)

π

Nĉj

Note:

This can also be viewed as a Gauss-Lobatto integration

∫ 1

−1

p(x)w(x)dx =
N∑

j=0

p(xj)wj

with points xj = cos π
N
j and weights wj = π

Nĉj

Gauss-Lobatto integration is exact for polynomials up to degree

2N − 1:

• degree 2N − 1 polynomials have 2N coefficients

• 2N parameters to choose:

wj for j = 0, ..., N and xj for j = 1, ..., N −1 since x0 = −1 and

xN = +1

66

The xj are roots of a certain polynomial q(x) = pN+1(x) + apN(x) +
bpN−1(x) with a and b chosen such that q(±1) = 0

Note: for the scalar product one needs the integral to be exact

up to order 2N since each factor can be a N th-order polynomial ⇒
see (7)

Summarizing:

pseudo-spectral coefficients given by

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

ĉj

with

ĉi =

2 i = 0, N

1 1 ≤ i ≤ N − 1

again highest mode resolvable on the grid given by

TN(xj) = cos
(

N arccos
(

cos
π

N
j
))

= cos πj = (−1)j

Remember origin of ck

cN = 2 as in Fourier expansion in θ

c0 = 2 since only for k 6= 0 two exponentials e±ikx contribute to cos kx

Note:

• need not distinguish between ck and ĉj: from now on ĉj = cj

67

Notes:

• transformation can be written as matrix multiplication

ũk =
N∑

j=0

Ckju(xj)

with

Ckj =
2

Nckcj
Tk(xj) =

2

Nckcj
cos
(

k arccos(cos
π

N
j)
)

=
2

Nckcj
cos(

kjπ

N
)

• the inverse transformation is

u(xj) =
N∑

k=0

Tk(xj) ũk =
N∑

k=0

(
C−1

)

jk
ũk

with
(
C−1

)

jk
= Tk(xj) = cos

πjk

N

• transformation seemingly O(N2): but there are again fast

transforms (see later).

• discrete orthogonality

N∑

j=0

Tl(xj)Tk(xj)
1

cj
=
N

2
clδlk

since for l + k ≤ 2N − 1 the integration is exact

N∑

j=0

Tl(xj)Tk(xj)wj =

∫

Tl(x)Tk(x)
1√

1 − x2
dx = ck

π

2
δlk note: wj =

π

cjN

for l + k = 2N : TN(xj) = (−1)j

⇒
N∑

j=0

TN(xj)TN(xj)
1

cj
= N (7)

although T 2
N is not a constant (only on the grid).

The pseudospectral approximant interpolates the function on the

grid

INu(xl) =
N∑

k=0

ũkTk(xl) =
N∑

k=0

N∑

j=0

2

Nckcj
u(xj)Tk(xj)Tk(xl)

68

use Tk(xj) = cos k arccosxj = cos k πj
N

= Tj(xk) and orthogonallity

⇒ INu(xl) =
N∑

j=0

2

Ncj
u(xj)

N∑

k=0

1

ck
Tj(xk)Tl(xk) =

N∑

j=0

u(xj)
cl
cj
δjl = u(xl)

Aliasing:

As with Fourier modes the pseudosprectral approximation has

aliasing errors:

In Fourier we have aliasing from 2N + r to r and from −2N + r to

r . The mode −2N + r is also contained in the Chebyshev mode

cos(2N − r)θ. Therefore 2N − r also aliases into r.

Consider T2mN±r(x) on grid xj = cos πj
N

T2mN±r(xj) = cos

(

(2mN ± r) arccos(cos
πj

N
)

)

= cos

(

(2mN ± r)
πj

N

)

=

= cos 2m
Nπj

N
cos r

πj

N
∓ sin 2m

Nπj

N
︸ ︷︷ ︸

0

sin r
πj

N
= cos r

πj

N

Thus: T±r+2mN is aliased to Tr(x) on the grid.

Coefficients of Tk are determined by all contributions that look

like Tk on the grid

ũk = uk +
∞∑

m=1

u2mN±k

6.2.1 Implementation of Fast Transform

The ũk can be obtained using FFT for u(x) real

Extend u(cos θ) from [0, π] to [0, 2π] in ‘θ−space’:

extended f(cos θ) is periodic in θ ⇒ FFT

69

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

cj
=

2

Nck

N∑

j=0

u(xj) cos(k
πj

N
)
1

cj
(8)

extend

uj =

{
u(xj) 0 ≤ j ≤ N

u(x2N−j) N + 1 ≤ j ≤ 2N

Note:

• in Matlab the extension can be done easily using the com-

mand FLIPDIM

rewrite the sum in terms of the extension

N−1∑

j=1

uj cos
πjk

N
=
︸︷︷︸

j=2N−r r=2N−j

2N−1∑

r=N+1

u2N−r
︸ ︷︷ ︸

ur

cos

(
πk

N
(2N − r)

)

=
2N−1∑

r=N+1

ur cos
πkr

N

thus considering factor 1/cj in (8)

ũk =
2

Nck

1

2

{

u0 cos 0 + uN cosπk + 2
N−1∑

j=1

uj cos
πjk

N

}

=

=
2

Nck

1

2

{

u0 cos 0 + uN cosπk +
N−1∑

j=1

uj cos
πjk

N
+

2N−1∑

j=N+1

uj cos
πjk

N

}

=
1

Nck

2N−1∑

j=0

uj cos
πjk

N
=

1

Nck
Re

{
2N−1∑

j=0

uje
i jπk

N

}

︸ ︷︷ ︸

FFT

Notes:

• here the ordering of grid points is x = cos θ
therefore u0 = u(+1) and uN = u(−1)

70

Reorder:

zj = cos θN−j then z0 = −1 zN = +1

Tk(zj) = cos (k arccos cos θN−j) = cos
(

k(N − j)
π

N

)

= cos kπ cos
kjπ

N
+ sin kπ sin

kjπ

N
= (−1)k cos

kjπ

N

Thus:

Tk(zj) = (−1)kTk(xj)

expressing that reflecting about the y-axis (x → −x) amounts to

switching sign of the odd Chebyshev polynomials but leaving the

even Tk unchanged.

Relation to FFT is changed

ũk =
2

Nck

N∑

j=0

u(xj)Tk(xj)
1

cj
=
︸︷︷︸

relabeling

2

Nck

N∑

j=0

u(zj)Tk(zj)
1

cj

= (−1)k 2

Nck

N∑

j=0

u(zj) cos
kjπ

N

1

cj
= (−1)k 1

Nck
Re

{
2N−1∑

j=0

ûj e
i jπk

k

}

︸ ︷︷ ︸

FFT

where

û0 = u(−1) ûN = u(+1) û2N = u(−1)

⇒ with natural ordering FFT yields (−1)kũk.

6.3 Derivatives

Goal: approximate derivative of u(x) by derivative of interpolant

INu(x)

Need d
dx
Tk(x) in terms of Tk(x)

Recursion Relation

d

dx
Tm+1(x) = (m+ 1)

{

2Tm(x) +
1

m− 1

d

dx
Tm−1(x)

}

m ≥ 2

with
d

dx
T0(x) = 0

d

dx
T1(x) = T0

Note:

• d
dx
Tm−1 contains even lower Tl etc.: d

dx
Tm contains contribu-

tions from many Tk

71

Proof of recursion relation:

d

dx
Tm±1(x) =

d

dx
cos ((m± 1)θ) = −(m± 1) sin ((m± 1)θ)

dθ

dx

use
dx

dθ
= − sin θ

dθ

dx
= − 1

sin θ

d

dx
Tm±1(x) = (m± 1) sin ((m± 1)θ)

1

sin θ

therefore

1

m+ 1

d

dx
Tm+1(x) −

1

m− 1

d

dx
Tm−1(x) =

1

sin θ
{sin(m+ 1)θ − sin(m− 1)θ} =

=
1

sin θ
(sinmθ cos θ + cosmθ sin θ − sinmθ cos θ + cosmθ sin θ)

= 2 cosmθ = 2Tm(x)

First Derivative

Expand the derivative of the interpolant in Tk(x)

d

dx
(INu(x)) =

N∑

k=0

ũk
d

dx
Tk(x) =

N∑

k=0

bkTk(x)

To determine bl project derivative onto Tl(x)

N∑

k=0

ũk

∫ +1

−1

Tl(x)
d

dx
Tk(x)

1√
1 − x2

dx =
N∑

k=0

bk

∫ 1

−1

Tl(x)Tk(x)
1√

1 − x2
dx

︸ ︷︷ ︸

δlk
π
2

ck

=
π

2
cl bl

Note:

• here c0 = 2 and cN = 1 since full projection, integrand eval-

uated not only at discrete grid points (we get an analytic

result for the bk)

Use

∫ 1

−1

Tl(x)
d

dx
(Tk(x))

1√
1 − x2

dx =

0 l ≥ k
0 k > l k + l even

kπ k > l k + l odd

Proof:

1. l ≥ k
degree of d

dx
Tkis k − 1 ⇒ can be expressed by sum of Tj with

j < l; scalar product vanishes since Tk ⊥ Tj for j 6= k

72

2. k + l even ⇒ l and k both even or both odd ⇒ Tl
d
dx
Tk odd ⇒

integral vanishes

3. k + l odd, k > l: prove by induction

write k = l + 2r − 1, r = 1, 2, 3, ...

(a) r = 1, k = l + 1
first l 6= 0

< Tl
d

dx
Tl+1 > =

︸︷︷︸

recursion for d
dx

Tl+1

(l+1)

2 < TlTl > +
1

l − 1
< Tl

d

dx
Tl−1 >

︸ ︷︷ ︸

=0 since l−1<l

= 2(l+1)
π

2

now l = 0

< T0
d

dx
T1 >=< T0T0 >= π

(b) induction step: assume

< Tl
d

dx
Tl+2r−1 >= (l + 2r − 1)

︸ ︷︷ ︸

k

π, r ≥ 1

〈Tl
d

dx
Tl+2(r+1)−1〉 = 〈Tl(l + 2r + 1)

(

2Tl+2r +
1

l + 2r − 1

d

dx
Tl+2r−1

)

〉

=
l + 2r + 1

l + 2r − 1
〈Tl

d

dx
Tl+2r−1〉 =

l + 2r + 1

l + 2r − 1
(l + 2r − 1)π = (l + 2r + 1)π

= (l + 2(r + 1) − 1)π

Thus:

bl =
2

cl

N∑

k=l+1 ; k+l odd

kũk

Note:

• calculation of single coefficient bl is O(N) operations instead

of O(1) for Fourier

⇒ calculation of complete derivative seems to require O(N2)
operation

Determine bl recursively:

cl
2
bl = (l + 1)ũl+1 +

N∑

k=l+3 ; k+l odd

kũk = (l + 1)ũl+1 +
cl+2

2
bl+2

73

Thus

bN = 0

bN−1 = 2NũN

clbl = 2(l + 1)ũl+1 + bl+2 0 ≤ l ≤ N − 2

Note:

• here cN = 1 since full integral ⇒ no factor cl+2 for l ≤ N − 2

• recursion relation requires only O(N) operations for all N
coefficients

• recursion relation cannot be parallelized or vectorized:

evaluation of bl requires knowledge of bk with k > l:

– cannot evaluate all coefficients bl simultaneously on par-

allel computers

– cannot start evaluating product involving bl without

finishing first calculation for bk with k > l

Higher Derivatives

calculate higher derivatives recursively

dn

dxn
u(x) =

d

dx

(
dn−1

dxn−1
u(x)

)

i.e. given

dn−1

dxn−1
IN(u(x)) =

N∑

k=0

b
(n−1)
k Tk(x)

one gets

dn

dxn
IN(u(x)) =

N∑

k=0

b
(n−1)
k

d

dx
Tk(x) =

N∑

k=0

b
(n)
k Tk(x)

with

b
(n)
N = 0

b
(n)
N−1 = 2Nb

(n−1)
N

clb
(n)
l = 2(l + 1)b

(n−1)
l+1 + b

(n)
l+2

Note:

• to get nth derivative effectively have to calculate all deriva-

tives up to n

74

6.3.1 Implementation of Pseudospectral Algorithm for Deriva-

tives

Combine the steps: given u(x) at the collocation points xj calcu-

late ∂n
xu at xj

I. Transform Method

1. Transform to Chebyshev amplitudes

ũk =
2

Nck

N∑

j=0

u(xj) cos
jkπ

N

1

cj

2. Calculate derivatives recursively

b
(n)
N = 0

b
(n)
N−1 = 2Nb

(n−1)
N

clb
(n)
l = 2(l + 1)b

(n−1)
l+1 + b

(n)
l+2

3. Transform back to real space at xj

∂n
xIN(u(xj)) =

N∑

k=0

b
(n)
k cos

jkπ

N

Note:

• steps 1. and 3. can be performed using FFT

FFT for back transformation

forward transformation was

ũk =
2

Nck

N∑

j=0

u(xj) cos
jkπ

N

1

cj
=

1

Nck
Re

{
2N−1∑

j=0

uje
i πjk

N

}

(9)

the last sum can be done as forward FFT

For first derivative at xj we need

N∑

k=0

bk cos
jkπ

N

1. extend bj

br = b2N−r for r = N + 1, ..., 2N − 1

75

2. need factors cj (cf. (9)): redefine bj

b̂0 = 2b0 b̂N = 2bN b̂j = bj for j 6= 0, N

N∑

k=0

bk cos
jkπ

N
=

N∑

k=0

b̂k cos
jkπ

N

1

ck
=

1

2
Re

{
2N−1∑

k=0

b̂ke
i jkπ

N

}

︸ ︷︷ ︸

FFT

Last sum can again be done as forward FFT.

Notes:

• backward transformation uses the same FFT as the forward

transformation.

more precisely, because only real part is taken the sign of i
does not matter

• again for natural ordering want derivative at zj = cos π
N

(N−
j):
need

b̂k cos
kπ

N
(N − j) = (−1)kb̂k cos

kjπ

N

⇒ replace

b̂k → (−1)kb̂k

II. Matrix Multiply Approach

As in Fourier case derivative is linear in u(xj) ⇒ can be written

as matrix multiplication

∂xIN(u(xj)) =
N∑

k=0

Djku(xk)

Djk gives contribution of u(xk) to derivative at xj

Seek polynomial that interpolates u(xj) and take its derivative

Construct interpolating polynomial from polynomials gk(x) satis-

fying

gk(xj) = δjk

u(xj) =
N∑

k=0

gk(xj)u(xk)

∂xu(x)|xj
=

N∑

k=0

∂xgk(x)

∣
∣
∣
∣
∣
xj

u(xk) ≡
N∑

k=1

Djku(xk)

76

Construct the polynomial noting that Chebyshev polynomial TN(x)
has extrema at all xj

d

dx
TN(xj) = 0 for j = 1, ...N − 1

Note: d
dx
TN has N − 1 zeroes since it has order N − 1

gk(x) =
(−1)k+1

N2ck
︸ ︷︷ ︸

normalization

vanishes at x0,N

︷ ︸︸ ︷

(1 − x2)

vanishes at xj

︷ ︸︸ ︷

d

dx
TN(x)

1

x− xk
︸ ︷︷ ︸

cancels (x−xk) in numerator

Notes:

• ∑u(xk)gk(x) interpolates u on the grid

• gk(x) is indeed a polynomial since denominator is cancelled

by d
dx
TN , which vanishes at the xk

• gk(x) is a Lagrange polynomial

L
(N)
k (x) =

N∏

k 6=m=1

x− xn+1−m

xn+1−k − xn+1−m

1 ≤ k ≤ N

Take derivative of gk(x)

d

dx
INu(xj) =

N∑

k=0

u(xk)g
′
k(xj) =

N∑

k=0

Djku(xk)

For natural ordering xj = cos θN−j = cos N−j
N
π, i.e. x0 = −1and

xN = 1, one gets

Djk =
cj
ck

(−1)j+k 1

xj − xk

for j 6= k

Djj = − xj

2 (1 − x2
j)

for j 6= 0, N (10)

D00 = −2N2 + 1

6
DNN = +

2N2 + 1

6

Notes:

• differentiation matrix is not skew-symmetric

Djk 6= Dkj since Djj 6= 0 and
cj
ck

77

• ||D|| = O(N2) because of clustering of points at the bound-

ary

clear for D00 and DNN . E.g., for j −N ≪ N

1 − xj = 1 − (1 − (j −N)2

N2
π2 + ...) = O(N−2)

smallest grid distance is O(N−2)
⇒ stability condition will involve N−2 instead of N−1

⇒ more restrictive than Fourier modes

• higher derivatives obtained via Dn

Note:

• it turns out that the numerical accuracy of the matrix-multiply

approach using D as formulated in (10) is quite prone to nu-

merical round-off errors. D has to satisfy

N∑

j=0

Dij = 0 ∀j

reflecting that the derivative of a constant vanishes.

A better implementation

Djk =
cj
ck

(−1)j+k 1

xj − xk

for j 6= k

Djj = −
N∑

j 6=k=0

Djk (11)

(12)

7 Initial-Boundary-Value Problems: Pseudo-

spectral Method

We introduced Chebyshev polynomials to deal with general bound-

ary conditions. Implement them now

7.1 Brief Review of Boundary-Value Problems

Depending on character of equation we need to pose/may pose

different number of boundary conditions at different locations.

78

7.1.1 Hyperbolic Problems

characterized by traveling waves: boundary conditions depend on

characteristics:

Boundary condition to be posed on incoming characteristic vari-

able but not on outgoing characteristic variable. Solution blows

up if boundary condition is posed on wrong variable.

1. Scalar wave equation

∂tu = ∂xu u(x, 0) = u0(x) − 1 ≤ x ≤ +1

wave travels to the left

u(x, t) = u(x+ vt)

distinguish boundaries;

(a) x = −1: outflow boundary ⇒ u is outgoing variable

requires and allows no boundary condition

(b) x = +1 : inflow boundary ⇒ u is incoming variable

needs and allows single boundary condition

2. System of wave equations

∂tu = A∂xu

diagonalize A to determine characteristic variables

Example:

∂tu = ∂xv

∂tv = ∂xu

Ul = u+ v Ur = u− v

(a) x = −1: only Ur is incoming, only Ur accepts boundary

condition

(b) x = +1: only Ul is incoming, only Ul accepts boundary

condition

Physical boundary conditions often not in terms of charac-

teristic variables

Example:

u = u± at x = ±1 v unspecified

at x = −1:

Ur(−1) = u− − v(−1) = u− − 1

2
(Ul(−1) − Ur(−1))

Ur(−1) = 2u− − Ul(−1)

79

7.1.2 Parabolic Equations

No characteristics, boundary conditions at each boundary

Example:

∂tu = ∇ · j = ∇ · ∇u = ∆u

Typical boundary conditions:

1. Dirichlet

u = 0

2. Neumann (no flux boundary condition)

∂xu = 0

3. Robin boundary conditions

αu+ β∂xu = g(t)

7.2 Pseudospectral Implementation

Implementation of boundary conditions is different for Galerkin

and for pseudospectral:

• pseudospectral: we have grid points ⇒ boundary values

available

we will use matrix-multiply approach

• Galerkin: no grid points, equations obtained by projections

⇒ modify expansion functions or projection

Explore: simple wave equation

∂tu = ∂xu u(x = 1, t) = g(t)

discretize

∂tui =
N∑

j=0

Dijuj with uj = u(xj)

Notes:

• spatial derivative calculated using all points

⇒ derivatives available at boundaries without introducing

the virtual points that appeared when using finite differ-

ences

∂xu0 =
1

2∆x
(u1 − u−1)

80

• boundary condition seems not necessary: it looks as if uN

could be updated without making use of g(t).
But: PDE would be ill-posed without boundary conditions

⇒ scheme should blow up! (see later)

Correct implementation

∂tui =
N∑

j=0

Dijuj i = 0, ..., N − 1

uN = g(t)

Note:

• although uN is not updated using the PDE, it can still be

used to calculate the derivative at the other points.

Express scheme in terms of unknown variables only: u0, u1, ...uN−1

Define reduced n× n−differentiation matrix

D
(N)
ij = Dij i, j = 0, ..., N − 1

i.e. N th row and column of Dij are omitted.

∂tui =
N−1∑

j=0

D
(N)
ij uj +DiNuN i = 0, ..., N − 1

uN = g(t)

Notes:

• boundary conditions modify differentiation matrix

• in general equation becomes inhomogeneous

7.3 Spectra of Modified Differentiation Matri-

ces

With u = (u0, ..., uN−1) PDE becomes inhomogeneous system of

ODEs

∂tu = D(N)u + d with di = DiNg(t)

For simplicity assume vanishing boundary values: d = 0

Stability properties determined by eigenvalues λj of modified dif-

ferentiation matrix D(N)

∂tuj = λjuj

Reminder:

81

• region of absolute stability of scheme for eigenvalue λj

{λj ∆t ∈ C|uj bounded for all t}

• scheme is asymptotically stable if it is absolutely stable for

all eigenvalues of D(N)

7.3.1 Wave Equation: First Derivative

What are the properties of D(N)?

Review of Fourier Case

• eigenvalues of DF are ik, |k| = 0, 1, ...N − 1. All eigenvalues

are purely imaginary

• DF is normal ⇒ can be diagonalized by unitary matrix U

U−1DU =

λ1

λ2

...
λN

≡ D

with ||D|| = ||D|| and ||U−1u|| = ||u||
⇒ ||u|| is bounded by the same constant as ||U−1u||, inde-

pendent of N
⇒ sufficient to look at scalar equation.

Properties of D(N) for Chebyshev

• eigenvalues of D(N) are not known analytically

• eigenvalues of D(N) have negative real part

∂tu = D(N)u well-posed

∂tu = −D(N)u ill-posed

in ill-posed case boundary condition should be at x = −1 but

it is posed at x = +1
Example: N = 1

D(N) = D00 = −2 + 1

6
= −1

2

∂tu0 = −1

2
u0 bounded; boundary condition on u1

For boundary condition at x = −1 introduce D(0)

D
(0)
ij = Dij i, j = 1, ..., N

82

Thus for

∂tu = −∂xu

∂tui = −
N∑

j=1

D
(0)
ij uj +Di0g(t) for i = 1, ..., N

Eigenvalues of D(0) have positive real part

Example: N = 1

D(0) = DNN = +
1

2

Note:

– in Fourier real part vanishes: ⇒ no blow-up

periodic boundary conditions are well-posed for both di-

rections of propagation

• D(N) is not normal (D+D 6= DD+) ⇒ similarity transforma-

tion S to diagonal form not unitary

||u|| 6= ||Su||

For any fixed N ||u|| is bounded if ||Su|| is bounded

But constant relating ||u|| and ||Su|| could diverge for N →
∞
⇒ stability is not guaranteed for N → ∞ if scalar equation

is stable.

• eigenvalues of D(N) and D(0) are O(N2)
⇒ stability limits for wave equation will involve

∆t ≤ O(N−2)

larger eigenvalues reflect the close grid spacing near the

boundary, ∆x = O(N−2)

7.3.2 Diffusion Equation: Second Derivative

Consider

∂tu = ∂2
xu α0,N u+ β0,N ∂xu = γ0,N at x = ±1

a) Fixed Boundary Values α = 1, β = 0
unknowns

u1, u2, ..., uN−1

known

u0 = γ0 uN = γN

83

Reduced (n− 1)× (n− 1) differentiation matrix for second deriva-

tive

D
(0,N)
2,ij = (D2)ij i, j = 1, ..., N − 1

then

∂tui =
N−1∑

j=1

D
(0,N)
2,ij uj + (D2)i0γ0 + (D2)iNγN for i = 1, ..., N − 1

Note:

• again the 2nd derivative is calculated by using all values of

u, including the fixed prescribed boundary values

• for transformation to ũk via FFT use all grid points

information for ∂2
xu is, however, discarded at the boundaries

Eigenvalues

exact eigenvalues of ∂2
xu with u(±1) = 0:

• sin qx is eigenfunction of ∂2
x for q = π

L
n = π

2
n. ⇒ eigenvalues

λn = −π2

4
n2

• all functions that vanish at x = ±1 can be expanded in

terms of sin qx with q = π
L
n = π

2
n

⇒ sin qx form a complete set ⇒ no other eigenfunctions

eigenvalues of D
(0,N)
2 :

• all eigenvalues are real and negative

• eigenvalues are O(N4) reflecting the small grid spacing near

the boundaries.

84

b) Fixed Flux: α = 0, β = 1
Need other modification of D2:

• u0 and uN now unknown ⇒ (n+ 1) × (n+ 1) matrix

• ∂xu0 and ∂xuN are known

⇒ ∂xui is calculated with D only for i = 1, ..., N − 1

D̂
(0,N)
ij =

{
Dij 1 ≤ i ≤ N − 1
0 i = 0 or i = N

∂xui =
N∑

j=0

D̂
(0,N)
ij uj + δi,0γ0 + δi,NγN i = 0, ..., N

• 2nd derivative

∂2
xui =

N∑

j=0

Dij∂xuj =
N∑

j,k=0

DijD̂
(0,N)
jk uk +Dijδj,0γ0 +Dijδj,NγN

• Diffusion equation

∂tui =
N∑

j,k=0

DijD̂
(0,N)
jk uk

︸ ︷︷ ︸

apply e.g. Crank-Nicholson

+ Di0γ0 +DiNγN
︸ ︷︷ ︸

inhomogeneous terms

1

∆t

(
un+1 − un

)
= θDD̂(0,N)un+1+(1−θ)DD̂(0,N)un+Di0γ0+DiNγN

Note:

– derivative at boundary is calculated also with spectral

accuracy; in finite difference schemes they are one-sided:

reduced accuracy

– Crank-Nicholson for fixed boundary values similar.

7.4 Discussion of Time-Stepping Methods for Cheby-

shev

Based on analysis of
du

dt
= λu

which scheme has range of ∆t in which it is absolutely for given

λ ∈ C

Main aspect: not only D
(0,N)
2 but also D(N) has negative real part

85

7.4.1 Adams-Bashforth

AB1= forward Euler

AB2

un+1 = un + ∆t

(
3

2
fn − 1

2
fn−1

)

AB3

un+1 = un + ∆t

(
23

12
fn − 16

12
fn−1 +

5

12
fn−2

)

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
Adams−Bashforth

AB1
AB2
AB3

all three schemes have stable for diffusion and for wave equation

Stability limits:

wave equation

∆tmax = O(
1

N2
)

diffusion equation

∆tmax = O(
1

N4
)

strong motivation for implicit scheme

7.4.2 Adams-Moulton

AM1=backward Euler

AM2=Crank-Nicholson

86

AM3

un+1 = un + ∆t

(
5

12
fn+1 +

8

12
fn − 1

12
fn−1

)

−7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4
Adams−Moulton

AM3
AM4
AM5
AM6

backward Euler and Crank-Nicholson remain unconditionally sta-

ble for both equations

AM3: now stable for small ∆t ; but still implicit scheme

Notes:

• Crank-Nicholson damps large wavenumbers only weakly,

2nd order in time

• backward Euler damps large wavenumbers strongly: very

robust, but only 1storder in time

• if high wavenumbers arise from non-smooth initial condi-

tions: take a few backward Euler steps

7.4.3 Backward-Difference Schemes

this class of schemes is obtained by obtaining interpolant for u(t)
and taking its derivative as the left-hand-side of differential equa-

tion

pm(t) =
m−1∑

k=0

u(tn+1−k)L
(m)
k (t)

87

with Lagrange polynomials

L
(m)
k (t) =

m−1∏

k 6=l=0

t− tn+1−l

tn+1−k − tn+1−l

to get derivative

du

dt

∣
∣
∣
∣
tn+1

=
d

dt
pm(t)

∣
∣
∣
∣
tn+1

=

1. m = 2

p2(t) =
un+1 − un

tn+1 − tn
(t− tn) + un

d

dt
p2(t)

∣
∣
∣
∣
tn+1

=
un+1 − un

tn+1 − tn
= f(un+1)

thus: BD1=backward Euler

2. m = 3 yields BD2

3

2
un+1 − 2un +

1

2
un−1 = ∆t fn+1

−15 −10 −5 0 5 10 15 20 25 30 35
−25

−20

−15

−10

−5

0

5

10

15

20

25
backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

−1 −0.5 0 0.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

backward differentiation

BD1
BD2
BD3
BD4
BD5
BD6

Neumann Analysis for BD2:

3

2
z − 2 +

1

2z
− ∆tλz = 0

z1,2 =
2 ±

√
1 + 2∆tλ

3 − 2∆tλ
→ ∓ 1

√

2∆t|λ|
→ 0 for ∆t|λ| → ∞

Note:

88

• BD1 and BD2 are unconditionally stable. BD3 and higher

are not unconditionally stable

• BD2 damps high wavenumbers strongly (although not as

strongly as BE) and is 2nd order in time

compared to Crank-Nicholson it needs more storage since it

uses un−1

7.4.4 Runge-Kutta

−5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

Runge−Kutta

RK1
RK2
RK3
RK4

For Chebyshev also RK2 stable for wave equation - was not the

case for Fourier

7.4.5 Semi-Implicit Schemes

Consider diffusion equation with nonlinearity

∂tu = ∂2
xu
︸︷︷︸

CN

+ f(u)
︸︷︷︸

AB2

u(x = 0) = γ0 u(x = L) = γN

un+1 = un + ∆t
(
θ∂2

xu
n+1 + (1 − θ)∂2

xu
n
)

+ ∆t

(
3

2
f(un) − 1

2
f(un−1)

)

Calculate derivatives with differentiation matrix

⇒ boundary conditions enter

∂2
xui =

∑

j

D
(0,N)
2,ij uj +D2

i0γ0 +D2
iNγN i = 1, ..., N − 1

remember

D
(0,N)
2,ij = (D2)ij i, j = 1, ..., N − 1

89

insert in scheme

∑

j

(δij − ∆tθD
(0,N)
2,ij)un+1

j =
∑

j

(δij + ∆t(1 − θ)D
(0,N)
2,ij)un

j + ∆t
(
D2

i0γ0 +D2
iNγN

)
+

∆t

(
3

2
fi(u

n) − 1

2
fi(u

n−1)

)

i = 1, ..., N − 1

Notes:

• Need to invert δij − ∆tθD
(0,N)
2,ij : constant matrix ⇒ only one

matrix inversion

• in the algorithm D
(0,N)
2,ij is effectively a N − 2×N − 2 matrix;

but it is not the same matrix as D2 for N − 2 nodes!

• if boundary condition depends on time

either CN

∆t
(
θD2

i0γ0(tn+1) + (1 − θ)D2
i0γ0(tn+1)

)

or AB2

∆t

(
3

2
D2

i0γ0(tn) − 1

2
D2

i0γ0(tn−1)

)

Note:

• Integrating-factor scheme does not work because the deriva-

tive matrix is not diagonal with respect to the Tk , i.e. no

exact solution is available that could be factored out.

8 Initial-Boundary-Value Problems: Galerkin

Method

Galerkin method:

unknowns are the expansion coefficients, no spatial grid is intro-

duced

8.1 Review Fourier Case

∂tu = Su 0 ≤ x ≤ 2π periodic b.c.

Expand u

PN(u) =
N∑

k=−N

uk(t)e
ikx

90

replace u by projection PN(u) in PDE

∂tPN(u) − S PN(u) = 0

the expansion coefficients are determined by the condition that

equation is satisfied in subspace spanned by the eikx, −N ≤ k ≤
N , i.e. error orthogonal to that subspace

Project onto eilx, −N ≤ l ≤ N

〈eilx, ∂tPN(u) − S PN(U)〉 = 0

Orthogonality of eilx-modes

∂tul −
∫ 2π

0

e−ilxS PN(u) = 0

e.g. for S = ∂x

∂tul −
∫

e−ilx
∑

k

(ik)uke
ikx = 0

∂tul − ilul = 0

Notes:

• no aliasing error since transforms are calculated exactly

• nonlinear terms and space-dependent terms require convo-

lution: slow

• no grid: preserves translation symmetry

• boundary conditions:

each Fourier mode satisfies the boundary conditions indi-

vidually

8.2 Chebyshev Galerkin

Consider

∂tu = ∂xu − 1 ≤ x ≤ +1, u(x = +1, t) = g(t)

Expand

PN(u) =
N∑

k=0

uk(t)Tk(x)

project back onto Tl(x)

〈Tl, ∂tPN(u) − ∂xPN(u)〉 = 0

91

∂tul(t) =
N∑

k=0

〈Tl(x), ∂xTk(x)〉uk(t)

with

〈u1(x), u2(x)〉 =

∫ +1

−1

u1(x)u2(x)
1√

1 − x2
dx

Where are the boundary conditions?

Note:

• the Tk(x) do not satisfy the boundary conditions individually

8.2.1 Modification of Set of Basis Functions

Construct new complete set of functions, each of which satisfies

the boundary conditions.

Example: Dirichlet condition g(t) = 0

Tk(x = +1) = 1

introduce

T̂k(x) = Tk(x) − T0(x), k ≥ 1

each T̂k satisfies boundary condition.

Note:

• modified functions may not be orthogonal any more

〈T̂l(x), T̂k(x)〉 = 〈Tk, Tl〉
︸ ︷︷ ︸

∝δkl

−〈TkT0〉
︸ ︷︷ ︸

=0

−〈T0Tl〉
︸ ︷︷ ︸

=0

+ 〈T0T0〉
︸ ︷︷ ︸

=π

• could orthogonalize the set with Gram-Schmidt procedure

T̃1 = T̂1

T̃2 = T̂2 − 〈T̃1T̂2〉 T̃1

T̃3 = T̂3 − 〈T̃1T̂3〉T̃1 − 〈T̃2T̂3〉T̃2

...

• procedure is not very flexible, expansion functions have to

be changed whenever boundary conditions are changed.

92

8.2.2 Chebyshev Tau-Method

To be satisfied

∂tu = ∂xu

u(+1, t) = g(t)

i.e. boundary condition represents one more condition on the ex-

pansion coefficients

⇒ introduce 1 extra unknown

Expand in N + 2 modes

PN(u) =
N∑

k=0

ukTk(x) + uN+1TN+1(x)

Project PDE onto T0,...TN ⇒ N + 1 equations

〈Tl, ∂tPN+1(u) − ∂xPN+1(u)〉 = 0 0 ≤ l ≤ N

satisfy boundary condition

N∑

k=0

ukTk(x = +1) + uN+1TN+1(x = +1) = g(t)

Use orthogonality

cl∂tul =
N+1∑

k=0

uk〈Tl, ∂xTk〉

and Tk(x = 1) = 1
N+1∑

k=0

uk = g(t)

Thus: N + 1 equations for N + 1 unknowns. Should work.

Note:

• For p boundary conditions expand in N + 1 + p modes and

project PDE onto first N + 1 modes and use remaining p
modes to satisfy boundary conditions.

Spurious Instabilities

τ−method can lead to spurious instabilities and eigenvalues.

Example: incompressible Stokes equation in two dimensions

∂tv = −1

ρ
∇p+ ν∆v ∇ · v = 0

93

Introduce streamfunction ψ and vorticity ζ

v = (−∂yψ, ∂xψ) = −∇× (ψk̂)

ζ = (∇× v)z = ∇2ψ

eliminate pressure from Stokes by taking curl

∂tζ = ν∆ζ

ζ = ∇2ψ

Consider channel flow with v depending only on the transverse

coordinate x: v = v(x)

∂tζ = ν∂2
xζ (13)

ζ = ∂2
xψ (14)

Boundary conditions at x = 0, L

vx = 0 ⇒ ∂yψ = 0

vy = 0 ⇒ ∂xψ = 0

Boundary condition ∂yψ implies ψ is constant along the wall. If

there is not net flux through the channel then ψ has to be equal

on both sides of the channel

ψ = 0 x = 0, L

Can combine both equations (13,14) into single equation for ψ

∂t∂
2
xψ = ν∂4

xψ

with 4 boundary conditions

ψ = 0 ∂xψ = 0 at x = 0, L

94

Ansatz

ψ = eσtΨ(x)

σ∂2
xΨ = ν∂4

xΨ

Expand

Ψ(x) =
N∑

k=0

ΨkTk(x) ∂2
xΨ =

N∑

k=0

b
(2)
k Tk(x) ∂4

xΨ =
N∑

k=0

b
(4)
k Tk(x)

Results for eigenvalues

N σ1 σ2

10 −9.86966 4, 272
15 −9.86960 29, 439
20 −9.86960 111, 226

Notes:

• spurious positive eigenvalues

σmax = O(N4)

• scheme is unconditionally unstable, useless for time inte-

gration

o.k. to determine eigenvalues as long as spurious eigenval-

ues are recognized

Rephrase problem (cf. Gottlieb & Orszag)

expand

ψ = eσt
∑

k

ψkTk(x)

ζ = eσt
∑

k

ζkTk(x)

in PDE

σζk = νζ
(2)
k

ζk = ψ
(2)
k

where ζ
(2)
k and ψ

(2)
k are coefficients of expansion of 2nd−derivative

Previously all boundary conditions were imposed on first equa-

tion

Physically:

impose no slip condition vy = 0 on Stokes equation

σζk = νζ
(2)
k 0 ≤ k ≤ N − 2

∂xψ (x = ±1) = 0 N − 1 ≤ k ≤ N

95

impose incompressibility on vorticity equation

ζk = ψ
(2)
k 0 ≤ k ≤ N − 2

ψ(x = ±1) = 0 N − 1 ≤ k ≤ N

This scheme is stable.

9 Iterative Methods for Implicit Schemes

Consider as simple example nonlinear diffusion equation

∂tu = ∂2
xu+ f(u)

with Crank-Nicholson for stability or for Newton

un+1 − un

∆t
= θ∂2

xu
n+1 + (1 − θ)∂2

xu+ θf(un+1) + (1 − θ)f(un)

linearize f(un+1) (for reduced Newton, i.e. only single Newton

step)

f(un+1) = f(un + un+1 − un) = f(un) + (un+1 − un)f ′(un) + ...

and discretize derivatives (Chebyshev or Fourier or finite differ-

ences)

∂2
xu⇒ D2u

then
(

(
1

∆t
− θf ′(un))I − θD2

)

un+1 =

(

(
1

∆t
− θf ′(un))I + (1 − θ)D2

)

un+f(un)

Notes:

• in linear case matrix on l.h.s. is constant ⇒ only single ma-

trix inversion

• in general:

– matrix inversion in each time step

– for full Newton matrix changes after each iteration

• finite differences: in one dimension only tri-diagonal matrix

• pseudospectral: matrix is full, inversion requires O(N3) op-

erations

• implicit treatment of nonlinearity is in particular important

when nonlinearity contains spatial derivatives, otherwise in

many cases sufficient to treat nonlinear term explicitly (e.g.

CNAB)

96

9.1 Simple Iteration

Consider matrix equation

Ax = b

Seek interative solution scheme

xn+1 = xn + g(xn)

need to chose g(x) to get convergence to solution

xn+1 = xn ⇔ Axn = b

simplest attempt

g(x) = b − Ax

xn+1 = (I − A)xn + b ≡ Gx + b

check whether solution is a stable fixed point: consider evolution

of error

δn = xn − xe

δn+1 = xn+1 − xe = (I − A)xn + b
︸︷︷︸

Axe

−xe

= (I − A)(xn − xe) = (I − A)δn

thus

δn+1 = Gδn

Estimate convergence

||δn+1|| ≤ ||G|| ||δn||

and

||δn|| ≤ ||G||n ||δ0||
convergence in the vicinity of the solution guaranteed for

||G|| ≤ α < 1

If δn is eigenvector of G

δn+1 = Gδn = λiδn

⇒ need λi ≤ α < 1 for all eigenvalues λi

Define spectral radius of G

ρ(G) = max
i

|λi|

97

then we have

iteration converges iff ρ(G) ≤ α < 1

Define convergence rate R as inverse of number of iterations to

decrease δ by factor e

ρ(G)
1
R =

1

e

R = − ln ρ(G) > 0

Note:

• for special initial conditions that lie in a direction that con-

tracts faster one could have faster convergence. The rate R
is guaranteed.

• for poor initial guess: possibly no convergence at all.

For Crank-Nicholson (in the linear case)

A =
1

∆t
I − θD2

thus

G = I − A = (1 − 1

∆t
)I + θD2

Eigenvalues of G:

ρ(G) = O(N2) Fourier

ρ(G) = O(N4) Chebyshev

ρ(G) ≫ 1 no convergence.

9.2 Richardson Iteration

Choose g(x) more carefully

g(x) = ω (b − Ax)

Iteration

xn+1 = xn + ω (b − Axn) = Gxn + ωb

with iteration matrix

G = I − ωA

Choose free parameter ω such that that ρ(G) is minimal, i.e.

max
i

|1 − ωλi| minimal

98

A = 1
∆t

I − θD2 has only positive eigenvalues

O(1) = λmin ≤ λ ≤ λmax = O(N2,4)

optimal choice

1 − ωλmax = −(1 − ωλmin)

ωopt =
2

λmin + λmax

optimal spectral radius

ρ(G)min = max
i

|1 − ωλi| = 1 − ωoptλmin =
λmax − λmin

λmax + λmin

Spectral condition number

κ =
λmax

λmin

ρ(G)min =
κ− 1

κ+ 1
< 1

Notes:

• Richardson iteration can be made to converge by suitable

choice of ω independent of spectral radius of original matrix

• Fourier and Chebyshev have large κ

κ = O(N2,4) ⇒ ρ very close to 1

• in Crank-Nicholson

Aij =

[
1

∆t
− θf ′(un)

]

δij − θD2,ij

the D2−part corresponds to calculating the second deriva-

tive ⇒ can be done using FFT rather than matrix multipli-

cation.

99

9.3 Preconditioning

Range of eigenvalues of G very large ⇒ slow convergence

Further improvement of g(x)

xn+1 = xn + ω M−1
︸︷︷︸

preconditioner

(b − Axn)

Iteration matrix

G = I − ωM−1A

Goal: minimize range of eigenvalues of G

Note:

• optimal would be M−1 = A−1 then G = 0 ⇒ instant conver-

gence

that is the original problem

• find M that is easy to invert and is close to A, i.e. has simi-

lar spectrum

⇒ use M from finite difference approximation

9.3.1 Periodic Boundary Conditions: Fourier

For simplicity discuss using simpler problem

∂tu = ∂2
xu with periodic b.c.

backward Euler:

• spectral ⇒ A, use Fourier because of boundary conditions

• finite differences ⇒ M

Finite differences

1

∆t
(un+1

j − un
j) =

1

∆x2

(
un+1

j+1 − 2un+1
j + un+1

j−1

)

written as

Mun+1 = un

with

M =

1
∆t

+ 2
∆x2 − 1

∆x2 0 − 1
∆x2

− 1
∆x2

1
∆t

+ 2
∆x2

1
∆x2 0

0
− 1

∆x2 0 − 1
∆x2

1
∆t

+ 2
∆x2

100

Spectral

A =
1

∆t
I − D2

Eigenvalues of M−1A:

M and A have same eigenvectors eilx

⇒ eigenvalues satisfy

λM−1A =
λA

λM

eigenvalues of M:

Mije
ilxj =

(
1

∆t
− eil∆x − 2 + e−il∆x

∆x2

)

eilx

λM =
1

∆t
+

2

∆x2
(1 − cos l∆x)

eigenvalues of A

λA =
1

∆t
+ l2

⇒

λM−1A =
1

∆t
+ l2

1
∆t

+ 2
∆x2 (1 − cos l∆x)

=

=
∆x2

∆t
+ ∆x2l2

∆x2

∆t
+ 2(1 − cos l∆x)

range of eigenvalues

l → 0 λM−1A → 1 when
∆x2

∆t
dominates

l → N

2
∆x2l2 →

(
2π

N

N

2

)2

= π2 1 − cos l∆x→ 2 λM−1A → π2

4

Thus:

• ratio of eigenvalues is O(1) ⇒ fast convergence of iteration.

In practice

xn+1 = xn + ωM−1(b − Axn)

is solved as

M (xn+1 − xn) = ω (b − Axn)

Notes:

• for Fourier case (periodic boundary conditions) M is almost

tri-diagonal , equation can be solved fast

101

• for Chebyshev case: grid points are not equidistant, need

finite difference approximation on the same grid

∂2
xu =

2

∆xj(∆xj + ∆xj−1)
uj+1 −

2

∆xj∆xj−1

uj +
2

∆xj−1(∆xj + ∆xj−1)
uj−1

with ∆xj = xj+1 − xj

again eigenvalues of M−1A can be shown to be O(1)

• for κ ≈ 3 one has ρ = κ−1
κ+1

≈ 1
2
⇒ δn = δ12

−n

thus
δn
δ1

≈ 10−4 for n ≈ 12

⇒ implicit method with computational effort not much more

than explicit

• the matrix multiplication should be done with fast trans-

form, e.g. for Fourier

Axn =

(
1

∆t
I − D2

)

xn =
1

∆t
xn −F−1

(
−k2F(xn)

)

9.3.2 Non-Periodic Boundary Conditions: Chebyshev

Need to consider modified matrices, e.g. D
(0,N)
2 , and also in finite

differences

1. fixed values u0,N = γ0,N

⇒ only N − 1 unknowns

Chebyshev: use D
(0,N)
2

∑

j

[
δij
∆t

− αD
(0,N)
2,ij

]

un+1
j = r.h.s.+D2

i0γ0 +D2
iNγN

finite differences

1
∆t

− 2α
∆x2

α
∆x2 0 0

α
∆x2

1
∆t

− 2α
∆x2

α
∆x2 0

0 ...
0 0 α

∆x2
1

∆t
− 2α

∆x2

=

(

r.h.s.

)

+

−1
∆x2γ0

0
...

−1
∆x2γN

2. fixed flux ∂xu0,N = γ0,N

Chebyshev:

∂xui =
∑

j

D̂
(0,N)
ij uj + δi0γ0 + δiNγN

102

with

D̂(0,N) =

0 0 0 0
D

0 0 0 0

then

∂2
xui =

∑

jk

DijD̂
(0,N)
jk uk

︸ ︷︷ ︸

⇒ l.h.s.

+ Di0γ0 +DiNγN
︸ ︷︷ ︸

known ⇒ r.h.s.

finite differences:

introduce virtual points: u−1 and uN+1

∂xu0 =
u1 − u−1

2∆x
= γ0 ⇒ u−1 = u1 − 2∆xγ0

⇒ equation for u0 is modified

∂2
xu0 =

u1 − 2u0 + u−1

∆x2
=
u1 − 2u0 + (u1 − 2∆xγ0)

∆x2

=
−2

∆x2
u0 +

2

∆x2
u1

︸ ︷︷ ︸

l.h.s.

− 2

∆x
γ0

︸ ︷︷ ︸

r.h.s.

M is tridiagonal

M =

1
∆t

− 2
∆x2

2

∆x2 0 0
1

∆x2
1

∆t
− 2

∆x2
1

∆x2 0
0 ...
0

Notes:

• this leads apparently to eigenvalues λM−1Ain the range

O(1) to O(1
N

) ⇒ κ becomes large with N , convergence

not good.

• apparently better to use D̂
(0,N)
ij only to calculate deriva-

tive for the boundary points and to calculate ∂2
xu using

D2 for interior points (see Streett (1983) as referenced

by Canuto et al. in Sec. 5.2)

Back to reaction-diffusion equation

∂tu = ∂2
xu+ f(u)

Newton for Crank-Nicholson yields

1

∆t
I − αD2 − αI

df(un)

du
︸ ︷︷ ︸

A

 = r.h.s.

Note:

103

• A depends on un ⇒ eigenvalues depend on un and therefore

also on time

⇒ eigenvalues are in general not known

⇒ choice of ω is not straightforward: trial and error ‘tech-

nique’

9.3.3 First Derivative

Consider simpler problem

du

dx
= f(x) with periodic b.c.

i.e. ∑

j

Dijuj = fi

Try usual central differences for finite-difference preconditioning

of Fourier differentiation matrix

uj+1 − uj−1

2∆x
=⇒ λM =

2i sin l∆x

2∆x

then

λM−1A =
il∆x

i sin l∆x
with − π ≤ l∆x ≤ +π

since sin π = 0 one has

• λM−1A unbounded ⇒ κ unbounded

• no convergence

Possibilities:

1. Could omit higher modes (Orszag)

ũ
(c)
k =

{
ũk |k| ≤ 2N

3

0 2N
3
< |k| ≤ N

and calculate derivative with ũ(c)

duj

dx
=

N∑

k=−N

ikũ
(c)
k

Now l∆x ≤ 2
3
π and range of λM−1A is 1 ≤ λM−1A ≤ 2π

3
sin 2π

3
≈

2.4.

104

2. Want sin 1
2
l∆x instead of sin ∆x

Use staggered grid: evaluate derivatives and differential

equation at xj+1/2 but based on the values at the grid points

xj

Finite differences

du

dx

∣
∣
∣
∣
x

j+1
2

=
uj+1 − uj

∆x
= e

ilx
j+1

2
e

1
2
il∆x − e−

1
2
il∆x

∆x
⇒ λM =

2i sin 1
2
l∆x

∆x
e

1
2
il∆x

Spectral

du

dx

∣
∣
∣
∣
x

j+1
2

=
N∑

l=−N

ilũke
il(xj+

1
2

π
N

) ⇒ λA = ile
1
2
il∆x

thus

λM−1A =
1
2
l∆x

sin 1
2
l∆x

1 ≤ λM−1A ≤ π

2

For wave equation one would get similar problem with central-

difference preconditioning

λM−1A =
∆x
∆t

+ il∆x
∆x
∆t

+ i sin l∆x
with − π ≤ l∆x ≤ +π

In implicit scheme ∆t may be much larger than ∆x:

again λM−1A has very large range ⇒ poor convergence

Use same method.

10 Spectral Methods and Sturm-Liouville

Problems

Spectral methods:

• expansion in complete set of functions

• which functions to choose?

To get complete set consider eigenfunctions of a Sturm-Liouville

problem

d

dx

(

p(x)
d

dx
φ

)

− q(x)φ+ λ w(x)
︸︷︷︸

weight function

φ = 0 − 1 ≤ x ≤ 1

with

p(x) > 0 in − 1 < x < 1 w(x), q(x) ≥ 0

105

• regular:

p(−1) 6= 0 6= p(+1)

• singular:

p(−1) = 0 and/or p(+1) = 0

Boundary conditions are homogeneous:

• regular

α±φ(±1) + β±
dφ(±1)

dx
= 0 (15)

• singular

p(x)
dφ

dx
→ 0 for x→ ±1 (16)

φ cannot become too singular near the boundary

Sturm-Liouville problems have non-zero solutions only for cer-

tain values of λ: eigenvalues λn

Define scalar product:

〈u, v〉w =

∫ +1

−1

w(x)u∗(x)v(x)dx

eigenfunctions φk form an orthonormal complete set

〈φk, φl〉 = δlk

Examples:

1. p(x) = 1 = w(x) and q(x) = 0

d2

dx2
φ+λφ = 0 Fourier, regular Sturm-Liouville problem

2. p(x) =
√

1 − x2, q(x) = 0, w(x) = 1√
1−x2

d

dx

(√
1 − x2

d

dx
φ

)

+λ
1√

1 − x2
φ = 0 Chebyshev, singular

Expand solutions

u(x) =
∞∑

k=0

ukφk(x)

with

uk =

∫

w(x)φ∗(x)u(x) dx projection

Consider convergence of expansion in L2−norm

||u(x) −
N∑

k

ukφk(x)|| → 0 for N → ∞

Note:

106

• pointwise convergence only for almost all x

Truncation error

||
∞∑

k=N+1

ukφk(x)||

depends on decay of uk with k

Want spectral accuracy

uk ≤ O
(

1

kr

)

for all r

Under what condition is spectral accuracy obtained?

Consider

uk =

∫

w(x)φ∗(x)u(x) dx

Previously (Fourier and Chebyshev) did integration by parts.

Use Sturm-Liouville problem

w(x)φ∗
k(x) =

1

λk

[

qφ∗
k −

d

dx

(

p
dφ∗

dx

)]

u
k

=
1

λk

∫

u

{

qφ∗
k −

d

dx

(

p
d

dx
φ∗

k

)}

dx =

=
1

λk

∫

uqφ∗
kdx+

1

λk

{

−up d
dx
φ∗

k

∣
∣
∣
∣
±1

+

∫
du

dx
p
dφ∗

dx
dx

}

=

=
1

λk

∫

uqφ∗
kdx+

1

λk

{

−up d
dx
φ∗

k

∣
∣
∣
∣
±1

+
du

dx
pφ∗

k

∣
∣
∣
∣
±1

−
∫

d

dx

(
du

dx
p

)

φ∗
kdx

}

Boundary terms vanish if

p

{

u
dφ∗

dx
− du

dx
φ∗

k

}∣
∣
∣
∣
±1

= 0

• regular case
d

dx
φ∗

k(±1) = −α±
β±

φ∗
k(±1)

p

{

−uα±
β±

φ∗
k −

du

dx
φ∗

k

}∣
∣
∣
∣
±1

= 0

thus: u has to satisfy the same strict boundary conditions

as φk

• singular case

p
d

dx
φk → 0 at boundary

107

⇒ require

φkp
du

dx
→ 0 at boundary

need only same weak condition on u as on φ

p
du

dx
→ 0 at boundary

For large k

λk = O(k2)
dφk

dx
= O(k)

⇒ if boundary conditions are not met one gets

uk = O(
1

k
)

For spectral accuracy necessary but not sufficient:

u satisfies same boundary conditions as φ

Use Lφk = λkwφk to rewrite compact (cf. Canuto):

uk = 〈φk, u〉w =
1

λk

〈 1

w
Lφk, u〉w

if φ and u satisfy the same boundary conditions, then they are in

the same function spaces and L is self-adjoint (in explicit calcula-

tion above, the w cancel and one can perform the usual integra-

tion by parts)

uk =
1

λk

〈φk,
1

w
Lu〉w =

1

λ2
k

〈 1

w
Lφk,

1

w
Lu〉w =

1

λ2
k

〈φk,
1

w
L

1

w
Lu〉w

if 1
w
Lu satisfies the same boundary conditions as φ.

Introducing

u(m) =
1

w
Lu(m−1)

can write

uk =
1

λr
k

〈φk, u(r)〉 = O
(

1

λr
k

)

if

• the u(m) satisfy same boundary conditions as φ for all 0 ≤
m ≤ r − 1

• u(r) is integrable

Conclusion:

108

• regular Sturm-Liouville problem: since Lru has to satisfy

the boundary conditions these boundary conditions (15) are

a very restrictive condition.

Fourier case is a regular Sturm-Liouville problem: for spec-

tral accuracy we needed that all derivatives satisfy periodic

boundary conditions.

• singular Sturm-Liouville problem: singular boundary con-

ditions (16) only impose a condition on regularity, do not

prescribe any boundary values themselves

Simple example:

∂tu = ∂2
xu+ f(x, t) u(0) = 0 = u(π)

Could use sine-series

u =
∑

k

ake
σt sin kx

since they satisfy related eigenvalue problem

λφ = ∂2
xφ φ = 0 at x = 0, π

But: this is a regular Sturm-Liouville problem with L = ∂2
x and

w = 1

Spectral convergence only if

u(r)(0) = 0 = u(r)(π) for all r (17)

i.e. if all even derivatives have to vanish at the boundary

Most functions that satisfy the original boundary conditions u(0) =
0 = u(π) do not satisfy the additional conditions (17)

e.g. stationary solution for f(x, t) = c

u =
1

2
cx2 − 1

2
cπx

of course ∂2
xu(x = ±1) = c 6= 0.

109

Thus:

• Expansions in natural eigenfunctions of a problem are only

good if they satisfy a singular Sturm-Liouville problem.

• If they do not satisfy a singular Sturm-Liouville problem

one most likely will not get spectral convergence even if the

functions look very natural for the problem

110

A Insertion: Testing of Codes

A few suggestions for how to test codes and identify bugs:

• test each term individually if possible

– set all but one coefficient in the equation to 0:

does the code behave qualitatively as expected from the

equation?

– compare quantitatively with simple analytical solutions

(possibly with some coefficients set to 0)

• code ‘blows up’:

– is it a ‘true blow-up’: exact solution should not blow up

– is the blow-up reasonable for this type of scheme for

this problem? Stability? Does decreasing dt increase/decrease

the growth?

– is the blow-up a coding error?

• track variables:

use only few modes so you can print out/plot what is going

on in each time step

• if the code seems not to do what it should it often is a good

idea to vary the parameters and see whether the behavior

of the code changes as expected (e.g. if a parameter was

omitted in an expression the results may not change at all

even though the parameters are changed); the response of

the code to parameter changes may give an idea for where

the error lies.

B Details on Integrating Factor Scheme

IFRK4

Some more details for the integrating-factor scheme (keeping in

mind that it is usually not as good as the exponential time differ-

encing scheme):

Rewrite (4) with integrating factor ek2t

∂t(e
k2tuk) = k2ek2tuk + ek2t∂tuk = ek2tfk(u) (18)

Introduce auxiliary variable vk(t) = ek2tuk(t)

∂tvk = ek2tfk(e
−l2tvl) (19)

Note:

111

• for nonlinear f the Fourier coefficient fk depends on all Fourier

modes of v

It is natural to consider now suitable time-integration methods

to solve equation (19)

Example: Forward Euler

vn+1
k = vn

k + ∆t ek2tfk(e
−k2tvn

k)

ek2(t+∆t)un+1
k = ek2tun

k + ∆t ek2tfk(u
n
k)

un+1
k = e−k2∆t (un

k + ∆t fk(u
n
k))

Note:

• with forward Euler integrating factor generates same scheme

as the operator-splitting scheme above

• diffusion and other linear terms are treated exactly

• no instability arises from linear term for any ∆t

• large wave numbers are strongly damped, as they should be

(this is also true for operator splitting)

compare with Crank-Nicholson (in CNAB, say)

un+1
k =

1 − 1
2
∆tk2

1 + 1
2
∆tk2

un
k

for large k∆t

un+1
k = −(1 − 4

∆tk2
+ ...)un

k

oscillatory behavior and slow decay.

• FFT is done on nonlinear term rather than the linear deriva-

tive term (cf. operator splitting)

• But: fixed points in u depend on the time step ∆t and are

not computed correctly for large ∆t, whereas without the

integrating factor the fixed points of the numerical scheme

agree exactly with those of the differential equation.

Notes:

• It turns out that the prefactor of the error term is relatively

large in particular compared to the exponential time differ-

encing scheme (cf. Boyd, Chebyshev and Fourier Spectral

Methods3)

3See also Cox and Matthews, J. Comp. Phys. 176 (2002) 430, who give a

detailed comparison and a further advanced method exponential time differ-

encing.

112

Details for Runge-Kutta:

In Fourier space

∂tuk = −k2uk + fk(u)

For vk = ek2tuk then

∂tvk = ek2tfk(vle
−l2t) = Fk(t, vl)

Note: Fk(t, vl) depends explicitly on time even if f(u) does not!

Then

k1k = ∆tFk(tn, v
n
l) =

= ∆t ek2tnfk(v
n
l e

−l2tn) = ∆tek2tnfk(u
n
l)

k2k = ∆tFk(tn +
1

2
∆t, vn

l +
1

2
k1l) =

= ∆t ek2(tn+∆t/2)fk((v
n
l +

1

2
k1l) e

−l2(tn+∆t/2))

= ∆t ek2(tn+∆t/2)fk(v
n
l e

−l2tne−l2∆t/2 +
1

2
k1le

−l2(tn+∆t/2))

= ∆t ek2(tn+∆t/2)fk(u
n
l e

−l2∆t/2 +
1

2
k1le

−l2(tn+∆t/2))

Growing exponentials become very large for large k. Introduce

k̄1k = k1ke
−k2tn

k̄2k = k2ke
−k2(tn+∆t/2)

k̄3k = k3ke
−k2(tn+∆t/2)

k̄4k = k4ke
−k2(tn+∆t)

Then

k̄1k = ∆t fk(u
n
l)

k̄2k = ∆t fk(u
n
l e

−l2∆t/2 +
1

2
k̄1le

−l2∆t/2)

= ∆t fk

(

(un
l +

1

2
k̄1l)e

−l2∆t/2

)

k̄3k = ∆t fk

(

un
l e

−l2∆t/2 +
1

2
k̄2l

)

k̄4k = ∆t fk

(

un
l e

−l2∆t + k̄3le
−l2∆t/2

)

vn+1
k = vn

k +
1

6
(k1k + 2k2k + 2k3k + k4k)

un+1
k ek2(tn+∆t) = un

ke
k2tn+

1

6
ek2tn

(

k̄1k + 2k̄2ke
k2∆t/2 + 2k̄3ke

k2∆t/2 + k̄4ke
k2∆t

)

Thus

un+1
k = un

ke
−k2∆t +

1

6

(

k̄1ke
−k2∆t + 2k̄2ke

−k2∆t/2 + 2k̄3ke
−k2∆t/2 + k̄4k

)

Note

113

• In each of the four stages go to real space to evaluate non-

linearity and then transfrom back to Fourier space to get its

Fourier components in order to evaluate k̄ik, i = 1..4.

C Chebyshev Example: Directional Sens-

ing in Chemotaxis

Levine, Kessler, and Rappel have introduced a model to explain

the ability of amoebae (e.g. Dictyostelium discoideum) to sense

chemical gradients very sensitively despite the small size of the

amoeba (see PNAS 103 (2006) 9761).

The model consists of an activator A, which is generated in re-

sponse to the external chemical that is to be sensed. The acti-

vator is bound to the cell membrane and constitutes the output

of the sensing activity (and triggers chemotactic motion), and a

diffusing inhibitor B. The inhibitor can attach itself to the mem-

brane (its concentration is denoted Bm) where it can inactivate

A.

The model is given by

∂B

∂t
= D∇2B inside the cell − 1 < x < +1

with boundary ocndition

D
∂B

∂n
= kaS − kbB.

Here ∂/∂n is the outward normal derivative. In a one-dimension

system its sign is opposite on the two sides of the system, ∂/∂n =
−∂/∂x at x = −1 whereas ∂/∂n = +∂/∂x at x = +1 . The reactions

of the membrane bound species are given by

dA

dt
= kaS − k−aA− kiABm

dBm

dt
= kbB − k−bBm − kiABm

To implement the boundary conditions with Chebyshev polyno-

mials (using the matrix multiplication approach):

∂Bi

∂x
=

N∑

j=0

DijBj for i = 1, . . . , N − 1

∂B0

∂x
= − 1

D
(kaS0 − kbB0)

∂BN

∂x
=

1

D
(kaSN − kbBN)

114

The second derivative is then given by

D
∂2Bi

∂x2
= D

N−1∑

j=1

N∑

k=0

DijDjkBk−Di0 (kaS0 − kbB0)+DiN (kaSN − kbBN)

which can be written as

D
∂2Bi

∂x2
=

N∑

k=0

D̃ikBk + ka (−Di0S0 +DiNSN)

with

D̃ik = D

N−1∑

j=1

DijDjk − b

−Di0 0 0 DiN

−Di0 DiN

−Di0 DiN

−Di0 0 0 DiN

The equations on the membrane are nonlinear. The implementa-

tion of Crank-Nicholson is then done most easily not completely

implicitly, i.e. no full Newton iteration sequence is performed

to solve the nonlinear equations. Instead only a single iteration

is performed (semi-implicit) This is equivalent to expanding the

terms at the new time around those at the old time. Specifically

αAn+1Bn+1 + (1 − α)AnBn = α ((An + ∆A)(Bn + ∆B)) + (1 − α)AnBn =

= α (AnBn + An∆B +Bn∆A+ O(∆A∆B)) + (1 − α)AnBn =

= α
(
An+1Bn + AnBn+1

)
+ (1 − 2α)AnBn + O(∆A∆B).

Ignoring the term O(∆A∆B) is often good enough.

D Background for Homework: Transi-

tions in Reaction-Diffusion Systems

Many systems undergo transitions from steady state to oscilla-

tory ones or from spatially homogeneous ones to states with spa-

tial structure (periodic or more complex)

Examples:

• buckling of a bar or plate upon uniform compression (Euler

instability)

• convection of a fluid heated from below: thermal instabil-

ity through bouyancy or temperature-dependence of surface

tension

• fluid between two rotating concentric cylinders: centrifual

instability

115

• solid films adsorbed on substrates with different crystaline

structure (cf. Golovin’s recent coloquium)

• surface waves on a vertically vibrated liquid

• various chemical reactions: Belousov-Zhabotinsky

– oscillations:

in the 1950s Belousov could not get his observations

published because the journal reviewers thought such

temporal structures were not ‘allowed’ by the second

law of thermodynamics

– spatial structure:

Turing suggested (1952) that different diffusion rates

of competing chemicals could lead to spatial structures

that could underly the formation of spatial structures

in biology (segmentation of yellow-jackets, patterning

of animal coats...)

Common to these systems is that the temporal or spatial struc-

tures arise through instabilities of a simpler (e.g. homogeneous)

state. Mathematically, these instabilities are bifurcations at which

new solutions come into existence.

General analytical approach:

1. find simpler basic state

2. identify instabilities of basic state

3. derive simplified equations that describe the structured state

in the weakly nonlinear regime

leads to equations for the amplitude of the unstable modes

characterizing the structure: Ginzburg-Landau equations

In homework consider simple model in one spatial dimension for

chemical reaction involving two species

∂tu = D1∂
2
xu+ f(u, v)

∂tv = D2∂
2
xu+ g(u, v)

‘Brusselator’ (introduced by Glansdorff and Prigogine, 1971, from

Brussels) does not model any specific reaction, it is just s very

simple rich model

f(u, v) = A− (B + 1)u+ u2v

g(u, v) = Bu− u2v

116

with A and B external control parameters. Keep in the following

A fixed and vary B.

For all parameter values there is a simple homogeneous steady

state

u = A v =
B

A

This state may not be stable for all values of B: study stability by

considering small perturbations

u = A+ U

v =
B

A
+ V

Inserting in original equation

u2v = AB + 2BU + A2V + U2B

A
+ 2AUV + U2V

∂tU = D1∂
2
xU + (B − 1)U + A2V + F (U, V)

∂tV = D2∂
2
xV −BU − A2V − F (U, V)

with

F (U, V) =
B

A
U2 + 2AUV + U2V

Linear stability: omit F (U, V), which is negligible for infinitesi-

mal U and V
(
∂tU
∂tV

)

=

(
D1∂

2
xU

D2∂
2
xV

)

+

(
B − 1 A2

−B −A2

)

︸ ︷︷ ︸

M0

(
U
V

)

Exponential ansatz
(
U
V

)

= eσteiqxA
(
U0

V0

)

(20)

M(σ, q)

(
U0

V0

)

≡
(

−σ −D1q
2 +B − 1 A2

−B −σ −D2q
2 − A2

)(
U0

V0

)

= 0

has only a solution if

detM(σ, q) = 0

σ2+σ
(
(D1 +D2)q

2 + A2 −B + 1
)

︸ ︷︷ ︸

α(q)

+A2(B − 1) + q2
(
A2D1 + (1 −B)D2

)
+D1D2q

4

︸ ︷︷ ︸

β(q)

= 0

This gives a relation

σ = σ(q)

Instability occurs if

ℜ(σ) ≡ σr > 0 for some q

In this model two possibilities for onset of instability

117

• σ = iω with q = 0: oscillatory instability leading to Hopf

bifurcation

expect oscillations to arise with frequency ω
occurs for α(q = 0) = 0

B(H)
c = 1 + A2 ωc = σi

• σ = 0 with q 6= 0: instability sets in first at a specific q = qc
(critical wavenumber)

expect spatial structure to arise with wavenumber qc
occurs for β(qc) = 0

B(T)
c =

(

1 + A

√

D1

D2

)2

q2
c =

A√
D1D2

here used σ(qc, B
(T)
c) = 0 as well as dσ

dq

∣
∣
∣
q
c,B

(T)
c

= 0 to get the

value where the first mode becomes unstable.

For small amplitude A one can do a weakly nonlinear analysis,

expanding the equations in A andB−B(H,T)
c to obtain a Ginzburg-

Landau equation for the complex amplitude A,

∂TA = δ ∂2
XA + µA− γ|A|2A

For Hopf bifurcation δ, µ, and γ are complex, for Turing bifurca-

tion they are real.

In the original exponential ansatz (20) amplitude A is constant.

It turns out one can allow A allow to vary slowly in space and

time. The Ginzburg-Landau equation has simple spatially/temporally

periodic solutions

A = A0e
iωteiqx

with

A2
0 =

µr − δrq
2

γr

ω = µi − δiq
2 − γi|A|2

This leads to solutions for U and V of the form
(
U
V

)

= ei(ωc+ω)tei(qc+q)xA0

(
U0

V0

)

+ h.o.t.

In the homework the system has non-trivial boundaries: affects

the onset of the instabilities. In this case one gets interesting

behavior already for values of B that are slightly below Bc. In-

stabilities can arise at boundaries, which then can interact with

the instabilities in the interior of the system.

118

